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Querying complex data

Luiz Gomes-Jr∗ Luciano da F. Costa André Santanchè

Abstract

Database technology has advanced to support increasingly complex data – from
relations to semi-structured data and unstructured documents. More recently, graph
databases have regained attention following demands from applications like social net-
works and recommendation systems. Graph analysis, usually associated with the Com-
plex Networks field, has become a central tool in areas such as biology, physics and
linguistics. Database management systems should improve support to these data and
applications beyond the data model level tackled by current graph databases, including
more flexible querying models and management mechanisms.

In this paper, we define the characteristics of the highly interconnected data that
underlies many of these modern applications. We adopt the term complex data as a
reference to the field of complex networks. A database management system for complex
data requires a flexible query model that explores the topology of the relationships,
taking into account their eventual uncertainty. Efficient query processing becomes a
challenge, requiring new mechanisms for relationship-based query optimizations.

To meet the new requirements, our solution models complex data as property graphs
with weighted relationships. We propose a new query language that allows ranking of
elements based on properties of the topology of the graph. The queries are evaluated
based on a variation of the spreading activation model, which is the core of the query
processor and the main target for query optimization strategies. Experiments with real
data show the practicability of our approach and support our analysis of several query
optimization and approximation mechanisms.

1 Introduction

Data and query models have evolved towards supporting increasingly complex interrela-
tionships. Highly structured models for management of relational data, with precise query
semantics and predictable results, preceded semi-structured models that added path indi-
rection and flexible schema. Document management and IR has to deal with even greater
indirections, typically correlating imprecise queries (e.g. keywords) to lists of results ranked
according to metrics that are unknown by the users, and correlating documents based on
keyword similarities. More recently, graph databases have taken this diversity to new levels,
allowing unrestricted correlation of data elements.
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As a consequence of the advances in models, algorithms and computing power, new
types of applications became possible, such as social networks, recommendation systems
and collaborative filtering. Network analysis, usually associated with the complex network
field, has become an important resource paving the way to diverse applications such areas as
systems biology, neuroscience, communications, transportation, power grids, and economics
[12].

Data associated with these new applications are often more complex, ambiguous and
less predictable than in previous settings. The analysis must rely on inferences based on
how the data are correlated through the intricate networks formed by relationships among
data elements. Typically, the topology formed by these relationships does not comply to a
schema and may represent diverse types of associations with different strengths or weights
– and richer types of links (e.g. involving categorical information) can also be considered.

Typical current DBMS’s querying and management mechanisms are inadequate in sup-
porting the new applications and handling the data created by them. Even graph databases
assume an often unpractical level of structure for the underlying database: typical graph
query languages are based on path patterns that assume that the graph topology is known,
and do not take into account the strength or uncertainty of the relationships. Furthermore,
correlating data based on complex properties of the topology of the graph is impractical.

Consider, for example, the following queries:

• retrieve candidate diagnosis relevant to a given patient based on her symptoms and
correlations with other similar patients;

• retrieve documents related to the keyword query “US elections” and the topic poli-
tics, written by democrat journalists, ranked by relevance to the keyword query and
reputation of the author;

• retrieve streets in a given city based on their relevance (specificity) to retail stores of
sports goods and convenience of route in respect to my current location;

• retrieve fish species that play an important (influential) role in the marine food web
of a given region and that are related to the biome ‘coral reef’.

These types of queries have become commonplace in diverse application scenarios. How-
ever, there is still no query or management model that can seamlessly tackle all the under-
lying concepts. Answering these queries requires non-trivial analysis of the topology of the
network structure in the underlying data. For example, answering the first query requires
correlating symptoms and diagnoses, as well as data from patients in similar conditions.
The analysis should also take into account that symptoms can be weakly or strongly cor-
related to diagnoses. The second query deals with associations from heterogeneous models.
It requires the assessment of concepts like relevance and reputation, which are linked to the
way the underlying data is interconnected (the topology formed by the relationships).

Supporting these queries in a DBMS brings several new architectural requirements: (i)
the data model must support the high level of complexity, (ii) the query language should
be flexible enough to allow correlation of data when little is known about how they are
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linked and organized, (iii) a new abstraction for query evaluation should fully support
the query language while allowing for under-the-hood optimizations, (iv) data management
mechanisms must be coherent with the heightened importance and diversity of relationships.

