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Abstract

Informally, total order broadcast protocols allow processes to send messages with the
guarantee that all processes eventually deliver the messages in the same order. In this
paper, we investigate the efficiency and performance of a very simple synchronous total
order broadcast protocol, that is built atop a broadcast-based asynchronous distributed
system. The performance results allow us to conclude that our Time Hybrid Total
Order Broadcast (THyTOB) represents an interesting trade-off between performance
and simplicity for total order broadcasts; its simplicity also allows its use as a benchmark
for total order broadcast atop Ethernet. Finally, the experimental results that support
THyTOB make a strong case for the reconsideration of the common wisdom that total
order broadcasts must be always designed for the asynchronous model because it is the
best way to guarantee safety and performance.

1 Introduction

Informally, total order broadcast protocols allow processes to send messages with the guar-
antee that all processes eventually deliver the messages in the same order. The importance
these protocols of is attested by their use as key components of several highly available
systems [10, 11, 17, 37] and by the intense research associated with them [19]. Yet, despite
the steady stream of research, to the best of our knowledge, no one has tried to assess
the performance of a simple total order broadcast for broadcast-based networks such as
Ethernet or Infiniband, the network technologies that are adopted by the vast majority of
current commercial datacenter clusters and high-performance computers [1].

In this paper, we investigate the efficiency and performance of a very simple synchronous
total order broadcast protocol, that is built atop a broadcast-based asynchronous distributed
system. Thus, to discuss our protocol we have to explain the combined behaviour of two
computing models: the timed-asynchronous and the synchronous models. We show that
the exploration of the interaction between asynchronicity and synchronicity can lead to
a time hybrid total order broadcast protocol presenting both good performance and high
reliability. In this context, the main contributions of this work are:
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• to show experimentally that an asynchronous broadcast-based cluster can indeed be a
trustworthy implementation of the synchronous model of computation considered by
our total order broadcast. Our experiments allow us to maintain that our assumptions
regarding the inherent synchrony of broadcast networks are reasonable for clusters
built atop of local area networks.

• to show that our Time Hybrid Total Order Broadcast (THyTOB) is on a par in terms
of performance with other total order broadcast protocols, despite its simplicity. This
result makes our algorithm a good alternative to more complex protocols for several
classes of cluster applications. For example, THyTOB can be used to implement an
MPI Broascast (MPI BCAST) primitive equivalent to the one proposed by [28], but
based on a simpler algorithm.

This work explores the fact that the processes and the network of asynchronous broadcast-
based clusters have an inherent tendency to behave as synchronous systems during rea-
sonably long periods of time. This tendency to synchronicity has allowed us design and
implement the Time Hybrid Total Order Broadcast protocol (THyTOB) that is discussed
in Section 3. Section 4 assesses the performance of THyTOB, and compares it with the
performance of other interesting total order broadcasts. From the perspective of the total
order broadcast, these two sections can be considered self-contained, in the sense that a
good understanding of THyTOB can be obtained without a critical examination of the
evidence of inherent synchrony. Despite this fact, an inquisitive reader may readily want
to verify that the synchronous system is indeed implementable on top of the asynchronous
system, forming a time hybrid system. So, the synchronous and asynchronous models of
computation are formally defined in Section 2 and their feasibility is examined experimen-
tally in Section 5. The conclusion is in Section 7 where we summarize our results and
discuss briefly why we consider the principles that guide THyTOB’s design a promising
avenue giving the current trends in the reliability of broadcast networks and commercially
available off-the-shelf computers.

2 Models of Computation

In this section we define the asynchronous and synchronous models of computation, includ-
ing their failure assumptions.

2.1 Asynchronous Model of Computation

An asynchronous distributed system is composed of a fixed set of n processes connected by
a broadcast network. Processes are asynchronous, in the sense that there is no bound in the
time they take to perform processing steps. Processes can fail by crashing (crash-stop), but
they never perform incorrect actions. Communication is accomplished by message passing,
with the broadcast network offering a best-effort broadcast primitive. So, communication
is one-to-all, asynchronous and unreliable: messages can be lost, duplicated, received out
of order, or arbitrarly delayed, but we assume that messages cannot be corrupted.
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Processes have access to local clocks, which display monotonically increasing values.
The clocks are not synchronized, so the deviations between the processors’ clocks can be
arbitrarily large, but we assume they to progress most of the time within a narrow envelope
of real time. Such clocks are useful to set timeouts, but we are particularly interested in
using them to schedule the execution of periodic tasks: given a period ∆, the processes
are then expected to be awakened to execute a task approximately every ∆ units of real
time. As the processes are asynchronous, there is no guarantees that this periodicity is
actually met during the whole execution; but when considering sufficiently long periods of
execution, the average interval of real time between successive invocations of the scheduled
task is expected to be around the period ∆.

In addition to this clock assumption, we aggregate to the model an empirical hypothesis
regarding its timing behavior. Given that the load applied to the system is controlled, the
time it takes to complete a broadcast of a message with up to S bytes is likely to be bound by
a constant δS . This delay includes the time the process takes to perform a processing phase,
which results in the broadcast of a message, and the latency to deliver the message to all
correct processes. Observe that this assumption does not impose bounds to the processing
delays or network latencies: it only enables us to stipulate maximum delays for the actions
to take place in the system, that are respected with high probability by their components.

Whenever the one-way timeout delay δS is violated we say that there was a performance
failure. There is no bounds on the frequency with which performance failures can occur, or
on the number of processes or channels that are affected by such failures. However, for the
sake of progress, we assume that there is a time beyond which all broadcasts initiated by
correct processes are completed within δS . What means that after a period of instability
there is always a time interval of some given minimum length in which the system behaves
stably, that is, a period in which the frequency of performance failures is upperbounded.

Thus, we started from an asynchronous crash-stop model with unreliable broadcast
channels, to which we aggregated two assumptions based on the timed-asynchronous system
model [18]: access to local clocks with bounded drift rates, and probabilistic maximum
delays δS for the messages with respect to their size. The validity of these additional
assumptions is restricted to periods of stability, in which processes and channels exhibit
a (predominantly) synchronous behavior. As we consider that this is the behavior of the
system most of the time, in next section we build, atop the model of computation described
in this section, a powerful abstraction from the synchronous model: the abstraction of
synchronous rounds [35].

2.2 Synchronous Model of Computation

In the synchronous model the processes have access to what we call a logical global clock. It
is a clock, in the sense that it periodically ticks at discrete instants of time, and it is global,
as it provides a common source of time to the processes. However, it is not a physical or a
real-time clock, but a logical mechanism that generates ticks based on the processes’ clocks,
and on the exchange of synchronization messages.

The ticks of the logical global clock are used by the processes to organize the distributed
computation into synchronous rounds. A process is then at round r from the instant it
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receives tick r until immediately before the reception of tick r+1. The behavior of processes
and channels during failure-free synchronous rounds is governed by the following rules:

(i) At the beginning of each round every process: processes the messages received in
the previous round, broadcasts a message, and then waits to receive some messages
broadcast in that round;

(ii) All messages processes broadcast in round r are received by all processes within the
same round r. Thus, as in [35], we assume that transfer delays do not exceed the
duration of a round, and that the processing delays are insignificant in relation to the
communication latencies;

(iii) Every process broadcasts at most one message per round. Thus, when the tick r+1 is
received, the process knows that all messages broadcast during round r have already
been received and processed, and that all processes of the system have now progressed
to round r + 1.

This model is akin to the (partially) synchronous models defined by [22] and [35] but
it can only be correctly implemented by a physically synchronous system, that enforces
real-time guarantees. In this work, one of our goals is to have a logical implementation
of this model that adheres as much as possible to the specification above, but relying on
an asynchronous distributed system—as modeled in previous section. Unfortunately, the
total isolation of failures that occurs in asynchronous systems it is not only costly but
practically impossible, so that not all failures considered in the asynchronous model could
have been masked in the synchronous model, in which we had to introduce the occurrence
of performance failures.

