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Abstract
The consolidated use of multiprocessors in the embedded systems designs

introduces new important challenges for system architects and hardware/soft-
ware designers. In particular, it becomes necessary to develop tools based on
new paradigms, able to deal with MPSoC complexities. Recent design method-
ologies and tools are focused on enhancing the design productivity by providing
a software development platform before the final MPSoC architecture details
are fixed. However, the simulation can only be efficiently implemented when
using a modeling and simulation engine that supports the system behavior
description in a high abstraction level. The lack of multiprocessor platforms
integrating both scalable hardware and software in order to design and evaluate
new methodologies and tools motivated us to develop MPSoCBench, which is a
benchmark composed by a scalable set of MPSoCs including four different ISAs
(PowerPC, MIPS, SPARC, and ARM), organized in platforms with 1, 2, 4, 8,
16, 32, or 64 cores, with different interconnections (router or NoCs), capable of
running 15 parallel version of software from well known parallel benchmarks.
The tool also provide power consumption estimation for MIPS and SPARC pro-
cessors. The benchmark sums 876 distinct configurations automated through
scripts.

1 Introduction

In the last decade, the adoption of Multiprocessor System-on-Chip (MPSoCs) in the
embedded systems scenario created several new design challenges, both in software
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and hardware implementations.
Considering the increasing device integration, the complexity of such designs and

the challenge of improving the performance of such projects establish modeling and
simulation of high level abstraction systems as an increasingly important research
area. Recent design methodologies and tools focus on enhancing the design produc-
tivity by providing a software development platform before the final MPSoC archi-
tecture details are fixed. However, the simulation can only be efficiently implemented
when using a modeling and simulation engine that supports the system behavior
description into high abstraction level [5, 12,15].

The MPSoCBench is a benchmark composed by a scalable set of MPSoCs to
enable the development and evaluation of new tools, methodologies and hardware
components. Each of the four supported processors (PowerPC, MIPS, SPARC, and
ARM) is used in 3 different MPSoC configurable and scalable platforms with 1, 2,
4, 8, 16, 32, or 64 cores, capable of running 11 parallel version of software from
SPLASH-2 [17] and ParMiBench [9]. Additionally, we have also designed 5 multi-
software applications, combining different software from ParMiBench and Mibench
benchmarks. The total combined size reaches 876 distinct configurations automated
through a Python script, which enables easy implementation of part or all of the
benchmark locally or for parallel execution on a Hyperthreading Condor (HTCondor)
cluster.

1.1 MPSoCBench goals

The configurable and extensible infrastructure of the MPSoCBench suite allows its
use in different scenarios, like:

• Implementation and evaluation of new tools or methodologies in MPSoC de-
signs, or comparisons between different tools in a similar environment;

• Development and monitoring design refinements for lower abstraction levels,
which we consider that is a important need in the Electronic System Level
designs;

• Evaluation and comparison of parallel applications using different techniques
for parallelization; and scalability characterization;

• Analysis and optimization of new hardware components, such as routers, buses,
NoCs, IPs, and wrappers, in a co-design environment;

• Comparisons among different techniques for power consumption estimation, and
dynamic characterization of program power consumption considering different
power models;
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• Power consumption analysis at the early stages of development and energy
efficiency optimization;

This report is organized as follows: Section 2 briefly explores the prior tools or
libraries related with our work and exposes how they compare to our main goals;
Section 3 describes the components available in MPSoCBench and how they are
organized. We present the main results of the MPSoCBench characterization in the
Section 4 and we show some specific details about how to use the benchmark in a
way to foster future usage and tool development in the Section 5. Finally, Section 6
concludes the work.

2 Related Work

Prior work on MPSoC platforms range from specific processor platforms like [5], where
the OpenRISC processor is the central part of the MPSoC that include SystemC
communication models (Whishbone bus).

The MPARM [4] is a highly configurable platform for ARM processors, modeled
in SystemC. Neither of them provides a set of scalable software like MPSoCBench.

The MultiFlex [14] environment is an application to platform mapping tool that
integrates heterogeneous parallel components (HW and SW) into a platform program-
ming environment. MultiFlex can be characterized as a tool, not a benchmark.

SoCLib [13] is an open platform for virtual prototyping of MPSoCs. The core of
the platform is a library of SystemC models for virtual components (IP cores). Al-
though there are many components available in SocLib design repositories, modeling
platforms containing multiple devices to evaluate MPSoCs demands a great effort
of joining them together. Neither of them includes a comprehensive set of scalable
software to run on the platforms.

We also cite the benchmarks that we adapted to run on the MPSoCBench sim-
ulation infrastructure. The SPLASH-2 [17] and ParMiBench [9] benchmarks have a
set of parallel softwares using POSIX Threads, able to use up to 16 threads; however,
they are just a software infrastructure, then they do not have hardware components
for co-design evaluation.