Here we propose a new definition for the increasingly important type of data we aim at
supporting. Inspired by the area of complex networks, we adopted the term complex data.
This paper also aims at contributing to the specification of the requirements for a CDMS
(Complex Data Management System). Our main focus here is on query processing and
optimization issues.

Our solution is based on a property graph data model with weighted relationships. We
propose a new query language that allows ranking of elements based on properties of the
topology of the graph. The queries are evaluated based on a variation of the spreading
activation model, which is the core of the query processor and the main target for query
optimization strategies.

This paper is organized as follows: Section 2 describes related work. Section 3 presents
the definition of complex data and the related challenges faced by a CDMS. Section 4
defines our proposed query model and shows examples of our query language. Section
5 describes experiments that assess diverse aspects of query processing and optimization.
Finally, Section 6 concludes the paper.

2 Foundations and Related Work

The query model proposed here lies in the intersection of several related fields. The Com-
plex Networks [12] field is an outstanding example of complex data manipulation. One of
the main aspects of the field is analyzing highly interconnected data derived from diverse
scenarios (e.g. social, biological or transportation networks). Current research in this area
is based on graph models, employing global graph metrics to assess network properties that
are typically rendered for visual analysis. Our proposal can be seen as offering new tools
for the complex network analysis workflow. As far as we know, this is the first attempt
to integrate the areas of complex networks and databases. We aim at providing adequate
mechanisms to manage and query the associated data.

Graph databases are the best current option for storing and querying this type of highly
correlated data. However, despite implementing the flexible graph model, other mechanisms
in the database, such as querying and data management, are basically the same as in tra-
ditional relational databases. The declarative queries offered by most databases are limited
to exact matches and assume the user knows how the data is organized. To implement
more complex queries, users need to resort to imperative programming APIs, resulting in
code that is hard to maintain and restricting opportunities for query optimization. Here we
aim at enabling complex queries in a declarative model, with optimizations handled by the
database.

A closely related research area, in terms of enabling more flexible querying for heteroge-
neous data models, encompasses the initiatives for integration of Databases and Information
Retrieval. Following the initial identification of challenges and applications, several success-
ful approaches have been proposed and implemented [15]. Most prominent research focuses
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on keyword queries over structured data and documents and top-k ranking strategies.
Keyword query research draws from the simple yet effective keyword query model to

allow integrated querying over documents and structured data. Most of the frameworks
match keywords to documents, schema and data integrated in a graph structure. The
connected matches form trees that are ranked based on variations of IR metrics such as
tf*idf and PageRank. Some of the research focuses on optimizing the top-k query processing
[10] while others implement more effective variations of the ranking metrics [11].

Keyword queries over structured data are intended for tasks where the schema is un-
known to the user. The techniques are effective for data exploration, but there is no support
for more principled interactions. There are conceptual and structural mismatches among
queries, data and results that make returned matches hard to predict and interpret.

The research on top-k queries focus on enabling efficient processing of ranked queries
on structured and semi-structured data. Ranking is based on scores derived from multiple
predicates specified in the query. The main challenge is to compute results avoiding full
computation of the expensive joins. The proposals vary on adopted query model, data
access methods, implementation strategy, and assumptions on data and scoring functions
(see [6] for a contextualized survey). Scoring functions enable ranking based on properties
of data elements. There is, however, no simple means to rank results based on the context
of elements or how they are correlated, which are central features of our scheme.

Less specific proposals, that also aim at increasing query expressiveness for intercon-
nected data, have been developed especially in the context of knowledge bases. Kasneci et
al. [7] propose a new querying model for knowledge bases generated from IE. The model
allows pattern matching and relatedness queries that allow flexible correlation of elements
in the base. Rodriguez et al. [14] propose a query model that allows the context of a user’s
knowledge base to influence query results. White and Smyth [16] present several algorithms
to assess importance of nodes in a network. The calculation of the scores can be biased
based on a set of initial nodes, which makes the approach more flexible than alternatives
such as PageRank [1].

All these proposals aim at addressing the problem of inflexible query models that are
inadequate to current application needs. However, the basic concepts of relatedness, con-
text or importance are defined by the model and there are no means for users to express
application-specific interpretations of the concepts. In our proposal, we offer declarative
means for users to express combinations of metrics that can be adapted to specific informa-
tion needs. Our proposal aims at scenarios where relationships among data elements can be
uncertain and there is no underlying schema. Nevertheless, relationship analysis is central
to understanding the data. Based on a more flexible query model, our goal is to propose
query processing and data management mechanisms that are adequate to these complex
settings.

