
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Partial FSM Models and Completeness with
Blocking Test Cases

Adilson Luiz Bonifacio Arnaldo Vieira Moura

Technical Report - IC-13-33 - Relatório Técnico

November - 2013 - Novembro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

Partial FSM Models and Completeness

with Blocking Test Cases

Adilson Luiz Bonifacio∗ Arnaldo Vieira Moura†

Abstract

Test suite generation and coverage analysis have been widely studied for FSM-based
models. Several studies focused on specific conditions for verifying completeness of
test suites. Some have found necessary conditions for test suite completeness, whereas
other approaches obtained sufficient, but not necessary, conditions for this problem.
Most of these works restricted the specification or the implementation FSM models in
several ways. More recent works have described necessary and sufficient conditions for
test suite completeness, but only under the assumption that all implementations be
complete FSM models. In this work we describe necessary and sufficient conditions
for test suite completeness under more relaxed constraints. We also show an intrinsic
relation between the number of states in implementations and complete test suites.
Further we show necessary and sufficient conditions for test suite completeness in the
presence of blocking sequences in both the specification and the implementation models.

1 Introduction

Many studies have investigated the automatic generation of test suites based on Finite
State Machine (FSM) models. Several of them focused on the automatic generation of
test suites with full fault detection. In other words, they provide test suites with complete
fault coverage [2, 3, 4, 5, 9, 10, 11, 14, 17]. Several of these methods have shown sufficient
conditions that guarantee the completeness of the test suites. Some other works proved
necessary conditions [12, 18] for the completeness of test suites.

However, in most of them, specifications are required to be reduced with n states, while
the corresponding implementation FSMs are required to have m ≥ n states [14]. Other
works are even more restrictive, either requiring m = n [13, 15, 17] or completely specified
specifications in order to generate complete test suites [7, 8, 10, 11, 17].

In a recent approach [1], necessary and sufficient conditions have been proposed for
test suite completeness. The proposal assumes more relaxed constraints about the models
involved in order to yield positive verdicts for test completeness. On the other hand, it still
requires that candidate implementations be completely specified. Moreover, the approach

∗Computing Department, University of Londrina, Londrina, Brazil, email: bonifacio@uel.br. Supported
by FAPESP, process 2012/23500-6.
†Computing Institute, University of Campinas, Campinas, Brazil, email: arnaldo@ic.unicamp.br.

1

2 Bonifacio and Moura

also relies on the classical notion of completeness, where test cases are assumed to run in
both the specification and in the implementation models, even when implementations are
considered as black-boxes.

In this paper, we treat more general cases in that we allow for partial models, both
in the specification side and also in the implementation side. We prove that our method
succeeds in determining the completeness of the test suites, even in situations where other
approaches fail. We also argue by a rigorous argument that there is an upper bound on
the number of states in implementations in order to still have completeness of test suites.
Further, we relax the classical notion of completeness in order to deal with a more realistic
situation in practice. More specifically, we allow for blocking test cases, that is, test cases
which may not run to completion in neither the specification nor in the implementation
machines. We also provide necessary and sufficient conditions for checking completeness of
test suites in this new scenario.

The paper is organized as follows. Section 2 contains basic definitions and notations.
Section 3 discusses necessary and sufficient conditions for test suite completeness for partial
FSM models. In Section 4 we also prove an intrinsic relationship between the number of
states in implementation candidates and the size of test cases when checking test suite
completeness. In Section 5 we describe necessary and sufficient conditions for test suite
completeness in the presence of blocking test cases. Section 6 concludes the paper.

2 Definitions and notation

In this section we present some definitions and notation that will be useful later. Let I be
an alphabet. The length of any finite sequence of symbols α over I is indicated by |α|. The
empty sequence will be indicated by ε, with |ε| = 0. The set of all sequences of length k
over I is denoted by Ik, while I? names the set of all finite sequences from I. When we
write σ = x1x2 · · ·xn ∈ I? (n ≥ 0) we mean xi ∈ I (1 ≤ i ≤ n), unless noted otherwise. For
any set C, P(C) denotes its power set. Given any two sets of sequences A,B ⊆ I?, their
symmetric difference will be indicated by A	B, that is A	B = (A∩B)∪ (A∩B), where
A indicates the complement of A with respect to I?. By A \B we mean set difference.

Remark 1 A	B = ∅ iff 1 A = B.

Next, we write the definition of a Finite State Machine [6, 15].

Definition 1 A FSM is a system M = (S, s0, I,O, D, δ, λ) where

• S is a finite set of states

• s0 ∈ S is the initial state

• I is a finite set of input actions or input events

• O is a finite set of output actions or output events

1Here, ‘iff’ is short for ‘if and only if’.