The lack of multi-processor platforms integrating both scalable hardware and soft-
ware to design and evaluate new methodologies and tools motivated us to develop
MPSoCBench.

3 MPSoCBench Components

The goal of this Section is to describe all tools and components available in MP-
SoCBench and how they are organized.
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3.1 Tools

SystemC [2] is a collection of C++ classes and templates that provides powerful
mechanisms to model system architecture with hardware timing, concurrency and
reactive behavior, allowing the creation of an executable specification of the system.

A virtual platform is typically constructed by several transaction-level models
(TLM) [1], which are a higher level representation of hardware behavior, focusing
on discrete events such as register reading and writing. Although TLM is language
independent, SystemC fits perfectly in its representation style by allowing adequate
abstraction levels and by providing elements to support isolation of computation and
communication.

ArchC [3] is an Architecture Description Language (ADL) following a SystemC
syntax style, which provides enough information in order to allow users to explore
and verify a (new or legacy) processor’s architecture by automatically generating not
only software tools for code generation and inspection (like assemblers, linkers, and
debuggers), but also executable processor models for platform representation [3, 15].

PowerSC is a SystemC extension aiming at the gathering of switching activity [10].
It is a complete framework designed to collect information from any SystemC func-
tional description. As ArchC generates a SystemC processor description, it is an
eligible candidate to PowerSC workflow, which abstracts from the user a large share
of the process. The acPower Library is a library of functions incorporated into ArchC,
developed to enable the power analysis of ArchC processor modules using the Pow-
erSC tool.

In our benchmark, we use ArchC 2.2 processor models already implemented and
validated, and peripherals developed with TLM 2.0 interface, running over SystemC
2.3.0 simulation kernel.

3.2 Description of the Components

We organize all software required to build platforms in a directory structure based on
ArchC Platform Manager (ACPM) to simplify the ArchC usage, making it easy to
reuse the components across distinct platforms [15], and we also provide a front-end
Python script based on the ACPM to allow easy selection and execution of single or
multiple platform and programs configurations. The directories available are:

• processors: Contains all ArchC processor models available: PowerPC, MIPS,
SPARC, and ARM, which are 32-bit versions of the PowerPC, MIPS-I, V8 version
of SPARC architecture, and ARMv5e instruction set, respectively. Section 3.3
describes each one of these processors in details.

• ip: Here we store the non-programmable platform components. MPSoCBench
provides a configurable tlm memory model, an external memory shared by all
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processors, connected by a TLM channel, pre-configured to 512MB; and a
tlm lock, a TLM component which acts as a hardware lock. Section 3.4 de-
scribes these peripherals with further details.

• is: Contains the available interconnection structures. MPSoCBench provides
two different devices: one simple router module, called tlm router, which es-
sentially consists of TLM ports to connect to the memory and lock devices,
followed by communication interfaces with each instantiated processor; and a
mesh based NoC using XY routing protocol, which can be used in a approxi-
mately timed mode or in a loosely timed mode. More details of these devices
are described in the Section 3.5.

• sw: This directory stores 15 different applications from MiBench [8], Par-
MiBench [9], and SPLASH-2 [17] benchmark suites adapted to execute in our
scalable parallel environment. Each application in this directory can be com-
piled for any of the available processor. Tasks are partitioned among processors
in runtime. Section 3.6 exposes the main characteristics about these applica-
tions.

• platforms: Contain the main platform description files which interconnect all
the required modules. Each platform connects a set of cores, a shared memory
tlm memory, a hardware lock device tlm lock, and one of the available intercon-
nection structure used to connect all platform components. The Figure 1 shows
an illustration of a virtual platform that we can build with this benchmark,
which is a mesh based NoC as interconnection; this platform is comprising a
set of 2 × 3 nodes, each one basically acting as a router, able to connect four
processors, memory and a lock device.

The hereinafter subsections describe each one of these components:

3.3 Processor Models

We make the source code of these models available and we use the appropriate Make-
file to create the simulator obeying the user specification, like the kind of channel that
must be used to communicate with the interconnection device or power consumption.

A brief description of the ArchC behavioral processor models follows:

PowerPC: is a RISC architecture that became famous for equipping Apple’s Mach-
intosh machines. Nowadays, PowerPC has a big family of processors both from
IBM and Motorola, that are widely used both on desktop and embedded sys-
tems. The ArchC PowerPC model implements the PowerPC 32 bits instruction
set, including ABI emulation.
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N0,0 N0,1 N0,2

N1,0 N1,1 N1,2

P1MEM LOCK

P2 P3 P4

Figure 1: An illustration of a platform designed as a 2×3 mesh

MIPS: is a well known RISC architecture that contains an integer unit plus a 32-
bit register bank and two special registers used for multiplication and division.
These models implement a MIPS-I ISA description, including delay slots and
ABI emulation.