Performance failures can affect processes and channels: processes may not participate in
some rounds (send omission) and messages may not be delivered to some processes (receive
omission). Send omissions result from failures in the logical global clock mechanism, that
cause processes to miss some clock ticks. Receive omissions, in turn, reflect the possibility
that some of the messages broadcast in a round are not received by their destinations,
because they can either be lost or arrive after the end of that round. Note that despite
the occurrence of performance failures, all messages delivered to a process at the end of
each round have necessarily been broadcast in that round. It is based on the content of such
“timely”messages, received in the round in which they have been sent, that our synchronous
model is implemented.

Now that we have defined the two models of computation that support our time hybrid
total order broadcast protocol, we proceed with its description and then with its performance
evaluation.

3 Time Hybrid Total Order Broadcast

This section presents THyTOB, an uniform total order broadcast protocol designed for the
synchronous model of computation described in Section 2.2. Formally, THyTOB is defined
through the two primitives it exports: a broadcast primitive, invoked by a process to request
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the sending of a message to all processes, and a deliver primitive, invoked by the processes to
offer messages to the application. Based on these primitives, and considering that messages
are uniquely identified, THyTOB ensures the following four properties:

• Validity: If a correct process broadcasts a message m, then the process eventually
delivers m.

• Uniform Agreement: If any process delivers any message m, then every correct
process eventually delivers m.

• Uniform Integrity: For any message m, every process delivers m at most once,
and only if m was previously broadcast by some process.

• Uniform Total Order: If some process delivers message m′ before message m,
then any process delivers m only after it has delivered m′.

THyTOB is designed to be safe under asynchrony and in the presence of partial process
failures, but progress is only guaranteed while the distributed system behaves synchronously
and there are no process failures. Therefore, it is a protocol intended to be used during
periods of “good” behavior of the system, when it is possible to build consistent global
views of the computation total order broadcast in a straightforward way. We first describe
THyTOB considering a (perfectly) synchronous computation, then we present the procedure
to tolerate performance failures, finally in Section 3.4 we describe how the protocol copes
with crash failures.

3.1 Basic Protocol

To illustrate how the THyTOB works we first consider rounds in which the system behaves
synchronously, i.e. rounds in which performance failures does not occur. At the beginning
of a round r, a process p sends a message to all processes, composed by an application
message to be total ordered and its sequence number i. We assume that all processes are
initially “synchronized” with p, so that they broadcast in round r messages with the same
sequence number i used by p. Given that there is no failures, p receives the n messages
broadcast in round r, one from each process, and all messages have the same sequence
number. Therefore, at the end of round r process p knows all messages with sequence
number i that could have been broadcast, since p received messages from all processes and
the assignment of sequence numbers for messages is unique. We say then that r was a
successful round for p, as no failures or desynchronized processes were detected by p in the
round, and that p succeeded in receiving the messages i in round r.

Having succeeded in receiving the messages i in round r enables p to broadcast, in the
round which follows r, another application message with sequence number i + 1. This is
actually the progress condition of the THyTOB, which associates the broadcast of new
messages to the knowledge of the previous ones:

Condition 1. A process can only broadcast a message with sequencer number i+ 1 if it has
succeeded in receiving all messages with sequence number i in a previous round.
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As a consequence of Condition 1, when in a round r′ > r process p succeeds in receiving
the messages i + 1, it in particular learns that the remaining processes also succeeded in
receiving the messages i in a previous round. The set of messages p received in round r
then became stable, and can be safely delivered to the application at the end of round r′.
In the absence of failures r′ = r + 1, so that in the best case the messages are delivered
in two rounds, latency which is minimal for uniform total order broadcast—by reduction
to uniform consensus, which require at least two communication steps [30]. The THyTOB
then need a second enabling condition, for the sake of uniform delivery, which is stated as
follows:

Condition 2. A process only delivers the messages with sequence number i after having
been successful in a round in receiving all messages with sequence number i+ 1.

In order to turn these two conditions into a total order broadcast we make two further
considerations. First: whenever Condition 1 allows a process to use a new sequence number,
it broadcasts a new message. Even when the process does not have application messages to
broadcast, it assigns a sequence number and broadcast a null message, that is not delivered
to the application but is required to enable Condition 2. Second: whenever Condition 2
becomes valid for the first time for a given sequence number, the process delivers the set of
messages that became stable. In order to ensure total order delivery, the process applies a
predefined deterministic ordering function to the messages—which considers for example the
ids of their senders and their sequence number—before delivering them to the application.
As a result, the first time that a process succeeds in receiving the messages i, it delivers all
messages i− 1 using a predefined order, and it broadcasts a new application message (or a
null message) with sequence number i+ 1.

The correctness of this algorithm in the absence of failures is straightforward, and es-
sentially relies on the properties of the rounds. The rounds are communication-closed, so
that all processes that succeed in a round receive the same set of messages, composed by
all messages that could have been broadcast in that round. The processes apply the same
ordering function to the messages received in each round, therefore they build the same se-
quences i ∈ {1, 2, 3, . . .} of messages at the end of every successful round. The trivial total
order achieved through the concatenation of such sequences of messages is the foundation
of the THyTOB, which postpones in a round the deliver of (already ordered) messages just
to ensure uniformity.

3.2 Tolerating Performance Failures

Given the ordering mechanism and the behavior of THyTOB in the absence of failures,
in this section we discuss how the protocol handles rounds in which the occurrence of
performance failures prevent some or all processes to succeed. Remember that a process
succeed in a round when: (i) it receives n messages, one from each process; and (ii) all
messages received have the same sequence number. We discuss the violation of predicates
(i) and (ii) separately, illustrating two scenarios when they can occur.

The first scenario consists in a round r in which no process succeed because no process
received the n messages expected for the round. This scenario may occur, for example,
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when a process p miss round r and then does not broadcast or receive any message. In
this case, p knows that no process could succeed in round r, thus p broadcast in the next
round the same message i it should have broadcast in the round it missed. The remaining
processes, although unaware of what really happened, will assume that no process succeeded
in round r, so that they will broadcast their messages i again in the following round. As a
result, when in a round r′ > r the system behaves synchronously again the processes might
succeed in receiving the messages i, since they will continue to broadcast their messages i
until that happens.

The second scenario starts from a round r in which some processes succeed in receiving
the messages i, while others do not. It is a round in which all processes participate and
broadcast their messages i, but for several reasons—synchronization failures, instability in
latencies, message loss, etc.—only some of them receive the n messages broadcast. As a
consequence, in the round which follows r some processes will broadcast messages i + 1,
while others will broadcast their messages i again—following the procedure described for the
first scenario. This scenario then leads to an impasse: rounds in which, even in the absence
of performance failures, the processes can not succeed because they are desynchronized.

The procedure to circumvent this impasse is to make the processes that are “ahead”—
the ones that succeeded in the round r illustrated above—to retrograde to lower sequence
numbers, in order to enable the processes “behind” to resynchronize with them. More
specifically, a process that broadcasts a message i in a round but receives a message j < i
from some process, have to retrograde to the sequence number j. Processes that retrograde
to j behave like processes that never succeeded in receiving the messages j: they continue to
broadcast their messages j until they eventually succeeds in receiving the messages j. Once
it happens, the processes that retrograded will broadcast their messages j+1, but they will
not deliver the messages j − 1 again. Note that for this procedure to succeed, all processes
that were “ahead” have to retrograde to j, and all processes have to succeed in receiving
the messages j in the same round—otherwise they fall again in the second scenario. Such
conditions are actually sufficient to circumvent the impasse, since the enabling conditions
of THyTOB ensure that the processes that retrograde, can only retrograde to the sequence
number immediately before the highest sequence number used by any process.

Lemma 1. Given that some process has broadcast a message i in a round r, if any process
broadcast a message j < i in any round r′ ≥ r, then necessarily j = i− 1.

