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Dominating sets in planar graphs∗

Patŕıcia F. Hongo C. N. Campos

Abstract

A dominating set of a graph G is a subset D ⊆ V (G) such that each vertex of G
is in D or is adjacent to a vertex in D. The cardinality of a minimum size dominating
set for G is denoted by γ(G). In 1996, Tarjan and Matheson proved that γ(G) ≤ n/3
for triangulated discs and conjectured that γ(G) ≤ n/4 for triangulated planar graphs
with sufficiently large n. In the present work, we verify the conjecture for two simple
classes of triangulated planar graphs.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). In this work, we let n denote
the cardinality of the vertex set and assume that G is simple, finite and undirected. The
open neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to v.
The closed neighborhood of v is defined as the set NG[v] := NG(v) ∪ {v}.

A dominating set of G is a subset D ⊆ V (G) such that ∀v ∈ V (G), there exists w ∈
D, v ∈ NG[w]. The vertex set V (G) is a trivial dominating set. Therefore, our interest lies
in determining the size of a smallest dominating set for a given graph. The cardinality of
one such set is called domination number and is denoted by γ(G). The problem of deciding
whether γ(G) ≤ k for a given graph G and integer k is NP-complete, as shown by Garey
and Johnson [1].

A graph G is said to be planar if it can be embedded in the plane so that its edges
intersect only at their end points. A drawing of G satisfying this condition is called a
planar embedding of the graph, also referred to as a plane graph. A planar embedding can
be seen as a graph isomorphic to G, with vertex set and edge set defined as the set of points
and lines that represent the vertices and the edges of the plane graph. Figure 1 shows a
planar embedding of K4, the complete graph on four vertices.

A plane graph divides the plane into arc-wise connected open sets, defined as the faces

of the graph. The boundary of a face f , denoted by ∂(f), is the subgraph whose vertex
set and edge set are the sets of vertices and edges incident with f . We call a triangle a
face bounded by K3. A triangulated planar graph is a graph that has an embedding in
which all faces are triangles. The addition of an edge to a triangulated planar graph re-
sults in a nonplanar graph if we require the resulting graph to be simple. For this reason,

∗Institute of Computing, University of Campinas. Research conducted with financial support from
FAPESP, process 2011/11099-2
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2 Dominating sets in planar graphs

(a) (b)

Figure 1: (a) The planar graph K4 and (b) a planar embedding of K4.

triangulated planar graphs are also referred to as maximal planar graphs. A triangulated
disc is a plane graph with the property that all of its faces, except possibly one, are triangles.

In 1996, Matheson and Tarjan [3] proved that γ(G) ≤ n/3 for triangulated discs, and
showed that this bound is sharp by presenting an infinite class of outerplanar triangulated
discs for which γ(G) = n/3. Furthermore, they conjectured that γ(G) ≤ n/4 for triangu-
lated planar graphs with n ≥ n0, where n0 is a sufficiently large constant. In 2010, King
and Pelsmajer verified this conjecture for triangulated planar graphs with maximum degree
at most six, obtaining n0 = 4500000 [2].

In this work, we prove the conjecture for two simple classes of triangulated planar graphs,
defined in Sections 2 and 3.

2 Dominating sets for G∆
k

In the following, we define the graph G∆
k and the G∆

k -class.

Let P i
j be a path of j vertices. In this text, we define V (P i

j ) := {vi0, ..., vi(j−1)} and

E(P i
j ) := {vilvil+1 : 0 ≤ l < j−1}. Graph G∆

0 is the simple graph with v00 as its only vertex.

For k ≥ 1, G∆
k := G∆

k−1∪P
k
k+1∪G[E′], where E′ := {v(k−1)ivki : 0 ≤ i < k}∪{v(k−1)ivk(i+1) :

0 ≤ i < k}. Figure 2 presents G∆
k for 0 ≤ k ≤ 3. Figure 3 exemplifies the labeling for G∆

3 .

We let G∆
k denote the class of graphs obtained by triangulating the outer face of G∆

k .

G∆
0 G∆

1 G∆
2 G∆

3

Figure 2: G∆
k , for 0 ≤ k ≤ 3.

Let G be a graph in G∆
k -class. If v is a degree two vertex in G∆

k , then v is called a corner

vertex. We show that G has a dominating set of size at most n/4 for k ≥ 3. We start by
showing that γ(G∆

k ) > n/4 for 0 ≤ k ≤ 3, and γ(G∆
k ) ≤ n/4 for k ≥ 4. Finally, we use

these results to find bounds for the domination number of G.
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22

32

00

10 11

20 21

30 31 33

Figure 3: Labeling of G∆
3 . The i index increases vertically, while the j index increases

horizontally.

