
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Generating Asymptotically Non-terminant

Initial Variable Values for Linear

Diagonalizable Programs

Rachid Rebiha Arnaldo V. Moura

Nadir Matringe

Technical Report - IC-13-20 - Relatório Técnico

September - 2013 - Setembro

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.

Generating Asymptotically Non-terminant Initial
Variable Values for Linear Diagonalizable Programs

Rachid Rebiha∗ Arnaldo Vieira Moura† Nadir Matringe ‡

Abstract

We present the key notion of asymptotically non-terminant initial variable
values for non-terminant loop programs. We show that those specific values
are directly associated to inital variable values for which the corresponding
loop program does not terminate. Considering linear diagonalizable programs,
we describe powerful computational methods that generate automatically and
symbolically a semi-linear space represented by a linear system of equalities
and inequalities. Each element of this space provides us with asymptotically
non-terminant initial variable values. Our approach is based on linear alge-
braic methods. We obtain specific conditions using certain basis and matrix
encodings related to the loop conditions and instructions.

1 Introduction

Research on formal methods for program verification [12, 15, 8, 17] aims at discovering
mathematical techniques and developing their associated algorithms to establish the
correctness of software, hardware, concurrent systems, embedded systems or hybrid
systems. Static program analysis [12, 15], is used to check that a software is free of
defects, such as buffer overflows or segmentation faults, which are safety properties, or
termination and non-termination, which are liveness properties. Proving termination
of while loop programs is necessary for the verification of liveness properties that any
well behaved and engineered system, or any safety critical embedded system must
guarantee. We could list here many verification approaches that are only practical

∗Instituto de Computação, Universidade Estadual de Campinas, 13081970 Campinas, SP.
Pesquisa desenvolvida com suporte financeiro da FAPESP, processos 2011089471 e FAPESP BEPE
2013047349
†Instituto de Computação, Universidade Estadual de Campinas, 13081970 Campinas, SP.
‡Université de Poitiers, Laboratoire Mathématiques et Applications and Institue de Mathema-

tiques de Jussieu Université Paris 7-Denis Diderot, France.

1

2 R. Rebiha, A.V. Moura and N. Matringe

depending on the facility with which termination can be automatically determined.
Verification of temporal properties of infinite state systems [20] is another example.

Recent work on automated termination analysis of imperative loop programs has
focused on a partial decision procedure based on the discovery and synthesis of ranking
functions. Such functions map the loop variable to a well-defined domain where
their value decreases further at each iteration of the loop [9, 10]. Several interesting
approaches, based on the generation of linear ranking functions, have been proposed
[3, 4] for loop programs where the guards and the instructions can be expressed in
a logic supporting linear arithmetic. For the generation of such functions, there are
effective heuristics [14, 10] and, in some cases, there are also complete methods for
the synthesis of linear ranking functions [16].

On the other hand, it is easy to generate a simple linear terminant loop program
that does not have a linear ranking function. And in this case such complete synthesis
methods [16] fail to provide a conclusion about the termination or the non termination
of such a program.

In this work we address the non-termination problem for linear while loop pro-
grams. In other words, we consider the class of loop programs where the loop condi-
tion is a conjunction of linear inequalities and the assignments to each of the variables
in the loop instruction block, are affine or linear forms. In matrix notation, linear loop
programs will be represented in a general form as: while (Bx > b), {x := Ax+c} (i.e.,
A and B are matrices, b and c are vectors of real numbers, and that x is a vector of
variables.). Without loss of generality, the termination/non-termination analysis for
such a class of linear programs could be reduced to the problem of termination/non-
termination for homogeneous linear programs [6, 21]. Those being programs where
linear assignments consist of homogeneous expressions, and where the linear loop con-
dition consists of at most one inequality. Concerning effective program transforma-
tions and simplification techniques, non-termination analysis for programs presented
in a more complex form can often be reduced to an analysis of a program expressed
in this basic affine form.

Despite tremendous progress over the years [6, 5, 7, 13, 11, 2, 1], the problem of
finding a practical, sound and complete methods for determining or analyzing non
termination remains very challenging for this class of programs, and for all initial
variable values. We started our investigation from our preliminary technical reports
[19, 18] where we introduced a termination analysis in which algorithms ran in poly-
nomial time complexity.

Here, considering a non terminating loop, we introduce new static analysis meth-
ods that compute automatically, and in polynomial time complexity, the set of initial
input variable values for which the program does not terminate, and also a set of
initial inputs values for which the program does terminate. This justifies the innova-
tion of our contributions, i.e., none of the other mentioned related work is capable of
generating such critical information over non-terminating loops. We summarize our

Generating ANT for Linear Diagonalizable Programs 3

contributions as follows:

• To the best of our knowledge, we introduce a new key notion for non-termination
and termination analysis for loop programs: we identify the important concept
of asymptotically non-terminant initial variable values, ANT for short. Any
asymptotically non-terminant initial variable values can be directly related to
an initial variable value for which the considered program does not terminate.

