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Abstract

Due to projections of high scalability, Phase-Change Memory (PCM) is seen as a
new main memory for computer systems. In fact, PCM may even replace DRAM, whose
scaling limitations require new lithography technologies that are still unknown. On the
down-side, PCM has low endurance when compared with DRAM, i.e., on average, a
PCM cell can only withstand 108 bit-flips (modification of stored bit values) before the
cell fails. To address PCM’s low endurance, Error Correction Techniques (ECTs) have
been proposed, which aim at increasing PCM’s lifetime. However, previous lifetime
analyses of ECTs have not considered the difference between the bit-flip frequencies
of data bits and code bits (used to correct errors in data bits). That observation is
crucial for the correct analysis of the ECTs since high bit-flip frequencies lead to faster
wear-out.

In this work, we improve the wear-out analysis of PCM by modeling and analyzing
the bit-flip probabilities of five ECTs, namely, ECP, DRM, SECDED, SAFER, and
FREE-p. We then use our analysis to evaluate the impact of error correction on the
wear-out of PCM. To do our analyses, we mathematically modeled and simulated the
ECTs using both a theoretical bit-flip probability (50%) and an empirical bit-flip rate
(15%), obtained from the execution of SPEC CPU2006. Our results show clear en-
durance degradation in techniques that use error-correcting codes, which contradicts
some previous results in the literature. Finally, we analyzed the power consumption
of the ECTs, and found that ECP and SAFER exhibit the best trade-off between en-
durance and write energy.

1 Introduction

Phase-Change Memory (PCM) is a new memory technology considered a possible replace-
ment for DRAM. PCM is byte-addressable, non-volatile, has multi-level cell (MLC) capa-
bility, and has demonstrated scalability beyond the 5 nm manufacturing process [9]. A
concern about PCM that hinders its use as main memory is its low endurance. Currently
a PCM cell withstands around 108 bit-flips (modification of stored bit values) [4] before
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failing. In fact, considering the variability in the manufacturing process, PCM cells may
withstand even less than 108 bit-flips, and a single cell failure may invalidate an entire PCM
chip. Besides, PCM’s endurance is far from that of DRAM (considered unlimited) [7].

To extend the average lifetime of PCM chips, Error Correction Techniques (ECTs) have
been used to ensure that a few cell failures will not cause a chip failure. Recently, some
ECTs for PCM were proposed in the literature: DRM [2], ECP [7], SAFER [8], and FREE-
p [10]. To correct cell failures, ECP and SAFER leverage the features of resistive memories,
whereas DRM and FREE-p use Error-Correcting Codes (ECCs).

Unfortunately, the works that propose those ECTs have simplifying assumptions that
overlook important characteristics of memory writes. First, they assume a Bit-Flip Prob-
ability (BFP) of 50%, i.e., on a write to a PCM memory block, every bit flips with a
50% probability. Second, they assume that the bit-flip behavior in data bits and code bits
is identical. As we show in this paper, those assumptions can mislead the evaluation of
PCM’s lifetime while not enabling an accurate analysis of energy consumption. Moreover,
Schechter et al. argue that ECCs speed up cell wear-out because any modification to data
bits requires a rewrite of code bits (those used to correct errors in the data bits) [7]. How-
ever, the authors do not confirm their hypothesis with experimental results or theoretical
analyses.

In this work, we carefully evaluate those hypotheses by mathematically modeling the
bit-flip behavior in DRM, SECDED, ECP, SAFER, and FREE-p. Specifically, our models
consider that data and code bits have different bit-flip frequencies. This approach not only
enables a more accurate evaluation of PCM’s endurance for each ECT, but also it enables
computing PCM’s write energy at a finer granularity. This kind of analysis and comparison
had not been done in the original ECT research. In our results, we evaluate PCM’s wear-out
and compare our results to those in the literature. We also evaluate energy consumption, and
their trade-off, for each ECT. Finally, we show results that support Schechter’s hypothesis.

This work is organized as follows. Section 2 presents more details on PCM and describes
the ECTs that we study. Section 3 describes the simulation model and the BFP model for
each technique. In Section 4, we present and discuss our results. Finally, in Section 5 we
conclude our work.

2 Background and Related Work

2.1 Phase-Change Memory and Bit-Failure

PCM cells are composed of a chalcogenide material sandwiched between two electrodes. One
of the electrodes is connected to the chalcogenide through a material called heater, which
modifies the state of a PCM cell during writes. A write is a thermal-mechanical stress
process of switching the chalcogenide’s resistive state between high (logical zero) and low
(logical one). The write stress causes either delamination or diffusion on the components of
PCM cells [1], resulting the cells become stuck at one of the states. If the memory system
is unable to handle cell failures, the whole memory fails.
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2.2 Error Correction Techniques

To prevent memory failures, memory subsystems typically utilize ECTs. For a memory with
a limited lifetime, ECTs not only provide a mechanism to recover the information stored
in a failed cell, but they can also extend memory lifetime. For PCM, some ECTs were
proposed in recent years: DRM (Dynamically Replicated Memory), ECP (Error-Correcting
Pointers), SAFER (Stuck-at-Fault Error Recovery) and FREE-p (Fine-Grained Remapping
With ECC and Embedded-Pointer).

In this subsection, we describe the main ECTs found in the literature. We also describe
SECDED (Single Error Correction Double Error Detection), traditionally used in DRAM,
and tested in PCM [2,7, 10].

