
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Necessity and Sufficiency for Checking
m-Completeness of Test Suites

Adilson Luiz Bonifacio Arnaldo Vieira Moura

Technical Report - IC-13-21 - Relatório Técnico

September - 2013 - Setembro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

Necessity and Sufficiency for Checking

m-Completeness of Test Suites

Adilson Luiz Bonifacio∗ Arnaldo Vieira Moura†

Abstract

Test suite generation for Finite State Machines (FSM) has been largely investigated.
Some of the previous work in this area found necessary, but not sufficient, conditions
for the automatic generation of test suites for this class of models. Yet other set of
previous studies obtained sufficient, but not necessary, conditions for the same prob-
lem. Many earlier works imposed several conditions upon the specification or on the
implementation models. Here, we describe necessary and sufficient conditions for the
automatic generation of m-complete test suites when the specification and implemen-
tation are modeled as FSMs. Further, we impose only weak a priori restrictions on the
models, such as determinism and completeness of implementation models. We do not
require reduced models nor complete specifications.

1 Introduction

Several approaches for the automatic generation of test suites for models based on the
Finite State Machine (FSM) formalism have been proposed in the literature. Many of them
focused on the automatic generation of test suites with full fault detection capabilities.
Such test suites are named complete [2, 4, 10, 11, 22, 3, 8, 6, 12, 13, 20, 15, 1]. All these
methods prove sufficient conditions that guarantee the completeness of the test suites that
are generated. Few other works show necessary conditions [17, 23] for the completeness of
the test suites that are obtained. An approach that yields necessary and sufficient conditions
for the completeness of the test suites has been lacking.

Further, often specifications are required to be reduced models with n states, while the
corresponding implementation FSMs are required to have m ≥ n states [20]. Test suites
extracted from these methods are called m-complete because they can detect any fault on
implementations with at most m states. Some approaches are even more restrictive and
require m = n [18, 22, 21]. Several methods also assume that the implementation FSM
provides a reliable reset operation, which means that a test suite can be described by just
one test, formed by the concatenation of smaller test cases. Other approaches require the
specification to be completely specified and to have diagnostic sequences able to identify
states in order to generate a complete test suite as a single sequence [12, 8, 13, 10, 22].

∗Computing Department, University of Londrina, Londrina, Brazil, email: bonifacio@uel.br. Supported
by FAPESP, process 2012/23500-6.
†Computing Institute, University of Campinas, Campinas, Brazil, email: arnaldo@ic.unicamp.br.

1

2 Bonifacio and Moura

Several methods are derived from the so-called W method [3], as is the case of the
HSI [19] and the Wp [14] methods. These methods are arranged in two phases. First, they
derive tests to check if each state in the specification is also present in the implementation.
The second phase then derives tests that explore all transitions in the implementation,
produce the correct output and end in the same state as in the specification. Clearly, such
methods require the notions of state identification and state distinguishing input sequences.
However, sometimes a diagnostic sequence may not exist, given a reduced FSM. Hence,
in such cases, methods that do not require the existence of diagnostic sequences must be
used [5].

In order to establish their correctness, most of the methods mentioned above lean on
sufficient conditions, as shown in [4, 22]. Necessary conditions are treated in a few other
works [17]. But, in these cases, other constraints are imposed on the formalisms, such as
reducibility and completeness of the specification FSMs, or that the test suite satisfies other
properties, such as being a state cover or transition cover, or even constraints on the number
of states in the implementation model must be obeyed.

In this paper, we show strict necessary and sufficient conditions for test suite complete-
ness in a more general way. We prove that our approach is stronger than other existing
approaches, in the sense that there are infinite families of specifications and correspond-
ing test suites where our method always succeeds in determining the completeness of the
test suites. We also argue other proposals require stronger assumptions about the models
involved in order to yield positive verdicts for test completeness.

The paper is organized as follows. In Section 2 we survey, with no claim of exhaus-
tiveness, some recent works that more directly discuss the completeness problem for test
suites under the FSM formalism. Some basic definitions are given in Section 3. In Section 4
we show necessary and sufficient conditions for test suite completeness. In Section 5 we
propose an algorithm to check test suite completeness for FSMs. Finally, in Section 7, we
state some concluding remarks.

2 Related Works

In this section, we discuss some more recent works that address necessary or sufficient
conditions for test suite completeness. In a general way, these other approaches can be seen
as special cases of our work since the latter leads to the less restrict necessary and stronger
sufficient conditions for checking completeness of test suites based on FSM models.

In a recent study, Simão and Petrenko [21] present sufficient conditions for test suite
completeness. They considered implementation FSMs with at most as many states as in
the specification FSM. In this case, the test suite is usually called n-complete, where n is
the number of states in the specification. Simão and Petrenko use the notion of confirmed
sets. A set of input sequences is said confirmed when its sequences are such that when
two of them lead to a same state in the specification, then they also lead to a common
state in the implementation. Moreover, using the sequences in the given set, one can reach
any state in the specification machine. Simão and Petrenko then establish that a sufficient
condition for test completeness is that the given test contains a confirmed subset which is

Completeness of test suites 3

also a transition cover for the specification. Their approach also requires the specification
and implementation machines to be reduced, with the implementation also being complete.
The method can determine only n-completeness, and is inconclusive when a test suite does
not satisfy these conditions.