SPARC: is another well known RISC architecture, which has specific features, like
register window, and a more complicated ISA if compared with the MIPS-I ISA.
This model implements the V8 version of the SPARC architecture, including
delay slots, register window and ABI emulation.

ARM: is a RISC architecture, and was inspired by Berkeley’s first papers on this
simple and fast architecture. The processor succeeded in the embedded market
because of its low power consumption characteristics, and today is the most
used embedded processor and is still in active development. Our ARM model
implements the ARMv5 instruction set, including ABI emulation.

3.4 Memory and Lock

We use a external shared memory that is connected with the master (the processors)
using TLM channels, pre-configured to 512MB, which is the minimum necessary to
run all the applications available in the suite, considering the inputs provided. We
have two versions of the code, depending on which interconnection device is used: the
simplest one uses TLM sc exports to receive transactions and to return its answers;
the most elaborate uses TLM 2.0 simple target socket, useful for implementing
approximately timed abstraction level simulation.
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Since that the main goal of MPSoCBench is to provide a infrastructure to par-
allel simulation, we include an IP that acts as a hardware lock, which is useful for
implementing mutexes, semaphores, conditional variables, and barriers. We use this
peripheral to implement a library that emulates the main functionalities of the POSIX
Pthreads.

As the memory, this component communicates with the masters using sc exports

or simple target socket channels, according to the parameters provided by the user.

3.5 Interconnection Devices

The interconnection components are responsible to connect the peripherals and the
processing units. We make available two different interconnection, which different
abstraction level. In both cases, the basic transport unit in this network is a TLM
2.0 generic payload.

Router: This component essentially consists of TLM channels to connect to the
memory and lock devices, followed by communication interfaces with each ins-
tantiated processor. The transaction is carried through TLM blocking transport
with time annotation. At the end of a transaction, we can use the annotated
time to update the simulation time, which is useful for a simulation in a loosely
timed abstraction level.

NoC: This component is a mesh based NoC using XY routing protocol, configurable
in runtime to be able to connect up to 64 cores, memory, lock and wrappers
for all components. The transport interface defines the simulation abstraction
level. We may choose between two different approaches: the blocking transport
characterizes the NoC loosely timed (NoC-LT) and the non-blocking transport
characterizes the NoC approximately timed (NoC-AT). This NoC is totally
configured in runtime through user parameters. The blocking or non-blocking
transport interfaces must be selected before the NoC is built. The main details
of these two different NoCs follows:

• NoC-LT: It is composed by a set of nodes, each one connected with a
wrapper. Each NoC node has North (N), East (E), South (S) and West
(W) sc ports to connect it with other nodes. Each node also has a sc port

object to connect it to the wrapper and a sc export channel to receive
packages from other nodes and from the wrapper.

• NoC-AT: The NoC-AT uses sockets, forward and backward transport in-
terfaces. Each NoC-AT node has North (N), East (E), South (S) and
West (W) simple initiator socket and simple target socket objects
to connect it with other nodes. Each node also has a local socket to connect
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Node i,j
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(sc_thread)
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Local 
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Figure 2: An example of the main components that are associated in order to compose the NoC-AT
mesh

it (simple initiator socket and simple target socket) to the wrap-
per. The main difference is that each one of the NoC-AT nodes has a
sc thread associated with it, it uses non-blocking transport methods and
it has two phases associated with the transaction.

The Figure 2 illustrates the main objects need to implement the NoC-AT.
Basically, a initiator is a processing unit and the targets are the IPs in
the platform. The communication starts with a request from the initiator
sc thread. The initiator creates the generic payload, sends the request
using the forward path and calls wait for an answer event. The wrapper
receives the request, creates extensions with routing information and puts
the package into the NoC. Then, the package passes through several nodes
until it reaches the target.

The backward path is similar. The target (in most of cases, the mem-
ory) updates the generic payload with the appropriate response, and sends
the request using the backward path. The package passes through sev-
eral nodes until it reaches the initiator. The initiator backward transport
method (nb transport bw()) notifies the answer event and unlocks the
sc thread which starts the transaction.

3.5.1 Approximately-timed coding style

The approximately-timed coding style is supported by the non-blocking transport in-
terface, which is appropriate for the use cases of architectural exploration and perfor-
mance analysis. The non-blocking transport interface provides for timing annotation
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Initiator Target

simulation time = 110ns

BEGIN_REQ

END_REQ

-, BEGIN_REQ, 0

TLM_UPDATED,END_REQ, 10ns

call

call

return

return

-, BEGIN_RESP, 0

simulation time = 150ns

TLM_COMPLETED, END_RESP,
5

simulation time = 155ns

BEGIN_RESP

END_RESP

simulation time = 100ns

Figure 3: An example of calling sequences to non-blocking transport

and for two distinct phases and timing points during the lifetime of a transaction.