2.2.1 Storage Overhead

Throughout this paper we use the term code bits as synonymous of meta data bits. Meta
data is encoded information of the data, which provides means of detecting or recovering a
missed information in the data. We define storage overhead (SO) as the length of the meta
data, described as a percentile of the data’s length.

In this work, a memory block is one 512-bit data block plus a SO of at most 64 code bits
(which represents 12.5% of the data block’s length, value widely adopted in the literature).

2.2.2 DRM

DRM reuses deallocated pages to extend memory lifetime. A page is deallocated when
its first error is detected. The page remains deallocated until another page (without error
overlap with the first page) happens to be deallocated. In that case, the two of them are
paired up and form a single new logical page that becomes available to the memory system
again. Pages with errors are paired and unpaired dynamically, since their compatibility
may change as new errors occur and error overlapping changes. The parity scheme uses one
code bit for every byte of data, which results in 64 code bits per memory block (12.5% of
SO).

2.2.3 SECDED

A (n, k) Hamming code is an n-bit codeword with k data bits and n − k code bits. The
SECDED is a (127, 120) Hamming code that can detect and correct up to one error.
Although 120 data bits are covered, only 64 of them are used in SECDED. Therefore,
SECDED is a non-standard (71,64) Hamming code plus one parity bit. The extra parity
bit detects a second error in one of the 71 bits of the codeword.

The resulting overhead is 8 code bits for every 64 data bits (12.5%). For our data block
of 512 bits, there are eight SECDED blocks. Hence, SECDED can correct up to 8 errors,
as long as they do not occur in the same SECDED block.
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2.2.4 ECP

Providing e spare cells to replace failed cells in a memory block, ECP is able to correct up
to e errors. When a cell failure is detected in a data block of size N bits, a pointer of log2N
bits will store the position of the failed cell in the block. Every read or write requested to
that block will need a pointer decoding, in order to redirect a write to the spare cell or to
provide a reading of the correct cell value stored in the spare cell.

A spare cell along with a pointer is called an ECP entry. The total overhead of keeping
all ECP entries is e+ e · log2N + 1. The 1 refers to a full bit that indicates whether all ECP
entries are being used. The notation ECPe means that a memory block has e ECP entries.
With N = 512 bits, ECP6 has 61 bits of SO (close to 12.5%).

2.2.5 SAFER

Taking advantage of the failed cells themselves to correctly store the data, SAFER links a
failed cell to a group of data bits in a memory block, so that there is only one failed cell
per group. When a write to the block is about to modify that group, if the state of the
failed cell logically matches the value of the bit to be stored, then the update to the group
is committed. Otherwise, the bits to be written the group are inverted, before being stored.
A spare bit is used to identify whether the bits stored in a group are inverted or not.

The most complex task in SAFER is forming the groups. The partitioning of a memory
block depends on the position of the failures in that block. For that reason, the number of
errors that SAFER can correct varies. For example, the configuration SAFER32 (with a SO
close to 12.5% for 512-bit data blocks) can correct up to 32 failed cells in the best scenario,
but depending on the position of the failed cells, at most only 7 errors can be corrected.

2.2.6 FREE-p

Using a (572,512) BCH code to help correcting hard and soft errors, FREE-p can correct
and detect up to six errors. The (572,512) BCH code is adapted from the (1023,963) BCH.
Moreover, in addition to the 572 bits of codeword, one parity bit is added, making the ECC
used in FREE-p a 6EC-7ED. The power of FREE-p lies on its mechanism for recycling
failed blocks (those with more than 4 hard errors), which are used to store pointers. When
those blocks receive a write request, FREE-p uses the pointer stored in them to redirect the
writes to a page without errors. Hence, a page with failed blocks remains functional until
all its blocks have failed.

3 Simulation Model

3.1 Our Hypotheses

There are five hypotheses that guide our model. First, PCM cells may not have the same
lifetime. This comes from the known imperfection of any process fabrication. Second,
writes only modify the bits that differ from the bits already stored. This consideration
refers to the mechanism known differential writes [3] or read-before-write [10]. Third, each
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cell stores a single bit. Fourth, the memory is perfectly wear-leveled. That is, the wear-
out is spread over all memory blocks, without hotspots. This hypothesis is consistent with
works in the literature [6]. Fifth, there is an intra-row wear leveling. Essentially, this is
the same idea of the fourth hypothesis, but within every memory block. This hypothesis
avoids favoring data bits or code bits in wearing out memory blocks.

3.2 Mathematical Representation

We describe how we compute the number of writes suffered by a memory during its lifetime
without considering a particular technique. Basically, the number of writes will depend on
the number of simulation steps, which depends on the ability of the technique to handle the
failures.

A memory can be emulated as a unidimensional array Q of length CM , where each
element contains an integer that represents the remaining lifetime of a memory cell. The
length is defined as CM = N ·NL ·NP , where N is the data block size, NL is the number
of blocks in a page, and NP is the number of pages. The array Q is created by ascendingly
sorting the elements from a matrix of integers. This matrix was randomly generated and
based on Gaussian distribution with mean µ and standard deviation σ (first hypothesis).

Our simulation handles one element of Q per simulation step. Being that, at the k-th
step, all memory cells must have suffered Qk−1 writes, except for the k − 1 memory cells
that had already failed; since the elements Q0, . . . , Qk−1 have a lower remaining lifetime
than the elements Qk, . . . , QCM−1.