Completeness for partial FSMs 3

• D ⊆ S × I is a specification domain

• δ : D → S is the transition function

• λ : D → O is the output function. 2

In what follows M and N will always denote the FSMs (S, s0, I,O, D, δ, λ) and
(Q, q0, I,O′, D′, µ, τ), respectively. Let σ = x1x2 · · ·xn ∈ I?, ω = a1a2 · · · an ∈ O? (n ≥ 0).
If there are states ri ∈ S (0 ≤ i ≤ n) such that δ(ri−1, xi) = ri and λ(ri−1, xi) = ai

(1 ≤ i ≤ n), then we may write r0
σ/ω→ rn. When the input sequence σ, or the output

sequence ω, is not important, then we may write r0
σ/→ rn, or r0

/ω→ rn, respectively, and, if
both sequences are not important we may write r0 → rn. We can also drop the target state,

when it is not important, e.g. r0
σ/ω→ or r0 →. It will be useful to extend the functions δ and

λ to pairs (s, σ) ∈ S × I?. Let D̂ =
{

(s, σ) | s σ/→
}

. Now define the extensions δ̂ : D̂ → S

and λ̂ : D̂ → O? by letting δ̂(s, σ) = r and λ̂(s, σ) = ω whenever s
σ/ω→ r. When there is no

reason for confusion, we may write D, δ and λ instead of D̂, δ̂ and λ̂, respectively. Also,
the function U : S → I? will be useful, where U(s) = {σ | (s, σ) ∈ D̂}.

Now we are in a position to define test cases and test suites.

Definition 2 Let M be a FSM. A test suite for M is any finite subset of U(s0). Any
element of a test suite is a test case. 2

Since test cases must be applied from initial states, implementations under test must be
brought to its initial state before the application of a test case. This can be achieved using
a homing sequence [8, 17]. If there exist more than one test case to be applied, it is assumed
that the implementation under test has a reset operation. The reset operation brings the
machine back to its initial state [3, 4].

The notion of a simulation is given next.

Definition 3 Let M and N be FSMs. We say that a relation R ⊆ S ×Q is a simulation

(of M by N) iff (s0, q0) ∈ R, and whenever we have (s, q) ∈ R and s
x/a→ r in M , then there

is a state p ∈ Q such that q
x/a→ p in N and with (r, p) ∈ R. We say that M and N are

bi-similar iff there are simulation relations R1 ⊆ S ×Q and R2 ⊆ Q× S. 2

3 Test suite completeness for partial FSMs

In this section we give necessary and sufficient conditions for verifying test suite complete-
ness for FSM models. Such conditions will allow for partiality in both the specification and
implementation machines.

We start by writing the classical notion of distinguishability and equivalence.

Definition 4 Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I?. We say that s
and q are C-distinguishable iff λ(s, σ) 6= τ(q, σ) for some σ ∈ U(s) ∩ U(q) ∩ C, denoted
s 6≈C q. Otherwise, s and q are C-equivalent, denoted s ≈C q. We say that M and N are
C-distinguishable iff s0 6≈C q0, and they are C-equivalent iff s0 ≈C q0. 2

4 Bonifacio and Moura

When C is not important, or when it is clear from the context, we might drop the index.
When there is no mention to C, we understand that we are taking C = I?. In this case,
the condition U(s0) ∩ U(q0) ∩ C reduces to U(s0) ∩ U(q0).

Next we introduce the concept of n-complete test suites.

Definition 5 Let M be a FSM, let T a test suite for M and take n ≥ 1. Then T is n-
complete for M iff for any FSM N , with U(s0) ⊆ U(q0) and |Q| ≤ n, if M 6≈ N then
M 6≈T N . 2

The following result will help to show the existence of simulation relations.

Lemma 1 Let M and N be FSMs. Let n ≥ 1, si ∈ S, pi ∈ Q (1 ≤ i ≤ n) and xi ∈ I,

ai ∈ O, bi ∈ O′ (1 ≤ i < n) be such that si
xi/ai→ si+1 and pi

xi/bi→ pi+1 (1 ≤ i < n). Assume
further that s1 ≈ p1. Then si ≈ pi (1 ≤ i ≤ n) and a1a2 · · · an−1 = b1b2 · · · bn−1.

Proof An easy induction on n ≥ 1 [1]. 2

The next lemma states half of our desired result. We note that specifications and
candidate implementations can be partial machines.

Lemma 2 Let T be a n-complete test suite for a FSM M . Let N be a FSM such that
U(s0) ⊆ U(q0) and |Q| ≤ n. If M ≈T N then there exists a simulation of M by N .

Proof Define a relation R ⊆ S × Q by letting (s, q) ∈ R iff δ(s0, α) = s and µ(q0, α) = q
for some α ∈ I?. Since δ(s0, ε) = s0 and µ(q0, ε) = q0 we get (s0, q0) ∈ R.

Now assume (s, q) ∈ R and let s
x/a→ r in M , for some r ∈ S, x ∈ I and a ∈ O. Since T is

n-complete for M , U(s0) ⊆ U(q0), |Q| ≤ n and M ≈T N , Definition 5 gives M ≈ N . Hence,
s0 ≈ q0. Since (s, q) ∈ R, the construction of R gives some α ∈ I? such that δ(s0, α) = s
and µ(q0, α) = q. Composing, we get δ(s0, αx) = δ(s, x) = r and so αx ∈ U(s0). Since
U(s0) ⊆ U(q0), we obtain αx ∈ U(q0). Then µ(q0, αx) = µ(q, x) = p, for some p ∈ Q.