In the protocol adopted in the the NoC-AT based models the transaction is broken
down into two distinct phases, with an explicit timing point marking the transition
between phases. There are timing points marking the beginning and the end of the
request and the beginning and the end of the response (BEGIN REQ, END REQ,
BEGIN RESP, END RESP). Also, each transport method returns one of these two
states - TLM UPDATED, TLM COMPLETED - which is useful to update the phase
properly.

The message sequence chart in Figures 3 illustrates various calling sequences to
non-blocking transport (nb transport fw or nb transport bw, depending on the
transaction direction). The arguments and return value passed to nb transport

are shown using the notation return, phase, delay, where return is the value returned
from the function call, phase is the value of the phase argument, and delay is the value
of the sc time argument. The notation ’-’ indicates that the value is unused. In our
infrastructure, a processor is just an initiator, the memory and lock are targets, and
each NoC node is both an initiator and a target.

This illustration use the phases of the base protocol as an example, that is, BE-
GIN REQ, END REQ and so on. With the approximately-timed coding style, a
transaction is passed back-and-forth twice between initiator and target.

If the recipient of an nb transport call can immediately calculate the next state
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of the transaction and the delay to the next timing point, it may return the new
state on return from nb transport. If the next timing point marks the end of the
transaction, the recipient can return either TLM UPDATED or TLM COMPLETED.
This applies to initiator and target alike.

With TLM UPDATED, the callee should update the transaction, the phase, and
the timing annotation. In Figure 3, the non-zero timing annotation argument passed
on return from the function calls indicates to the caller the delay between the phase
transition on the hop and the corresponding timing point.

Because processes are regularly yielding control to the scheduler in order to al-
low simulation time to advance, the approximately-timed coding style is expected to
simulate a lot more slowly than the loosely-timed coding style [1].

3.6 Applications

We have adapted 13 different applications from MiBench [8], ParMiBench [9] and
SPLASH-2 [17] benchmark suites to be configurable in runtime to execute in our
scalable parallel environment. Some of them does not run properly in all available
multicore platforms, due to limitations of the original implementation. The available
applications, their main characteristics and limitations follow:

• SHA: It implements the Secure Hash Algorithm, useful to generate digital
signatures used in the secure exchange of cryptographic keys; each processor
calculates the digest of a text from a different input file; all processors store the
generated data in a unique output file. This is an application from ParMiBench.

• Dijkstra: It calculates the all-pairs shortest paths in a graph represented by
an adjacency matrix, using a data decomposition strategy in such a way that
one processor handles one vertex to get its single-source shortest paths. This is
an application from ParMiBench.

• Stringsearch: It finds a pattern in a number of given phrases using the by
employing case sensitive or insensitive comparisons algorithms. The partitioning
strategy is to partition the entire pattern collection into a number of sub-pattern
collections according to the number of workers allocated. This is an application
from ParMiBench.

• Susan-corners: It is part of the original ParMiBench Susan application, which
has a set of an image recognition functionalities, useful for image recognition in
Magnetic Resonance Images of the brain; this application recognizes corners in
images, and is parallelized by using data decomposition. It may be allocation
problems running this benchmark in platforms with 64 cores, so we do not
consider this platform as a possible configuration to run Susan-corners. The
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original version of this application was able to run properly in up to 8 cores,
but we show that we can obtain correct output in platforms with 16 and 32
cores as well.

• Susan-edges: It recognizes edges in images, and it is parallelized by using data
decomposition. This is an application from ParMiBench. The same allocation
problems may happen in this benchmark. The original version of this applica-
tion was able to run properly in up to 8 cores, but we show that we can obtain
correct output in platforms with 16 and 32 cores as well.

• Susan-smoothing: It performs adjustments for threshold, brightness, and
image smoothness; it is parallelized by using data decomposition. This is an
application from ParMiBench, but unlike the others, its original version has the
limitation to running on up 8 cores. We chose do not significantly modify the
original variables or methods to guarantee the properly execution in platforms
with more cores. In order to not mischaracterize the application, we chose not to
modify significantly the original variables or methods to guarantee the properly
execution in platforms with more cores.

• Basicmath: It is useful for benchmarking mathematical calculation, like cubic
function solving, angle conversions from degrees to radians,and integer square
root; the parallelization is done by data partitioning, i.e., the input is partitioned
into different sets. This is an application from ParMiBench.

• FFT: A Fast Fourier Transform (FFT); the data set consists of the complex
data points to be transformed, and another complex data points referred to
as the roots of unity; communication occurs in three matrix transpose steps,
which require all-to-all interprocessor communication. This is an application
from SPLASH-2 and its original version has the limitation to running on up 16
cores.

• LU: The LU kernel factors a dense matrix into the product of a lower triangular
and an upper triangular matrix. The dense n × n matrix A is divided into an
arrays of blocks that are allocated locally to processors that own them. This
is an application from SPLASH-2 and its original version has the limitation to
running on up 16 cores.