Graphs G∆
k for 0 ≤ k ≤ 3 are depicted in Figure 2. For k = 0 and k = 1, n < 4, so we

cannot dominate them with at most n/4 vertices. Case k = 2 requires at least two vertices
to be in any dominating set, since it has no universal vertex. Thus, γ(G∆

2 ) ≥ 2 > n/4. Case
k = 3 has 10 vertices. Since the three corner vertices have disjoint neighborhoods, this case
requires at least three vertices to be in any dominating set. Therefore, γ(G∆

3 ) ≥ 3 > n/4.

Now, we find dominating sets for G∆
k , k ≥ 4.

Theorem 1 Let G be isomorphic to G∆
k , k ≥ 4. Then, γ(G) ≤ n/4.

Proof. We prove the theorem for k ≥ 4 by induction on k. The base cases k = 4, 5, 6 are
depicted in Figure 4: the sets of black vertices are dominating sets of size at most n/4.

G∆
4 G∆

5 G∆
6

Figure 4: Dominating sets for G∆
k , 4 ≤ k ≤ 6.

Let G be isomorphic to G∆
k , k > 6. Let H1 be the subgraph induced by S := {vij :

k − 2 ≤ i ≤ k and 0 ≤ j ≤ i} and H2 be the subgraph induced by V (G) \ S. Then, H2 is
isomorphic to G∆

k−3. By inductive hypothesis, H2 can be dominated with at most |V (H2)|/4
vertices. Thus, it suffices to show that γ(H1) ≤ |V (H1)|/4. We note that H1 is the subgraph
induced by the vertices in the paths P k−2

k−1 , P
k−1
k and P k

k+1, therefore |V (H1)| = 3k. The
proof is divided into two cases:



4 Dominating sets in planar graphs

Case 1 k ≡ 1 (mod 2).

Let D := {v(k−1)j : j ≡ 0 (mod 2)}. Then, D dominates every vertex in the P k−1
k

path. Also, since every vertex in P k−2
k−1 and P k

k+1 is adjacent to a vertex v(k−1)j , j even, D

dominates P k−2
k−1 and P k

k+1. Therefore, D is a dominating set for H1 of size (k+1)/2. Since
|V (H1)| = 3k and (k + 1)/2 ≤ 3k/4 for k ≥ 2, H1 admits a dominating set with at most
|V (H1)|/4 vertices.

Case 2 k ≡ 0 (mod 2).

Let D := {v(k−1)j : j ≡ 1 (mod 2)} ∪ {v(k−1)0}. Then, D dominates every vertex in the

P k−1
k path. Also, every vertex in P k−2

k−1 and P k
k+1 except for vk0 is dominated by a vertex

v(k−1)j , j odd. Since vk0 is dominated by v(k−1)0, D dominates P k−2
k−1 and P k

k+1. Therefore,
D is a dominating set for H1 of size k/2 + 1. Since |V (H1)| = 3k and k/2 + 1 ≤ 3k/4 for
k ≥ 4, H1 admits a dominating set with at most |V (H1)|/4 vertices. �

As a corollary of Theorem 1, a triangulated planar graph G resulting from triangulating
the outer face of G∆

k , k ≥ 4, satisfies Matheson and Tarjan’s Conjecture. The cases k ≤ 2
do not satisfy the conjecture: when k = 0 or k = 1, G has less than four vertices; when
k = 2, there is a triangulation, exhibited in Figure 5, which requires at least two vertices to
be dominated, since it still does not have a universal vertex.

Figure 5: The octahedron cannot be dominated with less than two vertices.

A graph G ∈ G∆
3 , however, can be dominated with at most n/4 vertices, as shown in

the following.

Theorem 2 Let G ∈ G∆
3 . Then, γ(G) ≤ 2 < n/4.

Proof. Let C be the cycle bounding the outer face of G∆
3 . Let E := E(G)\E(G∆

3 ) and let
uv ∈ E such that dC(u, v), the length of the shortest path Pu,v in C connecting u to v, is
minimum. Suppose that dC(u, v) > 2. Then, Pu,v + {uv} is a cycle of length at least four.
Since G is triangulated, ∃xy ∈ E, x 6= u, v connecting two vertices x and y in Pu,v. Since
xy ∈ E and dC(x, y) < dC(u, v), this contradics our choice of uv. Therefore, dC(u, v) = 2.

If dG∆
3

(u) = dG∆
3

(v) = 4, then uv is a parallel edge. We conclude that uv connects a
corner vertex to a non-corner vertex. Figure 6 shows that the existence of this edge is all
we require in order to find a dominating set of size 2 < n/4 for G. �.

Corollary 3 Let G ∈ G∆
k , k ≥ 3. Then, γ(G) ≤ n/4.
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Figure 6: Black vertices form a dominating set.