Collecting, we get δ(s0, α) = s, µ(q0, α) = q and s0 ≈ q0. Using Lemma 1 we conclude

that s ≈ q, and then we must have λ(s, x) = a = τ(q, x). So, from (s, q) ∈ R, s
x/a→ r we

obtained p ∈ Q such that q
x/a→ p. Finally, we note that we also have µ(q0, αx) = p and

δ(s0, αx) = r. The definition of R now gives (r, p) ∈ R. This shows that R is a simulation
relation, concluding the proof. 2

We now show the converse. That is, if there is a simulation of M by any T -equivalent
FSM with U(s0) ⊆ U(q0) and with at most n states, then n-completeness of the test suite
follows.

Lemma 3 Let M be a FSM, let T a test suite for M and take n ≥ 1. Assume that M
can be simulated by any T -equivalent FSM N , with U(s0) ⊆ U(q0) and |Q| ≤ n. Then T is
n-complete for M .

Completeness for partial FSMs 5

Proof We proceed by contradiction. Assume that T is not n-complete for M . Then, by
Definition 5, there exists a T -equivalent FSM N with U(s0) ⊆ U(q0), |Q| ≤ n, and such
that M 6≈ N . Using Definition 4, we get an input sequence σ = x1 . . . xn ∈ I? (n ≥ 0) and
an input symbol y ∈ I such that λ(s0, α) = τ(q0, α) and λ(s0, αy) 6= τ(q0, αy). Let si ∈ S,
qi ∈ Q (1 ≤ i ≤ n) be such that δ(si−1, xi) = si and µ(qi−1, xi) = qi (1 ≤ i ≤ n). So,
δ(s0, σ) = sn and µ(q0, σ) = qn. Further, we get s ∈ S and q ∈ Q such that δ(sn, y) = s,
µ(qn, y) = q and λ(sn, y) 6= τ(qn, y).

Since N is T -equivalent to M , U(s0) ⊆ U(q0) and |Q| ≤ n, the hypothesis gives a
simulation relation R ⊆ S ×Q.
Claim: (si, qi) ∈ R (0 ≤ i ≤ n).
Proof of the Claim. We go by induction on i ≥ 0.

Basis: we get (s0, q0) ∈ R directly from Definition 3.
Induction step: assume that (si, qi) ∈ R for some i < n. Since δ(si, xi+1) = si+1,
Definition 3 gives a q ∈ Q such that µ(qi, xi+1) = q, λ(si, xi+1) = τ(qi, xi+1) and
(si+1, q) ∈ R. But we already have µ(qi, xi+1) = qi+1 and, since µ is a function, we get
q = qi+1. Thus (si+1, qi+1) ∈ R extending the induction and establishing the Claim. 4

Using the Claim, we get (sn, qn) ∈ R. Since δ(sn, y) = s, Definition 3 gives a p ∈ Q such
that (s, p) ∈ R, µ(qn, y) = p, and λ(sn, y) = τ(qn, y), which is a contradiction. 2

Putting together the previous results we obtain necessary and sufficient conditions for
n-completeness of test suites, even if we allow for partial implementation candidates.

Theorem 1 Let M be a FSM, let T be a test suite for M and let n ≥ 1. Then, T
is n-complete for M iff M can be simulated by any T -equivalent FSM N that satisfies
U(s0) ⊆ U(q0) and |Q| ≤ n.

Proof Assume that T is n-complete for M . Then, Lemma 2 guarantees that N can simulate
M when N is T -equivalent to M , U(s0) ⊆ U(q0) and |Q| ≤ n. Now assume that M can
be simulated by any T -equivalent FSM N such that U(s0) ⊆ U(q0) and |Q| ≤ n. Then,
Lemma 3 guarantees that T is n-complete for M . 2

Remark 2 Note that Theorem 1 is valid even in the absence of the condition |Q| ≤ n,
if Definition 5 is also changed accordingly. But removing the condition would result in a
vacuous statement, as no test suite would then be complete. In Section 4 we investigate more
closely the relationship between the number of states in implementations and the complete
test suites.

An algorithm for checking completeness of test suites has been investigated [1]. Given
an implementation M and a test suite T , that algorithm proceeds in two steps. At the end
of the first step, the algorithm constructs a number of T -equivalent candidate FSMs with at
most n states, where n is an upper bound on the number of states for FSM implementations
as given in Definition 5. The final step then checks if all candidate FSMs can effectively
simulate M . If the answer is positive, we could declare T to be complete for M . If, on the
other hand, it could be proved that any of the candidate FSMs was unable to simulate M ,
then T could be declared not complete for M .

6 Bonifacio and Moura

Now, however, we have also to check if the condition U(s0) ⊆ U(q0) holds, given the
specification M and any candidate FSM N . If it does hold then N should be passed on to
te final step that checks for a simulation relationship, otherwise it should be discarded. But
this can be efficiently done by noting that from any FSM M = (S, s0, I,O, D, δ, λ) we can
readily extract a finite automaton MA = (S, s0, I, δ, F) [16] where the set of final states is
taken to be F = S. Let L(MA) be the language accepted by such an automaton. Then,
clearly, U(s0) ⊆ U(q0) if and only if L(MA) ⊆ L(NA). And this test can be performed
efficiently [16].

4 On the size of implementation machines

In this section we show that if one allows for too large implementations, then test complete-
ness is lost. More specifically, if T is a test suite for a FSM M , then T is not n-complete for
M , where n > k|S| and k is a constant that depends only on T . This means that T may
not be able to detect all faults in implementations with n or more states. We establish this
result by a series of claims.