When the first block in a page becomes unable to recover from a failure, the page is
deallocated. In that case, a deallocated page should not be taken into account. Let FP (k)
be the number of deallocated pages in the k-th simulation step and let the wear rate be
(1) the percentile reduction of the number of writes. Intuitively, fwr(0) = 1 (there is no
reduction) and FP (0) = 0 (no failed pages) before the simulation starts. Let ck be the
lifetime difference between the elements located in positions k and k − 1. Considering
c0 = 0, we can describe a simultaneous write in all memory pages as (2).

fwr(k) = fwr(k − 1) · NP − FP (k)

NP − FP (k − 1)
(1)

W (k) =
k∑
i=1

ci · fwr(i) (2)

Note that when we say all the pages of the memory, we refer to the fourth hypothesis.
The perfect wear-leveling ensures that when we perform ck writes, all the blocks that do
not belong to failed pages have suffered ck writes. That is why we use the wear rate, which
removes the unwritable pages from the counting. Systematically, to compute the number
of writes, for the whole memory, we should multiply W (k) by NL and NP . However, they
are constants and do not need to be computed at the simulation time, thus (2) is enough
for our evaluations.
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3.3 Bit-Flip Probability Modeling

In a memory that stores one bit per cell (third hypothesis), we can model a write in a
memory block as a sequence of n (the block length) independent events, with probability p
of success (flipping). We have a success when a bit has its value flipped; otherwise, we have
a failure. That is, we model memory writes with a binomial distribution. Therefore, the
expected number of flipping bits in a write is n · p. By the second and the fifth hypotheses,
every bit in a block should last longer than its original lifetime (by a fraction 1/p).

For the following BFP models, we consider that the probability of success p is unknown.
Every memory block has N + ∆X bits (where the subindex X is the technique, and can
be omitted for intelligibility). Of those bits, N = 512 bits have p probability of flipping
(data BFP) and ∆X bits have PX(p) probability of flipping (code BFP, which is a function
p). Thus, we define the weighted BFP ΥX as the weighted arithmetic mean of p and
PX(p). Equation (3) uses ΥX to compute the total writes in our simulation model for each
technique.

W(k) =
W (k)

ΥX
(3)

3.3.1 The DRM BFP model

By considering that one parity bit covers n bits. We know that a parity bit is 1 when
the covered bits have an odd number of bits with value 1. If an even number of covered
bits change their value, from 0 to 1 or vice-versa, the parity is not changed because there
is compensation. Hence, the BFP of the parity bit depends on the probability of an odd
number of flips occurring in the byte.

Now, consider the model of a binomial distribution to describe a memory write. The
probability of parity change is the probability of occurring one, or three, or five flips, and so
on until n−1 flips, for an n-bit memory word (where n is a power of two). Mathematically,

PPARITY(n, p) =

n
2∑
i=1

B(2 · i− 1;n, p) (4)

The notation B(k;n,p) represents the probability mass function for the binomial distribu-
tion. In DRM, ∆ = 64 bits, i.e., the number of parity bits. We have ∆ bits with probability
PPARITY(b, p) of flipping, where b is the byte’s length, and N bits with probability p of
flipping. The DRM’s BFP is:

ΥDRM = p · N

N + ∆
+ PPARITY(b, p) · ∆

N + ∆
(5)

3.3.2 The SECDED BFP model

has the same principle of the model for parity bits in DRM, i.e., the parity bits of SECDED
depend on counting an odd number of flips in a write. Nevertheless, the model of SECDED
becomes more complex because it is a non-standard Hamming code, thus the quantity of
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covered bits by a parity bit is not constant. We formulate an equation that gives us the
quantity of covered bits for every parity bit in a (n, k) Hamming code. The quantity qh(j) of
covered bits by the i-th parity bit, located in the j-th codeword’s position (such as j = 2i−1),
is given by (6).

kh(j) = j ·
(⌈n− (j − 1)

j

⌉
−
⌈n− (j − 1)

2 · j

⌉)

qh(j) = kh(j) + max
(
0, n− (j − 1)− 2 · kh(j)

)
− 1 (6)

In a standard (n, k) Hamming code, for definition, the i-th parity bit covers all codeword
bits that have value 1 in the i-th bit of the binary word that describes a bit position in
the codeword. Given m parity bits, such that m = n − k is an integer greater than 2, we
can alternatively define a standard Hamming code as (2m − 1, 2m −m− 1) code [5]. Thus,
to describe a bit position in the codeword we need dlog2(2

m − 1)e bits. We know that
log2 2m−1 < dlog2(2

m − 1)e ≤ log2 2m = m (Property B.1).
For a given bit, in all possibles m-bit words, there is always 2m/2 words whose that bit is

1. Therefore, in a (n, k) Hamming code, the i-th parity bit covers n/2 bits. With m parity
bits, there is (n−m)/2 data bits covered by each parity bit (the coverage is redudant). In
other words, the data bits coverage is (2m − 1 −m)/2 = (k/2). We demonstrate that (6)
follows this case, see Section B.1.

We were not capable of proofing our equation for every Hamming code. Nevertheless,
we provide the Table 3 that stands the results of (6) for the (71, 64) hamming code used
in SECDED. Hence, using the quantity of covered bits for each parity bit, we describe the
weighted BFP for a (n, k) Hamming code as:

PHC(p) =
1

n
·
(
k · p+

n−k∑
i=1

PPARITY(qh(2i−1), p)
)

The SECDED has an additional bit of parity covering the n bits of codeword, therefore:

ΥSECDED =
1

n+ 1
·
(
n · PHC(p) + PPARITY(n, PHC)

)
(7)

In spite of N = 512 bits and ∆ = 64 bits for a memory block with SECDED, it is not
necessary modify (7), because the SECDED works individually by blocks of n = 72 bits.
Therefore, multiplying and weighting the equation by the number of SECDED blocks in a
memory block will not change the model.