• Water: This application evaluates forces and potentials that occur over time
in a system of water molecules. A process updates a local copy of the particle
accelerations as it computes them, and accumulates it into the shared copy once
at the end. This is an application from SPLASH-2 and its original version has
the limitation to running on up 16 cores; however, to run this application in
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a 16-core platform, it is necessary update the input size directly in the source
code, as indicated in the comments provided.

• Water-spatial: It solves the same problem as Water, but uses a more efficient
algorithm. This is an application from SPLASH-2 and its original version has
the limitation to running on up 16 cores.

• Multi p: This application is composed by four parallel applications from ParMiBench
compiled as an unique application adapted to run in parallel in multi-thread
environments (64-core with 16 threads each application; 32-core with 8 threads
each application and so on). The applications are: SHA, Stringsearch, Dijkstra,
and Basicmath. This multisoftware p application runs just in platforms with
more than 4 cores.

• Multi network automotive: This application is composed of four different
single-core applications from the Network and Automotive categories of the
Mibench [8] benchmark, compiled as a single application adapted to run on a
platform with four processors. The applications are: Dijkstra, Susan-corners,
Basicmath, and Qsort.

• Multi office telecomm: This application is composed of four different single-
core applications from the Office and Telecomm categories of the Mibench [8]
benchmark, compiled as a single application adapted to run on a platform with
four processors. The applications are: Stringsearch-PBM, Stringsearch-BMH,
ADPCM, and FFT.

• Multi security: This application is composed of four different single-core ap-
plications from the Security category of Mibench [8] benchmark, compiled as
a single application adapted to run on a platform with four processors. The
applications are: SHA, Rijndael-encoder, Rijndael-decoder, and Blowfish.

Considering that this simulation environment do not have a operating system
to coordinate the threads, this management is implemented through acPthread, a
PThread emulation library that can handle thread creation and termination functions,
barriers, mutual exclusion, semaphores, and conditional variables. These are the
necessary functions to execute the parallel benchmarks.

In order to enable the execution of the mentioned applications in the MPSoCBench
infrastructure, we put an extra code in each of them to include, initialize and use
some acPthread variables and functions. So, we do this tasks in a specific main()

function that must be executed before the original main function. This main function
is basically the same for all applications; The only change required in the application
is mechanism for passing its input/output arguments.
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3.7 Power Consumption Estimation

Energy efficiency evaluation is one of the main research topics in the embedded sys-
tems designs, so we include a power consumption model for SPARC and MIPS pro-
cessors, base on the Tiwari method [11,16].

ArchC SPARC and MIPS processor models were implemented based on the LEON
and PLASMA RTL models, which are a SPARCv8 and MIPS I compatible architec-
tures, respectively. Based on these implementations, we included, in MPSoCBench,
the PowerSC library and the acPower tool [6, 7, 11] to support power consumption
evaluation and energy profiling for multiprocessor platforms when using these two
processor models. This integration allows to address some issues, for example: to
characterize power consumption of platform processors during execution of a pro-
gram (or a set of programs), to detect power consumption bottlenecks or to compare
different architectures with respect to energy efficiency. After the simulation, the
MPSoCBench generates a report with power consumption information by each core
and also stores details of the estimates in files.

4 MPSoCBench Characterization

We performed our experiments on an Intel i7 860 2.8GHz, with 8 GB RAM, running
Ubuntu Linux 12.10 64 bits operating system, gcc 4.7 for the simulators and gcc 3.3.1
for the cross-compilers. We chose some possible configurations to characterize the
applications in the benchmark.

4.1 Simulation Time

The Tables 1 to 6 show the execution time of each application running on all available
multicore platforms, varying the processor model and the interconnection; each value
in the table is the average of three different simulations and the relationship between
standard deviation the values are between 0.4% and 8.6%. The values that were not
presented in the table correspond to invalid configurations, due to the limitations of
the parallelization technique of the original benchmark.

The simulation time increases as the number of processors in the platforms in-
creases, as expected since SystemC is limited to run on a single core, even if the
hardware contains more processing resources. We have divided all configurations into
three groups of applications according to their increase in time of simulation in rela-
tion to increases the number of processors; The weak scaling group shows the weak
scaling, and strong scaling shows strong scaling, and group Multi combines several
applications of the two previous groups; then, it is not classified as strong or weak
scaling. We can note that the simulation time increases for both application groups,
although the increase in the applications in weak scaling group is higher. There is
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Table 1: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the router interconnection device and PowerPC and MIPS processors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 2 3 5 11 21 56 139 2 3 5 10 21 54 121

lu 13 18 29 57 116 - - 11 16 25 21 103 - -

sha 1 2 3 7 14 36 127 1 2 4 8 17 45 146

water 25 38 54 73 303 - - 32 33 49 67 275 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 1 1 2 2 5 13 40 1 1 1 2 5 13 42