Graph query languages are typically concerned with subgraph matching. Query pro-
cessing in this scenario must tackle optimization issues related to graph isomorphism and
similarity [9]. Our language model adds expressiveness to this type of queries, allowing
flexible ranking based on topology-aware correlation metrics applied to matched elements.
Although graph isomorphism and similarity strategies are relevant to many of our query
scenarios, we rely on the efficient implementations already available on standard graph
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databases (which have provided adequate performance), and focus on optimization strate-
gies for our new layer of expressiveness.

3 Complex data definition and challenges

Complex data is characterized when relationships are central to data analysis. In these
cases, the graph formed by data entities (nodes) and relationships (links) present proper-
ties typical of complex networks. In a complex network [12], the patterns defined by the
interconnections are non-trivial, deviating substantially from cases where connections have
the same probability (e.g. lattices or random graphs).

This heightened importance of relationships is evident in several areas, such as social
networks, topological maps, gene-protein interaction networks, brain network models etc.
These are all complex structures that requires specific techniques for analysis. In all cases,
relationship analysis is a major aspect of the understanding. Typically, these structures
generate emergent behavior, which are determined by the complex interactions among their
simple constituent elements.

Relationships may also be uncertain or ambiguous. The relationships among data ele-
ments can represent associations with variable strength or be inherently uncertain depending
on the nature of the systems they model. Examples of this type of phenomenon are plentiful:
Protein interaction networks are based on co-occurrence observations that could in reality
be associated with causal, indirect, or incidental correlation; the ’friendship’ relationship
in social networks is highly ambiguous, meaning different things for different people; entity
recognition over text is uncertain, so the algorithms usually generate associations with a
confidence value.

As a result of increased capacity of data storage and processing, these scenarios have
come forth in other areas, such as enterprise data management. A typical institution nowa-
days stores and processes many textual documents alongside traditional structured data,
communication and transaction records, and fast changing data about market and compe-
tition. These data are highly interlinked, by design or through intricate (and potentially
imprecise) data analysis procedures such as named entity recognition, sentiment analysis,
and recommendation systems.

Query processing and data management face several challenges in these scenarios. Pre-
cise answers are impractical due to the exponential computational costs and the imprecision
of the data; analysis of the relationships must be tolerant of the inherent uncertainty; query
optimization cannot depend on an underlying schema; and there should be appropriate
abstractions for managers to handle the data. In the next section we list the requirements
for a Complex Data Management System (CDMS).

3.1 Requirements for complex data querying and management

(i) The data model must support a high level of complexity. The data in target applications
typically do not comply to pre-defined schemas. The high number and diversity of the
relationships require a model where relationships are first-class citizens. Graph models
are obvious choices in these settings. Their flexible modeling characteristics enable easy
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mapping of most types of data. Nodes with immediate access to neighbors is also an
important feature for the type of computation involved. Here we adopt weighted edge-
labeled property multigraphs (Section 4.1) to encode complex data.

(ii) The query language should be flexible enough to allow correlation of data when little
is known about how they are linked and organized. The language should also allow for query
processing optimizations or approximations, key features when dealing with computing
intensive complex data. In our research, we developed a declarative query language that
extends existing graph languages by introducing ranking based on a set of flexible correlation
metrics. We introduce the language in Section 4.4.

(iii) New abstractions for query evaluation should fully support the query language
while allowing for under-the-hood optimizations. Abstractions such as joins over relational
data or path predicates over semi-structured data are inadequate for the often loose and
indirect correlations among data elements in the schema-less scenario. Moreover, query
processing algorithms must exploit confidence values to compute answers. Data analysis
must take advantage of the broader context of the relationships, leveraging the amount of
concordance among them to assess more reliable associations. Query optimization is also a
challenge, since reliable schema metadata is usually the basis of efficient query processing.
Here we adopt a variation of the spreading activation model as our main abstraction for
query evaluation. The model allows the specification of the ranking metrics that are the
basis of our query language. In Section 5 we present several experiments on parameter
tuning, query optimization and approximations for our model.

(iv) The data management mechanisms such as Data Manipulation Languages (DMLs),
indexes and collection of data statistics must be coherent with the heightened importance
and diversity of relationships. In our framework, we introduce the concept of mappers in
our DML, which are similar to stored procedures, but are aimed at relationship creation and
can be integrated in the query language to allow query-time correlation of data. Mappers
and data management issues will not be further discussed in this paper (an overview can
be found in [4]).