3 Dominating sets for the G∆
p×q-class

Given two paths Pm and Pn with m and n vertices respectively, we define a grid as the
graph Gm×n resulting from the cartesian product Pm�Pn. Grids admit a planar embedding
with its vertices arranged in m lines and n columns. Figure 7(a) shows a planar embedding
of G3×5.

In this work, we define the G∆
p×q-class as the graphs obtained from Gp×q by arbitrarily

triangulating all its faces up to the exterior face. Each graph in the G∆
p×q-class is called an

instance of G∆
p×q. We label its vertices v00, v01, ..., v(p−1)(q−1), as illustrated in Figure 7(b).

A graph resulting from triangulating the outer face of an instance of G∆
p×q is a maximal

planar graph. We define the G∆
p×q-class as the set of graphs obtained from this operation.

While searching for dominating sets for G∆
p×q, it is useful to divide its instances into

disjoint subgraphs which are instances of G∆
r×s-class, for 2 ≤ r ≤ p and 2 ≤ s ≤ q. We call

one such subgraph a G∆
r×s-block. Figure 7(c) shows a division of a G∆

3×5 instance. For this
class, we define a corner vertex to be a vertex v such that dGp×q

(v) = 2.

(a) G3×5.

v00 v01 v02 v03 v04

v10 v11 v12 v13 v14

v20 v21 v22 v03 v24

(b) G∆
3×5.

(c) A division ofG∆
3×5 into

G∆
3×3 and G∆

3×2 blocks.

Figure 7: G3×5 and G∆
3×5.

Let G be a graph in the G∆
p×q-class. We prove that γ(G) ≤ n/4 for sufficiently large n

by finding small dominating sets for the G∆
p×q-class. Through Lemmas 4 to 7, we obtain

bounds for the domination number of the G∆
p×q-class for 2 ≤ p ≤ 5.

Lemma 4 Let G be an instance of G∆
2×q-class, q ≥ 2. Then,

{

γ(G) ≤ n/4, q ≡ 0 (mod 2);

γ(G) = n/4 + 1/2, q ≡ 1 (mod 2).
(1)
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Proof. If q is even, we can partition V (G) into q/2 sets of the form {vij , vi(j+1), v(i+1)j ,

v(i+1)(j+1)}, i, j ≡ 0 (mod 2). Each of these sets induces a subgraph isomorphic to G∆
2×2,

which requires only one vertex to be dominated. Since we can dominate G by dominating
each of the induced subgraphs, G has a dominating set that uses q/2 = n/4 vertices.

Now, we show that γ(G) > n/4, q ≡ 1 (mod 2), by exhibiting a subfamily of G∆
2×q for

which γ(G) > n/4. Let H be the graph obtained from G2×q by adding a v1jv0(j+1) edge if

j ≡ 0, 1 (mod 4) and a v0jv1(j+1) edge otherwise. Then, H is an instance of the G∆
2×q-class.

Figure 8 shows H for q = 7.
Let S := {v0j : j ≡ 0 (mod 4)} ∪ {v1j : j ≡ 2 (mod 4)}. Then, |S| = (q − 1)/2 + 1

and the neighborhoods of its vertices are mutually disjoint. Therefore, it is impossible to
dominate H with less than (q − 1)/2 + 1 = n/4 + 1/2 vertices. It can also be seen that
S ∪ N(S) = V (H). In fact, that remains true even if we remove the triangulation from
the interior faces, as shown in Figure 9. Therefore, S is a dominating set for G2×q, q ≡ 1
(mod 2). Thus, any graph G ∈ G∆

2×q, q ≡ 1 (mod 2), can be dominated with at most
(q − 1)/2 + 1 = n/4 + 1/2 vertices, as required. �

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 8: H with the vertices in S coloured black.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 9: S is a dominating set for G2×q, q ≡ 1 (mod 2).

Lemma 5 Let G be an instance of G∆
3×q-class, q ≥ 3. Then,

{

γ(G) ≤ n/4, q 6= 5;

γ(G) > n/4, q = 5.
(2)

Proof. We divide the proof into three cases:

Case 1 q ≡ 0 (mod 3), q ≥ 3.

Figure 10 shows that any instance of G∆
3×3 can be dominated with at most two vertices.

Dominating a G∆
3×3-block with a single vertex is only possible if the center vertex v has



Dominating sets in planar graphs 7

degree eight. The other possible cases, d(v) = 7, 6, 5, 4, admit a dominating set of size two.
Thus, dominating G can be done by dividing the graph into q/3 G∆

3×3-blocks and domi-
nating each of them individually. The resulting dominating set has at most 2q/3 vertices.
Since n = 3q, γ(G) ≤ 2q/3 = 2n/9 < n/4.

Figure 10: Dominating sets for instances of G∆
3×3.

Case 2 q ≡ 1 (mod 3), q ≥ 4.