We start with some basic facts and some notation. Let σ = x0x1 · · ·xk be a se-
quence of symbols over an alphabet. Then σi,j (0 ≤ i < j ≤ k + 1) indicates the sub-
string xixi+1 · · ·xj−1. Let α be another sequence of symbols over the same alphabet.
We say that σ is embedded in α if and only if there are βi (0 ≤ i ≤ k + 1) such that
α = β0x0β1x1 · · ·βkxkβk+1. Let T be a test suite for a FSM M and let σ ∈ T . We say that
σ is extensible in T if and only if σ = σ1σ2 and there is some non-null γ such that σ1γσ2 is
in T . Otherwise, σ is non-extensible in T .

We now say when a FSM is reduced.

Definition 6 We say that a FSM M = (S, s0, I,O, D, δ, λ) is reduced iff every pair of
distinct states in S are distinguishable, and for all s ∈ S there is a σ ∈ I? with δ(s0, σ) = s.
2

Remark 3 Note that if M is a reduced FMS with at least two reachable, then there always
exists a transition out of any reachable state s, that is (s, x) ∈ D for some x ∈ I. Otherwise,
s could not be distinguished from any other reachable state in M .

From this point on, we fix a reduced FSM M and a test suite T for M . Also, we fix
σ = x0x1 · · ·xk, k ≥ 0, as a smallest non-extensible test case in T .

Remark 4 If T ∩ U(s0) = ∅ then any FSM is trivially T -equivalent to M . Moreover, if
σ = ε, then T = {ε} and, again, any FSM is trivially T -equivalent to M . Since M is
reduced, one can easily construct a one-state FSM that is not equivalent to M . Hence,
in both cases, T would not be 1-complete for M . We, therefore, can assume that such a
non-null σ exists in T .

Since σ ∈ U(s0), we get transitions πi : si
xi/ai→ si+1 in M (0 ≤ i ≤ k). Those are the

distinguished transitions of M . Moreover, since M is reduced, we have sk+1
z/a→ s′ in M , for

some z ∈ I, a ∈ O and s′ ∈ S. We call this the marked transition of M .

Completeness for partial FSMs 7

We now construct the FSM N with the same input alphabet, I, and the same output
alphabet, O. Let Q = S× [0, k+ 1], that is, the states of N are pairs [q, i] where q is a state
of M and 0 ≤ i ≤ k+ 1. The initial state of N is q0 = [s0, 0]. We complete the specification
of N by listing its transitions:

(a) If s
y/b→ r is not a distinguished transition of M , let [s, i]

y/b→ [r, i] be a transition in N ,
for all i, 0 ≤ i ≤ k.

(b) For all distinguished transitions si
xi/ai→ si+1 of M , let [si, i]

xi/ai→ [si+1, i + 1] be a
transition in N . We call these the distinguished transitions of N .

(c) If s
y/b→ r is not the marked transition of M , we let [s, k+ 1]

y/b→ [r, k+ 1] be a transition
in N .

(d) For the marked transition of M , sk+1
z/a→ s′, we let [sk+1, k + 1]

z/b→ [s′, k + 1], for some
b 6= a, be a transition in N .

This completes the specification of N . Easily, N has (|σ|+ 1)|S| states.

The next facts make explicit the behavior of the construction.

Fact 1 Let π : s
α/ω→ p in M and take 0 ≤ i ≤ k+1. Then in N we must have [s, i]

α/ω′→ [p, j]
for some j ≥ i. Moreover, ω = ω′ if the marked transition of M does not occur in π.

Proof By induction on |α| = n ≥ 0. When n = 0 the result follows immediately.

For the induction step, let α = βx, ω = ρa, with x ∈ I, a ∈ O, and π : s
β/ρ→ r

x/a→ p.

The induction hypothesis gives π1 : [s, i]
β/ρ′→ [r, j] in N , with j ≥ i.

If j = k + 1, then items (c) and (d) in the construction of N give [r, j]
x/a′→ [p, j] in N .

Then, clearly, [s, i]
α/ω′→ [p, j] in N , where ω′ = ρ′a′. Moreover, if the marked transition of

M does not occur in π then the induction hypothesis gives ρ = ρ′. Also, since r
x/a→ p is not

the marked transition of M , item (c) of the construction of N yields a′ = a. We conclude
that ω = ρa = ρ′a′ = ω′, as desired.

Now take j < k+ 1. Then items (a) and (b) of the construction give [r, j]
x/a′→ [p, `] in N

where ` = j or ` = j + 1. Hence, [s, i]
α/ω′→ [p, j] with ω′ = ρ′a′ and, in any case, ` ≥ j ≥ i,

as desired. Again, if the marked transition of M does not occur in α then we get ρ = ρ′

using the induction hypothesis. Clearly, in items (a) and (b) we have a′ = a. This readily
gives ω = ρa = ρ′a′ = ω′, concluding the proof. 2

The next result gives the converse.

Fact 2 Let π : [s, i]
α/ω→ [p, j] in N . Then, we have (i) j ≥ i, (ii) σi,j is embedded in α, and

(iii) s
α/ω′→ p in M . Moreover, ω = ω′ if the marked transition of N does not occur in π.

8 Bonifacio and Moura

Proof By induction on |α| = n ≥ 0. When n = 0 the result follows easily.