Proof. Consider r∗ as the first round in which a process p succeeded in receiving the messages
i − 1. Since p succeeded in round r∗, all processes broadcast messages i − 1 in round r∗.
Thus in the round which follows r∗ the processes could only broadcast: (i) a message i, if
the process succeeded in round r∗; or (ii) a message i − 1, if the process did not succeed
in round r∗. Note that from round r∗ there is no possibility of a process to broadcast
messages j < i− 1. From Condition 1, if p has broadcast a message i in round r it already
succeeded in receiving the messages i − 1 in a round previous to r. Therefore, as r > r∗,
in particular in any round r′ > r > r∗ no process can broadcast messages with sequence
numbers j < i− 1.

As an immediate corollary of Lemma 1, we have an important property of the protocol:
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despite the occurrence of failures in any round the processes can, either broadcast messages
with the same sequence number i, or broadcast messages with consecutive sequence numbers
i and i + 1. The protocol can only achieve progress in the first case, and given that
all processes succeed in the round. Otherwise, if only part of the processes succeed in
the round, we have the second scenario, which can be only reverted when the processes
“ahead” retrograde to the sequence number i—i.e. when the system returns to the first
case. Consequently, the progress of THyTOB depends on rounds in which there is no
failures, so that all processes succeed in receiving the messages i. Some of them could have
retrograded to the sequence number i, but necessarily some process succeeds in receiving
the messages i for the first time in that round, therefore it will deliver the sequence i− 1 of
messages and broadcast its message i+ 1 for the first time.

3.3 Failure-free Behavior

The pseudo-code of the THyTOB protocol in the absence of process failures is depicted
in Algorithm 1. The main procedure of the protocol, executed by every process which
participates in each round r, consists in processing the set M of messages received by the
process during the round. The conditions for a process to succeed in the round are checked
in Line 7: it received messages from all processes and all messages have the same sequence
number, which is the currently in use by the process (stored in the variable current). The
first time a process succeeds in receiving the messages i, it performs the following actions:

(i) it applies the predefined ordering function to the set M of messages received in the
round in order to build the ith sequence of messages (Line 10);

(ii) it delivers the sequence i− 1 of messages, the last it built, which became stable (Line
9);

(iii) it broadcasts the next application message available or a null message (if there is no
new messages to broadcast) with sequence number i+ 1 (Line 12).

Otherwise, when the process succeeds in receiving the messages i in a round but it
already built the ith sequence of messages in a previous round, it does not build or deliver
any sequence. The process, which necessarily retrograded to the sequence number i in some
previous round, assumes that all processes also succeeded in receiving the messages i in the
round, and broadcasts its message i+ 1 gain.

When the round is not successful for the process, it does not perform any of the actions
listed above, and its default behavior is to broadcast again the message it had broadcast
on that round (stored in the variable current). However, if some message received during
the round had a sequencer number j lower than the currently in use by the process (Line
14), the process have to retrograde and to broadcast again its message j. As stated by
Lemma 1, the process can only retrograde to the sequence number immediately before the
highest sequence number it used, which is stored in the variable last—updated only when
a new message is broadcast (Line 11). Thus, when the process retrogrades, the value of
the variable current become equal to last - 1, what in particular prevents the process to
deliver the messages j − 1 again (Line 8).
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1: upon Init do
2: sequence[0]← ∅
3: current← last← 1
4: messages[last]← loadNextMessage()
5: broadcast(last, messages[last])

6: upon End of round r with message set M do
7: if |Mr| = n and ∀m ∈M : m.seq = current then
8: if current = last then
9: last← last+ 1

10: deliver(sequence[current− 1])
11: sequence[current]← sortMessages(M)
12: messages[last]← loadNextMessage()

13: current← current+ 1
14: else if ∃m ∈M : m.seq < current then
15: current← min{m.seq : m ∈M}
16: broadcast(current, messages[current])

Algorithm 1: Pseudo-code of the THyTOB protocol.

3.4 Tolerating Crash Failures

Once its progress depends on the ability to build global views of the system, THyTOB
does not natively tolerate the occurrence of process failures. The same applies when some
processes, or the system as a whole, behave asynchronously over a long period of time:
once the processes do not succeed in the rounds, THyTOB becomes unable to achieve
progress. In this section we present the procedure THyTOB uses to handle the presence
of crashed processes or long periods of asynchrony. This recovery procedure relies on an
underline failure detection mechanism and on any asynchronous implementation of Uniform
Consensus.

The procedure consists in a task that runs parallel to the protocol main task (depicted
in Algorithm 1). This task is responsible for detecting when the protocol becomes unable
to achieve progress, due to both asynchrony or process failures, for a given period of time
or for a given maximum number of rounds. Note that as the underline model of compu-
tation is asynchronous, crashed processes can not be deterministically distinguished from
slow processes [24], thus this performance-based failure detection mechanism will always
be unreliable. That is why the recovery procedure relies on an asynchronous consensus al-
gorithm, which is safe under asynchrony and indulgent to the failure detection mechanism
mistakes [26], but ensures liveness under minimal conditions of synchrony provided that up
to f < n/2 processes fail by crashing [12, 21].

Just as total order broadcast, consensus is an agreement problem that is central to the
implementation of fault-tolerant distributed systems. The consensus problem is stated in
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terms of processes that propose values and eventually decide the same value, and an uniform
consensus algorithm must ensure the following properties [12, 26]: (i) if a process decides on
some value, then this value was proposed by some process; (ii) two processes do not decide
different values; and (iii) every correct process eventually decides on some value. Total
order broadcast and consensus are equivalent problems [12], and the former can be reduced
to the resolution of several instances of consensus in which the input values are sequences
of messages, so that the value decided in the ith instance of consensus is the ith sequence of
messages the processes will deliver. This reduction, that is trivial in THyTOB, is the basis
for the recovery procedure detailed below.

When a process detects that the protocol is not live, it abandons the THyTOB main
task and initiates some consensus instances in order to decide whether the pending messages
can be safely delivered to the application. Considering that the highest sequence number
used by the process—the value of variable last in Algorithm 1—when it abandoned the
THyTOB main task was i, the scenario is as follows:

(i) From Condition 1, the process knows all sequences of messages up to the sequence
i− 1;

(ii) From Condition 2, the process has already delivered all sequences of messages up to
i− 2;

(iii) From (i) and Conditions 1 and 2, all processes have delivered all sequences of messages
up to i− 3;

(iv) As the process never broadcast its message i+1, no process can have delivered sequence
of messages i.

Mapping to consensus instances, the value decided in every instance j ≤ i − 2 is the
sequence j built by the process during the ordinary execution of the protocol. The only
pending sequence is the sequence i−1, that some processes may have delivered in THyTOB.
It is also the next sequence of messages the process should deliver, so that it proposes the
sequence i−1 (it has already built but is not yet stable) as value for consensus instance i−1
The value decided in this instance is the next sequence of messages the process delivers.
Note that processes which did not delivered the sequence i − 2 start the procedure with
last = i − 1, thus they will propose in consensus instance i − 2 the same sequence the
process decided in the instance. This consistency between sequences of messages delivered
by THyTOB and values decided in the corresponding consensus instances supports the
correctness of the recovery procedure.

The algorithm executed by a process when it suspects that THyTOB may not achieve
progress anymore, or it detects that other process started some recovery consensus instance
is the following:

1. The process interrupts the THyTOB main procedure (Algorithm 1), and joins any
consensus instance that is initiated by other processes;

2. In consensus instance last - 2 the process decide the value sequence[last - 2];
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3. In consensus instance last - 1 the process propose the value sequence[last - 1];

4. In consensus instances from last the process can propose any value received from
other process, or the special value stop;

5. If in any consensus instance the process decides the special value stop, the procedure
is completed.

Step by step, the recovery procedure works as follows. In Step 1 the process abandons
the THyTOB protocol, forcing the remaining processes—which will not succeed anymore in
the rounds—to eventually start this procedure. Step 2 only enables processes that have not
yet delivered the sequence of messages i− 2 (i is the value of variable last) to deliver this
sequence without conducting a complete consensus instance. Step 3 is required to ensure
Uniform Agreement: if any process has delivered the sequence i − 1 then all processes
that propose values for consensus instance i − 1 are forced to propose the same sequence
of messages it has delivered. Since only values proposed can be decided, if a process has
delivered the sequence i−1 then all correct processes eventually deliver the same sequence of
messages i− 1. Finally, in the last Steps the process completes the procedure by proposing
the especial value stop in instances j ≥ i for which it do not have sequences j to propose.
Note that such sequences were not delivered by any process in THyTOB, so that the process
can accept any value proposed for these instances. When the first stop is “delivered” the
process learns that there are no more pending messages, and the procedure is concluded.