In this case, we divide G into (q − 1)/3 G∆
3×3-blocks and one subgraph isomorphic to

P3, which can be dominated with a single vertex. Dominating each G∆
3×3-block requires at

most two vertices, so dominating each block and the P3 subgraph individually requires at
most 2(q−1)/3+1 vertices. Since n = 3q, γ(G) ≤ 2(q−1)/3+1 = 2n/9+1/3 ≤ n/4 for q ≥ 4.

Case 3 q ≡ 2 (mod 3), q ≥ 5.

We divide G into (q − 2)/3 G∆
3×3-blocks and one G∆

3×2-block. Dominating each G∆
3×3-

block and G∆
3×2-block requires two vertices. Dominating the blocks individually yields a

dominating set of size at most 2(q − 2)/3 + 2 = 2n/9 + 2/3 ≤ n/4 for q ≥ 8.

It remains to show that γ(G) > n/4, q = 5. Figure 11 shows an instance of the G∆
3×5-

class that needs at least four vertices in any dominating set. In order to see that, note
that the neighborhoods of black vertices are disjoint. Figure 12 shows that G∆

3×5 can be
dominated with four vertices, so γ(G) ≤ 4. Therefore, we may conclude that γ(G) = 4. �

Figure 11: Black vertices have disjoint neighborhoods, so any dominating set for this graph
has at least four vertices.
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Figure 12: Black vertices form a dominating set.

Lemma 6 Let G be an instance of G∆
4×q-class, q ≥ 4. Then, γ(G∆

4×q) ≤ n/4.

Proof. We start by showing that dominating a G∆
4×4-block requires four vertices. Fig-

ure 13(a) shows that it is possible to divide a G∆
4×4-block into four G∆

2×2-blocks. Dominating
each block requires one vertex, so the resulting dominating set has four vertices. Therefore,
γ(G) ≤ n/4, q = 4. This bound is tight since Figure 13(b) shows a sketch of an instance of
G∆

4×4 which requires at least four vertices in any dominating set.

(a) A division of G∆
4×4

into four G∆
2×2.

(b) Black vertices have
disjoint neighborhoods.

Figure 13: G∆
4×4.

Now, we find dominating sets for G∆
4×q, q > 4. We divide the proof into four cases.

Case 1 q ≡ 0 (mod 4), q > 4.

A dominating set with at most n/4 vertices can be obtained by dividing G into q/4
G∆

4×4-blocks and dominating each of them individually. This yields a dominating set of size
q = n/4.

Case 2 q ≡ 1 (mod 4), q ≥ 5.

Divide G into (q − 5)/4 G∆
4×4-blocks, one G∆

4×3-block and one G∆
4×2-block. Each G∆

4×4-
block adds four vertices to the dominating set. The G∆

4×3-block and G∆
4×2-block add three

and two vertices, respectively. The size of the resulting dominating set will be at most
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4(q − 5)/4 + 3 + 2 = q = n/4. Therefore, γ(G) ≤ n/4.

Case 3 q ≡ 2 (mod 4), q ≥ 6.

Divide G into (q − 2)/4 G∆
4×4-blocks and one G∆

4×2-block. Dominating each G∆
4×4-block

requires four vertices, while dominating the G∆
4×2-block requires two vertices. The resulting

dominating set has at most 4(q − 2)/4 + 2 = q = n/4 vertices.

Case 4 q ≡ 3 (mod 4), q ≥ 7.

Divide G into (q−3)/4 G∆
4×4-blocks and one G∆

4×3-block. Since theG
∆
4×3-block adds three

vertices to the dominating set, we obtain a dominating set of size at most 4(q − 3)/4 + 3 =
q = n/4, as required. �

Lemma 7 Let G be an instance of G∆
5×q-class, q ≥ 5. Then, γ(G∆

5×q) ≤ n/4.

Proof. We initially show that dominating a G∆
5×5-block requires six vertices. Let H be an

instance of G∆
5×5. Figure 14(a) shows a sketch of a G∆

5×5 instance that requires at least six
vertices to be dominated, so γ(H) ≥ 6. To show that γ(H) ≤ 6, consider H triangulated so
that at least one of its corner vertices has degree two. Figure 14(b) illustrates that, in this
case, H has a dominating set of size six. Note that since every internal face is triangulated,
one of the vertices v33, v34, v43, v44 is in the dominating set. Figures 14(c) and 14(d) depict
dominating sets of size six for H when none of its corner vertices has degree two.

Now, we find dominating sets for G∆
5×q, q > 5. We divide the proof into five cases.

Case 1 q ≡ 0 (mod 5), q > 5.

Divide G into q/5 G∆
5×5-blocks and dominate each of them individually. This yields a

dominating set with at most 6q/5 = 6n/25 < n/4 vertices.