For the induction step, let α = βx, ω = ρa, with x ∈ I, a ∈ O, and π′ : [s, i]
β/ρ→

[r, `]
x/a→ [p, j]. The induction hypothesis gives ` ≥ i, σi,` embedded in β, and s

β/ρ′→ r in
M . According to the items in the construction of N we have four cases for the transition

[r, `]
x/a→ [p, j]:

(a) It was added because of item (a). Then, ` = j and r
x/a→ p is in M . We get j = ` ≥ i

and σi,j = σi,` is embedded in α, as desired. Composing we get s
βx/ω′→ p in M , with

βx = α and ρ′a = ω′. If the marked transition of M does not occur in π, then ρ = ρ′ by
the induction hypothesis. So, ω = ρa = ρ′a = ω′, as we wanted.

(b) It was added because of item (b). Then, x = x`, j = `+ 1, and r
x/a→ p in M . Clearly,

(i) and (iii) hold, with ω′ = ρ′a. Also, σi,j = σi,`+1 = σi,`x`. Since α = βx = βx` and
σi,` embedded in β, we conclude that σi,j is embedded in α. If the marked transition of
M does not occur in π, then we proceed as in case (a) and obtain ω = ρa = ρ′a = ω′, as
needed.

(c) It was added because of item (c). Now we have ` = k+ 1 = j and r
x/a→ in M , showing

that (i) and (iii) hold with s
βx/ω′→ p and ω′ = ρ′a. We have that σi,` = σi,j is already

embedded in β and so its also embedded in α, given that α = βx. The reasoning to
obtain ω = ω′ is the same as in case (a).

(d) It was added because of item (d). Proceed exactly as in case (c). Now, the marked
transition of N does occur in π and so the last statement of the Fact holds vacuously.
This last case concludes the proof. 2

The last two results already establish that the same sequences of input symbols can be
run in both machines.

Fact 3 U(s0) = U(q0).

Proof Recall that q0 = [s0, 0]. Let s0
α/→ in M . Using Fact 1 we get [s0, 0]

α/→ in N . Hence,
U(s0) ⊆ U(q0). In a similar way we can get U(q0) ⊆ U(s0) using Fact 2, and the result
follows. 2

We are now in a position to show that M and N are T -equivalent.

Fact 4 M ≈T N .

Proof We go by contradiction. Assume we have αx ∈ T ∩ U(s0) ∩ U(q0), x ∈ I such that

s0
α/ω→ s

x/a→ r in M and [s0, 0]
α/ω→ [q, i]

x/b→ [p, j] in N , with a 6= b. Fact 2 gives s0
α/→ q in M .

But we already have s0
α/→ s in M , and so we conclude that s = q. Using Fact 2 again, from

s
x/→ r in M and [s, i]

x/→ [p, j] in N we get p = r. We can now write π : [s, i]
x/b→ [r, j] in N

Completeness for partial FSMs 9

and s
x/a→ r in M with a 6= b. From the construction of N we conclude that π is the marked

transition of N . Hence, i = j = k+ 1. We now have [s0, 0]
α/ω→ [s, k+ 1] in N . From Fact 2,

σ = σ0,k+1 is embedded in α and so σ is embedded in αx. Since αx ∈ T , we conclude that
σ is extensible in T . But this contradicts the choice of σ, completing the proof. 2

In the opposite direction, the next result shows that M and N are not equivalent.

Fact 5 M 6≈ N .

Proof Since σ ∈ U(s0), Fact 3 gives σ ∈ U(q0). By the choice of σ, in M we have

s0
σ/ω→ sk+1. Further, by the choice of z and a, we have sk+1

z/a→ s′ in M . Hence, s0
σz/ωa→ s′

in M . Item (b) of the construction of N gives [si, i]
xi/ai→ [si+1, i + 1], 0 ≤ i ≤ k. Then,

[s0, 0]
σ/ω→ [sk+1, k + 1] in N . By item (d) of the construction of N we get [sk+1, k + 1]

z/b→
[s′, k+ 1] in N . Composing, we obtain [s0, 0]

σz/ωb→ [s′, k+ 1] in N . This shows that M 6≈ N ,
because a 6= b. 2

Collecting, we can show that a test suite T will not be n-complete for a FSM M when
n is larger than a certain bound, which depends only on M and T .

Theorem 2 Let M be a FSM and let T be a test suite for M . Let σ be a shortest test case
in T that is non-extensible in T . Then T is not

(
(|σ|+ 1)|S|

)
-complete for M .

Proof The construction of N yields a machine that is T -equivalent to M , using Fact 4.
We also know that M and N are not equivalent, by Fact 5. Also, using Fact 3, we know
that U(s0) ⊆ U(q0). Since N has n = (|σ|+ 1)× |S| states, Definition 5 says that T is not
n-complete for M . 2

Next, we give a simple example to illustrate the construction of machine N . Let M =
(S, s0, I,O, D, δ, λ) be a specification FSM as depicted in Figure 1. The set of states is
S = {s0, s1}, I = O = {0, 1}, and D, δ, λ are given as depicted in the figure. Note that M is
a partial FSM since (s1, 1) /∈ D. Also let T = {0000, 100} be a test suite for M . We notice

s0 s1

0/1

1/1

0/0

Figure 1: FSM specification M .

that T is 2-complete for M , i.e., for implementation FSMs with at most as many states as
M . This can be checked by using the algorithm described in Section 3.