fft 24 32 51 93 173 - - 21 29 44 80 152 - -

stringsearch 19 19 20 21 23 28 45 29 29 30 30 31 35 44

susancorners 17 18 19 21 29 66 - 19 20 20 21 30 65 -

susanedges 33 42 48 53 59 114 - 35 44 50 55 58 109 -

susansmoothing 100 101 107 138 - - - 19 20 20 27 - - -

water-spatial 248 250 261 264 - - - 217 218 223 234 - - -

M
u
lt
i

multisoftware p - - 22 42 113 641 2170 - - 27 53 110 592 2046

multi office telecomm - - 68 - - - - - - 202 - - - -

multi net automotive - - 115 - - - - - - 69 - - - -

multi security - - 381 - - - - - - 355 - - - -

multi 8 - - - 542 - - - - - - 512 - - -

multi 16 - - - - 940 - - - - - - 729 - -

one main reason for the significant increase in simulation time of the applications in
the weak scaling group: each processor handles large and independent inputs, while
in applications in the strong scaling group, the same input is partitioned and assigned
to the available processors, reducing the job per core as the number of cores increases.

We have compared the simulation time on multicore platforms using the three
different interconnection mechanisms in multicore PowerPC platforms running 11
applications. Since that the Router is the simpler and faster interconnection, we
present the relation of the simulation time between the NoC-AT and the Router in
Figure 4 and between the NoC-LT and Router in Figure 5. We use the simulation
time using Router as the baseline in both cases.

The simulation time on platforms using the approximately timed coding style
increases faster than using loosely timed coding style and this is expected because
the large number of SystemC threads required to simulate the NoC nodes and wrap-
pers, and consequently, the large number of context exchange between them. The
Stringsearch benchmark presents the worst slowdown, due to the large number of
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Table 2: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the router interconnection device and SPARC and ARM processors

Applications SPARC ARM

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 2 6 10 17 36 78 192 2 3 9 10 21 48 133

lu 23 29 44 87 174 - - 26 33 49 94 188 - -

sha 1 2 3 7 16 42 143 1 2 4 9 20 52 174

water 40 38 52 72 297 - - 45 44 62 84 323 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 1 1 1 2 6 15 46 1 1 1 2 5 12 45

fft 32 43 66 119 215 - - 39 54 86 143 261 - -

stringsearch 21 22 22 23 24 28 38 29 29 29 30 31 35 45

susancorners 28 28 29 30 39 72 - 26 26 27 30 39 72 -

susanedges 83 104 118 143 136 221 - 57 69 78 84 90 160 -

susansmoothing 33 33 38 52 - - - 20 20 22 30 - - -

water-spatial 351 353 369 380 - - - 209 198 211 233 - - -

M
u
lt
i

multisoftware p - - 25 54 125 520 1707 - - 30 57 115 227 491

multi office telecomm - - 199 - - - - - - 100 - - - -

multi net automotive - - 87 - - - - - - 89 - - - -

multi security - - 348 - - - - - - 412 - - - -

multi 8 - - - 438 - - - - - - 555 - - -

multi 16 - - - - 560 - - - - - - 562 - -
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Table 3: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the NoC-LT and PowerPC and MIPS processors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 2 3 5 11 27 82 224 2 3 6 12 27 66 194

lu 22 31 54 121 272 - - 20 26 45 100 224 - -

sha 1 3 6 13 28 76 270 1 3 6 12 28 78 269

water 59 62 94 144 702 - - 51 52 79 118 623 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 1 2 2 5 11 32 81 1 2 2 3 8 25 91

fft 31 48 84 167 1058 - - 16 39 67 134 270 - -

stringsearch 34 35 36 40 47 64 125 51 50 51 57 65 80 128

susancorners 27 28 31 36 56 143 - 29 30 36 37 54 129 -

susanedges 56 71 90 117 139 314 - 59 77 85 111 121 270 -

susansmoothing 168 168 186 277 - - - 33 35 36 53 - - -

water-spatial 398 406 451 480 - - - 348 347 361 400 - - -

M
u
lt
i

multisoftware p - - 34 79 193 900 4041 - - 31 86 234 380 3743

multi office telecomm - - 97 - - - - - - 274 - - - -

multi net automotive - - 174 - - - - - - 108 - - - -

multi security - - 558 - - - - - - 507 - - - -

multi 8 - - - 828 - - - - - - 766 - - -

multi 16 - - - - 953 - - - - - - 1611 - -
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Table 4: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the router interconnection device and SPARC and ARM processors