From this point, there are two alternatives for the total order broadcast solution to
proceed. The first alternative is to get the processes, once they deliver the stop command, to
start the execution of any other asynchronous and fault-tolerant order broadcast protocol.
When the system eventually restores its original synchronism and all (possibly crashed)
processes recover, a new execution of THyTOB can be started. The second alternative
consists in selecting, once recovery procedure is concluded, a new set of correct processes to
start a new execution of THyTOB. What can be achieved by relying in a group membership
service [8], or using special consensus instances in order to reconfigure the system [34]. Note
that to ensure safety, the size n′ of the new set of processes must be chosen so that n′ > 2f ,
therefore the system reconfiguration is actually intended to replace crashed or misbehaving
processes that prevent THyTOB to progress.

4 Performance Evaluation

This section presents the experiments realized to assess the performance of the THyTOB
protocol. The experiments evaluate scenarios in which there is no process failures, that are
expected to be rare events in our target system, but performance failures occur relatively
often, because of the system asynchrony which becomes particularly evident under high
network loads. In particular, the results show that the performance of THyTOB is quite
predictable, what reinforces our assumption that an asynchronous system, given that the
load applied by the protocol is controlled, present a synchronous behavior most of the time.

We first present the experimental settings we used in the experiments and next study
two performance metrics: throughput, which measures the number of broadcasts that the
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processes can complete per time unit, and latency, which measures the time required to
complete a single broadcast without contention. In Section 4.6 we then compare the perfor-
mance of THyTOB with the performance of other interesting total order broadcasts, which
were designed for the same computing environment considered by THyTOB.

4.1 Experimental Setup

All experiments reported in this work were carried out on a cluster of machines equipped
with two quad core 2.40 GHz Intel-Xeon and 12 GB of main memory. Machines ran
Gnu/Linux Debian 6.0 with Linux 2.6.32 SMP 64-bits kernel, and experiments were carried
out using the Sun Java SE Runtime Environment 1.6. Machines were interconnected using
a 3Com 4200G Gigabit Ethernet switch with 24 ports and 0.2ms of round-trip time. The
socket’s receive buffers had 128 KB, the default size for the operating system.

THyTOB was implemented in Java, in about 1000 lines of code. Processes communicate
through UDP (for unreliable datagram transport) and the network-level multicast primi-
tive provided by the IP protocol over Ethernet. The THyTOB implementation includes a
protocol that implements the round-based model of computation described in Section 2.2.
The description of this protocol, including its implementation and the main characteristics
of the synchronous rounds it generates, has been left to Section 5.

The load for the experiments was generated by a fake application that requests, whenever
a sequence of messages is delivered, the broadcast of a random message composed by S bytes,
where S is a parameter for the experiment. Are also parameters for the experiments the
reference duration ∆ for the synchronous rounds, given in microseconds (1µs = 10−6s), and
the number of processes participating in the protocol. Experiments lasted about 10 minutes
(300 thousand rounds), and were repeated at least five times.

4.2 Throughput

Figure 1 presents the throughput achieved by THyTOB in experiments with five processes
and messages of 10 KB, with respect to the reference duration for the rounds. Each exper-
iment was repeated five times, and the points and bars represent, respectively, the averages
and standard deviations for the mean throughput measured in each execution. The dashed
curve represents the optimal throughput for each experiment, i.e. the throughput that
should be achieved in the absence of performance failures, when all processes succeed in
every round. Note that the higher the reference duration ∆ for the rounds, the closer to
the optimal is the throughput achieved by the protocol, what means that the bigger was
the proportion of rounds executed in which the protocol completed broadcasts. It is an
expected behavior, since with increased duration for the rounds, small fluctuations in the
processing delays or in the latencies for the messages are less likely to result in performance
failures, and therefore to prevent the rounds to be successful.

In the rightmost point in Figure 1, with rounds of 1750µs, THyTOB achieves 28.01 ±
0.02 MB/s of throughput, what corresponds to 98% of the optimal throughput for the
experiment, which is 28.57 MB/s. We say that THyTOB had an efficiency of 98% in that
experiment, what means that the protocol does not complete broadcasts in only 2% of the
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Figure 1: Throughput with respect to the reference duration ∆ for the rounds in experiments
with 5 processes and messages of 10 KB. The dashed curve is the optimal throughput for
the experiments in function of ∆, given by (5 ∗ 10000/∆) MB/s.

rounds executed. When we progressively reduce the duration for the rounds there is an
slight increase on the frequency of performance failures, so that the efficiency decreases
slowly, reaching about 95% with ∆ = 900µs, and 92% with ∆ = 825µs. But as the optimal
throughput is inversely proportional to the duration for the rounds, the throughputs increase
with the reduction of ∆, reaching its maximum value 55.78±0.29 MB/s at ∆ = 825µs. From
this point, small reductions of ∆ cause large drops in efficiency (88% with ∆ = 800µs, 78%
with ∆ = 775µs), which are no longer offset by the increasing of the optimal throughput.
As a result, in the leftmost point in Figure 1, with ∆ = 750µs, the measured throughput
was 33.20± 1.42 MB/s, which corresponds to only 48% of efficiency. Observe that not only
the average throughputs decreased but also the standard deviations increased, what reflects
the instability of the system when the rounds become too short to support the load applied
by the protocol.

4.3 Latency

Figure 2 presents the average latencies for delivering the messages in the same experiments
described in previous section, with five processes and messages of 10 KB. The points in
black and the bars represent the average and standard deviations for the mean latencies
measured in five executions of the protocol. The dashed curve is the optimal latency for the
experiments, which depends only on the reference duration ∆ for the rounds. Similarly to
the throughput, the measured latencies are closer to the optimal with the increasing of the
duration for the rounds, but they degrade rapidly when the rounds become too short. In
fact, the operation of the protocol causes throughput and latency to be closely related: as
the processes can only broadcast new messages when they complete broadcasts, the more
frequently they deliver messages, the lower is the latency achieved. Thus, as would be



14 Cason, Buzato

700 750 800 850 900 950 1000 1050 1100

1.5

2.0

2.5

3.0

3.5

4.0

Duration for the rounds (µs)

La
te

nc
y 

(m
s)

●

Averages from:

All latencies
< 0.99−percentile
< 0.90−percentile

●

●

●

●

● ● ●
●

●
●

●
●

●

●

●

Figure 2: Latency with respect to the reference duration ∆ for the rounds in experiments
with 5 processes and messages of 10 KB. The dashed curve is the optimal latency for the
experiments in function of ∆, given by (2 ∗∆/1000) ms.

expected, the best latency for this configuration was achieved at ∆ = 825µs, which is the
inflection point for both curves of latency and throughput. The latency for this point was
1.80± 0.01 ms, which is only 9.4% above the optimal value 2∆ = 1.65 ms.

The white points in Figure 2, in turn, represent the average latencies computed when
the higher 1% (squares) and 10% (losangles) measured latencies are disregarded. Note
that from ∆ = 800µs the latter are almost equal—and the former are getting closer and
closer—to the optimal latencies for the experiments. For instance, with ∆ = 825µs the
90-percentile latency was 2.08∆ and the 99-percentile was 5.89∆, what means that (at
least) 90% of messages had an optimal latency of two communication rounds, and 90% of
the remaining had latencies of at most 6 rounds. These results, in conjunction with the
previous that messages are delivered in 92% of the rounds, allows to conclude that the
executions of the protocol are mainly composed by long sequences of successful rounds,
in which the processes deliver n messages per round with latency of two rounds. Such
sequences are typically interrupted by few unsuccessful rounds, resulting in latencies of 3-5
rounds, and only occasionally by longer periods of instability, which are also controlled:
from ∆ = 800µs to 1750µs the 99.9-percentile latencies are on the range 12-14 ms.