Dorofeeva et. al. [4] also show sufficient conditions for test suite completeness. Their
approach applies to initially connected FSMs and implementation FSMs are assumed to
have a reliable reset operation. The method was also devised as a test for n-completeness
due to the reset operations. This method was superseded by that of Simão and Petrenko [21].

Ural et al. [22] also give conditions under which a sequence can be checked for com-
pleteness. They define a checking sequence as one that can distinguish a complete strongly
connected deterministic and reduced FSM from each other FSM with at most as many states
as the original one, and not isomorphic to it. Their method also rely on the existence of a
diagnostic sequence [12, 13] and was also argued to be weaker than the method discussed
in [21].

In other works [17, 23], certain necessary conditions to check completeness of test suites
are presented. The specification and implementation FSMs are required to be complete and
reduced besides also being deterministic. They also bound the number of states in imple-
mentation FSMs, giving rise to the notion of m-completeness. Moreover, their necessary
conditions rely on the notions of state and transition covers. Their strategy is to construct
a so-called tree machine, using the given set of defined sequences in the test suite as guides.
Then, all the possible reduced forms of the tree machine are obtained, using an algorithm
for partial FSM minimization [9, 16]. If at least one of the obtained reduced FSMs is distin-
guishable from the specification, then the given test is not n-complete; otherwise, the test
is n-complete. We notice that these necessary conditions are not necessarily also sufficient
conditions for test completeness, even under the required conditions on the specification
and implementation machines.

We show that our method is more general than other approaches presented in the liter-
ature, and in different ways. First we show that our conditions for test suite completeness
are not only sufficient but also necessary. Further we treat the more general notion of m-
completeness under necessary and sufficient conditions. Finally, we do need further only
the assumption about the completeness of implementation FSMs besides the determinism.

3 Basic concepts

In this section we present some basic concepts and partial results that will be useful later.
Let I be an alphabet. The length of any finite sequence of symbols α over I is indicated
by |α|. The set of all sequences of length k over I is denoted by Ik, while I? names the
set of all finite sequences from I. When we write x1x2 · · ·xn ∈ I? (n ≥ 0) we mean xi ∈ I
(1 ≤ i ≤ n), unless noted otherwise. For any set C, P(C) denotes its power set. The empty
sequence will be indicated by ε.

Next, we write the definition of a Finite State Machine [7, 21].

Definition 1 (FSM) A FSM is a system M = (S, s0, I,O, D, δ, λ) where

• S is a finite set of states

4 Bonifacio and Moura

• s0 ∈ S is the initial state

• I is a finite set of input actions or input events

• O is a finite set of output actions or output events

• D ⊆ S × I is a specification domain

• δ : D → S is the transition function

• λ : D → O is the output function 2

In order to ease the notation we will use the following conventions:

1. M and N will denote the FSMs (S, s0, I,O, D, δ, λ) and (Q, q0, I,O′, D′, µ, τ), respec-
tively.

2. s, q, p, r will indicate states; x, y will indicate input actions; and a, b will indicate
output actions. We may also use decorations, like s1, x

′ or a′3.

Let M be a FSM and let σ = x1x2 · · ·xn ∈ I?, ω = a1a2 · · · an ∈ O? (n ≥ 0). If there
are states ri ∈ S (0 ≤ i ≤ n) such that δ(ri−1, xi) = ri and λ(ri−1, xi) = ai (1 ≤ i ≤ n),

then we may write r0
σ/ω→ rn. Note that, according to Definition 1, if such states exist, then

states ri are unique (1 ≤ i ≤ n). That is, all FSMs treated here are deterministic. When the

input sequence σ, or the output sequence ω, is not important, then we may write r0
σ/→ rn,

or r0
/ω→ rn, respectively. If both sequences are not important, we may write r0 → rn. In

these notations, we can also drop the target state, when it is not important, e.g. r0
σ/ω→ or

r0 →. When we need to indicate the FSM we write
σ/ω
→
M

, and similarly for the other variants

of the notation. The function U : S → P(I?) will be useful, where U(s) = {σ | s σ/→}.
We define δ̂, λ̂ : S → P(I?) by letting δ̂(s,K) = {r | s σ/→ r, for some σ ∈ K} and

λ̂(s,K) = {w | s σ/w→ , for some σ ∈ K}. We will often write δ̂(s, σ) = r instead of δ̂(s, {σ}) =
{r} and, when there is no ambiguity, we may write δ instead of δ̂. Similarly for λ̂.

Next, we state some properties of FSMs that will be important throughout the paper.