• Our theoretical contributions provide us with efficient computational methods
running in polynomial time complexity and allowing the exact computation of
the set of all asymptotically non-terminant initial variable values for a given
loop program.

• We generate automatically a set of linear equalities and inequalities describing
a semi-linear space that represents symbolically the set of all asymptotically
non-terminant initial variable values. The set of ANT values contains the set of
non-terminant initial variable values. On the other hand the complementary set
of ANT values is a precise under-approximation of the set of terminant inputs
for the same program.

Example 1.1. (Motivating Example) Consider the following program depicted below
on the left. We show a part of the output of our algorithm below on the right.

(i) Pseudo code:

while (2x+3y-z>0){

x:= y + z;

y:= -(1/2)x+(3/2)y -(1/2)z;

z:=(3/2)x -(3/2)y+(1/2)z;}

(ii) Output of our prototype:

Locus of ANT

[[4u[1]+u[2]+u[3]>0]

AND[u[1]+4u[2]+4u[3]>0]

AND[-u[1]+u[2]-u[3]=0]]

OR[[-u[1]+u[2]-u[3]>0]]

The semi-linear
ANT = {u = (u1, u2, u3)

> ∈ E | 4u1+u2+u3 > 0∧u1+4u2+4u3 > 0∧−u1+u2−u3 =
0} ∪ {u = (u1, u2, u3)

> ∈ E | − u1 + u2 − u3 > 0}
represents symbolically all asymptotically initial variable values that are directly as-
sociated to initial variable values for which the program does not terminate. On the
other hand, the complementary of this set
co-ANT = {u = (u1, u2, u3)

> ∈ E | 4u1 + u2 + u3 ≤ 0 ∨ u1 + 4u2 + 4u3 ≤
0 ∨ −u1 + u2 − u3 6= 0} ∩ {u = (u1, u2, u3)

> ∈ E | − u1 + u2 − u3 ≤ 0}
is a precise under-approximation of the set of all initial variable values on which the
program terminates.

4 R. Rebiha, A.V. Moura and N. Matringe

The rest of this article is organized as follows. Section 2 can be seen as a prelim-
inary section where we introduce some key notions and results from linear algebra,
which will be used to build our computational methods. In this section, we also
present our computational model for programs and some further notations. Section
3 introduces the new notion of asymptotically non-terminant initial variable values.
Section 4 provides the main theoretical contributions of this work. This section also
presents our computational methods that generate a symbolic representation of the
asymptotically non-terminant variable values for linear programs. We provide a com-
plete dicussion in Section 5. Finally, Section 6 states our conclusions.

2 Linear Algebra and Linear Loop Programs

Here, we present key linear algebraic notions and results which are central in the
theoretical and algorithmic development of our methods. We denote by M(m,n,K)
the set of m× n matrices with entries in K, and simply M(n,K) when m = n. The
Kernel of A, also called its nullspace, denoted by Ker(A), is

Ker(A) = {v ∈ Kn | A · v = 0Km}.

In fact, when we deal with square matrices, these Kernels are Eigenspaces. Let A
be a n× n square matrix with entries in K.

A nonzero vector x ∈ K is an eigenvector for A associated with the eigenvalue
λ ∈ K if A · x = λx, i.e., (A− λIn) · x = 0 where In is the n× n identity matrix.

The nullspace of (A−λIn) is called the eigenspace of A associated with eigenvalue
λ.

Let n be a positive integer, we will denote Rn by E and its canonical basis by
Bc = (e1, . . . , en). Let A be a square matrix in M(n,R). Let us introduce the
notation Spec(A) for the set of eigenvalues of A in R, and we will write Spec(A)∗ for
the set Spec(A)− {0}. For λ ∈ Spec(A), we will denote by Eλ(A) the corresponding
eigenspace.

Throughout the paper we write dλ for the dimension of Eλ(A). We will say that
A is diagonalizable if E = ⊕λ∈Spec(A)Eλ(A).

Let A be a diagonalizable matrix. For each eigenspace Eλ(A), we will take a basis

Bλ = (eλ,1, . . . , eλ,dλ),

and we define

B = ∪λ∈Spec(A)Bλ

as a basis for E.

Generating ANT for Linear Diagonalizable Programs 5

Definition 2.1. Let x belong to E. We denote by xλ its component in Eλ(A). If x
admits the decomposition ∑

λ∈Spec(A)

(

dλ∑
i=1

xλ,ieλ,i)

in B, we have

xλ =

dλ∑
i=1

xλ,ieλ,i.

We denote by P the transformation matrix corresponding to B, whose columns are
the vectors of B, decomposed in Bc. Letting di denote the integer dλi for the ease of
notation, we recall the following lemma.

Lemma 2.1. We have P−1AP = diag(λ1Id1, . . . , λtIdt). We denote by D the matrix
P−1AP .

As we will obtain our results using the decomposition of x in B, we recall how one
obtains it from the decomposition of x in Bc.

Lemma 2.2. Let x ∈ E. If

x =
n∑
i=1

xiei = (x1, ..., xn)> ∈ Bc,

and x decomposes as
t∑

j=1

(

dj∑
i=1

xλj ,ieλj ,i)

in B, the coefficients xλj ,i are those of the column vector P−1x in Bc.