Now take σ = 100 as the shortest test case in T that is non-extensible in T . Then we
construct a candidate implementation N by applying items (a) to (d) with (|σ| + 1)|S| =

10 Bonifacio and Moura

(3 + 1)2 = 8 states. From item (a) we create transitions [s0, i]
0/1→ [s0, i], for all i, 0 ≤ i ≤ 2.

We also obtain the distinguished transitions [s0, 0]
1/1→ [s1, 1], [s1, 1]

0/0→ [s1, 2], [s1, 2]
0/0→ [s1, 3]

[s0, 1]
1/1→ [s1, 2], [s0, 2]

1/1→ [s1, 3] and [s1, 0]
0/0→ [s1, 1] by using item (b). From item (c) we get

the transitions [s0, 3]
0/1→ [s0, 3], [s0, 3]

0/1→ [s0, 3] and [s0, 3]
1/1→ [s1, 3]. Finally we complete

the machine N with the marked transition [s3, 3]
0/1→ [s3, 3] as given by item (d). The

machine N is depicted in Figure 2. However it is a simple matter to see that states [s0, 1],
[s0, 2], [s0, 3] and [s1, 0] are not reachable in N . Then we can remove such transitions in
order to obtain a reduced FSM as depicted in Figure 3. Note that we rename the remaining

[s0, 0] [s0, 1] [s0, 2] [s0, 3]

[s1, 0] [s1, 1] [s1, 2] [s1, 3]

0/1 0/1 0/1 0/1

1/1 1/1 1/1 1/1

0/0 0/0 0/0

0/1

Figure 2: A candidate implementation N .

transitions by letting q0 = [s0, 0], q1 = [s1, 1], q2 = [s1, 2], and q3 = [s1, 3].

q0

q1 q2 q3

0/1

1/1

0/0 0/0

0/1

Figure 3: A reduced candidate implementation N .

Now we can easily check that M ≈T N because λ(s0, 0000) = 1111 = τ(q0, 0000) and
λ(s0, 100) = 100 = τ(q0, 100), but M 6≈ N since we have λ(s0, 1000) = 1000 6= 1001 =
τ(q0, 1000). It is also easy to verify that U(s0) ⊆ U(q0). Hence we conclude that T is
complete for M taking into account machines with more than eight states. In this specific
case, where T = {0000, 100}, we show that T is not complete for M through a candidate
implementation N with four states. In fact, those states that are not reachable in the

Completeness for partial FSMs 11

machine N can be removed from it. Therefore it is sufficient to construct an implementation
candidate N as depicted in Figure 3 to show that T is not complete for M when considering
implementations with more than four states. We noticed that, in general, for any FSM
specification M we have that T is not (|σ|+1)|S|-complete for M , where σ ∈ T is a shortest
non-extensible test case in T , as proved in Theorem 2.

5 Completeness in the presence of blocking test cases

In this section we allow for test cases that may not run to completion in candidate im-
plementations. That is, when put under test, implementations may not output the same
number of events as there were input symbols in the test case. That this kind of fault can
be readily identified by observing the external behavior of the model.

Given a FSM model M , a blocking test case for M is one that does not run to completion
in M . Given a test suite T , two FSM models M and N will be considered as T -equivalent
in the presence of blocking test cases, if all blocking test cases for M in T are also blocking
for N , and vice-versa. Furthermore, any test case that is non-blocking for both M and
N must output identical behaviors when run through both models. We then investigate
necessary and sufficient conditions for T to be a complete test suite, when considering this
more general scenario.

We start by making precise the new notion of equivalent models.

Definition 7 Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I?. We say that s
and q are C-alike, denoted s ∼C q, iff

(
U(s)	 U(q)

)
∩ C = ∅ and λ(s, σ) = τ(q, σ) for all

σ ∈ U(s) ∩ U(q) ∩ C. Otherwise, s and q are C-unlike, denoted s 6∼C q. We say that M
and N are C-alike iff s0 ∼C q0, otherwise they are C-unlike. 2

Again, when C is not important, or when it is clear from the context, we might drop
the index, and when there is no mention to C, we understand that we are taking C = I?.

Remark 5 Using Remark 1, we note that s ∼ q is equivalent to U(s) = U(q) and λ(s, σ) =
τ(q, σ) for all σ ∈ U(s).

The new notion of test suite completeness now reflects the fact that we may be in the
presence of blocking test cases. In order to avoid ambiguities we rename completeness to
perfectness.

Definition 8 Let M be a FSM and T be a test suite for M . Then T is perfect for M iff
for any FSM N , if M 6∼ N then M 6∼T N . 2

That is when T is a perfect test suite for a specification M , then for any implementation
under test N , if M and N are unlike, then they are also T -unlike.

The following result will be useful to certain bi-similarities.

Lemma 4 Let M and N be FSMs. Let n ≥ 1, si ∈ S, pi ∈ Q (1 ≤ i ≤ n) and xi ∈ I,

ai ∈ O, bi ∈ O′ (1 ≤ i < n) be such that si
xi/ai→ si+1 and pi

xi/bi→ pi+1 (1 ≤ i < n). Assume
further that s1 ∼ p1. Then si ∼ pi (1 ≤ i ≤ n) and a1a2 · · · an−1 = b1b2 · · · bn−1.