3.3.3 The ECP BFP model

In this model, the essential is to keep in mind that neither the pointer bits nor the full bit
will be frequently written. The worst case scenario for these bits happens at the last ECP
entry, which is used as a counter of the used ECP entries. That entry will be updated at
most e times in the ECPe, during the block’s lifetime. Since we assume an average cell
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endurance greater than a million writes, we can consider that those bits have a negligible
BFP. Consequently, N data bits and e spare bits suffer the vast majority of writes. We
assume that, in the lifetime of the block, e errors will occur, and considering our fifth
hypothesis the e spare bits will receive many writes. Let ∆ = e+ e · log2N + 1, thus:

ΥECPe = p · N + e

N + ∆
(8)

3.3.4 The SAFER BFP model

The proposition of this model takes the number of failed bits into account. We do that
because, in SAFER, the number of failed bits in a memory block changes the BFP of the
data bits. Specifically, in the absence of failures, each bit at a given memory block has a
BFP of p upon every new write to the block. However, when a failure occurs, the block
is sub-divided into groups of bits, with at most one failed bit (stuck at one or zero) per
group. For explanation purposes, suppose we have a group G with a failed bit gi, and G′

will overwrite G upon a new block write. Suppose that the bit g′i in G′ will overwrite gi.
Then, in addition to the original BFP of p, we need to consider the probability q = 1/2 that
the stuck value of gi matches the value of g′i (otherwise, SAFER will invert all bits in G′

before overwriting G). If they match, the BFP when G′ overwrites G is p and the resulting
BFP is p · q. If they do not match, the BFP when G′ overwrites G is 1−p and the resulting
BFP is (1− p) · (1− q).

For the SAFERk (which can correct up to k errors) there are initially k groups, and
they require k spare bits to inform whether the data is stored directly or not. These bits
have a BFP of p or (1− q). As errors happen, k− e bits will keep a BFP of p, and the other
e bits will have BFP of 1− q, since their state will depend on the probability that gi does
not match g′i. Furthermore, SAFER needs dlog2 ke · dlog2dlog2 nee + dlog2(dlog2 ke + 1)e
bits to organize the groups and keep them with only one error. Like the pointers in ECP
these bits are written very few times; thus, we assume their BFP is zero. ∆ is k+ dlog2 ke ·
dlog2dlog2Nee+ dlog2(dlog2 ke+ 1)e bits.

Being k a power of 2, like N , the number of bits in a group is N/k. This means that
with e errors in a memory block, e groups of (N/k) bits have a BFP of p ·q or (1−p) ·(1−q).
The previous observations lead us to the following BFP (N + (k− e)− (Nk · e)) · p+ (Nk · e) ·
q · p+ (Nk · e) · (1− q) · (1− p) + e · (1− q), which can be simplified into (9).

ΥSAFER(e) =
(N + k − e) · p+

N

k
· e ·

(1

2
− p
)

+ e · 1

2
N + ∆

(9)

Our simulation model cannot handle this bit-flip model, because every memory block
will have its own number of errors. Hence, for simplification, we calculate the average
number of errors of the memory blocks at each simulation step. Therefore, the computation
of writes at each simulation step is done using PSAFER(eµ(i)). Where eµ(i) is the average
number of errors at the i-th simulation step. In this case, in our simulation we replace (3)
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with (10).

W(k) =
k∑
i=1

ci · fwr(i)
ΥSAFER(eµ(i))

(10)

3.3.5 The FREE-p BFP model

For a (n, k) BCH code, we define D = {d0, d1, . . . , dk−1} as the binary data word with k
bits, G = {g0, g1, . . . , gm} as the generator polynomial, where m = n−k. Finally, we define
V = {v0, v1, . . . , vm−1} as the verification code.

To illustrate our model, we take a generic (7,4) BCH code showed in the Fig. 1. The
division is a process of continuous addition modulo 2 between the elements of a subset that
is an element from P(L), where L = {L1,L2,L3,L4}. More formally, we say that the bits of
V result from some combination of the bits of G and this combination is represented by some
element of P(L) over the application of f⊕ (defined by the property B.3), that is, an element
belonging to L =

⋃
P∈P(L) f⊕(P ) = {0,L1,L2,L3,L4,L1⊕L2,L1⊕L3, . . . ,L1⊕L2⊕L3⊕L4}.

For example, suppose that some division is represented by L2 ⊕ L3, this implies that
the result of V = {v0, v1, v2} is equal to {0, g0, g0 ⊕ g1}. We know that |L| = 16 and all
the possible values for v2 are {0, g0, g1, g2, g0 ⊕ g1, g0 ⊕ g2, g1 ⊕ g2, g0 ⊕ g1 ⊕ g2}, for v1 are
{0, g0, g1, g0 ⊕ g1} and for v0 are {0, g0}. Note that we see 8 combinations for v2, however
there are 16 that actually could happen, because every combination with L1 results in a
combination that already exists.