Definition 2 (Reachability) Let M = (S, s0, I,O, D, δ, λ) be a FSM, V ⊆ S and r ∈ S.

We say that r is reachable from V iff 1 s
σ/→ r for some s ∈ V and σ ∈ I?. We say that r

is reachable iff it is reachable from s0. 2

Now we say what it means for a FSM to be complete.

Definition 3 (Complete FSMs) Let M = (S, s0, I,O, D, δ, λ) be a FSM. Then M is
complete iff for all reachable s ∈ S and all x ∈ I we have (s, x) ∈ D. 2

1We write ‘iff’ for ‘if and only if’.

Completeness of test suites 5

Thus M is complete if D = R × I where R is the subset of reachable states. If M is
not complete, we say that we have a partial FSM. We can always modify a FSM M =
(S, s0, I,O, D, δ, λ) in order to get a new complete FSM. Just choose a new state t 6∈ S, a
new output action a 6∈ O and extend the transition and output functions of M according

to s
x/a→ t when (s, a) 6∈ D, and according to t

x/a→ t for all x ∈ I.

Now we define distinguishability and equivalence.

Definition 4 (Distinguishability and equivalence) Let M = (S, s0, I,O, D, δ, λ) and
N = (Q, q0, I,O′, D′, µ, τ) be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I?. We say that s
and q are C-distinguishable iff λ(s, σ) 6= τ(q, σ) for some σ ∈ U(s) ∩ U(q) ∩ C, denoted
s 6≈C q. Otherwise, s and q are C-equivalent, denoted s ≈C q. We say that M and N are
C-distinguishable iff s0 6≈C q0, and they are C-equivalent iff s0 ≈C q0. 2

When C is not important, or when it is clear from the context, we might drop the index.
When there is no mention to C, we understand that we are taking C = I?. Note that the
notions of distinguishability and equivalence also apply when M and N are the same FSM.

We can now recall the notion of reduced FSMs.

Definition 5 (Reducibility) Let M = (S, s0, I,O, D, δ, λ) be a FSM. Then M is reduced
iff every state is reachable and every pair of distinct states in S are distinguishable. 2

Now we are in a position to define test cases and test suites.

Definition 6 (Tests) Let M = (S, s0, I,O, D, δ, λ) be a FSM. A test suite for M is any
finite subset of U(s0). Any element of a test suite is a test case. The length of a test suite
is the sum of the lengths of all its test cases. 2

Since a test suite must be applied from initial states, implementations under test must be
brought to their initial states before the application of each test case. This can be achieved
by a reset operation, which always brings the machine back to its initial state [4, 3].

Next we introduce the concept of m-complete test suites.

Definition 7 (m-complete test suite) Let M = (S, s0, I,O, D, δ, λ) be a FSM. A test
suite T is m-complete for M iff for any complete FSM N = (Q, q0, I,O′, D′, µ, τ) with
|Q| ≤ m, if M ≈T N then M ≈ N . 2

That is, for any complete implementation under test N with at most m states, if M and
N are T -equivalent, then they are equivalent. A common case occurs when we also have
|S| = m.

4 Test suite completeness

In this section we show necessary and sufficient conditions for test suite completeness. In
order to obtain necessary and sufficient conditions for m-complete test suites, we start with
the basic notion of a simulation.

6 Bonifacio and Moura

Definition 8 (Simulation) Let M = (S, s0, I,O, D, δ, λ) and N = (Q, q0, I,O′, D′, µ, τ)
be FSMs. We say that a relation R ⊆ S ×Q is a simulation (of M by N) iff (s0, q0) ∈ R,

and whenever we have (s, q) ∈ R and s
x/a
→
M

r, then there is a state p ∈ Q such that q
x/a
→
N
p

and with (r, p) ∈ R. 2

The following result will be useful to demonstrate the existence of simulation relations.

Lemma 1 (State equivalence) Consider the FSMs M = (S, s0, I,O, D, δ, λ) and N =
(Q, q0, I,O′, D′, µ, τ). Let n ≥ 1, si ∈ S, pi ∈ Q (1 ≤ i ≤ n) and xi ∈ I, ai ∈ O, bi ∈ O′

(1 ≤ i < n) be such that si
xi/ai→ si+1 and pi

xi/bi→ pi+1 (1 ≤ i < n). Assume further that
s1 ≈ p1. Then si ≈ pi (1 ≤ i ≤ n) and a1a2 · · · an−1 = b1b2 · · · bn−1.