4 Complex data querying

In this section we present our proposals for data model, query processing, and query lan-
guage for complex data.

4.1 Data model

We adopt the graph data model to represent complex data. The graph model has relation-
ships as first class citizens, allowing flexible representations of a wide range of real-world
data [13]. More specifically, we adopt a labeled weighted multidigraph model.

A labeled weighted multidigraph G is a directed multigraph with weighted edges and
labeled vertices and edges. Formally, G = (V,E,ΣV ,ΣE , sE , tE , `V , `E , w) where V is a set
of vertices and E is a set of edges, ΣV and ΣE are finite alphabets for the available vertex
and edge labels, sE : E → V and tE : E → V are maps indicating the source and target
vertex of an edge, `V and `E are maps describing the labeling of the vertices and edges,
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Figure 1: Sample subgraph of a dataset for the nursing diagnosis (relationship weights are
proportional to edge thickness, directions are omitted)

and w : E → (0, 1] maps edges to their weights. In practice, our data model is also a
property graph [13], adding attributes for data management convenience, but since it does
not impact the definition of our query model, we omit these details.

Figure 1 shows an example of the type of graph data complying to our definition. This
definition (supported or adaptable in several graph databases) is appropriate to represent
complex data. The simplicity of the model and the support for unrestricted correlation of
data elements are the main reasons for adoption. Other models (e.g. RDF) with equivalent
flexibility could also be employed. More details on the mapping of relational or unstructured
data into such graph models can be found in [4].

4.2 Targeted Spreading Activation Model

Spreading Activation (SA) processes [2] were developed to infer relationships among nodes
in associative networks. The mechanism is based on traversing the network from an initial
set of nodes, activating new nodes until certain stop conditions are reached. By control-
ling several aspects related to this activation flow, it is possible to infer and quantify the
relationships of the initial nodes to the reached ones.

This simple model has the fundamental requirements for the type of correlations we
want to provide for complex data:

(i) it can derive correlations among any two sets of initial nodes and destination nodes;
This is important to enable modeling of several correlation metrics, as described in Section
4.3.

(ii) the final value of the correlations decreases as the length of the contributing paths
grows; This reflects the intuitive perception that closer elements are more correlated. The
model allows tuning of this characteristic through a parameter for potential degradation.
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(iii) the degradation of the potential imposes boundaries to query processing;

(iv) it can be implemented as graph traversal patterns [13]; The processing of these
patterns are centered in origin nodes, resulting in localized processing. The computation
of these patterns requires less memory than global ranking metrics such as PageRank and
HITS. This type of computation is supported by several graph database systems1.

We tweak the basic SA model by adding mechanisms to (i) adapt the process to the
labeled graph model used, (ii) consider relationship weights, (iii) add a more strict and
predictable termination condition, and (iv) make the process aware of the target elements.
The last point is key to the semantics of the SA process for querying complex data and also
to improve optimization opportunities (Section 5). We named the proposed SA variation
as Targeted Spreading Activation (TSA).

The SA model used here is defined by the parameters G, N , I, O, a, t, d, c, l, and
dir described, alongside other definitions, in Table 1. A SA process starts with origin
nodes initially activated with potential a. Output potentials for each subsequent node are
calculated by the function O. The output potential is spread through all relationships whose
labels are in l that follow directions in dir. The potential for the reached nodes is calculated
by function I. For the next iteration, the potential is spread to subsequent nodes, restarting
the process, as long as the potential for reached nodes is higher than t and the number of
iterations is lower than c.

Although simple in its definition, this is a very expressive model to build flexible corre-
lation metrics. By specifying appropriate parameters and combining subsequent executions
of TSAs, it is possible to define metrics that encompass concepts like relevance, reputation
and similarity (Section 4.3). These metrics can be integrated in a declarative language with
applications to a wide range of modern querying scenarios (Section 4.4).

Being the core of the querying process mechanism, the TSA process becomes the main
target for query optimization strategies. Like with any other data or processing model, the
practicability of TSA-based querying depends on architectural mechanisms to support data
access optimizations and heuristics to provide approximate answers. These are the main
challenges addressed in this paper (Section 5).

4.3 TSA-based ranking metrics

The TSA model can be the basis for the specification of ranking metrics for data correlation
based on properties of the topology of the underlying graph. Here we focus on the metrics
of relevance and connectivity. The definitions and usage of other metrics (Reputation,
Influence, Similarity, and Context) can be found in [3].