Throughout the paper we write < , > for the canonical scalar product on E, which
is given by

< x, y >=
n∑
i=1

xiyi,

and recall, as it is standard in static program analysis, that a primed symbol x′

refers to the next state value of x after a transition is taken. Next, we present
transition systems as representations of imperative programs and automata as their
computational models.

6 R. Rebiha, A.V. Moura and N. Matringe

Definition 2.2. A transition system is given by

〈x, L, T , l0,Θ〉,

where

• x = (x1, ..., xn) is a set of variables,

• L is a set of locations and

• l0 ∈ L is the initial location.

• A state is given by an interpretation of the variables in x.

• A transition τ ∈ T is given by a tuple

〈lpre, lpost, qτ , ρτ 〉,

where lpre and lpost designate the pre- and post- locations of τ , respectively, and
the transition relation ρτ is a first-order assertion over x ∪ x′. The transition
guard qτ is a conjunction of inequalities over x.

• Θ is the initial condition, given as a first-order assertion over x.

The transition system is said to be linear when ρτ is an affine form.

We will use the following matrix notations to represent loop programs and their
associated transitions systems.

Definition 2.3. Let P be a loop program represented by the transition system

〈x = (x1, ..., xn), l0, T = 〈l, l, qτ , ρτ 〉, l0,Θ〉.

We say that P is a linear loop program if the following conditions hold:

• Transition guards are conjunctions of linear inequalities. We represent the loop
condition in matrix form as

V x > b

where V ∈ M(m,n,R) and b ∈ Rm. By V x > b we mean that each coordinate
of vector V x is greater than the corresponding coordinate of vector b.

• Transition relations are affine or linear forms. We represent the linear assign-
ments in matrix form as

x := Ax+ c,

where A ∈M(n,R) and c ∈ Rn.

Generating ANT for Linear Diagonalizable Programs 7

The linear loop program P = P (A, V, b, c) will be represented in its most general form
as

while (V x > b), {x := Ax+ c}.

In this work, we use the following linear loop program classifications.

Definition 2.4. We identify the following three types of linear loop programs, from
the more specific to the more general form:

• Homogeneous: We denote by PH the set of programs where all linear assign-
ments consist of homogeneous expressions, and where the linear loop condition
consists of at most one inequality. If P is in PH, then P will be written in
matrix form as

while (< v, x >> 0), {x := Ax},
where v is a (n× 1)-vector corresponding to the loop condition, and where A ∈
M(n,R) is related to the list of assignments in the loop. We say that P has a
homogeneous form and it will also be denoted as P (A, v).

• Generalized Condition: We denote by PG the set of linear loop programs where
the loop condition is generalized to a conjunction of multiple linear homogeneous
inequalities.

• Affine Form: We denote by PA the set of loop programs where the inequalities
and the assignments are generalized to affine expressions. If P is in PA, it will
be written as

while (V x > b), {x := Ax+ c},
for A and V in M(n,R), b ∈ Rm, and c ∈ Rn.

Without lost of generality, the static analysis for the class of linear programs PA

could be reduced to the problem of termination/non-termination for homogeneous
linear programs in PH. In this work we consider programs in PH. The generalization
to programs in PA can already be done and it will be reported elsewhere.

3 Asymptotically Non-terminant Variable Values

In this section we present the new notion of asymptotically non-terminant variable
values. It will prove to be central in analysis of termination, in general. Let A be a
matrix in M(n,R), and v be a vector in E. Consider the program

P (A, v) : while (< v, x >> 0), {x := Ax},

8 R. Rebiha, A.V. Moura and N. Matringe

which takes values in E. We first give the definition of the termination of such a
program.

Definition 3.1. The program P (A, v) is said to be terminating on x ∈ E, if and only
if < v,Ak(x) > is not positive, for some k ≥ 0.

In other words, Definition 3.1 states that if the program P (A, v) performs k ≥
0 loop iterations from initial variables xin E, we obtain x := Ak(x). Thus, if <
v,Ak(x) >≤ 0, the loop condition is violated, and so P (a, v) terminates. Next, we
introduce the following important notion.

Definition 3.2. We say that x ∈ E is an asymptotically non terminating value for
P (A, v) if there exists kx ≥ 0 such that P (A, v) is non terminating on Akx(v). We
will write that x is ANT for P (A, v), or simply x is ANT. We will also write that
P (A, v) is ANT on x.

Note that if P (A, v) is non terminating on Akx(x) then < v,Ak(x) > is > 0 for k ≥ kx.
The following result follows directly from the previous definition.

Corollary 3.1. An element x ∈ E is ANT if and only if < v,Ak(x) > is positive for
k large enough.

If the set of ANT points is not empty, we say that the program P (A, v) is ANT .
We will also write NT for non terminant. For the programs we study here, the
following lemma already shows the importance of such a set.

Lemma 3.1. The program P (A, v) is NT if and only if it is ANT .