Proof Let σ = x1x2 · · ·xn−1, ω1 = a1a2 · · · an−1 and ω2 = b1b2 · · · bn−1. We clearly have

s1
σ/ω1→ sn and p1

σ/ω2→ pn. But, since s1 ≈ p1 Definition 4 immediately gives ω1 = ω2.
To see that si ≈ pi (1 ≤ i ≤ n) we go by induction on n ≥ 1. The basis is trivial and we

proceed with the induction step. Let 1 ≤ k < n and assume sk ≈ pk. If sk+1 6≈ pk+1 then

we must have ρ ∈ I?, ϕ1 ∈ O?, ϕ2 ∈ O′?, with ϕ1 6= ϕ2, and such that sk+1
ρ/ϕ1→ s′ and

pk+1
ρ/ϕ2→ p′, for some states s′ ∈ S and p′ ∈ Q. Let η = xkρ, φ1 = akϕ1 and φ2 = bkϕ2. We

get sk
η/φ1→ s′ and pk

η/φ2→ p′. Since akϕ1 6= bkϕ2 we have a contradiction to sk ≈ pk, thus
extending the induction. 2

The next lemma states half of our desired result.

Lemma 2 (Simulation relation) Let T be a m-complete test suite for a FSM M =
(S, s0, I,O, D, δ, λ). Then any T -equivalent and complete FSM with at most m states is
able to simulate M .

Proof Let N = (Q, q0, I,O′, D′, µ, τ) be a complete FSM with at most m states such that
M ≈T N . Define a relation R ⊆ S×Q by letting (s, q) ∈ R iff δ(s0, α) = s and µ(q0, α) = q
for some α ∈ I?, s ∈ S and q ∈ Q.

Since δ(s0, ε) = s0 and µ(q0, ε) = q0 we get (s0, q0) ∈ R.

Now assume (s, q) ∈ R and let s
x/a→ r for some r ∈ S, x ∈ I and a ∈ O. Since T

is m-complete for M , Definition 7 gives M ≈ N . Hence, s0 ≈ q0. Since (s, q) ∈ R, the
construction of R gives some α ∈ I? such that δ(s0, α) = s and µ(q0, α) = q. Composing,
we get δ(s0, αx) = δ(s, x) = r. Since N is complete, we get µ(q, x) = p, for some p ∈ Q.
Then µ(q0, αx) = µ(q, x) = p.

Recalling, we have δ(s0, α) = s, µ(q0, α) = q and s0 ≈ q0. Using Lemma 1 we conclude

that s ≈ q, and then we must have λ(s, x) = τ(q, x). So, from (s, q) ∈ R and s
x/a→ r we

obtained p ∈ Q such that q
x/a→ p. Finally, we note that we also have µ(q0, αx) = p and

δ(s0, αx) = r. The definition of R now gives (r, p) ∈ R. This shows that R is a simulation
relation, concluding the proof. 2

We now show the converse, that is, if there is a simulation of M by any complete FSM
that it is T -equivalent to it, then the m-completeness of T follows.

Completeness of test suites 7

Lemma 3 (Test completeness) Let M = (S, s0, I,O, D, δ, λ) be a FSM and let T be a
test suite for M . Assume that any complete FSM with at most m states and T -equivalent
to M is able to simulate M . Then T is m-complete for M .

Proof We proceed by contradiction. Assume that T is not m-complete for M . Then,
by Definition 7, there exists a complete T -equivalent FSM N = (Q, q0, I,O′, D′, µ, τ) with
at most m states and such that M 6≈ N . Using Definition 4, we get an input sequence
σ = x1 . . . xn (n ≥ 0) and an input symbol y ∈ I such that λ(s0, α) = τ(q0, α) and
λ(s0, αy) 6= τ(q0, αy). Clearly, there are si ∈ S, qi ∈ Q (1 ≤ i ≤ n) such that δ(si−1, xi) = si
and µ(qi−1, xi) = qi with λ(si−1, xi) = τ(qi−1, xi) (1 ≤ i ≤ n). Further, we get s ∈ S and
q ∈ Q such that δ(sn, y) = s, µ(qn, y) = q and λ(sn, y) 6= τ(qn, y).

The hypothesis gives a relation R ⊆ S ×Q that is a simulation of M by N .

Claim: (si, qi) ∈ R (0 ≤ i ≤ n).

Proof of the Claim. We go by induction on i ≥ 0.

Basis: we get (s0, q0) ∈ R directly from Definition 8.
Induction step: assume that (si, qi) ∈ R for some i < n. Since δ(si, xi+1) = si+1,
Definition 8 gives a q ∈ Q such that µ(qi, xi+1) = q, λ(si, xi+1) = τ(qi, xi+1) and
(si+1, q) ∈ R. But µ(qi, xi+1) = qi+1 and, since N is deterministic, we get q = qi+1.
Thus (si+1, qi+1) ∈ R extending the induction and establishing the Claim. 4

Using the Claim, we get (sn, qn) ∈ R. Now, since δ(sn, y) = s, Definition 8 gives a p ∈ Q
such that (s, p) ∈ R, µ(qn, y) = p, and λ(sn, y) = τ(qn, y), reaching a contradiction. 2

Putting together the previous results we obtain necessary and sufficient conditions for
the m-completeness of test suites.

Theorem 1 (Necessity and sufficiency conditions) Let M = (S, s0, I,O, D, δ, λ) be a
FSM and T be a test suite for M . Then, T is m-complete for M iff any T -equivalent and
complete FSM with at most m states is able to simulate M .