Still regarding the (7,4) BCH code, suppose that there is a data word D and its code
V stored in a memory block. If a new data word D′ and its code V ′ will be stored, the
probability of occurring d3 = d′3, d2 = d′2, d1 = d′1 and d0 = d′0 (the probability of no bit
flips) is (1 − p)4. If any bit differs from the corresponding stored bit, the probability of
occurring a bit-flip is 1− (1− p)4. Consider the new code bit v′2. From the above, there are
16 possible results among which exactly half shall be 1 and the other half 0 (see the stated
proposition B.2 and its corollary B.2.1). Regardless of v′2 being 1 or 0, when v′2 overwrites
v2, there would be a flip in 8 out of 16 chances. However, the probability of zero bit flips
(namely, (1− p)4) is not a chance of flipping. This leads us to 8/15 changes of occurring a
BFP of 1− (1− p)4, for every the code bit.

Generalizing for a data wordD = {d0, d1, d2, . . . , dk−1} and its code V = {v0, v1, . . . , vl−1}
stored in a memory block, the new data word D′ and its code V ′ that are going to be stored,

d3 d2 d1 d0 0 0 0 g3 g2 g1 g0
L1: g3 g2 g1 g0
L2: g3 g2 g1 g0
L3: g3 g2 g1 g0
L4: g3 g2 g1 g0

v2 v1 v0

Figure 1: Calculation of a generic verification code for the (7,4) BCH code.
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will incur in a bit-flip for any code bit with probability 1 − (1 − p)k, which may happen
with probability 2k−1/(2k − 1). Therefore,

Pcode(p, k) = (1− (1− p)k) · 2k−1

2k − 1
(11)

In the (n, k) BCH code used in FREE-p, the memory parameters are defined by k = N
and n − k = ∆ − 1. We subtract 1 to disregard the extra parity bit, since the total SO ∆
is the sum of the code bits from BCH plus the parity bit. The BFP of (n, k) BCH code is
given by (12) and for FREE-p is given by (13).

PBCH =
1

n
·
(
k · p+ (n− k) · Pcode(p, k)

)
(12)

ΥFREE-p =
1

n+ 1
·
(
PPARITY(n, PBCH) + n · PBCH

)
(13)

4 Results and Discussion

In this section, we present and discuss our results. Specifically, we compare the studied
ECTs according to their weighted BFP; wear-out impact on PCM; energy consumption;
and trade-off between wear-out and energy consumption.

4.1 Weighted BFP

Table 1 shows the weighted BFPs (ΥX) for every technique (X) computed using our models
for each value of p (the BFP of data bits). The higher the value of ΥX , the worst the
technique performs in terms of PCM wear-out. For SAFER, because its BFP depends on
the number of error, Υ is the average BFP across 1000 simulations.

Table 1: Weighted BFPs (ΥX) for each technique (X), and for different BFPs of data bits
(p).

p ΥECP6 ΥDRM ΥSECDED µ(ΥSAFER32) ΥFREE-p

10% 9.0% 13.5% 14.3% 12.6% 14.3%
15% 13.6% 18.6% 18.8% 17.0% 18.8%
20% 18.1% 23.2% 23.3% 21.5% 23.2%
30% 27.1% 31.2% 32.2% 30.3% 32.1%
40% 36.2% 41.1% 41.1% 39.1% 41.1%
50% 45.2% 50.0% 50.0% 48.0% 50.0%
60% 54.2% 58.9% 58.9% 56.8% 58.9%
70% 63.3% 67.8% 67.8% 65.7% 67.9%
80% 72.3% 76.6% 76.7% 74.5% 76.8%
90% 81.4% 84.6% 85.7% 83.3% 85.7%
100% 90.4% 88.9% 89.6% 92.2% 94.7%
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We observe that when p is below 50%, the ECC-based techniques (DRM, SECDEC, and
FREE-p) have a higher ΥX than the other techniques. The reason is that, in the ECC-
based techniques, the BFP of code bits is higher than that of data bits, which accelerates the
wear-out. Note that without intra-row wear leveling, the wear-out induced by bit-flips in the
code bits would speed up the failure of memory blocks. For p ≤ 30%, SAFER performs as
bad as the ECC-based techniques. This happens because SAFER’s bit-inversion mechanism
increases the BFP of bit groups in the presence of errors. The only technique that shows a
consistently low weighted BFP is ECP, which benefits from infrequent updates to its code
bits. For p ≥ 50%, all techniques exhibit a higher BFP in data bits than in code bits. In
ECC-based techniques, this happens because the BFP of code bits is close to 50% (almost
independently of p). In SAFER, the BFP of bit groups tend to 50%, due SAFER’s bit-
inversion mechanism. Finally, in ECP, the infrequent writes to code bits result in lower
values of Υ for every p.

4.2 Theoretical and Empirical BFP

For our wear-out analysis of PCM, we feed two parameters into our BFP models: an
empirical bit-flip rate (p = 15%) and the theoretical BFP assumed in the literature (p =
50%). We obtained p = 15% by instrumenting SPEC CPU2006 in our cache memory
simulator (based on Intel’s PIN Tools). In particular, we simulate a two-level cache (L1: 64
KBytes and L2: 2 MBytes), both levels with 64B blocks, LRU replacement, and a write-
back replacement policy. We found p = 15%, which corroborates with the value in [3]. For
consistency, we include the row p = 15% in Table 1.