Def. 1. relevance(m,n) = SA(m)n,

with O(n) =
I(n) ∗ d
|sub(n)|

Relevance between two nodes is a measure that encompasses correlation and specificity.
Correlation is proportional to the number of paths linking the two nodes and inversely
proportional to the length of the paths. Specificity favors more discriminative paths (i.e

1A good overview of applications and systems can be found in
http://markorodriguez.com/2013/01/09/on-graph-computing/
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paths with fewer ramifications. It is easy to observe that this definition resembles the
definition of relevance between queries and documents in a information retrieval setting.
Traditional tf*idf term weighting can be readily emulated in our scheme when terms, queries
and documents become nodes of a graph. Our definition is, however, a generalization of
the concept that can be applied to any type of graph data and with any number or type of
relationships in between m and n.

Def. 2. rrelevance(m,n) = SA(m)n + SA(n)m,

with O(n) =
I(n) ∗ d
|sub(n)|

Reciprocal Relevance (RRelevance) between two nodes aggregates the relevance in both
directions. In an information retrieval setting, it would be equivalent to aggregating docu-
ment size normalization to the relevance model.

Def. 3. connectivity(m,n) = SA(m)n
Connectivity between two nodes is a measure that assesses how interconnected the nodes

are. The score is proportional to the number of paths linking the nodes in the network
activated by the SA algorithm.

The definitions and usage of other metrics (Reputation, Influence, Similarity, and Con-
text) can be found in [3].

4.4 Querying complex data

Having the ranking metrics interpreted as graph analysis tasks, it is possible to integrate
them in a declarative query language. As opposed to creating an entirely new query lan-
guage, we decided to leverage existing languages by defining an extension language.

A convenient way to integrate the ranking metrics into existing query languages is to
add a “RANK BY” clause. The clause should enable an arbitrary combination of metrics
that expresses the global ranking condition defined by the user. We encode the clause in the
extension query language that we denominated in* (or in star). in* can be used to extend
other languages, for example, extended SPARQL becomes inSPARQL by convention. This
strategy is a good fit for graph languages with SQL-inspired syntaxes, such as SPARQL2

and Cypher3. A similar strategy could be developed to other types of languages.

We illustrate the use of our query language through examples in inSPARQL and in-
Cypher. These queries are meant to demonstrate the expressiveness of the approach in a
wide range of applications.

Figure 2a shows an extended SPARQL query that retrieves actors whose careers are
strongly correlated with the director Woody Allen (id 8501). Details about the interpreta-
tion and processing of this query are presented in Section 5.

Figure 2b shows a Cypher query that suggests diagnoses of patients based on their symp-
toms. It is based on an underlying database containing symptom-diagnosis relationships
specified by professionals in a previously unrelated project. Figure 1 shows a subgraph of
this database. The combination of the Connectivity and Relevance metrics showed results
compared to unassisted diagnoses from health professionals.

2http://www.w3.org/TR/sparql11-query
3http://docs.neo4j.org
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Figure 2: Examples of extended queries (namespaces have been omitted)

Figure 2c shows a product recommendation query (SPARQL) that finds products that
the client Bob (with uri :bob) has not purchased. The query traverses Bob’s friendship
network to find products purchased by his friends that might be relevant to him. The
spreading activation interpretation of this query evaluation also implies that products pur-
chased by Bob, even though they do not appear in the results, will be traversed on the
way to customers that have co-purchased these products, which in turn will activate other
products from these customers.

The query in Figure 2d (SPARQL) ranks species that play an important role in the food
web and are related to the biome of coral reefs. This type of query would identify species
that should be main targets for monitoring and preservation efforts.

5 Query processing and optimization

In this section we show experiments that demonstrate aspects of query execution and options
for query optimization. We focus on reports for the RRelevance and Connectivity metrics,
which we consider good representatives of the model because of their (i) applicability in
many areas, (ii) cognitive appeal, and (iii) challenges for query processing.

The database used in the experiments is the Linked Movie Data Base (LinkedMDB)
[5], which we think is a good representative for the type of data we aim at. The database
integrates data from several sources (FreeBase, OMDB, DBpedia, Geonames, etc). The
database contains 3,579,616 triples. The database represents the bulk of the relevant pro-
duction in a real and important area of human activity, demonstrating that our framework
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can be applied to real scenarios.