Proof Immediate using Lemmas 2 and 3. 2

5 Checking completeness

In this section we describe a process for checking test suite completeness using Theorem 1.
The process consists of two phases, described in the next subsections.

5.1 Growing a T -tree

Given a test suite T and a FSM M , we first construct a layered structure, called a T -tree
for M . In a T -tree, each node represents a FSM that is being constructed. We can also say
that a node contains a table describing the transition and output functions of the FSM that
is represented at the node. In addition, each node is labeled by a pair of states (s, q) where
s is a state of M and q is a state of the FSM represented at the node. Also, we assume that

8 Bonifacio and Moura

we have a specified upper bound of m ≥ 1 on the number of states of any implementation
that will be put under test.

We first describe how to apply the tree-growing process, given a T -tree G with maximum
level k, and given that the current test is σ = xρ, where x is an input symbol. We proceed in
a breadth-first fashion. For each node at level k in G in turn, say in a left-to-right order, we
repeat the following cycle. Let u be the next node at level k to be processed, let (s, q) be its

label and let N be the FSM it represents. Assume that we have s
x/a→ r in the specification

M . If we have a transition q
x/b→ p in N , with a 6= b, then we are done with node u and we

proceed to the next node of G at level k. Otherwise node u will get several descendants. For
each state p of N we add a descendant v to u in the tree G. The new node v is labeled (r, p)
and the FSM it represents is obtained by extending the transition and output functions in

N according to q
x/a→ p. In addition, if the number of states in N is less than the bound m,

we add another descendant w to node u in G. The new node w is labeled (r, z), where z
is a new state not already in N . The FSM represented by the new node w is obtained by

adding state z to N and extending its transition and output functions according to q
x/a→ z.

When all nodes in G at level k have been considered, we declare ρ to be the new current
test and repeat the breadth-first tree-growing procedure, now taking the nodes in G at level
k + 1. This growing process continues by taking one symbol of the current test at a time
and growing one level in the tree. It ends when the current test reduces to the ε, i.e. the
empty string. When that happens the maximum level in G would be k + |σ|.

Now suppose that the breadth-first growing process has just ended because the current
test reduced to ε. Suppose that the T -tree is now G, with maximum level k. We have
to restart the tree-growing process. We do so by taking another, yet not considered, test
in t ∈ T and make it the current test. We also relabel all nodes with (s0, q0) at level k
since a new test must be exhausted from initial states of M and N . If all tests in T have
already been constructed, the T -tree for M is complete and the whole procedure terminates.
Otherwise, we just restart the growing of G, with maximum level k, and with t as the new
current test.

Initially, the T -tree is formed just by a root node, labeled (s0, q0), that represents the
trivial FSM whose only state is q0 and with empty transition and output functions. We
say that this node is at level zero. We choose a test in T and declare it the current test.
The tree-growing process is ready to start for the first time. An example illustrating this
processes appears in Section 6.

We remark that the growing procedure cannot end prematurely, since we are assuming
T ⊆ U(s0), where s0 is the initial state in M . In fact, when the whole growing process
terminates, the complete T -tree for M will have maximum level

∑
σ∈T |σ|. Further, when

the procedure terminates, its leaves at maximum level represent FSMs that are T -equivalent
to M . Moreover, any FSM that happens to be T -equivalent to M will be an extension of a
machine represented in one of these leaves.

Here, the first phase for checking completeness terminates.

Completeness of test suites 9

5.2 Checking for simulations

In the last phase of the process for checking completeness of test suites, we must check
whether a complete candidate implementation FSM with at most m states can simulate a
given specification FSM. Let M = (S, s0, I,O, D, δ, λ) be the given specification.

We will build a setM of pairs (N,R) where N is a FSM and R is a candidate simulation
relation (of M by N). We start with an initial set M containing all pairs (N,R), where
N is a machine represented at a leaf of the T -tree and R contains just the unmarked pair
(s0, q0), with q0 the initial state of N .

Now, while there are pairs in M, we proceed as follows. Remove a pair (N,R) from
M and examine it as described below. If all pairs in M are exhausted, the procedure
terminates successfully.

Let (N,R) be the pair to be examined, where N = (Q, q0, I,O′, D′, µ, τ). While there
remains unmarked pairs in R, we repeat the following cycle. Take any unmarked pair (s, q)
in R and mark it as visited. For all input symbols x ∈ I such that (s, x) ∈ D, if (q, x) ∈ D′
but λ(s, x) 6= τ(q, x), immediately terminate the whole procedure unsuccessfully. When
(q, x) ∈ D′ and λ(s, x) = τ(q, x), then add the pair (δ(s, x), µ(x, s)) to R as an unmarked
pair, if it not already there. Finally, if (q, x) 6∈ D′ then we must insert new pairs in M
as follows. Let δ(s, x) = r and λ(s, x) = a. For each state p ∈ Q, extend N according to

q
x/a→ p, thus obtaining a new FSM N ′, and extend R by adding (r, p) to it as an unmarked

pair, thus obtaining a new relation R′. Then, add the pair (N ′, R′) toM and stop the cycle
for the pair (N,R).