Case 2 q ≡ 1 (mod 5), q ≥ 6.

Divide G into (q − 1)/5 G∆
5×5-blocks and one subgraph isomorphic to P5, which can be

dominated with two vertices. The dominating set resulting from dominating each subgraph
individually has at most 6(q − 1)/5 + 2 = (6n − 30)/25 + 2 ≤ n/4 vertices for q ≥ 16.

It remains to consider cases q = 6 and q = 11. Let q = 6 and assume that at least one
of the corner vertices has degree three. Then, Figure 15(a) shows that G has a dominating
set of size 7 < n/4. Note that since every internal face is triangulated, one of the vertices
v30, v31, v40, v41 is in the dominating set. If all corner vertices have degree two, then G can
be dominated using at most n/4 vertices, as shown on Figure 15(b).

Let q = 11. Then, we divide G into a G∆
5×5-block and a G∆

5×6-block and dominate each
individually. The former can be dominated with six vertices, while the later requires at
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(a) Sketch of
G∆

5×5 showing that
γ(G∆

5×5) ≥ 6. Black
vertices have disjoint
neighborhoods.

33 34

43 44

(b) A dominating set
for the case in which
one of the corner ver-
tices has degree two.

(c) The black vertices
form a dominating set
if any of the dotted
edges is present.

(d) If none of the dot-
ted edges in 14(c) is
present, then the graph
can be dominated as
shown.

Figure 14: G∆
5×5.

30 31

4140

(a) (b)

Figure 15: Dominating set for G∆
5×6.

most seven vertices. This yields a dominating set with at most 13 < n/4 vertices.

Case 3 q ≡ 2 (mod 5), q ≥ 7.

Divide G into (q − 2)/5 G∆
5×5-blocks and one G∆

5×2-block, and dominate them indi-
vidually. Each G∆

5×5-block can be dominated with six vertices, while the G∆
5×2-block

can be dominated with three vertices. The resulting dominating set is of size at most
6(q − 2)/5 + 3 = (6n − 60)/25 + 3 ≤ n/4 for q ≥ 12.

It remains to consider case q = 7. Consider vertices v00 and v06. If both have the
same degree, then G admits a dominating set of size 8 < n/4, as shown in Figure 16(a).
Thus, without loss of generality, we may assume d(v00) = 2 and d(v06) = 3. Consider
now vertices v40 and v46. The case when both have the same degree is equivalent to the
case d(v00) = d(v06). Therefore, it remains to consider cases d(v40) = 2 with d(v46) = 3
and d(v40) = 3 with d(v46) = 2. Figure 16(b) shows that, in these cases, we can also find
dominating sets of size 8 < n/4. Therefore, γ(G) ≤ n/4, q = 7.



Dominating sets in planar graphs 11

0000 0606

(a) Dominating sets for G∆
5×7 when d(v00) = d(v06).

0000 0606

4040 46 46

(b) If v40 and v46 have the same degree, case (a) is applicable.

Figure 16: Dominating sets for G∆
5×7.

Case 4 q ≡ 3 (mod 5), q ≥ 8.

Divide G into (q − 3)/5 G∆
5×5-blocks and one G∆

5×3-block. Each G∆
5×5-block can be

dominated with six vertices, while the G∆
5×3-block requires four vertices. The resulting

dominating set has at most 6(q−3)/5+4 = (6n−90)/25+4 ≤ n/4 for q ≥ 8. When q = 3,
we have already shown that γ(G) = 4 > n/4.

Case 5 q ≡ 4 (mod 5), q ≥ 9.

Divide G into (q−4)/5 G∆
5×5-blocks and one G∆

4×5-block. Each G∆
5×5-block can be domi-

nated with six vertices, and the G∆
4×5-block requires five vertices. The resulting dominating

set has at most 6(q − 4)/5 + 5 = (6n + 5)/25 ≤ n/4, q ≥ 4. �

Corollary 8 Let G be an instance of G∆
p×q, p, q ≥ 2. Then, γ(G) ≤ n/4 except for the

cases G ∈ G∆
2×q, q ≡ 1 (mod 2), and G ∈ G∆

3×5.

Proof. Let G be an instance of G∆
p×q, p, q ≥ 2. The cases when 2 ≤ p ≤ 5 follow from

Lemmas 4 to 7. Suppose that p ≥ 6. In this case, we can find dominating sets for G by
dividing it into G∆

3×q-blocks and G∆
4×q-blocks and dominating each of them individually.

From Lemmas 5 and 6, each G∆
3×q-block and G∆

4×q-block can be dominated with at most
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n/4 vertices except for the G∆
3×5-blocks. Therefore, it suffices to show that G∆

p×5, p ≥ 6 can
be dominated with at most n/4 vertices, which follows from Lemma 7. �

Let G be an instance of the G∆
p×q-class. From Corollary 8, we know that G can be

dominated with n/4 vertices when we are not in cases p = 2 with q ≡ 1 (mod 2) or p = 3
with q = 5. As shown in Figure 17, there is an instance of G∆

2×3 for which any dominating
has at least 2 > n/4 vertices, since there is no universal vertex.