The query used in the experiments is shown in Figure 2a. The query combines graph
pattern matching and structured filtering (equivalent to selection in relational algebra)
predicates and our new RANK BY clause. The query returns actors that acted in films
directed by Woody Allen in the 90‘s. The results are ranked by relevance of the actors to
Woody Allen (director). This query should be interpreted as raking actors according to how
linked to the director their careers are – a common pattern throughout Allen’s idiosyncratic
production.

5.1 Baseline

As the baseline for the performance and accuracy experiments, we executed the query in
Figure 2a with parameters [t=0.1, d=0.9, c=2, a=100]. These are conservative parameters
that showed good results in our analysis. By conservative we mean high values for d and a,
and low values for t and c. As should be clear from the experiment data, any combination of
these parameters that follow this conservative rule of thumb would produce similar results.
Parameter c, which has the biggest impact in performance predictability, was set at 2
because this is the length of the path for the most important relationships between actors
and directors (actors are linked to directors through common films). The next section shows
how varying the parameters affects performance.

The top-10 and bottom-10 ranked actors are shown in Table 2. The top ranked actor is
Woody Allen himself4. Allen is well known for interpreting roles in his films, and he rarely
performs in films from other directors. Mia Farrow, the second highest rank, has her career
strongly linked to the director, acting in 13 of Allen’s films, out of her total of 39 films
registered in the database.

Less known actors also appear in the top-10 list. Hazelle Goodman, for example, has
only one performance recorded in the database, which would make her career highly linked
to Woody Allen.

Low ranking actors are usually actors that participated in many films but few of them
were directed by Woody Allen. This is the case for Uma Thurman and Robin Williams,
for example, who each perform in only one of Allen’s films. The interpretation is that low
ranked actors would not have their careers linked to Woody Allen, despite having been cast
in his movies.

The analysis of the query results reaffirms that the graph interpretation of relevance
proposed here is indeed strongly correlated to the typical interpretation of relevance (e.g.
in information retrieval applications). We ran the experiments in a regular desktop machine
that was querying a Neo4j embedded database. There was no database server involved, so
executions are cold by definition (no usage of database caching mechanisms). Execution
time numbers reported are averaged over 3 runs for each variation (in a total of 60 runs).

4LinkedMDB uses distinct descriptors for the actor and the director, implying that they are separate
entities.



12 Gomes-Jr, Costa, Santanchè

Figure 3: Correlation and normalized execution time for variation of parameters d and t
(in respect to the baseline)

5.2 Parameter tuning

The parameters in our SA model ultimately determine how far the activation process would
go in its exploration of the graph. This has consequences in terms of performance and com-
pleteness of query execution. Relaxed values for the parameters, which would allow bigger
portions of the graph to be included in the query, have expensive computational require-
ments, but render more contextualized ranking that might include non-obvious aspects of
the correlation of the elements in the query. The best balance between performance and
completeness is application-specific. The experiments here are meant to show the impacts
of parameter tuning on the execution time and accuracy.

Decay factor (d): Figure 3 (left) shows the values for normalized execution time and
correlation for activation thresholds varying from 0.9 to 0.02. To assess correlation between
the produced ranks and the baseline, we used the Kendall tau rank correlation coefficient [8].
The graph shows how both execution time and correlation drops as we use more aggressive
values for d. Lower values for d mean faster degrading of the activation potential, which
implies more effective pruning of the expanding activated network.

Activation threshold (t): Figure 3 (right) shows the values for normalized execution
time and correlation for decay factors varying from 0.1 to 4. As with the decay factor,
correlations falls at rates proportional to performance gains. Appropriate values might be
set according to query-specific tolerance for inaccuracies and performance requirements.

Depth (c): c is the parameter whose impact in performance is most predictable, since
it directly limits the growth of the diameter of the activated network. Figure 4 (top curve)
shows how execution time increases sharply as c grows. The correlation between the ranking,
however, stays high: correlation between c=2 and c=3 is 0.97, dropping to 0.89 for c=5.

The graph shows that the sharp increase in execution time is slowed down by the self-
containing characteristic of the SA algorithm. More aggressive parameter tuning would of
course increase this effect. For example, setting t=1 reduces execution time to less than
half for c=5 (maintaining a similarly high correlation).
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5.3 TSA optimization

The expressiveness of the queries allowed by the extended languages sometimes blurs the line
between declarative queries and data analysis. Even though some tasks would not present
tight response time constraints, it is clear that these queries can require, in typical settings,
traversing massive numbers of nodes. It is therefore important to introduce optimization
mechanisms and aggressive heuristics to compute approximate answers. We now show some
directions we are taking for querying optimization in the framework.