This is the last phase of the entire procedure to check completeness of a test suite T
for a given specification M . If this last phase terminates unsuccessfully, then we deem T
as not m-complete for M , where m is the upper bound on the number of states of any
implementation that will be put under test, as assumed at the start of the first phase. If
this last phase terminates successfully, we declare that T is m-complete for M . The whole
process is supported by Theorem 1.

6 An example

We illustrate the procedure describe in Section 5. Let M be the FSM M depicted in Figure 1
and let T = {00, 1000} be a test suite for M . Assume that we are treating implementation
machines with up to m = 3 states. A T -tree for M is partially illustrated in Figure 2.

s0 s1

0/1

1/1

0/0

Figure 1: FSM specification M .

10 Bonifacio and Moura

We start with a root labeled (s0, q0), at level zero, representing a trivial machine Z0

with the empty transition and output functions. Let σ = 00 be the first test case chosen
from T . It is now the current test case. Since the first input symbol of σ is a 0, we get
the two descendant nodes at level one. The first corresponds to extending Z0 according to

q0
0/1→ q0 in Z0, and the second corresponds to adding a new state q1 to Z0, and extending

it as dictated by q0
0/1→ q1. The current test case is now reduced to σ = 0, and we proceed

by considering all nodes at level 1, in turn. The leftmost node at level 1, says node u,

represents a machine Z1, as indicated in the figure. Since we already have q0
0/→ q0 in Z1,

node u gets a single descendant that also represents Z1. Its label is obtained from s0
0/1→ s0

in machine M and q0
0/1→ q0 in machine Z1. Next, we examine the second node at level 1,

say node w, representing a machine Z2. Since we do not have q1
0/→ in Z2, we must generate

new descendants for w by extending Z2 according to q1
0/1→ q for all states q ∈ {q0, q1} that

are already in Z2. These are the leftmost two descendants of w. Further, since Z2 has two
states and we are treating implementation FSMs with at most m = 3 states, node w gets

another descendant by adding a new state q2 to Z2 and extending it as required by q1
0/1→ q2.

This is the rightmost descendant of w.

At this point we have reduced the current test to σ = ε. We must now take another test
case from T . The last test case in T that was not already used is σ = 1000 and we make it
the current test case. Now, because we are restarting the tree-growing process anew with a
new test case, we must relabel all nodes at level 2 with the root label, (s0, q0). That is why
all nodes at level 2 in Figure 2 appear so relabeled.

We proceed by considering all nodes at level 2, in turn, with the current test case as
σ = 1000. We start with the leftmost node at level 2, say node v, also representing machine

Z1. Since we do not have q0
1/→ in Z1, we must generate new descendants for node v by

extending Z1 according to q0
1/1→ q0 in Z1 and by adding a new state q1 to Z1 according to

q0
1/1→ q1. Next, we consider the second node at level 2, say node r, representing a machine

Z3, as indicated in the figure. Since we do not have q0
1/→ in Z3 we must generate new

descendants for r by extending Z3 according to q0
1/1→ q for all states q ∈ {q0, q1} that are

already in Z3, and also by adding a new state q2 to Z3 and further extending it according

to q0
1/1→ q2. In order to keep the figure size under control, we suppressed the tree-growing

process at the remaining two nodes at level 2, marked as ? and †. The current test case
will be reduced again to σ = 000, and we restart the growing process at level 3. When we
consider the leftmost node at level 3, labeled (s1, q0), representing machine Z4, we notice

that we have s1
0/0→ s1 in machine M but q0

0/1→ q0 in Z4. This indicates an incompatibility
and we terminate the growing process at this node, leaving it behind.

The growing process continues up to when we have exhausted the current test case
σ = 000. When the procedure terminates we will have obtained six machines that are
T -equivalent to M . Machines N0 to N3 are indicated in the figure. A fifth machine would
result from the subtree rooted at node marked by a ?, and a sixth one from the subtree

Completeness of test suites 11

(s0, q0) Z0

(s0, q0) Z1

(s0, q0) Z1

(s1, q0) Z4 (s1, q1)

(s1, q0) (s1, q1)

(s1, q1) N�

(s1, q1) N0

(s1, q2)

(s1, q0) (s1, q1)

(s1, q2) N1

(s1, q2)

(s1, q2) N2

(s0, q1) Z2

(s0, q0) Z3

(s1, q0) (s1, q1) (s1, q2)

(s1, q0) (s1, q1) (s1, q2)

(s1, q2)

(s1, q2) N3

(s0, q0)
? (s0, q0)

†

Figure 2: T -tree for FSM depicted in Figure 1.

rooted at node marked by a †. We note that machine N0 is isomorphic to M , whereas
machines N1, N2 and N3 are not, since they have 3 states.