Proof. It is clear that NT implies ANT (i.e., NT ⊆ ANT), as a NT point of P (A, v)
is of course ANT (with kx = 0). Conversely, if P (A, v) is ANT , call x an ANT point,
then Akx(x) is a NT point of P (A, v), and so P (A, v) is NT .

As one can easily see, the set of NT points is included in the set of ANT points.
But the most important property of the ANT set remains in the fact that each of its
point provides us with an associated element in NT for the corresponding program.

In other words, each element x in the ANT set, even if it does not necessarily
belong to the NT set, refers directly to initial variable values yx = Akx for which
the program does not terminate, i.e., yx is an NT point. We can say that there exists
a number of loop iterations k[x], departing from the initial variable values x, such that
Akx correspond to initial variable values for which P (A, v) does not terminate.

But, it does not necessarily implies that x is also an NT point for P (A, v). In
fact, program P (A, v) could terminate on the initial variable values x by performing
a number of loop iterations strictly smaller than k[x]. On the other hand, the com-
plementary set co-ANT provides us with a quite precise under approximation of the
set of all initial variable values for which the program terminates.

Generating ANT for Linear Diagonalizable Programs 9

The set of ANT points of a program is also important to the understanding of the
termination of a program with more than one conditional linear inequality, as well as
for termination over the rationals, for example. This will be reported elsewhere.

4 Automated generation of ANT loci

In this section we show how we generate automatically and exactly the ANT Locus,
i.e., the set of all ANT points for linear diagonalizable programs over the reals.

We represent symbolically the computed ANT Locus by a semi-linear space de-
fined by linear equalities and inequalities. Consider the program P (A, v) : while (<
v, x >> 0), {x := Ax}. The study of ANT sets depends on the spectrum of A.
Recall the introductory discussion and Definition 2.1, at Section 2.

Proposition 4.1. For x in E, and k ≥ 1, the scalar product < v,Ak(x) > is equal
to ∑

λ∈Spec(A)

λk < v, xλ >=
∑

λ∈Spec(A)∗
λk < v, xλ > .

Proof. It is a direct consequence of the equality

Ak(xλ) = λkxλ.

4.1 The regular case

We first analyze the situation where A is what we call regular:

Definition 4.1. We say that A is regular, if

Spec(A) ∩
[
− Spec(A)

]
is an empty set, i.e.: if λ belongs to Spec(A), then −λ does not belong to Spec(A).

In this case, we make the following observation:

Proposition 4.2. Let µ be the nonzero eigenvalue of largest absolute value, if it
exists, such that < v, xµ > is nonzero. For k large, the quantity < v,Ak(x) > is
equivalent to

µk < v, xµ > .

10 R. Rebiha, A.V. Moura and N. Matringe

Proof. Indeed, we can write < v,Ak(x) > as

µk < v, xµ > +
∑

{λ,|λ|<|µ|}

λk < v, xλ >= µk(< v, xµ > +
∑

{λ,|λ|<|µ|}

λk

µk
< v, xλ >),

and λk

µk
approaches zero when k goes to infinity.

We then define the following sets.

Definition 4.2. For µ a positive eigenvalue of A, we define Sµ as follows:

Sµ = {x ∈ E,< v, xµ >> 0, < v, xλ >= 0 for |λ| > |µ|}

In order to obtain Sµ for all positive eigenvalues µ of A, one needs to calculate
< v, xµ >, and < v, xλ > for all eigenvalues λ such that |λ| > |µ|. For all eigenvalues
λ involved in the computation of Sµ, one also needs to evaluate the coefficients

cλ,i =< v, eλ,i >

for all eigenvectors eλ,i ∈ B and 1 ≤ i ≤ dλ.
Thus, we have

< v, xλ >=

dλ∑
i=1

cλ,ixλ,i.

Now, we only need to compute the coefficient xλ,i, which are those of the column
vector P−1x in Bc where P is the transformation matrix corresponding to B. See
Lemma 2.2.

We ca now state the following theorem, allowing the exact computation of the
ANT Locus for the regular case.

Theorem 4.1. The program P (A, v) is ANT on x if and only if x belongs to⋃
µ>0∈Spec(A)

Sµ.

Proof. Let x belong to E. If all < v, xλ > are zero for λ ∈ Spec(A), then <
v,Ak(x) >= 0 and x is not ANT . Otherwise, let µ be the eigenvalue of largest
absolute value, such that < v, xµ > is nonzero. Then, according to Proposition 4.2,
the sign of < v,Ak(x) > is the sign of µk < v, xµ > for k large. If µ is negative, this
sign will be alternatively positive and negative, depending on the parity of k, and x
is not ANT . If µ is positive, this sign will be the sign of < v, xµ >, hence x will be
ANT if and only if < v, xµ > is positive. This proves the result.

Example 4.1. (Running example) Consider the program P (A, v) depicted as follows:

Generating ANT for Linear Diagonalizable Programs 11

(i) Pseudo code:

while(x+y-2z>0){

x:= x-4y-4z;

y:= 8x-11y-8z;

z:= -8x+8y+5z;}

(ii) Associated matrices:

A =

 1 −4 −4
8 −11 −8
−8 8 5

, and v =

 1
1
−2

.