4.4 Impact of Message Size

The same behavior of the protocol in the configuration presented in the last two sections,
with five processes and messages of 10 KB, was observed in several configurations of ex-
ecution. Specifically, for every size for the messages broadcast by the processes, there is
an optimal reference duration ∆opt for the rounds in which both the throughput achieved
by the protocol is maximal and the average latency for the messages is minimal. The per-
formance of the protocol in this sort of saturation point of the system in configurations
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Figure 3: Throughput with respect to the message size and the duration for the rounds in
experiments with 5 processes.

Message Size 7.5 KB 10 KB 12.5 KB 15 KB 17.5 KB 20 KB 22.5 KB 25 KB

Round Duration 650µs 825µs 925µs 1025µs 1175µs 1250µs 1375µs 1375µs

Protocol Efficiency 90.4% 92.0% 90.2% 89.4% 87.6% 81.0% 81.8% 61.5%

Mean Latency (ms) 1.45 1.80 2.06 2.30 2.69 3.10 3.39 4.53

Throughput (MB/s) 52.2 55.8 60.9 65.4 65.2 64.8 67.0 55.9

Table 1: Best performance of THyTOB with 5 processes and several message sizes.

with five processes and several message sizes is detailed in Table 1, and an overview of the
throughput achieved in such configurations with respect to the duration of the rounds is
presented in Figure 3.

The first element observed in Figure 3 is that the shape of the curves for each configu-
ration (plotted in red) are similar to the shape of Figure 1. The throughput increases with
the reduction of ∆, accompanied by a slight reduction of efficiency, until ∆opt is reached;
around ∆opt the system is saturated and the protocol achieves their best throughputs (re-
gions in darker blue); then small reductions of ∆ cause large drops in the efficiency, and
the throughput decreases to almost zero (green regions). What changes with the increase
of the message size—besides the predictable increase of ∆opt, and the consequent increase
in the mean latencies—is that the peak of maximum throughput is less prominent in the
curves, and there is a higher range of ∆ in which the throughputs are very close to the
maximum. This behavior is explained by the increasing load applied to the system when
the messages are larger, which causes a decrease in the efficiency, and therefore limits the
throughput achieved by the protocol, as can be seen in Table 1.

A second element observed in Figure 3 is the curve of throughputs with respect to the
message size, which has an (roughly) increasing pattern until it reaches 67.0 ± 0.7 MB/s,
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Number of Processes n = 5 n = 10 n = 15

Message Size 15 KB 7.5 KB 5.0 KB

Round Duration 1025µs 1150µs 1300µs

Protocol Efficiency 89.4% 86.7% 80.5%

Mean Latency (ms) 2.30 2.65 3.23

Throughput (MB/s) 65.4 56.6 46.2

Table 2: Performance of THyTOB with respect to the number of processes, when 75 KB of
messages were broadcast per round.

with messages of 22.5 KB. From this point efficiency drops rapidly with the increasing of the
message size, indicating a saturation of the network: from 81.8% with 22.5 KB to 61.5% with
25 KB, and to less than 20% with 27.5 KB. With smaller messages, in turn, the reduction
of the load reflects in the increase of efficiency, that reaches 92% with messages of 10 KB,
which is not offset by the decreasing of the optimal throughput. This limitation is more
evident with messages of 7.5 KB, in which the optimal reference duration for the rounds
was only 650µs and the throughput was 52.2 ± 0.3 MB/s. For best throughput would be
necessary to further reduce the duration for the rounds, but for shorter rounds the system
can hardly comply the deadlines imposed, so that the performance in this configuration is
clearly limited by its reduced optimal throughput.

4.5 Impact of the Number of Processes

In all experiments presented so far the system was composed by five processes, what means
that the protocol tolerated the crashing of two processes. In order to assess the scalability of
THyTOB we selected the configuration with 5 processes and messages of 15 KB, which has
a good trade-off between throughput and latency, and distributed the load of 75 KB of mes-
sages that are broadcast per round among a larger number of processes. The performance
with 5, 10 and 15 processes is summarized in Table 2.

With the increasing in the number of processes which participates in the protocol there
is a smooth decreasing in the throughput achieved, and a proportional increasing in the
mean latencies: of about 13% when n is doubled and 30% when n is tripled. This loss of
performance results from the combination of two factors, which were also observed with the
increasing of the message size: the increase of ∆opt for the configuration and the reduction
of the efficiency achieved by the protocol. The former can be justified by the higher network
latencies and processing delays required to receive and to process more messages in every
round. The latter can be seen as a consequence of the progress condition of the protocol:
with the increasing number of processes the probability of a performance failure to affect
any process or message during a round tends to increase, so that the slight loss of efficiency
observed was somehow expected.
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Protocol Throughput Latency Message Size Synchrony Topology Channels Failures

LCR 950 Mb/s 4.6 ms 32 KB Strong Ring TCP Membership

Ring-Paxos 900 Mb/s 4.2 ms 8 KB Weak Wheel UDP Consensus

THyTOB 540 Mb/s 3.4 ms 22.5 KB Weak Star UDP Consensus

THyTOB 525 Mb/s 2.3 ms 15 KB Weak Star UDP Consensus

THyTOB 450 Mb/s 1.8 ms 10 KB Weak Star UDP Consensus

Spread 180 Mb/s 5.7ms 16 KB Weak Wheel UDP Membership

Treplica 105 Mb/s 4.3ms 10 KB Weak Star UDP Consensus

Paxos4SB 65 Mb/s 4.6ms 4 KB Weak Star UDP Consensus

Table 3: Comparison of uniform total order broadcast protocols.

4.6 THyTOB versus other protocols

Table 3 compares the performance of THyTOB to that of other five total order broadcast
protocols: LCR [27], Ring-Paxos [36], Spread [3], Treplica [38], and the protocol presented
in [4] that hereafter we refer as Paxos4SB. The results were obtained in experimental settings
very similar to the one used in the experiments with THyTOB. The performance data for
Ring-Paxos, LCR and Spread were taken from the paper that describes the former [36],
and for Paxos4B we considered the experiment with best throughput from the presented
in [4]. All results in Table 3 refers to experiments with five processes, excepting Spread and
Paxos4SB, from which the best results available were with three and twelve processes.

Interestingly, the protocols with best throughputs arrange the processes in a logical
ring. In LCR every process maintains a TCP connection with its successor in the ring,
and the messages that circulate this ring are totally ordered using logical clocks [32]. LCR
achieves an almost-optimal throughput, corresponding to 95% of the network capacity, at
cost of latencies that increases linearly with the number n of processes in the ring. To
tolerate process failures LCR relies in a group membership service, and requires perfect
failure detection, an abstraction which implies strong synchrony assumptions. Ring-Paxos,
in turn, disposes f + 1 processes in a logical directed ring, where f < n/2 is the number os
process failures tolerated. The first process of the ring is the only that broadcast messages
(using IP-multicast), and the acknowledgments circulate through the ring via unicast. As
a result of this strategy, the throughput of Ring-Paxos is slightly lower than LCR, but
its latency is also smaller (better), and almost constant with the number of processes.
Ring-Paxos tolerates message loss and process failures using instances of Paxos [33]—the
consensus protocol of which Ring-Paxos is an optimization—, that are also responsible for
reforming the ring.

In the lower portion of Table 3 we have Spread, which is one of the most-used group com-
munication systems, and two consensus-based total order broadcasts implementing Paxos:
Paxos4SB and Treplica—the latter developed by our research group. Spread implemen-
tation’s of total order broadcast is based on Totem [5], a ring-based protocol that allows
a single process to broadcast messages at time. This privilege circulates the ring in the
form of a token, and the process holding the token broadcasts its messages, that are only
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delivered after two complete revolutions of the token. To tolerate process and network
failures, Spread implements a group membership service, responsible for reconstructing the
ring and regenerating the token. Thus, Spread adopts the same logical topology of Ring-
Paxos, in which a single process can IP-multicast messages at time, but suffers from the
same 2n latency factor of LCR. The consensus-based protocols, in turn, adopt the same
logical topology of THyTOB: n processes connected to a central node, which is the Ethernet
switch, that communicate through IP-multicast. The relative poor performance achieved
by these protocols can be explained by the inherent complexity of consensus [30], and by
the network instability observed when several processes broadcast messages concurrently
and uncoordinately [36].