On the second phase we start with a set M = {(Ni, Ri) | 0 ≤ i ≤ 5}, where Ri contains
only the initial pair of states for M and Ni. We illustrate the procedure by examining the
pair (N1, R1). Machine N1 can be read from the T -tree in Figure 2, and is depicted in
Figure 3. Initially, R1 contains just (s0, q0), unmarked. We immediately mark it as visited

and proceed. For the input symbol 0 we get s0
0/1→ s0 and q0

0/1→ q0. Since the pair (s0, q0) is

already in R, we consider the other input symbol, 1. We have s0
1/1→ s1 and q0

1/1→ q1. Since
(s1, q1) is not in R, we add it to R as an unmarked pair. Now, R = {(s0, q0)‡, (s1, q1)},
where we indicate marked pairs by a ‡. We mark (s1, q1) as visited and consider the input

symbols again. We have s1
0/0→ s1 in M and q1

0/0→ q2 in N1. Because (s1, q2) is not in R,
we add it to R as unmarked. Since (s1, 1) 6∈ D we are done with the pair (s1, q1). Now,
R = {(s0, q0)‡, (s1, q1)‡, (s1, q2)}. We mark (s1, q2) as visited and need only consider the

input symbol 0, since (s1, 1) 6∈ D. We get s1
0/0→ s1 in M and q2

0/0→ q1 in N1. Since (s1, q1)
is already in R, it remains as is. Now, R = {(s0, q0)‡, (s1, q1)‡, (s1, q2)‡}. We have no more
unmarked pairs in R and the examination of the pair (N1, R1) terminates without reaching
a conflict.

For another, contrasting, situation consider the last leaves indicated in Figure 2. The
machine represented by that node, N3, can be extracted from the T -tree and is depicted in
Figure 4. So, the pair (N3, R3) would also be inserted into the setM, with R3 = {(s0, q0)}.
After marking (s0, q0) as visited and considering the input symbols 0 and 1, we would

12 Bonifacio and Moura

q0 q1

q2

0/1

1/1

0/00/0

Figure 3: FSM N1.

have R3 = {(s0, q0)‡, (s0, q1), (s1, q2)}. We now mark (s0, q1) as visited. With the input

symbol 0 no new pairs would be add to R3, since we have s0
0/1→ s0 in M , q1

0/1→ q0
in N3 and the pair (s0, q0) is already in R3. But when we consider the input symbol

1, we find that we have s0
1/1→ s1 in M , but we do not have q1

1/→ in N3. We extend

N3 according to q1
1/1→ qj , thus generating three new machines N3,j (j = 0, 1, 2). The

companion relation sets would be R3,j = {(s0, q0)‡, (s0, q1)‡, (s1, qj)} (j = 0, 1, 2) and we
would include in M the pairs (N3,j , R3,j) (j = 0, 1, 2). In its due turn, the pair (N3,1, R3,1)
would be selected for examination. Machine N3,1 is illustrated in Figure 5, and we have
R3,1 = {(s0, q0)‡, (s0, q1)‡, (s1, q1)}. Now, we mark (s1, q1) as visited in R3,1 and consider

q0 q1

q2

0/1

0/1

1/1

0/0

Figure 4: FSM N3.

the input symbols. With 0 we have s1
0/0→ s1 in M and q1

0/1→ q0 in N3,1. This is a conflict and
the whole procedure for checking the 3-completeness of T for M terminates unsuccessfully.
We, thus, declare T not to be 3-complete for M , as expected.

Completeness of test suites 13

q0 q1

q2

0/1

0/1

1/1

1/1

0/0

Figure 5: FSM N3,1.

Suppose now that we have the same specification M illustrated in Figure 1, but were
satisfied to test implementations with at most two states, and using the same test suite
T = {00, 1000}. In this case we set m = 2. Then phase one of the procedure for checking m-
completeness would generate a sub-tree of the T -tree illustrated in Figure 2. The differences
would be that the last at levels 2 and 3 would not appear, as well as the third node from
left to right at level 4. This is because all these nodes represent machines with three states,
while the remaining ones represent machines with at most 2 states. In this case, after
the tree-growing process terminates, we would have a single leaf in the T -tree representing
machine N0, as indicated in Figure 2. Then, phase two would start with M = {(N0, R)},
with R = {(s0, q0)} and with q0 being the start state in N0. We would then remove the pair
(N0, R) fromM and would start to examine it. But N0, when extracted from the T -tree, is
clearly seen to be isomorphic to M , and so a simulation relation obviously exist between M
and N0. We would return to M for another pair, but now we have M = ∅. At this point
the m-completeness checking procedure would terminate successfully and we would declare
T to be 2-complete for M .

Thus we have a situation where a test suite T = {00, 1000} is 2-complete, but not
3-complete, for the specification FSM illustrated in Figure 1.