Step 1: Diagonalization of the matrix A:

P =

 1 1 1
2 1 0
−2 0 1

, D =

1 0 0
0 −3 0
0 0 −3

 and P−1 =

 1 −1 −1
−2 3 2
2 −2 −1

.

Using our notations, the obtained eigenvectors (i.e., the column vectors of P) are
denoted as follows:
e1,1 = (1, 2,−2)> ;
e−3,1 = (1, 1, 0)> ;
e−3,2 = (1, 0, 1)>.

Step 2: We compute Sµ for all positive µ ∈ Spec(A)∗:

• We compute first the coefficients cλ,i:
c1,1 =< v, e1,1 >=< (1, 1,−2)>, (1, 2,−2)> >= 7,

c−3,1 =< v, e−3,1 >=< (1, 1,−2)>, (1, 1, 0)> >= 2,

c−3,2 =< v, e−3,1 >=< (1, 1,−2)>, (1, 0, 1)> >= −1

• We compute the coefficient xλ,i, which are those of the column vector P−1 · u in
Bc, where u = (u1, u2, u3) is the vector encoding the initial variable values.

P−1.

u1
u2
u3

 =

 u1 − u2 − u3)
−2u1 + 3u2 + 2u3)

2u1 − 2u2 − u3)

 =

 x1,1
x−3,1
x−3,2

.

We can now proceed to the generation of the linear constraints defining a semi-
linear space describing symbolically and exactly Sµ.
< v, x1 >= c1,1x1,1 = 7(u1 − u2 − u3)
< v, x−3 >= c−3,1x−3,1 + c−3,2x−3,2 = −6u1 + 8u2 + 5u3)
Hence, we have: S1 = {u = (u1, u2, u3)

> ∈ E | (u1 − u2 − u3 > 0) ∧ (−6u1 +
8u2 + 5u3 = 0)}.

Step 3: We apply Theorem 4.1 to generate the ANT Locus. It reduces to the semi-
linear space
S1 = {u = (u1, u2, u3)

> ∈ E | (u1 − u2 − u3 > 0) ∧ (−6u1 + 8u2 + 5u3 = 0)}.

12 R. Rebiha, A.V. Moura and N. Matringe

4.2 The general case: handling linear diagonalizable pro-
grams

For the general case, in the asymptotic expansion of < v,Ak(x) > one can have
compensations between λk < v, xλ > and (−λ)k < v, xλ >, as these terms can be zero
when k is even, for instance, and of a well determined sign when k is odd. We thus
need to take care of this issue. To this end, we introduce the following notation.

Definition 4.3. If λ does not belong to Spec(A), for any x ∈ E, we write xλ = 0.

We have the following propositions, which give the asymptotic behavior of <
v,Ak(x) >.

Proposition 4.3. Let µ be the nonzero eigenvalue of largest absolute value, if it exists,
such that < v, x|µ| + x−|µ| > is nonzero. For k large, the quantity < v,A2k(x) > is
equivalent to

|µ|2k(< v, x|µ| + x−|µ| >).

Proof. Indeed, we can write < v,A2k(x) > as

µ2k(< v, x|µ| > + < v, x−|µ| >) +
∑

{|λ|,|λ|<|µ|}

λ2k(< v, x|λ| > + < v, x−|λ| >)

= µ2k(< v, x|µ| > + < v, x−|µ| >) +
∑

{|λ|,|λ|<|µ|}

λ2k

µ2k
(< v, x|λ| > + < v, x−|λ| >)).

and λk

µk
approaches to zero when k goes to infinity.

Proposition 4.4. Let µ be the nonzero eigenvalue of largest absolute value, if it exists,
such that < v, x|µ| − x−|µ| > is nonzero. For k large, the quantity < v,A2k+1(x) > is
equivalent to

|µ|2k+1(< v, x|µ| − x−|µ| >).

Proof. The proof is similar to the proof of Proposition 4.3.

As in the previous Section, we introduce the following relevant sets.

Definition 4.4. For |µ| in |Spec(A)∗|, we define the sets S0
|µ| and S1

|µ| as follows:

S0
|µ| = {x ∈ E,< v, x|µ| + x−|µ| >> 0, < v, x|λ| + x−|λ| >= 0 for |λ| > |µ|}, and

Generating ANT for Linear Diagonalizable Programs 13

S1
|µ| = {x ∈ E,< v, x|µ| − x−|µ| >> 0, < v, x|λ| − x−|λ| >= 0 for |λ| > |µ|}.

In order to compute the sets S0
|µ| and S1

|µ|, we obtain the coefficients

cλ,i =< v, eλ,i >

for all eigenvalues λ. If the λ appearing as index in the coefficient cλ,i is not an
eigenvalue, then we fix cλ,i = 0 and dλ = 0 (see Definition 4.3).