Now, we verify Matheson and Tarjan’s Conjecture for the G∆
2×q-class, q ≡ 1 (mod 2),

when q ≥ 5. This suffices to verify the Conjecture for G∆
p×q-class when n > 15.

Figure 17: A triangulation of an instance of G∆
2×3 which requires two vertices in any domi-

nating set.

Lemma 9 Let G be an instance of G∆
2×q, q ≡ 1 (mod 2). Then, for n ≥ 10, γ(G) ≤ n/4.

Proof. Let H be an instance of G∆
2×q, q ≥ 5, q ≡ 1 (mod 2), and let G be a graph resulting

from the triangulation of the outer face of H.
Suppose that there is no degree five vertex in V (H). Then, E(H) = E(G2×q) ∪ E′,

where E′ = {v0jv1(j+1) : 0 ≤ j < q − 1} or E′ = {v1jv0(j+1) : 0 ≤ j < q − 1}. In the first
case, vertices {vij : 0 ≤ i ≤ 1 and 0 ≤ j ≤ 4} can be dominated using v11 and v03, while the
remaining vertices can be dominated with (q − 5)/2 vertices, by Lemma 4. The resulting
dominating set has (q − 5)/2 + 2 = n/4− 1/2 vertices. The second case is similar, but uses
vertices v01 and v13 instead of v11 and v03. Thus, we may assume that there is at least one
degree five vertex in H.

Suppose that there exists vij ∈ V (H), dH(vij) = 5, j ≡ 1 (mod 2). Then, we can find a
dominating set for H by dividing it into (q− 3)/2 G∆

2×2-blocks and one G∆
2×3-block induced

by NH [vij ]. Each subgraph can be dominated with one vertex, so the resulting dominating
set is of size (q − 1)/2 = n/4− 1/2 < n/4.

Suppose now that there is no j ≡ 1 (mod 2) such that dH(vij) = 5. Let 0 ≤ i′ < q,
0 ≤ i′′ < q, 0 < l′ < q and 0 < l′′ < q so that sets E′ := {v0jv1(j+1) : i

′ ≤ j < i′ + l′} and
E′′ := {v1jv0(j+1) : i′′ ≤ j < i′′ + l′′} be maximum. Figure 18 shows sets E′ and E′′ for

an instance of G∆
2×7. Note that E′ 6= ∅ and E′′ 6= ∅, since there is a vertex v in H with

dH(v) = 5. Also, we note that i′ is even since there is no vij with dH(vij) = 5 and j odd.
Similarly, we conclude that l′ is even. Since E′ and E′′ are symmetric, we conclude that i′′

and l′′ are even.
Suppose that l′ ≥ 4, l′ even. Then, we can divide H into (q− 5)/2 G∆

2×2-blocks and one
G∆

2×5-block so that the G∆
2×5-block is the subgraph of H induced by {vij : 0 ≤ i ≤ 1 and
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00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 18: An instance of G∆
2×7 with i′ = 0, l′ = 4, i′′ = 4 and l′′ = 2. Dashed edges are in

E′ and dotted edges are in E′′.

i′ ≤ j ≤ i′ + 4}. Each G∆
2×2-block can be dominated with one vertex, while the G∆

2×5-block
can be dominated with two vertices, v1(i′+1) and v0(i′+3). The resulting dominating set is
of size (q − 5)/2 + 2 = n/4− 1/2. Thus, in this case, γ(G) ≤ n/4, and the result follows. If
l′′ ≥ 4, a similar analysis applies, since sets E′ and E′′ are symmetric.

Therefore, we assume that l′ = l′′ = 2 and let H be the graph obtained from G2×q by
adding a v0jv1(j+1) edge if j ≡ 0, 1 (mod 4) and a v1jv0(j+1) edge otherwise. An example of
H is depicted in Figure 19. The case when H is obtained from G2×q by adding a v1jv0(j+1)

edge if j ≡ 0, 1 (mod 4), and a v0jv1(j+1) edge otherwise, is symmetric.
Consider edge e = v00v10. Since G is a triangulated planar graph, e is in the boundary

of two faces. Therefore, there exists w ∈ V (G), w 6= v11, such that w is adjacent to both
v00 and v10. Suppose that w = v01. In this case we can find a dominating set for G that
uses n/4−1/2 vertices. One such set is D := {v0j : j ≡ 1 (mod 4)}∪{v1j : j ≡ 3 (mod 4)}.
Note that |D| = (q − 1)/2 = n/4 − 1/2 and each set of the form {v0j , v1j , v0(j+1), v1(j+1)},
j ≡ 1 (mod 2) is dominated by one vertex in D. Also v01 dominates v00 and v10, since
w = v01 is adjacent to both. Therefore, all vertices of G are dominated by D, and the result
follows.