12 Bonifacio and Moura

Proof Let σ = x1x2 · · ·xn−1, ω1 = a1a2 · · · an−1 and ω2 = b1b2 · · · bn−1. We clearly have

s1
σ/ω1→ sn and p1

σ/ω2→ pn. Definition 7 immediately gives ω1 = ω2, because s1 ∼ p1 and
σ ∈ U(s1) ∩ U(q1).

To see that si ∼ pi (1 ≤ i ≤ n) we go by induction on n. The basis is trivial and
we proceed with the induction step. Let 1 ≤ k < n and assume sk ∼ pk. Let α =
x1 · · ·xk. Clearly δ(s1, α) = sk+1, µ(p1, α) = pk+1 and so α ∈ U(s1) ∩ U(p1). For te sake of
contradiction, assume that sk+1 6∼ pk+1. By Definition 7 we have two cases.

Case 1: U(sk+1)	 U(pk+1) 6= ∅.

Let β ∈ U(sk+1) and β 6∈ U(pk+1). This gives αβ ∈ U(s1) and αβ 6∈ U(p1). Hence
U(s1) 	 U(p1) 6= ∅, contradicting s1 ∼ p1. The situation β 6∈ U(sk+1) and β ∈ U(pk+1)
is entirely analogous.

Case 2: β ∈ U(sk+1) ∩ U(pk+1) and λ(sk+1, β) 6= τ(pk+1, β), for some β ∈ I?.

This gives αβ ∈ U(s1) ∩ U(p1). Moreover,

λ(s1, αβ) = λ(s1, α)λ(δ(s1, α), β)) = λ(s1, α)λ(sk+1, β), and

τ(p1, αβ) = τ(p1, α)τ(µ(p1, α), β)) = τ(p1, α)τ(pk+1, β).

Because |λ(s1, α)| = |τ(p1, α)| and λ(sk+1, β) 6= τ(pk+1, β), we get λ(s1, αβ) 6= τ(p1, αβ).
Since αβ ∈ U(s1) ∩ U(p1), this contradicts s1 ∼ p1.

The proof is complete. 2

The next result guarantees the existence of bi-simulations in the presence of blocking
test cases.

Lemma 5 Let T be a perfect test suite for a FSM M . Let N be a FSM such that M ∼T N .
Then M and N are bi-similar.

Proof Define a relation R1 ⊆ S × Q by letting (s, q) ∈ R1 if and only if δ(s0, α) = s and
µ(q0, α) = q for some α ∈ I?, s ∈ S and q ∈ Q. Since δ(s0, ε) = s0 and µ(q0, ε) = q0 we get
(s0, q0) ∈ R1.

Now assume (s, q) ∈ R1 and let s
x/a→ r for some r ∈ S, x ∈ I and a ∈ O. Since

(s, q) ∈ R1, the definition of R gives some α ∈ I? such that δ(s0, α) = s and µ(q0, α) = q.
Composing, we get δ(s0, αx) = δ(s, x) = r and so αx ∈ U(s0). Since T is perfect for M and
M ∼T N , Definition 7 gives M ∼ N , that is s0 ∼ q0. Further, Definition 7 and Remark 5
imply U(s0) = U(q0), and so αx ∈ U(q0). Then µ(q, x) = p, for some p ∈ Q. Since s0 ∼ q0,
δ(s0, α) = s and µ(q0, α) = q, Lemma 4 gives s ∼ q. But x ∈ U(s) ∩ U(q), and so we must

have a = λ(s, x) = τ(q, x). Thus, we have found p ∈ Q with q
x/a→ p. Since δ(s0, αx) = r

and µ(q0, αx) = p, we also have (r, p) ∈ R1. This shows that R1 is a simulation relation.

A similar argument will show that R2 ⊆ Q × S, where R2 = R−11 , is also a simulation
relation. Thus M and N are bi-similar, as desired. 2

Completeness for partial FSMs 13

We now show the converse, that is, if M is bi-similar to any FSM N that is T -alike to
it, then T is a perfect test suite for M .

Lemma 6 Let M be a FSM and T a test suite for M . Assume that any FSM that is T -alike
to M is bi-similar to it. Then T is perfect for M .

Proof We proceed by contradiction. Assume that T is not perfect for M . Then, by
Definition 8, there exists a FSM N such that M ∼T N and M 6∼ N . Hence, since M ∼T N ,
we get that N is bi-similar to M , and so there are simulation relations R1 ⊆ S × Q and
R2 ⊆ Q× S.

Claim: Let s = δ(s0, α) and q = µ(q0, α) for some α ∈ I?. Then (s, q) ∈ R1 and (q, s) ∈ R2.

Proof of the Claim. An easy induction on |α| ≥ 0.

Since M 6∼ N , by Definition 7 we have two cases:

Case 1: α ∈ U(s0)	 U(q0), for some α ∈ T .

We may assume that |α| is minimum.