Thus, we have

< v, x|λ| + x−|λ| >=
∑d|λ|

i=1 c|λ|,ix|λ|,i +
∑d−|λ|

i=1 c−|λ|,ix−|λ|,i,

and < v, x|λ| − x−|λ| >=
∑d|λ|

i=1 c|λ|,ix|λ|,i −
∑d−|λ|

i=1 c−|λ|,ix−|λ|,i.

We finally obtain the following main theorem.

Theorem 4.2. The program P (A, v) is ANT on x if and only if x belongs to the set⋃
(|µ|,|µ′|)∈|Spec(A)∗|×|Spec(A)∗|

S0
|µ| ∩ S1

|µ′|.

Proof. It is obvious that x is ANT if and only if < v,A2k(x) > and < v,A2k+1(x) >
are both positive for k large. Now, reasoning as in the proof of Theorem 4.1, but using
Propositions 4.3 and 4.4 instead of Proposition 4.2, we obtain that < v,A2k(x) > is
positive for k large if and only if x belongs to S0

|µ| for some µ ∈ |Spec(A)∗|, and

that < v,A2k+1(x) > is positive for k large if and only if x belongs to S1
|µ′| for some

µ′ ∈ |Spec(A)∗|. The result follows.

The following two examples illustrate how Theorem 4.2 applies to different cases.

Example 4.2. (Running example) Consider the program P (A, v) depicted as follows:

(i) Pseudo code:

while (2x+3y-z>0){

x:=15x+18y-8z+6s-5t;

y:=5x+3y+z-t-3s;

z:=-4y+5z-4s-2t;

s:=-43x-46y+17z-14s+15t;

t:=26x+30y-12z+8s-10t;}

(ii) Associated matrices:

A =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

, v =


1
1
2
3
1

.

Step 1: Diagonalization of the matrix A:

P =


2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1

, D =


−3 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

 and P−1 =


−3 −3 1 −1 1
−1 −2 1 0 1
−5 −4 1 −1 2
10 10 −3 2 −4
−7 −6 1 −1 3

.

14 R. Rebiha, A.V. Moura and N. Matringe

We obtain the following eigenvectors written using our notation: e0,1 = (−1, 2, 2, 0, 1)>;
e1,1 = (1, 0,−1,−2, 2)>;
e2,1 = (1,−1,−2,−1, 1)>;
e−1,1 = (1, 0, 0,−1, 2)> and
e−3,1 = (2,−1,−2,−4, 2)>.

Step 2: Computing Sµ for all positive µ ∈ Spec(A)∗:

• Our algorithm first computes the coefficients cλ,i. We obtain :
c0,1 = 6, c1,1 = −5, c2,1 = −6, c−1,1 = 0 and c−3,1 = −13.

• Then, our algorithm computes the coefficients of the decomposition of the initial
variable values in B. They are those of the column vector P−1 · u in Bc where
u = (u1, u2, u3, u4, u5)

> is the vector encoding the initial variable values.

P−1.


u1
u2
u3
u4
u5

 =


−3u1 − 3u2 + u3 − u4 + u5
−u1 − 2u2 + u3 + u5

−5u1 − 4u2 + u3 − u4 + 2u5
10u1 + 10u2 − 3u3 + 2u4 − 4u5
−7u1 − 6u2 + u3 − u4 + 3u5

 =


x−3,1
x−1,1
x0,1
x1,1
x2,1

.

Now, the algorithm obtains all the non-zero terms appearing in the definition of S0
|λ|

and S1
|λ|:

< v, x|1| + x−|1| >= c1,1x1,1 = −5(10u1 + 10u2 − 3u3 + 2u4 − 4u5)
< v, x|2| + x−|2| >= c2,1x2,1 = −6(−7u1 − 6u2 + u3 − u4 + 3u5)
< v, x|−3| + x−|−3| >= c−3,1x−3,1 = −13(−3u1 − 3u2 + u3 − u4 + u5)
< v, x|−3| − x−|−3| >= −c−3,1x−3,1 = 13(−3u1 − 3u2 + u3 − u4 + u5)

All the sets S0
|λ| and S1

|λ| can now be computed exactly:

S0
|1| = {u ∈ E | 5(10u1 + 10u2 − 3u3 + 2u4 − 4u5) > 0 ∧ −6(−7u1 − 6u2 + u3 − u4 + 3u5) = 0 ∧

− 13(−3u1 − 3u2 + u3 − u4 + u5) = 0};
S1
|1| = {u ∈ E|5(10u1 + 10u2 − 3u3 + 2u4 − 4u5) > 0 ∧ −6(−7u1 − 6u2 + u3 − u4 + 3u5) = 0 ∧

13(−3u1 − 3u2 + u3 − u4 + u5) = 0};
S0
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ −13(−3u1 − 3u2 + u3 − u4 + u5) = 0};
S0
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ −13(−3u1 − 3u2 + u3 − u4 + u5) = 0};
S1
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ 13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S0
|−3| = {u ∈ E| − 13(−3u1 − 3u2 + u3 − u4 + u5) > 0};
S1
|−3| = {u ∈ E| 13(−3u1 − 3u2 + u3 − u4 + u5) > 0}.