Using the empirical and theoretical parameters, we study the impact of ECTs on memory
lifetime in two ways. First, we simulate the different ECTs using our BFP models (Section
3), which differentiate between the BFPs of data and code bits. The results are shown in
Fig. 2 (a) and (b). Second, we study the ECTs without differentiating between the BFPs of
data and code bits as it was done in previous works. The results are shown in Fig. 2 (c) and
(d). In both studies, we run 1000 simulations of each ECT to account for the randomized
lifetimes of PCM cells (Section 3.2). We also set N = 512 NL = 64, NP = 256, and the
average cell endurance µ = 108 with a standard deviation σ = 2.5 · 107. Finally, in Fig. 2
(a) and (c), we show results for the experimental bit-flip rate, whereas in Fig. 2 (b) and (d)
we show results for the theoretical BFP. The curves in all figures represent memory lifetime
as the number of non-failed pages versus the number of writes to PCM. The lifetime of
memory ends when the number of non-failed pages reaches zero.

The curves in Fig. 2 (d) represent the results as they were originally published in [7,8,10].
Although, in those works there was no direct comparison between FREE-p and SAFER,
both had been found superior to ECP. The result is similar for the BFP of 15% (Fig. 2 (c)).
In Fig. 2 (a) and (b), FREE-p exhibits degradation compared the previous results. In fact,
FREE-p performs worse than ECP, which contradicts the previous result. In the Fig. 2
(b) there is no substantial change from (d). However, in (a) we see lifetime degradation for
ECC-based techniques as compared to (c). Conversely, ECP improves its memory lifetime,
whereas SAFER maintains approximately the same lifetime.

These results highlight our claim that differentiating between the bit-flip rates of data
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and code bits enables more fine-grained and accurate studies. It is clear now that ECC can
accelerate memory wear-out and reduce its lifetime, thereby supporting the hypothesis by
Schechter et al. [7].
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Figure 2: Memory lifetime with our BFP models for (a) and (b); and without our BFP
models for (c) and (d).
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4.3 Energy Consumption and Bit-Flip Probability

Since each ECT has a unique BFP for every value of p, their expected write energy should
be different. To study the write energy we adopt the same cell write energy for all ECT,
i.e., Ereset = 19.2 pJ and Eset = 13.5 pJ (from Lee et al. [4]). By using the expected number
of bit flips in a write, we can define the expected write energy of each ECT X as in (14).
∆X represents the SO for each ECT.

ξX = (N + ∆X) ·ΥX ·
(
(Eset + Ereset) · 0.5

)
(14)

ΛX =
WX(ω)

ξX
(15)

In addition to the write energy, we combine endurance and energy consumption into
a single metric, to evaluate their trade-off. That metric (Λ) is expressed in (15). The
simulation step ω denotes end of simulation, and W(ω) represents the total number of
writes withstood by the memory. Table 2 shows the Λ of all ECTs normalized to ΛECP6 .
From the definition of Λ, the higher the memory endurance and the lower the write energy
imposed by an ECT, the better the ECT’s Λ. Based on this table, we conclude that ECP and
SAFER exhibit the best trade-off between endurance and write energy, for both empirical
bit-flip rate and theoretical BFP.

Table 2: Λ of the ECTs normalized to ΛECP6 . p = 15% is our empirical bit-flip rate and
p = 50% is the theoretical BFP.

ΛX/ΛECP6ΥX p = 15% p = 50%

ΥDRM 0.24 0.37
ΥSECDED 0.30 0.47

µ(ΥSAFER32) 0.81 1.02
ΥFREE-p 0.56 0.88

5 Conclusions

In this work, we introduced a more accurate and fine-grained approach to analyze the
impact of ECTs on PCM’s lifetime. Our approach also enables a meaningful computation
of PCM write energy and its trade-off with memory endurance. This kind of analysis was
not possible with previous ECT models, but it is still critical for modern computer systems.

We evaluated five state-of-the-art ECTs using our approach and compared our results
to those in the literature. Our results extend and shed light on previous works that used
simplifying assumptions; and support the argument that ECC-based techniques speed up
the wear-out of PCM.
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A Examples of Hamming code coverage

Table 3: Covering of Hamming(71,64)-code. At the first line we have the bit positions in the codeword. Starting from LSB
to MSB. The second line discriminates data bits and parity bits, d refers to data bit and hj refers to parity bit that covers all
the bits whose the position in binary word has the ([log2 j] + 1)-th bit equal to 1.

Bit position in the codeword 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits discrimination h1 h2 d1 h4 d2 d3 d4 h8 d5 d6 d7 d8 d9 d10 d11 h16 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26

Covering of the parity
bits

h1 • • • • • • • • • • • • • • • •
h2 • • • • • • • • • • • • • • • •
h4 • • • • • • • • • • • • • • • •
h8 • • • • • • • • • • • • • • • •
h16 • • • • • • • • • • • • • • • •
h32
h64

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
h32 d27 d28 d29 d30 d31 d32 d33 d34 d35 d36 d37 d38 d39 d40 d41 d42 d43 d44 d45 d46 d47 d48 d49 d50 d51 d52 d53 d54 d55 d56 d57 h64 d58 d59 d60 d61 d62 d63 d64

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • •
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B Demonstrations

B.1 Parity Coverage Bits Equation

Property B.1 Defining k, k ∈ Z and f, f ∈ R | 0 ≤ f < 1. Thus:

dk − fe = k

Demonstration. By the definition, dke = k and dk− 1e = k− 1 because k− 1 ∈ Z. Thus,
dke ≥ dk − fe ≥ dk − 1e. Namely, k ≥ dk − fe ≥ k − 1. As f < 1, the greatest integer for
k − f é k. Hence, dk − fe = k.

We can show that (6) is correct to a regular (n, k) Hamming code. As argued before,
every parity bit covers 2m−1 bits including itself, or 2m−1 − 1 excluding itself.