If α ∈ U(q0) and α 6∈ U(s0), then we may write α = βx, where β ∈ I?, x ∈ I are such
that β ∈ U(q0) ∩ U(s0). Thus, δ(s0, β) = s, µ(q0, β) = q and µ(q, x) = p, for some s ∈ S
and some q, p ∈ Q. Since (q0, s0) ∈ R2, we can use Lemma 4 and write (q, s) ∈ R2.
Because R2 is a simulation and µ(q, x) = p we get some r ∈ S such that δ(s, x) = r. But
this gives δ(s0, α) = δ(s0, βx) = δ(s, x) = r, that is α ∈ U(s0), a contradiction.

When α 6∈ U(q0) and α ∈ U(s0), the argument is analogous.

Case 2: There is some α ∈ U(s0) ∩ U(q0) with λ(s0, α) 6= τ(q0, α).

Again, assume that |α| is minimum. Then, there are β ∈ I?, x ∈ I, s ∈ S and q ∈ Q
such that α = βx and δ(s0, β) = s, µ(q0, β) = q. Further, we get some r ∈ S, p ∈ Q such
that δ(s, x) = r, µ(q, x) = p, a = λ(s, x) 6= τ(q, x) = b. Using the Lemma 4, we may

write (s, q) ∈ R1. Because we have s
x/a→ r in M and R1 is a simulation, we know that

there is some t ∈ Q such that q
x/a→ t in N , with (r, t) ∈ R1. But we already had q

x/b→ p
in N . Hence, since τ is a function, we conclude that a = b, which is a contradiction.

The proof is now complete. 2

Combining the previous results we obtain necessary and sufficient conditions for the
perfectness of test suites.

Theorem 3 Let M be a FSM and T be a test suite for M . Then T is perfect for M iff
any T -alike FSM is bi-similar to M .

Proof Assume that T is perfect for M . Lemma 5 guarantees that N and M are bi-similar
when N is T -alike to M . Now assume that any T -alike FSM is bi-similar to M . In this
case, Lemma 6 guarantees that T is perfect for M . 2

14 Bonifacio and Moura

6 Conclusions

In this work we showed necessary and sufficient conditions for checking completeness of test
suites for more relaxed FSM models. Our approach is general in the sense that specifications
and implementations models are required to be only deterministic. So partial FSM machines
are treated. We also gave an intrinsic relationship between the upper bound on the number
of states in implementation candidates and the test cases of a test suite when checking
completeness.

Further we described a new approach for checking completeness of test suites taking into
account FSM models that allow for blocking test cases. For that, we introduced the new
notion of test suite perfectness, a relaxation of the classical notion of test suite completeness.
We have also provided necessary and sufficient conditions for checking test suite perfectness.

All claims herein are proved correct by rigorous arguments. Being based on necessary
and sufficient proofs, our approaches always provide definitive answers regarding test suite
completeness and perfectness, thus never issuing inconclusive verdicts.

We leave for future works the possibility of testing our algorithms in practical situations,
and comparing the results with other methods for testing test suites completeness and
perfectness.

References

[1] Adilson Luiz Bonifacio and Arnaldo Vieira Moura. Necessity and suffi-
ciency for checking m-completeness of test suites. Technical Report IC-
13-21, Institute of Computing, University of Campinas, September 2013.
http://www.ic.unicamp.br/∼reltech/2013/13-21.pdf.

[2] Adilson Luiz Bonifacio, Arnaldo Vieira Moura, and Adenilso da Silva Simão. Model
partitions and compact test case suites. Int. J. Found. Comput. Sci., 23(1):147–172,
2012.

[3] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Transac-
tions on Software Engineering, 4(3):178–187, 1978.

[4] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An improved conformance
testing method. In FORTE, pages 204–218, 2005.

[5] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Transactions on Software Engineering,
17(6):591–603, June 1991.

[6] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New York,
1962.

[7] G. Gonenc. A method for the design of fault detection experiments. IEEE Trans.
Comput., 19(6):551–558, 1970.

Completeness for partial FSMs 15

[8] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceedings of
the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, 11-13
November 1964, Princeton, New Jersey, USA, pages 95–110. IEEE, 1964.

[9] R. M. Hierons. Separating sequence overlap for automated test sequence generation.
Automated Software Engg., 13(2):283–301, 2006.

[10] Robert M. Hierons and Hasan Ural. Reduced length checking sequences. IEEE Trans.
Comput., 51(9):1111–1117, September 2002.

[11] Robert M. Hierons and Hasan Ural. Optimizing the length of checking sequences. IEEE
Trans. Comput., 55(5):618–629, May 2006.

[12] A. Petrenko and G. V. Bochmann. On fault coverage of tests for finite state specifica-
tions. Computer Networks and ISDN Systems, 29:81–106, 1996.

[13] Alex Petrenko and Nina Yevtushenko. On test derivation from partial specifications.
In In FORTE, pages 85–102, 2000.

[14] Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic fsm
specifications. IEEE Trans. Comput., 54(9):1154–1165, September 2005.

[15] Adenilso da Silva Simao and Petrenko Petrenko. Checking completeness of tests for
finite state machines. IEEE Trans. Computers, 59(8):1023–1032, 2010.

[16] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[17] Hasan Ural, Xiaolin Wu, and Fan Zhang. On minimizing the lengths of checking
sequences. IEEE Trans. Comput., 46(1):93–99, January 1997.

[18] Ming Yu Yao, Alexandre Petrenko, and Gregor von Bochmann. Fault coverage analysis
in respect to an fsm specification. In INFOCOM, pages 768–775, 1994.