Although presenting throughputs inferior to the observed for LCR and Ring-Paxos, on
the order of 45% to 55% of the network capacity, THyTOB present latencies significantly
lower than both protocols. What can be explained when we compare the number of com-
munication steps required to complete a broadcast in each protocol: THyTOB is optimal,
requiring only two communication steps in best case, while Ring-Paxos requires at least f+3
steps, and LCR requires two complete revolutions in the ring (2n steps). Moreover, despite
the adoption of a star topology, the way in which THyTOB coordinates the processes and
conditions the load applied to the network, prevents the considerable loss of performance
observed in asynchronous total order broadcasts in which processes communicate through
the IP-multicast primitive.

5 Time Hybrid System: Experimental Validation

The previous sections have shown that THyTOB is both simple and produces competitive
throughput while providing low latency. What remains to be done is to verify experimentally
that: (i) a broadcast-based cluster is a trustworthy implementation of the asynchronous
model, and (ii) the synchronous model can be implemented upon the asynchronous model.
Instead of designing separate sets of experiments to test each of the premisses specifically,
we have designed a single set of experiments that when viewed as whole provide enough
evidence that both premises are valid for an Ethernet-based commodity cluster.

The models of computation referred above were defined in Section 2. The synchronous
model organizes the distributed computation in rounds using a logical global clock (Sec-
tion 2.2). In next section we describe an implementation for this abstraction through a
protocol that periodically generates and diffuses the ticks that determine the succession of
rounds: the rounds protocol. Next, we describe a set of experiments that both assess the
rounds protocol, and verifies the assumptions of the asynchronous model (Section 2.1).

5.1 The Rounds Protocol

We consider that a process is elected to execute the rounds protocol: the synchronizer.
The synchronizer implements a timer that triggers a tick generation event every ∆ time
units. The period ∆, the reference duration for the rounds, is a function of the number
of processes and the maximum size of the messages exchanged by the processes, excluding
messages generated by the rounds protocol. A round identifier, made up by an epoch
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number juxtaposed with a sequencer number, that sequence number, is used to uniquely
identify the synchronizer and the ticks it broadcasts. Using the round identifier processes
are able to detect missed, duplicated or out of order clock ticks that are disregarded. The
processes only accept as valid the round identifiers generated by the process they consider
the correct synchronizer, and a process acting as a synchronizer is demoted from its role as
soon as it receives a tick with an epoch number higher than its own epoch number. Thus,
the round identifier is also used to implement a mechanism that guarantees that the system
can eventually converge to a state where a single process acts as the synchronizer.

Whenever the tick generation event is triggered, the synchronizer broadcasts a new
tick message using the IP-multicast primitive. Tick messages are composed by the epoch
identifier e, a sequence number i, the period ∆, and some debugging information used to
build the distributions presented in the next sections, totaling about 100 bytes. Processes
listen to the address to which the ticks are broadcast, and whenever a tick is received they
check whether it can be accepted. A process that executes round i of epoch e accepts a tick
(e′, j) only if e′ ≥ e and j > i: if e′ = e the process starts round j; otherwise the process
joins epoch e′ from round j. When round j is started the messages received during the last
round i are passed to the client protocol (e.g. to THyTOB) to processing, and the client
returns the next message to be broadcast. This message is then labeled with the round
identifier (e, j) and the process id—the headers added to such ordinary messages had about
240 bytes– and is broadcast through the IP-multicast primitive.

Similarly to the ticks, whenever a message is received the processes check whether it
can be accepted. Given a message labeled with round (e′, j) received by a process during
round (e, i) we have three scenarios. If e′ = e and j = i, and if no message from the same
process was received during the round, the message is timely, and it will be delivered to
the protocol at the end of the round. But if e′ 6= e or j < i this message is either from
another epoch or from some previous round, then it is just dropped. This is actually a major
characteristic of round-based computations: late messages are always dropped, so that they
are equivalent to lost messages [14, 22]. Finally, if e′ = e and j > i the process received
an early message, that is buffered to be checked again in future. When round j eventually
starts the process checks the buffer for messages j, but if round j is missed—because tick
j was not received—all messages j in the buffer are dropped.

Given the description of the rounds protocol, in the following sections we assess its
efficiency, starting from the accuracy with which the synchronizer periodically generates
and broadcasts the ticks.

5.2 Accuracy of the Synchronizer

In the first set of experiments the system was composed of five processes and the reference
duration for the rounds was ∆ = 500µs. This is a very tight duration for the rounds—as
shown below, the latencies for delivering messages with several sizes are often larger than
500µs— but with this value of ∆ we might explore the behavior of the synchronization
protocol under several scenarios of network load. In the first scenario the processes broadcast
messages with empty payloads, resulting in a low load, of about 20 Mb/s. In the second
scenario the message size was computed in order to induce a load of 500 Mb/s, corresponding
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Figure 4: CDF for the processing delays, measured in µs, in the broadcast of 1.5 million
ticks in three scenarios of load.

to half of the network capacity. And in the third scenario the message size was computed in
order to induce 1 Gb/s of load with the messages broadcast at the beginning of the rounds,
what means a completely congested network. As a result, the network loads measured on
the last scenario fluctuated slightly during the experiments, but they remained above 960
Mb/s, which is used as reference value.

The first aspect assessed in the experiments was the accuracy of the synchronizer in
scheduling the broadcast of ticks. The synchronizer schedules the generation of an infinite
sequence of ticks to instants t1, t2, t3, . . . of its local clock—which is the processor’s clock,
kept by the operating system. Thus given that a process becomes the synchronizer at the
instant t0 according its clock, the generation of the ith tick is scheduled to the instant
ti = t0 + i∆, but the tick will actually be broadcast at some instant tsi ≥ ti, also according
the synchronizer’s clock. We call the difference difference tsi−ti the processing delay for tick
i, and it reflects the accuracy with which the system (namely, the processor, the operating
system and the Java virtual machine) wakes up the synchronizer for generating ticks. The
less stable the processing delays, less close to ∆ the intervals between the broadcast of ticks,
thus less accurate the rounds protocol.

Figure 4 presents the Cumulative Distribution Function (CDF) for the processing delays
measured in five executions with five different synchronizers, which broadcast 300 thousands
ticks in three scenarios of network load. For expected loads of 20, 500 and 1000 Mb/s,
respectively, 98.4%, 97.1% and 95.5% of the processing delays were between 50 and 100µs,
and more than 80% of them were concentrated in the range 50 to 65µs. What means that in
most cases the interval between the broadcast of ticks was very close to the expected—with
the higher load 95.6% of the intervals were in ∆± 50µs— and the synchronizer proved able
to meet most schedules with high accuracy, even with the tight period of 500µs and rate
of 2000 ticks per second. On the other hand, respectively, 0.47%, 0.70% and 1.34% of the
processing delays measured were above 500µs, what means that these ticks were broadcast
after the time scheduled to the generation of the next tick, resulting in very short intervals
between ticks, lower than 100µs. This undesirable behavior was observed, albeit at lower
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Figure 5: CDF for the duration of 1.5 million rounds, measured in µs by five processes,
with reference value ∆ = 500µs.

percentages, for longer periods ∆ and in different scenarios of load, what indicates that the
processing delays, although reduced and stable most of the time, are in fact unbounded.

5.3 Duration of the Rounds

The second aspect assessed in the experiments described in last section was the duration
of the rounds induced by the synchronizer. The duration of a round i according some
process p is given by the difference on the time at which the two ticks which delimit the
round—the tick i which starts it, and the tick j > i which ends it—are delivered to p.
Ideally, the durations of the rounds should be around the parameter ∆ of the experiment,
but in practice they are determined by the following factors: (i) the intervals between the
broadcast of successive ticks; (ii) the fluctuations on the latencies of the tick messages; and
(iii) ticks missed or received out of order—which cause rounds i to be terminated by ticks
j > i+ 1. The first factor was verified in the last section, when we found that at least 98%
of the ticks were broadcast with intervals in the range ∆ ± 100µs, then in this section we
assess the second and third factors.