Retracing TSA: For metrics like RRelevance, which executes two TSA processes in
reversed directions, the query processor can take advantage of the fact that the first execu-
tion will find all possible paths between the nodes. The second execution can retrace the
network derived by the first process, avoiding exploration of paths that do no contribute to
the final score. Execution times for this strategy are reported in Figure 4 as rTSA.

TSA transformations: In some cases, it is possible to invert the source and destination
nodes in a TSA process. This can lead to reduced execution times when favoring nodes
with smaller degrees as starting points for the process. This has another more important
consequence: by choosing the best starting point, it is possible to reuse the results from the
first SA process, avoiding duplicate computations.

Inverting the TSA without affecting the ranking is only possible in some cases. The
possible transformations for the RRelevance and Connectivity metrics are listed below.

Transformation 1. rrelevance(m,n) = SA(n)m + SA(m)n
Transformation 2. connectivity(m,n) = SA(n)m
Consider, for example, the baseline query using the Connectivity metric. Applying the

TSA transformation 2 reduces execution time to about half. Transformation 1 changes
the order of the TSA processes, which becomes important when considering caching (next
item).

We are investigating other rank preserving TSA transformations. Specifically, more gen-
eral transformations could be developed for TSAs whose activation network forms DAGs
(directed acyclic graphs). Even for cases when ranking preservation is not possible, these
transformations would still be a good approximation heuristic. A simple heuristic to deter-
mine whether a transformation rule should be applied is based on the collective degrees of
starting nodes.

TSA Caching: Frequently, the execution of queries in in* will demand the execution of
several TSA processes with the same origin node. Furthermore, repetitions of origin nodes
can be achieved through transformations. Caching the results for destination nodes allow
a subsequent TSA process to reuse the score calculated by the previous process. Execution
times for a combination of caching, retracing and transformations is reported in Figure 4
as cTSA.

5.4 TSA approximation

In settings that do not require precise answers, processing time in TSA-based querying can
also be reduced through result approximations. In this section we describe some alternatives
and experimental results for the ones currently deployed.
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Figure 4: Normalized execution time for optimization strategies with variations of param-
eters c

Restricting traversal edges and direction: The query in the baseline explores
recursively all edges in all directions emanating from the actor nodes. Considering the
substantial size and complexity of the database, processing the query implies reading a
large number of nodes. More focused queries are, however, allowed by the language. By
setting the modifiers FOLLOW and DIRECTION, the user can restrict the paths taken
by the spreading activation process. For example, setting FOLLOW to [’linkedmdb:actor’,
’foaf:made’], which are the labels for movies’ actors and directors, reduces query execution
time by more than one order of magnitude (10.77 fold). Setting the direction to INBOUND
alone reduces query time even more (11.25 fold). Setting both modifiers decreases execution
time 13.5 fold.

One heuristic for query execution could choose edges and directions based on statistics
to rewrite queries. It is important to emphasize that the new queries would be semantically
different from the original. For example, the semantics of the query in the baseline is that
of relevance between actors and Allen based on any possible relationship sequence present
in the database. Heuristics from query rewriting should therefore favor performance while
also maintaining a good amount of contextual information.

Shortest Paths TSA: The network of activated nodes in a SA process often grows
unnecessarily big by exploring paths that do not lead to destination nodes. One way to
avoid this is to restrict the activation process to paths that are known to lead to destination
nodes. Current graph databases implement fast algorithms for calculating shortest paths,
which can be exploited by a variation of the TSA. An implementation of this strategy over
the Neo4j database reduced the execution time for the baseline 6 fold. As previously, this
heuristic reduces the amount of contextual information in the final scores, affecting the
ranking.

Random Walker-based Sampling TSA: In some cases, the databases will be too big
or too complex for exact computations of the metrics in the queries. For these scenarios,
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we have developed a variation of the TSA process based on random walkers. In these
settings, a random walker would randomly choose relationships to follow in the execution
of the TSA process. We are now working on a variation of this implementation that would
enable random walkers to share information about the network, consequently biasing their
navigation towards relationships that are found to lead to destination nodes.

We expect this type of processing to be a key enabler of CDMS in BigData scenarios.
Proper tuning of parameters for the random walkers could enable control over the balancing
between efficiency and contextualization of the TSA processes.