Generating ANT for Linear Diagonalizable Programs 15

Step 3: We apply Theorem 4.2 to generate the ANT Locus:
The algorithm computes the following intersections:
S0
1 ∩ S1

1 , S0
1 ∩ S1

2 , S0
1 ∩ S1

3 , S0
2 ∩ S1

1 , S0
2 ∩ S1

2 , S0
2 ∩ S1

3 , S0
3 ∩ S1

1 , S0
3 ∩ S1

2 and S0
3 ∩ S1

1 .
In fact, the previous computational step already allows our algorithm to perform im-
plicit simplifications. For instance, it appears that
S0
|1| = S1

|1|, S
0
|1| = S1

|1| = S0
|−1| = S1

|−1|, S
0
|2| = S1

|2| and that S0
|−3| ∩ S1

|−3| is the empty
set.
According to Theorem 4.2, the ANT locus reduces to the following semi-linear space:

{u = (u1, u2, u3, u4, u5)
> ∈ E | − 10u1 − 10u2 + 3u3 − 2u4 + 4u5 > 0 ∧

− 7u1 − 6u2 + u3 − u4 + 3u5 = 0 ∧

− 3u1 − 3u2 + u3 − u4 + u5 = 0}
⋃

{u = (u1, u2, u3, u4, u5)
> ∈ E | − 10u1 − 10u2 + 3u3 − 2u4 + 4u5 > 0 ∧

− 3u1 − 3u2 + u3 − u4 + u5) > 0 ∧

− 7u1 − 6u2 + u3 − u4 + 3u5 = 0}
⋃

{u = (u1, u2, u3, u4, u5)
> ∈ E | 7u1 + 6u2 − u3 + u4 − 3u5 > 0 ∧

− 3u1 − 3u2 + u3 − u4 + u5 = 0}.

Example 4.3. (Motivating example) Consider again the program P (A, v) depicted
in Section 1, Example 1.1. The associated matrices are:

A =

 0 1 1
−1

2
3
2
−1

2
3
2
−3

2
1
2

, and v =

 2
3
−1

.

Step 1: Diagonalization of the matrix A:

P =

1 −1 0
1 0 1
0 1 −1

, D =

1 0 0
0 −1 0
0 0 2

 and P−1 =

 1/2 1/2 1/2
−1/2 1/2 1/2
−1/2 1/2 −1/2

.

Using our notations, the eigenvectors (i.e., the column vectors of P) are the following:
e1,1 = (1, 1, 0)>;
e−1,1 = (−1, 0, 1)> and
e2,1 = (0, 1,−1)>.

Step 2: We compute Sµ for all positive µ ∈ Spec(A)∗:

• We first compute the coefficients cλ,i:
c1,1 = 5, c−1,1 = −3 and c2,1 = 4.

• We compute the coefficient xλ,i, which are those of the column vector P−1u in
Bc where u = (u1, u2, u3)

> is the vector encoding the initial variable values.

16 R. Rebiha, A.V. Moura and N. Matringe

P−1.

u1u2
u3

 =

 1/2(u1 + u2 + u3)
1/2(−u1 + u2 + u3)
1/2(−u1 + u2 − u3)

 =

 x1,1
x−1,1
x2,1

.

We can now proceed to obtain the linear constraints defining a semi-linear space
describing symbolically and exactly Sµ.

< v, x|1| + x−|1| >= c1,1x1,1 + c−1,1x−1,1 = 4u1 + u2 + u3
< v, x|2| + x−|2| >= c2,1x2,1 = 2(−u1 + u2 − u3)
< v, x|1| − x−|1| >= c1,1x1,1 − c−1,1x−1,1 = u1 + 4u2 + 4u3
< v, x|2| − x−|2| >= c2,1x2,1 − c−2,1x−2,1 = 2(−u1 + u2 − u3).

Hence, we have:

S0
|1| = {u ∈ E| (4u1 + u2 + u3 > 0) ∧ (−u1 + u2 − u3 = 0)}
S1
|1| = {u ∈ E| (u1 + 4u2 + 4u3 > 0) ∧ (−u1 + u2 − u3 = 0)}
S0
|2| = S1

|2| = {u ∈ E| (−u1 + u2 − u3 > 0)}.

Step 3: We apply Theorem 4.2 to generate the ANT Locus:
The ANT locus reduces to

(S0
1 ∩ S1

1) ∪ S0
2 .

This gives the following semi-linear space:

{u = (u1, u2, u3)
> ∈ E | 4u1 + u2 + u3 > 0 ∧ u1 + 4u2 + 4u3 > 0 ∧ −u1 + u2 − u3 = 0} ∪

{u = (u1, u2, u3)
> ∈ E | − u1 + u2 − u3 > 0}.