Proposition B.1 Given the equations qh(j) = kh(j) + max(0, n− (j− 1)− 2 · kh(j))− 1

and kh(j) = j · (dn−(j−1)j e − dn−(j−1)2·j e), for a regular Hamming code with codeword length
of n = 2m − 1 bits, k data bits and m = n− k code bits, for every i-th code bit, at the j-th
codeword bit position, where j = 2i−1, qh(2i−1) = 2m−1 − 1.

Demonstration. kh(j) for j = 2i−1 and n = 2m − 1 is

kh(2i−1) = 2i−1 ·
(⌈

2m − 1− (2i−1 − 1)

2i−1

⌉
−
⌈

2m − 1− (2i−1 − 1)

2 · 2i−1

⌉)
= 2i−1 ·

(⌈
2m��−1− 2i−1��+1

2i−1

⌉
−
⌈

2m��−1− 2i−1��+1

2i

⌉)
= 2i−1 ·

(⌈(
2m − 2i−1

)
· 2−i+1

⌉
−
⌈(

2m − 2i−1
)
· 2−i

⌉)
= 2i−1 ·

(⌈
2m−i+1 − 1

⌉
−
⌈

2m−i − 2−1
⌉)

Knowing that 2m−i+1 is integer, d2m−i+1 − 1e = 2m−i+1 − 1. By the property B.1,
d2m−i − 2−1e = 2m−i. Hence,

kh(2i−1) = 2i−1 ·
(

2m−i+1 − 1− 2m−i
)

= 2m − 2i−1 − 2m−1
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Resulting in:

qh(2i−1) = kh(2i−1) + max
(
0, n− (2i−1 − 1)− 2 · kh(2i−1)

)
− 1

= kh(2i−1) + max
(
0, 2m − 1− (2i−1 − 1)− 2 · kh(2i−1)

)
− 1

= 2m − 2i−1 − 2m−1 + max
(
0, 2m − 1− (2i−1 − 1)− 2 · (2m − 2i−1 − 2m−1)

)
− 1

= 2m − 2i−1 − 2m−1 + max
(
0, 2m��−1− 2i−1��+1− 2m+1 + 2i + 2m

)
− 1

= 2m − 2i−1 − 2m−1 + max
(
0, 2m + 2m − 2m+1 − 2i−1 + 2i

)
− 1

= 2m − 2i−1 − 2m−1 + max
(
0, 2m(1 + 1− 2) + 2i(1− 2−1)

)
− 1

= 2m − 2i−1 − 2m−1 + max
(
0, 2i−1)

)
− 1

= 2m −�
��2i−1 − 2m−1 +�

��2i−1 − 1

= 2m − 2m−1 − 1

= 2m(1− 2−1)− 1

= 2m−1 − 1
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B.2 Bit proportion of a Binary Division

Property B.2 (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
Stifel’s relation.

Property B.3
n∑
k=0

(
n

k

)
= 2n

Easily show by Newton’s binomial.

Definition B.1 a⊕ b is defined as the operation exclusive-or between a and b.

Definition B.2
⊕
a∈A

a is defined as the operation exclusive-or among all elements that

belong to the set A. Namely,
⊕
a∈A

a =

|A|⊕
i=1

ai = a1 ⊕ a2 ⊕ · · · ⊕ a|A|, ai ∈ A.

Definition B.3 Let B be a set of n bits bi, 0 ≤ i < n and bi ∈ {0, 1}. Let P(B) be the
power set of B and let be P ∈ P(B). We define ⊕-power function as

f⊕(P ) =

0, se P = {}⊕
a∈P

a, otherwise.

We want to show the following statement:

Proposition B.2 Let B be a set of n bits bi, 0 ≤ i < n and bi = {0, 1}, with k ≥ 1 bits
1. Let P(B) be the power set of B and let f⊕ be ⊕-power function. Then, the sum of the
application of f⊕ over the set P(B) has half of its cardinality. That is,∑

P∈P(B)

f⊕(P ) =
|P(B)|

2
= 2n−1

Demonstration. Let π1(B) be the subset of B containing all k bits bi of B that represents
1. Let π0 be the subset of B containing all the n − k bits B that represents 0. Let be
Pi ∈ P(B), 0 ≤ i < |P(B)|. Without loss of generality, assume P0 = {}, P1 = {b0},
P2 = {b1}, . . . , Pn = {bn−1}, Pn+1 = {b0, b1}, . . . , P2n−1 = {b0, b1, b2, . . . , bn−1}. We get
f⊕(P0) = 0, f⊕(P1) = b0, . . . , f⊕(Pn+1) = b0 ⊕ b1, . . . , f⊕(P2n−1) = b0 ⊕ b1 ⊕ · · · ⊕ bn−1.

Among f⊕(P1), f⊕(P2), ..., f⊕(Pn), we know that k (or
(
k
1

)
) of that operations results 1.

Among f⊕(Pn+1) and f⊕(Pn+(n2)
), namely, among the results of applying f⊕ in the subsets

of P(B) composed by two elements in B, the results 1 are provide by the subsets composed
by one element of π1 and one of π0, because we know that is necessary a odd number of
bits that represents 1 for the application of f⊕ results 1. Hence, the number of results 1 is(
k
1

)
·
(
n−k
1

)
(how many ways is possible to select a element of π1 and one of π0).
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In the same way, the number of results 1 provide by applying f⊕ in the subsets of P(B)
composed by three elements of B, is the number of subsets which there is one element of π1
and there are two elements of π0, or the three elements are from π1. That is,

(
k
1

)
·
(
n−k
2

)
+
(
k
3

)
.