Parallelization and distribution: TSA processing can be easily parallelized in a
multicore CPU. In cases that do not require precise answers, synchronization could be
avoided to further improve performance. The underlying processing model for TSA can
also be ported to distributed graph databases, improving the scalability of the processes.

5.5 Discussion

The experiments indicate that our approach is practical in terms of performance and allow
for several optimization and approximation mechanisms. Average execution times for the
metric in the baseline query took under 1.5 seconds, which was reduced to 0.28 seconds after
score preserving optimizations. We think this would already be an interesting achievement
for the non-trivial query, database, and computations we are dealing with, but there is room
for radical improvements.

To simplify implementation and facilitate incremental design of our query processor, we
are employing a tall stack of APIs5 that can be reduced for further performance gains.

Appropriate tuning of the TSA parameters and selection of the best processing strategy
is related to diverse properties of the graph to be traversed. The most important variables
are (i) the expected degrees for source and destination nodes, (ii) the expected average path
length between the source and the destination nodes, and the (iii) expected branching factor
in the paths. These variables can be calculated or estimated by the query processor based on
statistics sampled from the database, allowing automatic optimization of query processing.
We are working on defining the important statistics to maintain and on designing heuristics
for this automation.

6 Conclusion

New applications and demands from several areas require the analysis of intricately in-
terrelated data. Following a similar trend, data managed by institutions are becoming
increasingly complex. Expressive querying and adequate management of this type of data
presents several challenges to current database technology.

In this paper we define the requirements associated with the new challenges. We propose
several mechanisms for query specification and query processing optimization. Our query
model redefines metrics that rank entities based on the topology of their correlations. As

5our implementation stack includes the graph traversal language Gremlin, the Blueprints and OpenRDF
frameworks, Neo4j and the Virtuoso triple store
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suggested by the query examples presented (Figure 2), it is possible to represent information
needs that would require a level of data analysis that is beyond current implementations of
typical database systems.

Our experiments show that our approach is practical in terms of performance and that
our language can express complex concepts in real data and application scenarios. Combin-
ing the TSA model and a declarative query language offers many opportunities for query
optimization. Enabling this level of optimization based on typical graph querying mecha-
nisms would require complex ad-hoc solutions.

Ongoing work is focused on improving the modularity of the system, further implemen-
tation and test of all the proposed metrics, development of new optimization strategies, and
expansion of application scenarios. Future work will include time analysis and dynamic net-
works support, schema-free materialized views, and workload-based collection of statistics
to support query optimization.
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notation description

SA(m)n value for the potential of node n af-
ter the execution of the spread ac-
tivation with initial activated node
m (other parameters are omitted for
brevity)

a, t, d, c respectively, initial activation po-
tential, firing threshold, decay fac-
tor, maximum number of iterations
(depth)

l set of labels that determine valid
nodes for traversal

dir dir ⊂ {inbound, outbound}; set of di-
rections for traversal

dir dir ∩ {inbound, outbound}; reversed
directions of dir

SA(m)n equals SA(m)n with reversed direc-
tions, i.e. dir ← dir

I(n) function that calculates the input
potential of a node. I(n) =∑
m∈ant(n)

O(i) ∗w(m,n) in the default

case (not supporting the multigraph
definition for brevity)

O(n) function that calculates the output
potential of a node. O(n) = I(n) ∗ d
in the default case

ant(n) set of antecedent nodes, i.e. nodes
linked to n through relationships in l
that follow the directions in dir

sub(n) set of subsequent nodes, i.e. nodes
linked to n through relationships in l
that follow the directions in dir

Table 1: Notation used in the definitions
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top 10 name bottom 10 name
1.00 Woody Allen 0.02 Demi Moore
0.42 Mia Farrow 0.02 John Malkovich
0.24 Tony Darrow 0.02 Dom DeLuise
0.21 Julie Kavner 0.02 Stanley Tucci
0.21 Diane Keaton 0.02 Samantha Morton
0.16 Brian Markinson 0.02 Donald Pleasence
0.14 Dianne Wiest 0.02 Anthony LaPaglia
0.13 Hazelle Goodman 0.02 Sean Penn
0.12 Judy Davis 0.01 Robin Williams
0.11 Alan Alda 0.01 Uma Thurman

Table 2: Top-10 and bottom-10 ranked results for the baseline query (total of 98 returned
actors)