Figure 5 presents the CDF for the duration of the 1.5 million of rounds induced in the
experiments, measured by the five process which participated of them. The two dotted lines
delimit the portion of the rounds with durations in the range 400 to 600µs (i.e. ∆±100µs),
that were 91.9% in the higher, 96.9% in the intermediate, and 97.6% in the lower loads.
These percentages are 6.7%, 2.1% and 1.6% below the portions of ticks which were broadcast
with intervals in ∆ ± 100µs, what allows to quantify the impact of fluctuations on the
latencies of the ticks in the duration of the rounds, with respect to the load applied to the
system. Ticks lost or received out of order, in turn, were not observed in the experiments
with 20 Mb/s of load, and for reference loads of 500 Mb/s and 1 Gb/s they were 0.17%
and 0.82%. The rounds induced by these ticks were not executed by the processes, and for
building the distribution their durations were computed as infinite. At the other extreme,
the rounds with durations up to 100µs—very short and probably useless for the processes—
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were respectively 1.03%, 1.08% and 1.63%, percentages that are similar to the portions of
ticks broadcast by the synchronizer with intervals up to 100µs between them.

The results indicate a high precision in the synchronization achieved by this simple
pulsing mechanism with five processes, especially for the intermediate load, in which about
97% of the rounds had durations around ∆ = 500µs. We then repeated the experiment
with reference load of 500 Mb/s doubling and tripling the number of processes, and the
results were similar: 96.1% of durations in ∆ ± 100µs for n = 10, and 93.8% for n =
15; missed rounds were 1.60% and 3.30%; and very short rounds were 1.52% and 2.05%.
Observe that, similarly to the load applied to the network, the number of processes impacts
the synchronization, resulting in an increase of tick loss, and in larger fluctuations in the
latencies of the ticks. The increase of message loss when more processes broadcast messages
simultaneously, especially under higher loads, was observed in several scenarios of execution,
and was also reported by other authors [36]. But for intermediate loads, the impact on
precision when we tripled the number of processes was only 3%.

The experiments presented so far allowed us to validate the hypothesis that is possible
to synchronize the processes through the periodic broadcast of ticks, and thus to organize
computations as a sequence of synchronous rounds with a predefined duration ∆. In next
section we study the behavior of the messages broadcast by the processes at the beginning of
the rounds, regarding the distribution of their latencies. We expect to observe the behavior
modeled in Section 2.1, that is, to find probabilistic upper bounds δS for the latencies, with
respect to the message size S, that are respected by the system most of the time.

5.4 Latency Bound

The experiments conducted in this section consisted of five executions in which different
syncronizers generated distributed computations with a duration of 300.000 rounds each.
In every round the processes broadcast a message carrying a random payload with size
S, that is a parameter of the experiment. The synchronizer then computes the Round
Trip Time (RTT) of the messages, consisting on the difference between the time when the
messages were delivered and the timestamp of the ticks which triggered their broadcast.
The reference duration for the rounds ∆ = 1000µs was chosen in order to minimize the tick
loss, that was lower than 0.15%, 0.25% and 0.45% in executions with five, ten and fifteen
processes.

Figure 6 presents the CDFs for the RTT of messages broadcast by five processes with
respect to the size S of their payloads. In the first scenario, the payloads were empty, so
the messages had essentially the same size of the tick messages, while in the remaining
scenarios the payloads had 5, 10 and 15 KB, resulting in loads of about 200, 400 and 600
Mb/s. In the left-most portion of the graphs, representing about 20% of the measurements,
are observed the RTTs for messages broadcast by the process which hosts the synchronizer.
These messages are delivered locally, through the loopback interface, so that their RTTs did
not include network latencies. Next, there is a “silence” interval, in which almost no message
is delivered, followed by the interval of RTTs in which most messages were delivered. For
payloads of 5, 10 and 15 KB the RTTs were mainly concentrated in the intervals 290 to
689µs, 395 to 950µs, and 457 to 1163µs, and the upper bounds of such intervals corresponds
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Figure 6: CDF for the RTT, given in µs, of messages broadcast by five processes, in rounds
with reference duration ∆ = 1000µs.

approximately to the 98%-percentile of the distributions. Finally, in the right-most portion
of the graphs are observed the 2% higher RTTs, sparsely distributed up to 4000µs (densities
of less than 0.01%), which include the missed messages, with RTTs computed as infinite.

The results of the experiments are summarized in Table 4 which presents the portion
of messages that have been classified by the synchronizer as timed, late and lost. Timed
messages are the ones which were received before the end of the round in which they have
been broadcast, therefore the only messages that were delivered to the processes. Late
messages, in turn, were received but discarded by the processes, and the lost messages
were not even received. The portions of timed and late messages are closed related to the
percentages of messages with RTT up to the reference duration for the rounds, with some
fluctuation due to inaccuracies in the synchronization. For instance, for payloads of 15 KB
about 5.8% of the RTTs were in the range 1000 to 1100µs, and most of such messages were
classified as timed. The message loss, in turn, is more related to the load applied to the
network than to the size of the messages broadcast.

Payload size 0 KB 5 KB 10 KB 15 KB

RTT ≤ 1000µs 99.00% 98.74% 98.42% 91.24%

Timed messages 98.95% 98.73% 98.52% 96.53%

Late messages 0.97% 1.04% 1.18% 2.99%

Lost messages 0.08% 0.23% 0.30% 0.47%

Table 4: Efficiency of the rounds with respect to the payload’s size, with 5 processes and
duration of the rounds ∆ = 1000µs.

In a second set of experiments we analyze the impact of the number of processes in
the latencies of the messages. We selected the experiment with five processes and 10 KB
of payload, and distributed the load of 410 Mb/s applied in that scenario among ten and
fifteen processes. While with five processes 98.1% of the latencies were mainly concentrated
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up to 950µs (densities above 0.01%), with ten processes 97.6% of them were up to 982µs,
and with fifteen processes 97.1% of them were up to 1084µs. Thus, there is an increase in
the latencies when more processes broadcast messages in the rounds, even if the number of
bytes sent is the same. In addition, there is an increase in the rate of missed rounds and
of missed messages, despite the same load applied to the network. As a result, when we
doubled and tripled the number of processes the efficiency of the rounds dropped slightly
(by about 0.5% and 1.5%), as summarized in Table 5.

Number of Processes n = 5 n = 10 n = 15

RTT ≤ 1000µs 98.42% 97.78% 95.23%

Timed messages 98.52% 97.98% 97.07%

Late messages 1.18% 1.39% 1.91%

Lost messages 0.30% 0.63% 1.02%

Table 5: Efficiency of the rounds with respect to the number of processes, for rounds with
∆ = 1000µs and 410 Mb/s of load.

This section concludes the experimental evaluation of our time hybrid system. As pre-
viously observed in Section 4, for each configuration of execution—number of processes and
size of the messages—is possible to determine a suitable reference duration for the rounds,
so that most of the messages broadcast in a round are received by all correct processes
before the end of that round, enabling THyTOB to progress.

6 Related Work

There exists a considerable amount of literature on total order broadcast, and many algo-
rithms have been proposed to solve this problem. In the following sections we briefly survey
the five classes of total order broadcast algorithms that have been distinguished in the liter-
ature [19]: fixed sequencer, moving sequencer, privilege-based, communication history and
destination agreement. We focus on the performance expected for algorithms falling into
each class in broadcast networks (complementing some observations made in Section 4.6),
but we also describe total order broadcasts that share structural aspects with THyTOB.