Thus, we may assume that w ∈ V (H1), where H1 is the subgraph of H induced by
V (H) \ {v00, v10, v01, v11}.

00 01 02 03 04 05 06

10 11 12 13 14 15 16

H1

Figure 19: An instance of G∆
2×7.

Claim 10 Let G = G2×q ∪ E, q ≥ 3, q ≡ 1 (mod 2), where E := {v1jv0(j+1) : j ≡ 0, 1
(mod 4)} ∪ {v0jv1(j+1) : j ≡ 2, 3 (mod 4)}. Let v ∈ V (G), v /∈ {v00, v01, v10}. Then, G has

a dominating set D, |D| = (n− 2)/4 + 1, that contains vertices v10 and v.

Proof. We present four dominating sets D1,D2,D3,D4 such that
⋃

1≤i≤4 Di = V (G) \
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{v00, v01} and |D1| = |D2| = |D3| = |D4| = (n− 2)/4+1. The dominating sets are depicted
in Figure 20.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

(a) D1 := {v10} ∪ {v1j : j ≡ 1 (mod 4)} ∪ {v0j : j ≡ 3
(mod 4)}.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

(b) D2 := {v1j : j ≡ 0 (mod 4)} ∪ {v0j : j ≡ 2 (mod 4)}.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

(c) D3 := {v10} ∪ {v1j : j ≡ 3 (mod 4)} ∪ ({v0j : j ≡ 1
(mod 4)}/{v01})∪{v1(q−1)}. Note that vertex v1(q−1) is not
painted black, since the graph may continue beyond what is
shown in this Figure.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

(d) D4 := {v10} ∪ {v1j : j ≡ 2 (mod 4)} ∪ {v0j : j ≡ 0
(mod 4)}/{v00}.

Figure 20: Dominating sets for G∆
2×q, q ≥ 3, q ≡ 1 (mod 2).

Let D1 and D2 be as defined in Figures 20(a) and 20(b). Then, for both D1 and D2,
v10 dominates v00. Moreover, for every j ≡ 1 (mod 2), both D1 and D2 dominate each set
{v0j , v0(j+1), v1j , v1(j+1)} using one vertex. Therefore, D1 and D2 are dominating sets for G
of size 1 + (q − 1)/2 = (n− 2)/4 + 1.

Let D3 be as defined in Figure 20(c). Then, v1(q−1) dominates v0(q−1). Moreover, for
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every j ≡ 0 (mod 2), D3 dominates each set {v0j , v0(j+1), v1j , v1(j+1)} using one vertex.
Therefore, D3 is a dominating set of G of size 1 + (q − 1)/2 = (n− 2)/4 + 1.

Finally, let D4 be as defined in Figure 20(d). Then, v10 dominates v00 and v01. The
closed neighborhoods of the other vertices in D4 are disjoint and include every vertex in
V (G) \ {v10, v00, v01}. Therefore, D4 is a dominating set of G of size 1 + (q − 1)/2 =
(n− 2)/4 + 1.

In order to conclude the proof, note that v10 ∈ Di, 1 ≤ i ≤ 4. Also, each v ∈
V (G) \ {v00, v01} belongs to at least one of D1,D2,D3 and D4. �

We assumed w ∈ V (H1), where H1 := H − {v00, v10, v10, v11} and w is adjacent to both
v00 and v10. Suppose that w /∈ {v02, v03}. By Claim 10, there is a dominating set D for
H1 such that |D| = (|V (H1)| − 2)/4 + 1 and w, v12 ∈ D. It can be seen in Figure 19 that
v12 will dominate v01 and v11. Also, w will dominate v00 and v10. Thus, D is a dominating
set for G of size (|V (H1)| − 2)/4 + 1 = (n − 4 − 2)/4 + 1 = n/4− 1/2. Therefore, we may
assume that either w = v02 or w = v03.

Case 1 w = v02.

As shown in Figure 21, if w = v02 we can dominate vertices {vij : 0 ≤ i ≤ 1 and
0 ≤ j ≤ 4} with two vertices. The remaining vertices induce a subgraph of H isomorphic to
an instance of the G∆

2×(q−5)-class. Thus, by Lemma 4, it can be dominated with (q − 5)/2

vertices. The resulting dominating set is of size (q − 5)/2 + 2 = n/4− 1/2.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 21: Black vertices dominate the first 10 vertices.

Case 2 w = v03.