Now, supposing that k ≡ 1(mod 2). The counting of results of applying f⊕ over P(B)
goes as following: (

k

1

)
+(

k

1

)
·
(
n− k

1

)
+(

k

1

)
·
(
n− k

2

)
+

(
k

3

)
+(

k

1

)
·
(
n− k

3

)
+

(
k

3

)
·
(
n− k

1

)
+

...(
k

1

)
·
(
n− k
n− k

)
+

(
k

3

)
·
(

n− k
n− k − 2

)
+ · · ·+(

k

3

)
·
(

n− k
n− k − 1

)
+

(
k

5

)
·
(

n− k
n− k − 3

)
+ · · ·+(

k

3

)
·
(
n− k
n− k

)
+

(
k

5

)
·
(

n− k
n− k − 2

)
+ · · ·+

...(
k

k − 2

)
·
(
n− k
n− k

)
+

(
k

k

)
·
(

n− k
n− k − 2

)
+(

k

k

)
·
(

n− k
n− k − 1

)
+(

k

k

)
·
(
n− k
n− k

)
+

It is possible to group the sum as(
k

1

)
·

[
1 +

(
n− k

1

)
+

(
n− k

2

)
+ · · ·+

(
n− k
n− k

)]
+

(
k

3

)
·

[
1 +

(
n− k

1

)
+

(
n− k

2

)
+

· · ·+
(
n− k
n− k

)]
+ · · ·+

(
k

k

)
·

[
1 +

(
n− k

1

)
+

(
n− k

2

)
+ · · ·+

(
n− k
n− k

)]
,

In another way(
k

1

)
·

[(
n− k

0

)
+

(
n− k

1

)
+

(
n− k

2

)
+ · · ·+

(
n− k
n− k

)]
+

(
k

3

)
·

[(
n− k

0

)
+

(
n− k

1

)
+
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(
n− k

2

)
+ · · ·+

(
n− k
n− k

)]
+ · · ·+

(
k

k

)
·

[(
n− k

0

)
+

(
n− k

1

)
+

(
n− k

2

)
+ · · ·+

(
n− k
n− k

)]
.

Using B.3,(
n− k

0

)
+

(
n− k

1

)
+

(
n− k

2

)
+ · · ·+

(
n− k
n− k

)
=

n−k∑
i=0

(
n− k
i

)
= 2n−k,

Therefore, we get

2n−k ·

[(
k

1

)
+

(
k

3

)
+ · · ·+

(
k

k

)]
. (16)

Now, using B.2, we can replace
(
k
1

)
by
(
k−1
0

)
+
(
k−1
1

)
,
(
k
3

)
by
(
k−1
2

)
+
(
k−1
3

)
, and so goes until(

k
k−2
)

by
(
k−1
k−3
)

+
(
k−1
k−2
)

and
(
k
k

)
by
(
k−1
k−1
)
. Finally,

2n−k ·

[(
k − 1

0

)
+

(
k − 1

1

)
+

(
k − 1

2

)
+

(
k − 1

3

)
+ · · ·+

(
k − 1

k − 3

)
+

(
k − 1

k − 2

)
+

(
k − 1

k − 1

)]
,

Again, by B.3 we get(
k − 1

0

)
+

(
k − 1

1

)
+

(
k − 1

2

)
+ · · ·+

(
k − 1

k − 1

)
=

k−1∑
i=0

(
k − 1

i

)
= 2k−1.

(16) can be written as follows:

2n−k · 2k−1 = 2n−1.

Now, supposing that k ≡ 0(mod 2). The element
(
k
k

)
is not anymore a even combination

of elements of π1(B). Thus,

2n−k ·

[(
k

1

)
+

(
k

3

)
+ · · ·+

(
k

k − 1

)]
. (17)

Using B.2, we replace
(
k
1

)
by
(
k−1
0

)
+
(
k−1
1

)
,
(
k
3

)
by
(
k−1
2

)
+
(
k−1
3

)
, and so goes until

(
k
k−3
)

by
(
k−1
k−4
)

+
(
k−1
k−3
)

and
(
k
k−1
)

by
(
k−1
k−2
)

e
(
k−1
k−1
)
. Hence,

2n−k ·

[(
k − 1

0

)
+

(
k − 1

1

)
+

(
k − 1

2

)
+

(
k − 1

3

)
+ · · ·+

(
k − 1

k − 3

)
+

(
k − 1

k − 2

)
+

(
k − 1

k − 1

)]
.

We should observe that the number of combination summed does not differ with the parity
of k. Being k odd, the Stifel’s relation is not used in the last element of the sum, because(
k
k

)
cannot be replaced by

(
k−1
k−1
)

+
(
k−1
k

)
. Finally, by B.2, (17) can be written as

2n−k · 2k−1 = 2n−1.
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Corollary B.2.1 Half of the results of f⊕(Pi), Pi ∈ P(B), 0 ≤ i < |P(B)|, are 1 and,
consequently, half are 0.

Demonstration. By contradiction. Supposing that the number of results 1 is greater than
the number of results 0. We know that P(B) has 2n elements and applying f⊕ over P(B)
the sum results in 2n−1. If there is more results 1 than 0, then the sum of results 1 have
to be greater than 2n−1, but it is not possible. In the same way, if there is less results 1
than 0, the sum should compute less than 2n−1, but again is not possible. So the number
of results 1 is equal to the number of results 0.