5 Discussions

This work is complementary to our previous work [19], which dealt with termination
analysis. In [19] we first prove a sufficient condition for the termination of homo-
geneous linear programs. This statement was conjectured in the important work of
[21], where the first attempt to prove this result contains non trivial mistakes. As
we shown in [19], the actual proof of this sufficient condition requires expertise in
several independent mathematical fields. Also, the necessary condition proposed in
[21] does not apply as expected in practice. We then went to generalize the previ-
ous result and, to the best of our knowledge, we presented the first necessary and
sufficient condition (NSC, for short) for the termination of linear programs. In fact,
this NSC exhibits a complete decidability result for the class of linear programs on
all initial values. Moreover, departing from this NSC, we showed the scalability of
these approaches by demonstrating that one can directly extract a sound and com-
plete computational method, running in polynomial time complexity, to determine
termination or nontermination for linear programs. On the other hand, all other

Generating ANT for Linear Diagonalizable Programs 17

related and previous works mentioned in this paper do not provide any techniques
capable of generating automatically the set of initial input variable values for which a
loop does not terminate. The main contributions of this paper remain on a sound and
complete computational method to compute the set of input variable values for which
the programs do not terminate. The overall time complexity of our algorithm is also
of order O(n3). As can be seen, the main results, i.e., Theorems 4.1 and 4.2, provide
us with a direct symbolic representation of the ANT set. Even if those theorems are
rigorously stated and proofs are quite technical, they are really easy to apply: we only
need to compute the explicit terms S0

|µ| and S1
|µ′| in order to directly obtain a formula

representing exactly and symbolically the ANT set. In a same manner, we extended
this techniques to linear program not necessarily diagonalizable and we obtained sim-
ilar theoretical and practical results. As their associated proofs are more technical,
they would required more space to be fully expressed and we left them for an ensuing
report. In other more recent work on termination static analysis for programs over
the rationals or the integers with several conditional linear inequalities, we also show
that the notion ANT remains central.

6 Conclusion

We presented the new notion of asymptotically non-terminant initial variable values
for linear programs. Considering a linear diagonalizable program, our theoretical
results provided us with sound, complete and fast computational methods allow-
ing the automated generation of the sets of all asymptotically non-terminant initial
variable values, represented symbolically and exactly by a semi-linear space, e.g., con-
junctions and disjunctions of linear equalities and inequalities. Also, by taking the
complementary set of the semi-linear set of ANT initial variable values, we obtain
a precise under-approximation of the set of terminant initial variable values for the
(non -terminant) program. Actually, this type of method can be vastly generalized,
to tackle the termination and non-termination problem of linear programs not neces-
sarily diagonalizable, with more than one conditional linear inequality, on rational or
integer initial values, for instance. We leave this investigation for an ensuing report.

References

[1] Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for in-
teger linear-constraint loops. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’13, pages
51–62, New York, NY, USA, 2013. ACM.

18 R. Rebiha, A.V. Moura and N. Matringe

[2] Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination
of integer loops. In VMCAI, pages 72–87, 2012.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with
reachability. In In CAV, pages 491–504. Springer, 2005.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of
integer linear loops. In In CONCUR, pages 488–502. Springer-Verlag, 2005.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polyno-
mial programs. In In VMCAI’2005: Verification, Model Checking, and Abstract
Interpretation, volume 3385 of LNCS, pages 113–129. Springer, 2005.

[6] Mark Braverman. Termination of integer linear programs. In In Proc. CAV06,
LNCS 4144, pages 372–385. Springer, 2006.

[7] Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay. Termination proofs
for linear simple loops. In Proceedings of the 19th international conference
on Static Analysis, SAS’12, pages 422–438, Berlin, Heidelberg, 2012. Springer-
Verlag.

[8] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 2000.

[9] Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In
Proceedings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2001, pages 67–81, London, UK,
2001. Springer-Verlag.

[10] Michael A. Colón and Henny B. Sipma. Practical methods for proving program
termination. In In CAV2002: Computer Aided Verification, volume 2404 of
LNCS, pages 442–454. Springer, 2002.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs
for systems code. SIGPLAN Not., 41(6):415–426, June 2006.

[12] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

[13] Patrick Cousot and Radhia Cousot. An abstract interpretation framework for
termination. SIGPLAN Not., 47(1):245–258, January 2012.

[14] Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic
generation of ranking functions. In Workshop on Advances in Verification, pages
1–8, 2000.

Generating ANT for Linear Diagonalizable Programs 19

[15] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[16] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis
of linear ranking functions. In VMCAI, pages 239–251, 2004.

[17] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-
current systems in cesar. In Proceedings of the 5th International Symposium in
Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

[18] Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. A complete approach
for termination analysis of linear programs. Technical Report IC-13-08, Institute
of Computing, University of Campinas, February 2013.

[19] Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. Necessary and suffi-
cient condition for termination of linear programs. Technical Report IC-13-07,
Institute of Computing, University of Campinas, February 2013.

[20] Henny B. Sipma, Tomás E. Uribe, and Zohar Manna. Deductive model checking.
Form. Methods Syst. Des., 15(1):49–74, July 1999.

[21] Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled,
editors, Computer Aided Verification, 16th International Conference, CAV 2004,
Boston, MA, USA, volume 3114 of Lecture Notes in Computer Science, pages
70–82. Springer, 2004.