Since G is a triangulated planar graph, either v00v02 or v01v03 must be an edge of G. If
v00v02 ∈ E(G), then the same dominating set of the previous case is a dominating set for
this case, and we are done. Figure 22 illustrates graph G when v00v02 ∈ E(G).

It remains to show that G can be dominated with at most n/4 vertices if v01v03 ∈ E(G).
Since G is triangulated, there exists x ∈ V (G) such that x is adjacent to both v10 and v03
and x 6= v00. Since G is a plane graph, x /∈ {v01, v02}. Also, x /∈ {v12, v13}, since it would
result in the existence of multiple edges. This case is depicted in Figure 23.

Suppose that x = v11. Then, Figure 24 shows that we can dominate the first 10 vertices
with v03 and v13. The remaining vertices induce a subgraph in the G∆

2×(q−5)-class that can



16 Dominating sets in planar graphs

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 22: Black vertices dominate the first 10 vertices.

be dominated with (q − 5)/2 vertices, by Lemma 4. Thus, we can find a dominating set of
size (q − 5)/2 + 2 = n/4− 1/2 for G.

· · ·

x

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 23: Black vertices dominate the first 8 vertices.

Therefore, we may assume that x ∈ V (H2), where H2 is the subgraph of H induced by
V (H)\{vij : 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3}. If q = 5, then {x, v01} is a dominating set for G with
2 < n/4 vertices. Suppose that q ≥ 7 and x /∈ {v14, v15}. By Claim 10, there is a dominating
set D′ for H2 such that x, v04 ∈ D′ and |D′| = (|V (H2)| − 2)/4 + 1. In this dominating
set, x dominates v10 and v03, and v04 dominantes v13. Vertices {v00, v01, v02, v11, v12} can
be dominated by adding vertex v01 to D′, as shown in Figure 23. Thus, D′ ∪ {v01} is a
dominating set for G that uses (|V (H2)|−2)/4+2 = (n−8−2)/4+2 = n/4−1/2 vertices.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 24: Black vertices dominate the first 10 vertices.

It remains to show that γ(G) ≤ n/4 when x = v14 or x = v15.

Case 2.1 x = v14.

This case is illustrated in Figure 25. We can dominate the first 10 vertices using
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vertices v01 and v14. The subgraph induced by the remaining vertices can be domi-
nated using (q − 5)/2 vertices, by Lemma 4. The resulting dominating set is of size
(q − 5)/2 + 2 = n/4− 1/2.

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 25: Black vertices dominate the first 10 vertices.

Case 2.2 x = v15.

Then, either v10v14 ∈ E(G) or v11v15 ∈ E(G). If v10v14 ∈ E(G), the dominating set of
Case 2.1 is a dominating set for this case, and we are done. If v11v15 ∈ E(G), then we can
dominate vertices {vij : 0 ≤ i ≤ 1 and 0 ≤ j ≤ 5} with v03 and v05, as shown in Figure 26.
By Claim 10, the subgraph of H induced by V (H) \ {vij : 0 ≤ i ≤ 1 and 0 ≤ j ≤ 5} admits
a dominating set with (n − 12 − 2)/4 + 1 vertices if q ≥ 9. This dominating set together
with v03 and v05 form a dominating set for G with (n− 12− 2)/4+3 = n/4− 1/2. If q = 7,
{v03, v15, v06} is a dominating set for G with 3 < n/4 vertices. �

· · ·

00 01 02 03 04 05 06

10 11 12 13 14 15 16

Figure 26: Black vertices dominate the first 12 vertices.

Finally, we present the final result for the G∆
p×q-class, summarizing the previous results.

Theorem 11 Let G be an instance of G∆
p×q, p, q ≥ 2. Then, γ(G) ≤ n/4 for n > 15.

Proof. It follows from Corollary 8 and Lemma 9. �

4 Final Remarks

The domination problem is NP-complete. For this reason, we restrict our attention to find-
ing small dominating sets for some classes of graphs. This study was motivated by Matheson
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and Tarjan’s conjecture [3], which claims that γ(G) ≤ n/4 for n-vertex triangulated planar
graphs with n greater than a constant n0. Other studies on the domination number have
investigated generalized Petersen graphs, products of graphs and cubic graphs, among many
other classes, as well as dominating sets in conjunction with other properties. The classes
of graphs studied in this work present an underlying grid-like structure, which simplifies the
task of verifying the conjecture for them. Yet many other interesting restrictions may be
made with regard to triangulated planar graphs, such as limiting the maximum/minimum
degrees of the triangulation. Using this approach, King and Pelsmajer proved the conjec-
ture for maximal planar graphs with maximum degree at most six and very large n, a result
which could be further extended to graphs with greater maximum degree [2]. Reducing the
constant n0 obtained by King and Pelsmajer would also be a stimulating endeavor, and
preliminary results show that it is possible to reduce this value by a constant factor.
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