In fact, had we considered the test suite T ′ = {00, 100} when testing for 2-completeness
of the same specification M , the final verdict would indicate that T ′ is also 2-complete for
M . This is because the tree-growing process would construct the same sub-tree as before,
except that now the only leaf would have been the machine represented by the leftmost node
at level 5 in Figure 1, there marked as N�. But N� is the same as machine N0, which, as
note before, turns out to be isomorphic to M . Hence the second phase would also terminate
successfully in this case, and we would also declare T ′ to be 2-complete for M . Clearly, T ′

is not m-complete for M , for any m ≥ 3, since T is not 3-complete for M and all tests in
T ′ are prefixes of tests in T .

14 Bonifacio and Moura

7 Conclusions

In this paper, we presented necessary and sufficient conditions for verifying m-completeness
of test suites for specification FSMs. We remark that our method imposes no restriction
on the specification machine nor in the implementation under test, except for determinism
and that the latter be complete.

We proved by a rigorous argument that our method is correct. Using this formal support,
we also indicated how to proceed to give definitive answers about the m-completeness of
given test suites. The procedure described always terminates with a correct yes or no
answer, that is, it is never inconclusive.

Future research might consider implementing the suggested procedure, or a similar al-
gorithm based on Theorem 1, so that its time and space complexities could be measured
when taking typical families of specifications and implementations as input instances.

References

[1] Adilson Luiz Bonifacio, Arnaldo Vieira Moura, and Adenilso da Silva Simão. Model
partitions and compact test case suites. Int. J. Found. Comput. Sci., 23(1):147–172,
2012.

[2] Rachel Cardell-Oliver. Conformance tests for real-time systems with timed automata
specifications. Formal Aspects of Computing, 12(5):350–371, 2000.

[3] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Transac-
tions on Software Engineering, 4(3):178–187, 1978.

[4] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An improved conformance
testing method. In FORTE, pages 204–218, 2005.

[5] N. V. Evtushenko and A. F. Petrenko. Synthesis of test experiments in some classes
of automata. Autom. Control Comput. Sci., 24(4):50–55, April 1991.

[6] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Transactions on Software Engineering,
17(6):591–603, June 1991.

[7] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New York,
1962.

[8] G. Gonenc. A method for the design of fault detection experiments. IEEE Trans.
Comput., 19(6):551–558, 1970.

[9] Sezer Gören and F. Joel Ferguson. On state reduction of incompletely specified finite
state machines. Comput. Electr. Eng., 33(1):58–69, January 2007.

[10] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceedings of
the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, 11-13
November 1964, Princeton, New Jersey, USA, pages 95–110. IEEE, 1964.

Completeness of test suites 15

[11] R. M. Hierons. Separating sequence overlap for automated test sequence generation.
Automated Software Engg., 13(2):283–301, 2006.

[12] Robert M. Hierons and Hasan Ural. Reduced length checking sequences. IEEE Trans.
Comput., 51(9):1111–1117, September 2002.

[13] Robert M. Hierons and Hasan Ural. Optimizing the length of checking sequences. IEEE
Trans. Comput., 55(5):618–629, May 2006.

[14] Gang Luo, G. von Bochmann, and A. Petrenko. Test selection based on communicating
nondeterministic finite-state machines using a generalized wp-method. IEEE Trans.
Softw. Eng., 20(2):149–162, 1994.

[15] Lucio Felipe de Mello Neto and A Simao. Test suite minimization based on fsm com-
pleteness sufficient conditions. In Proceedings of 9th IEEE Latin-American Test Work-
shop, volume 1, pages 93–98, 2008.

[16] Jorge M. Pena and Arlindo L. Oliveira. A new algorithm for the reduction of incom-
pletely specified finite state machines. In In ICCAD, 482-489, pages 482–489. IEEE
Computer Society Press, 1998.

[17] A. Petrenko and G. V. Bochmann. On fault coverage of tests for finite state specifica-
tions. Computer Networks and ISDN Systems, 29:81–106, 1996.

[18] Alex Petrenko and Nina Yevtushenko. On test derivation from partial specifications.
In In FORTE, pages 85–102, 2000.

[19] Alexandre Petrenko and Gregor v. Bochmann. Selecting test sequences for partially-
specified nondeterministic finite state machines. In Gang Luo, editor, IWPTS ’94: 7th
IFIP WG 6.1 international workshop on protocol test systems, pages 95–110, London,
UK, UK, 1995. Chapman & Hall, Ltd.

[20] Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic fsm
specifications. IEEE Trans. Comput., 54(9):1154–1165, September 2005.

[21] Adenilso da Silva Simao and Petrenko Petrenko. Checking completeness of tests for
finite state machines. IEEE Trans. Computers, 59(8):1023–1032, 2010.

[22] Hasan Ural, Xiaolin Wu, and Fan Zhang. On minimizing the lengths of checking
sequences. IEEE Trans. Comput., 46(1):93–99, January 1997.

[23] Ming Yu Yao, Alexandre Petrenko, and Gregor von Bochmann. Fault coverage analysis
in respect to an fsm specification. In INFOCOM, pages 768–775, 1994.