Applications SPARC ARM

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 2 5 9 20 45 101 264 2 3 6 13 30 69 210

lu 33 48 74 169 380 - - 44 56 91 189 402 - -

sha 1 2 5 11 26 73 264 1 3 7 15 33 96 336

water 83 78 119 175 874 - - 110 118 173 242 1040 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 1 2 2 4 9 29 102 1 2 2 3 8 23 97

fft 38 57 94 185 375 - - 54 80 132 237 458 - -

stringsearch 37 37 39 43 49 67 120 49 48 50 56 61 80 -

susancorners 46 47 51 58 81 164 - 42 44 49 58 82 166 -

susanedges 125 160 203 361 376 522 - 91 119 149 185 204 443 -

susansmoothing 52 53 60 91 - - - 35 37 41 59 - - -

water-spatial 502 512 529 591 - - - 752 777 835 938 - - -

M
u
lt
i

multisoftware p - - 36 91 185 785 2279 - - 45 90 191 428 1014

multi office telecomm - - 250 - - - - - - 147 - - - -

multi net automotive - - 118 - - - - - - 140 - - - -

multi security - - 471 - - - - - - 581 - - - -

multi 8 - - - 994 - - - - - - 837 - - -

multi 16 - - - - 866 - - - - - - 938 - -
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Table 5: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the NoC-AT and PowerPC and MIPS processors

Applications PowerPC MIPS

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 6 14 33 78 205 510 1472 5 11 21 54 138 394 1531

lu 69 105 165 404 884 - - 50 78 123 276 622 - -

sha 1 15 34 96 287 1063 1169 1 15 35 97 296 1090 4905

water 166 205 319 483 2851 - - 168 193 299 466 2059 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 5 6 11 27 82 244 1022 5 6 12 25 64 247 1019

fft 96 165 265 569 1176 - - 73 130 206 415 871 - -

stringsearch 34 35 36 40 47 64 125 51 50 51 57 65 80 128

susancorners 27 28 31 36 56 143 - 29 30 36 37 54 129 -

susanedges 56 71 90 117 139 314 - 59 77 85 111 121 270 -

susansmoothing 168 168 186 277 - - - 33 35 36 53 - - -

water-spatial 398 406 451 480 - - - 348 347 361 400 - - -

M
u
lt
i

multisoftware p - - 34 79 193 900 4041 - - 31 86 234 380 3743

multi office telecomm - - 555 - - - - - - 1064 - - - -

multi net automotive - - 459 - - - - - - 436 - - - -

multi security - - 2837 - - - - - - 2634 - - - -

multi 8 - - - 3990 - - - - - - 4107 - - -

multi 16 - - - - 10861 - - - - - - 7533 - -
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Table 6: Average simulation time, in seconds, for three distinct execution of each software
on each platform using the NoC-AT and SPARC and ARM processors

Applications SPARC ARM

01 02 04 08 16 32 64 01 02 04 08 16 32 64

W
e
a
k

sc
a
li
n
g basicmath 6 15 26 65 133 258 1082 4 10 20 53 129 345 1197

lu 85 126 197 397 641 - - 179 262 437 1001 2347 - -

sha 1 17 34 93 287 1080 5540 2 15 47 98 293 1070 5462

water 152 179 265 406 1590 - - 448 542 852 1352 4867 - -

S
tr
o
n
g

sc
a
li
n
g

dijkstra 5 7 9 21 59 185 805 5 6 11 25 65 207 938

fft 120 197 320 613 1279 - - 224 371 643 1338 2183 - -

stringsearch 9 13 24 50 114 308 1065 134 163 199 285 430 766 1773

susancorners 143 152 192 249 458 1676 - 134 152 194 258 444 1289 -

susanedges 315 482 660 906 1160 2143 - 347 506 825 1821 2129 2743 -

susansmoothing 162 167 212 375 - - - 130 179 188 330 - - -

water-spatial 1055 1147 1301 1582 - - - 2328 2902 4280 5465 - - -

M
u
lt
i

multisoftware p - - 126 269 1456 3981 - - 194 448 1060 2694

multi office telecomm - - 984 - - - - - - 682 - - - -

multi net automotive - - 590 - - - - - - 673 - - - -

multi security - - 1977 - - - - - - 2977 - - - -

multi 8 - - - 4441 - - - - - - 4048 - - -

multi 16 - - - - 6334 - - - - - - 6171 - -
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memory access to read its input strings; the simulation time of this benchmark on
64-core platforms with NoC-AT as interconnection is 34× greater than on 64-core
platforms with Router.
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Figure 4: Relation between simulation time using NoC-AT and Router

4.2 Number of Instructions

Figures 6(a) and 6(b) characterize the number of executed instructions on a single-
core platform using all four processors, running applications with lower and higher
computational load, respectively. The four processor models have fundamental differ-
ences and specific optimizations that interfere directly in the number of instructions
executed by each of them.

In order to evaluate the traffic between the processor and other peripherals (mem-
ory and lock devices), we monitored the tlm router and counted the number of
requests from processors, in a multi-core PowerPC environment; the results are in
Figure 7(a). We omitted the number of router requests of the multisoftware s

application because its value is too high compared to others (4.57 billions). As we
expect, the behavior of the router requests are dictated by the application scalability.