6.1 Fixed Sequencer

In fixed sequencer algorithms, a distinguished process is elected as sequencer and is respon-
sible for ordering the messages. The role of sequencer is unique, and the sequencer is only
replaced in case of failure. The sequencer may become a bottleneck because it have to re-
ceive all messages to be broadcast, and also the acknowledgments (acks) from all processes.
For this reason, most fixed sequencer protocols [7, 9, 29] do not require all processes to send
acks back to the sequencer, or allow processes to delivery messages before receiving acks
from other processes. As a result, algorithms that fall into this class are rarely uniform [23],
what means that processes suspected (even incorrectly) of being faulty may violate the total
order.
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However, this strategy of restricting the broadcast of messages to a distinguished pro-
cess can result in high throughputs, especially in broadcast-based networks, as with Ring-
Paxos [36] (see Section 4.6), which uses a ring-overlay topology in order to prevent the
sequencer to handle all acknowledgments.

6.2 Moving Sequencer

In moving sequencer algorithms, unlike fixed sequencer ones, the role of sequencer is con-
stantly passed from one process to another, even if there is no failures. The motivation
is to distribute the load of ordering and broadcast messages among several sequencers,
thus avoiding the bottleneck caused by having a single sequencer. The role of sequencer
is represented by a token, that circulates among the processes, and that also carries ac-
knowledgments, what simplifies the detection of message stability. All moving sequencer
protocols we are aware of [15, 31] are optimizations of the by Chang and Maxemchuk’s
protocol [13]. Unfortunately, we are unaware of implementations of these protocols, but as
they allow processes to broadcast messages concurrently and uncoordinately, they probably
achieve poor performance in broadcast networks [36].

6.3 Privilege-based

Privilege-based algorithms rely on the idea that processes can broadcast messages only
when they are granted the privilege to do so. In asynchronous privilege-based algorithms,
like Totem [5] (presented in Section 4.6) and On-Demand [16], this privilege circulates from
process to process in the form of a token. When a process receives the token, it broadcasts
some messages along with the token, which also gathers acknowledgments for all messages
previously broadcast. As processes have to wait for the token to broadcast messages, and
messages are only delivered after a full round-trip of the token, privilege-based algorithms
present the worst latency from all classes [23]. However, as broadcasts are coordinated, they
theoretically should achieve the best throughputs, especially when considering broadcast
networks [23, 36].

In synchronous privilege-based algorithms the privilege of broadcast message is deter-
mined by predefined time slots, using the technique also known as timed division multiple
access (TDMA). The only total order broadcast that proceeds in synchronous rounds we
are aware of was proposed by Gopal and Tueg [25]; it is a privilege-based algorithm, based
on the TDMA technique, and works as follows. For each round r a process is designated
the transmitter. The transmitter of a round is the only process that broadcast applications
messages in that round, while the remaining processes broadcast acknowledgments for pre-
vious messages. Messages are delivered once they are acknowledged, three rounds after the
initial broadcast, and at most a message is delivered per round—while THyTOB delivers
one message from each process per round with latency of two rounds. Unfortunately, we
are unaware of implementations or follow-ups of this protocol.
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6.4 Communication History

In communication history algorithms the message ordering is also defined by the senders,
but unlike in privilege-based algorithms, processes can broadcast messages at any time.
Messages carry physical or logical clocks that allow processes to observe the messages other
processes have broadcast and received, that is, to build the communication history in the
system. Based on the communication history and a predefined ordering strategy, processes
learn when it is safe to deliver messages without violating the total order.

THyTOB is a communication history algorithm, and is also LCR [27] (presented in
Section 4.6). Both depend on processes to maintain global views of the system state, and
require all processes to periodically report their states, even when they have no messages
to broadcast. To tolerate process failures LCR relies in a group membership service and
requires perfect failure detection, abstraction that can only be implemented in systems with
strong synchrony guarantees. Similarly to some communication history algorithms [2, 32],
THyTOB does not natively tolerate process failures, but it relies in a simple recovery
procedure which is live under minimal conditions of synchrony and optimal regarding the
number of failures tolerated.

Regarding performance, communication history algorithms theoretically have the best
throughput and latency of all classes when considering small systems with high load of
broadcasts, evenly distributed among the processes [23]. In pratice, the performance of
such algorithms is limited by the network contention, and by the instability of the system
in presence of concurrent broadcasts. LCR circumvents these limitations by arranging the
process in a ring, thus preventing messages from different processes to collide. THyTOB, in
turn, coordinates the processes and conditions the load in order to achieve high performance.

6.5 Destination Agreement

In the last class of algorithms, the delivery order is obtained in a distributed fashion, and
results from an agreement between the destination processes. Thus, destination agreement
algorithms achieve total order broadcast through the resolution of a sequence of instances of
consensus (as described in Section 3.4). In some algorithms the subject of the agreement is
the sequence number for a message (e.g., [8]); in others is the acceptance of a message order
proposed by some process (e.g., [6]); but in most algorithms the ith instance of consensus
determines the ith sequence of messages to be delivered [12, 20, 33]. Protocols that fall
into this class are known for their relative poor performance on the absence of failures [23],
which was observed in Section 4.6 considering two implementations of Paxos [33]. The main
advantage of destination agreement algorithms is to inherit properties from the consensus
algorithm they rely on, thus they ensure progress under minimal conditions of synchrony,
and natively tolerate an optimal number of failures [12].

An interesting destination agreement algorithm, based on the concept of communication-
closed rounds, is ATR [20]. It is based in a distributed execution model called Synchronized
Phase System (SPS), in which, similarly to our time hybrid system, processes try to proceed
in rounds like in synchronous systems. But, unlike our system model, rounds have asyn-
chronous semantics: a process only proceeds to round r + 1 when it receives all messages
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sent in round r by processes it trusts; otherwise, if the process suspects that some process
failed, it starts a new phase from round zero. A phase only succeeds when all processes
trust in the same subset of processes, so that all processes in the phase reach round one. In
successful phases processes exchange set of messages, that are delivered in a consensual total
order. ATR assumes asynchronous reliable channels and eventually perfect failures detec-
tors [12]—assumptions that are stricter than those considered by THyTOB. Unfortunately,
we are also unaware of implementations or follow-ups of this protocol.

7 Conclusion

The performance results allow us to conclude that our time hybrid solution represents an
interesting trade-off between performance and simplicity for total order broadcasts. The
simplicity of the algorithm also allows its use as a benchmark for total order broadcast atop
Ethernet. All in all, THyTOB makes a strong case for the reconsideration of the common
wisdom regarding the design and implementation of total order protocols that is: total
order protocols must be always designed for the asynchronous model because it is the best
way to guarantee safety and liveness (performance).

The experiments show that indeed clusters can behave synchronously and without fail-
ures for periods long enough to warrant THyTOB a potential throughput advantage over
more complex total order broadcast protocols originally devised for the crash-recover asyn-
chronous model. This observation allows us to consider that a reconfigurable combination of
synchronous and asynchronous total order protocols, for example THyTOB and Paxos [33],
can probably provide the best overall performance for replicated applications. During the
long synchronous failure-free periods THyTOB is used and during the asynchronous failure-
prone periods Paxos is used. So, it seems that there is still some promising design choices
to explore in the creation of total order broadcast protocols. Future work is going to fur-
ther address the ways synchronicity and asynchronicity, different failure assumptions, and
reconfiguration can be used to improve the overall performance of total order broadcasts.
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[14] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, 22:49–71, 2009.
10.1007/s00446-009-0084-6.

[15] F. Cristian and S. Mishra. The pinwheel asynchronous atomic broadcast protocols.
In Autonomous Decentralized Systems, 1995. Proceedings. ISADS 95., Second Interna-
tional Symposium on, pages 215–221, 1995.

[16] Flaviu Cristian. Asynchronous atomic broadcast. IBM Technical Disclosure Bulletin,
33(9):115–116, 1991.

[17] Flaviu Cristian, Bob Dancey, and Jon Dehn. Fault-tolerance in the advanced automa-
tion system. In Proceedings of the 4th workshop on ACM SIGOPS European workshop,
EW 4, pages 6–17, New York, NY, USA, 1990. ACM.



Time Hybrid Total Order Broadcast 29

[18] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model.
IEEE Transactions on Parallel and Distributed Systems, 10:642–657, 1999.
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