4.3 Network Traffic and Simulation Time Advance

In order to evaluate the rate of requests or responses packages made by the applica-
tions and the traffic inside the network, we show in Table 4.3 the results of simulating
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four applications on multicore platforms with 16, 32, 64 ARM cores. We present the
total number of requests made by processors and the total number of hops. In this
context, the number of hops represents the number of devices in the request package
path (forward path) plus the number of devices in the response package path (back-
ward path). We choose four different applications: SHA and Basicmath are from the
weak scaling group and Stringsearch and Dijkstra are from the strong scaling group.

A SystemC-based simulator is driven by discrete events, so the scheduler advances
simulation time to the time of the next event in a global event list. Then, it runs any
processes due to run at that time or sensitive to that event. The processor models are
implemented as SystemC processes and they are pre-configured in such way to advance
simulation by 1 nanosecond per instruction, and each routing node is configured to
cause the same delay in each package routing. We can access the final simulation
time by calling the method sc time stamp() at the end of simulation. We also show
in Table 4.3 the final simulation time advance provided by the MPSoCBench reports
related to the same four applications running in ARM multicore platforms.

4.4 Energy Profiling

After the simulation, MPSoCBench generates a report with instruction count per core,
simulation time, and power consumption per core, when available. It also outputs
power consumption details, which can be used for power profiling as partially plotted
in Figures 8(a), 8(b), 9(a), and 9(b).
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Table 7: Number of requests to the network and hops per request in ARM multicore
platforms, running four applications

Applications Cores Requests Hops Average Advance
(in millions) (in millions) (Hops/Request) (milliseconds)

SHA
16 40 394 10 81
32 116 1392 12 232
64 431 7042 16 862

Basicmath
16 20 195 10 40
32 45 539 12 90
64 107 1773 16 214

Stringsearch
16 50 487 10 100
32 73 884 12 147
64 129 2144 13 259

Dijkstra
16 7 71 10 15
32 21 254 12 42
64 69 1145 16 138

The elementary difference between power consumption of the two cores in the
Figures 8(a), 9(a) and 9(b) is caused by the larger number of memory accesses to
allocate and initialize the input variables, this setup phase is executed by one of the
cores while the other is waiting in a barrier. In this case, we can identify different
phases performed by each core.

A further observation is that the power consumption of the cores in Figure 8(b)
reflects a large number of mathematical operations carried out over a small stati-
cally allocated amount of data. We intend to design power consumption models for
PowerPC and ARM in the future.

5 How to Use

The MPSoCBench execution can be controlled by the MPSoCBench Python script,
which has the following control parameters:

• -b or –build: to build simulators

• -r or –run: to run simulators

• -nb or –nobuild: to run without recompiling the models

• -pw or –power: to enable power consumption for SPARC and MIPS platforms
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• -p or –processor: to choose processor models

• -n or –numcores: to choose the number of cores (1,2,4,8,16,32,or 64)

• -s or –software: to choose the application

• -i or –interconnection: to choose the interconnection device

• -c or –condor: to enable execution on HTCondor

• -l or –clean: delete object files and the simulators previosly created

• -h or –help: help

This script creates a run-directory for each different platform and configures all
Makefiles required. Some of its configuration parameters accepts the all option to
make it easy to fully execute the benchmark. Some examples follow:

1. To build and run all programs in the 64-MIPS platform including power con-
sumption, using a NoC-LT as interconnection device:

$ ./MPSoCBench -r -s=all -p=mips -n=64 -pw -i=noc-lt

2. To build (without running) the Dijkstra benchmark in the 16-core platforms,
using all available processors and a router as interconnection device:

$ ./MPSoCBench -b -s=dijkstra -p=all -n=16 -i=router

3. To build and run the FFT benchmark in all multicore platforms, using the
SPARC processor model including power consumption estimation, and NoC-
AT as interconnection, able to run into a HTCondor cluster:

$ ./MPSoCBench -r -s=fft -p=sparc -pw -n=all -i=noc-at -c

4. To run all available configurations without unnecessary recompilation:

$ ./MPSoCBench -r -s=all -p=all -pw -n=all -i=all --nobuild
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6 Conclusion

This report introduced the open-source benchmark called MPSoCBench, which is a
scalable, configurable and extensible set of MPSoCs, useful to improve development
and evaluation of designs in the MPSoC ecosystem, using well known methodologies
and tools. MPSoCBench is composed of 3 different platforms, each with a different
interconnection device, easily configurable from 1 to 64 cores of 4 different available
processor models, capable of running 13 different parallel applications. The total
combined size reaches 876 distinct configurations.

We characterized the simulation time, instruction counts, bus traffic and power
consumption for different configurations. The benchmark is released as open-source
and it is available in two ways: a virtual machine with all infrastructure ready for
use, and as source code. The tutorials for installation of all tools are provided in the
MPSoCBench website (http://www.archc.org/benchs/MPSoCBench).
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