
�������������������� ��������������������������������������������������������������������������������������������
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

A LLVM Just-in-Time Compilation Cost
Analysis

Rafael Auler Edson Borin

Technical Report - IC-13-13 - Relatório Técnico

May - 2013 - Maio

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.



A LLVM Just-in-Time Compilation Cost Analysis

Rafael Auler∗ Edson Borin

Abstract

The compilation time and generated code quality are important factors of a Just-in-
Time (JIT) compilation Dynamic Binary Translation (DBT) system. In order to decide
which optimization level to apply, a good DBT must know in advance for how long it
will halt the execution system until the optimization finishes. If this time is known,
the system can make a better judgment on which subset of optimizations it should
use. Nevertheless, the algorithms used for code optimization and generation execute
a number of steps that is difficult to predict. The algorithms complexity in time is
dependent on a transitory input that changes every time a pass from the compilation
pipeline finishes. For worklist-based algorithms, the worst-case time and average-case
time may differ greatly, affecting the usefulness of an analytical approach to time esti-
mation. This technical report presents an analysis of the LLVM compilation cost and
proposes a model to predict this compilation cost as a function of code properties. We
use an empirical approach that provides an easy way to understand the behavior of code
generation performance and provide a quantitative analysis of the compilation time of
all C and C++ functions from the SPEC CPU2006 benchmarks. We also show that
the error of our final model is under 21% for 90% of the tests.

1 Introduction

Nowadays the computing world has several machine languages and, thus, options for which
a program may be compiled for. A program compiled to a specific machine language cannot
run on another processor, forcing the user to either recompile the software or use virtual
machine technology to emulate it, which involves the translation from one machine language
to another.

Recompilation is not an option if the source code is not available, which is frequently
the case for commercial software. Virtual machines, on the other hand, allow the same
program to execute on many different computer platforms: the program may be compiled
to run on a given processor, but an emulator is able to translate this program to run on
another system. In this sense, the definition of the virtual machine concept is a computing
platform that does not physically exist, but either mimics the behavior of an existing one
to be able to run programs compiled for it or abides to a higher level machine concept that
may never physically exist but is useful to represent programs in an easy way to translate
them to any real machine.

∗The author would like to acknowledge the support from FAPESP grant 09630/2011 and Microsoft
Research.

1



2 Auler and Borin

Virtual machines typically translate code on demand. In this case, they either use an
interpreter to simulate each program instruction or use a more time-expensive algorithm
to translate groups of instructions into efficient groups of host-machine instructions that
reproduce the same computation using the much faster physical processor. Furthermore,
many workloads exhibit code repetition patterns, loops, that dominate dynamic execution
times. In these cases, the expensive just-in-time compilation may yield better performance
because, despite the elevated compilation times, the compiled code speed is much higher
than that of interpretation, contributing to a lower overall emulation time as code that is
already compiled is reused.

It is not simple to adjust a just-in-time compiler – or a dynamic binary translator [3, 8]
when performing cross-ISA translations – to enable efficient virtual machines. There is
an important relationship of time spent during code generation and the quality of the
generated code. To increase performance of the virtual machine, the emulation manager
– the component in charge of deciding when to translate a program fragment and which
optimizations to apply – must correctly decide the most cost-effective optimizations to apply
to a program fragment based on its predicted future frequency of execution.

Typically DBT systems use a simple threshold that determines the execution frequency
a trace must reach to be compiled or to be further optimized. However, this is not as
effective as the model-based predictor, which weights the benefits and costs of compiling
using cost-estimation functions [3]. Therefore, a good DBT should know in advance the
cost of compilation – for how long it will halt the execution system until the optimization
finishes. If this time is known and if it can predict how many times the trace will repeat
itself in the execution, it can precisely determine whether it is worth or not to apply a given
set of optimizations.

Nevertheless, the algorithms used for code optimization and generation execute a number
of steps that is not trivial. The algorithms complexity in time is dependent on a transitory
input, which changes every time a pass from the compilation pipeline finishes. For worklist-
based algorithms, the worst-case time and average-case time may differ greatly, making
it difficult to build an analytical approach to time estimation that could actually provide
useful information to a DBT system.

This technical report presents an analysis of the LLVM compilation cost and proposes
a model to predict this compilation cost as a function of code properties. The proposed
predictor relies on a linear model, based on Ordinary Least Squares (OLS), that correlates
code properties (e.g. instructions counts) with compilation cost. This empirical approach
provides an easy way to understand the behavior of code generation with respect to run
time. We provide a quantitative analysis of the compilation time of all C and C++ functions
from the SPEC CPU2006 [14] benchmarks, and we finish with the presentation of a linear
model that is able to predict most inputs with error under 21%.

This technical report is organized as follows. Section 2 presents a brief motivation,
Section 3 presents the LLVM compiler infrastructure, which was used in our experiments,
Section 4 discusses the experimental framework, Section 5 presents the experimental results,
Section 6 discusses related work and Section 7 presents the conclusions.



A LLVM JIT Compilation Cost Analysis 3

2 Motivating Example

Suppose a virtual machine is emulating via interpretation the pseudo code in Figure 1. In
this example, we have a function call inside a loop in which we do not know how many
times it will be executed until run time. When the virtual machine reaches the function
call, it must decide whether to continue using the low startup cost but slow steady-state
interpretation techniques or to activate the expensive startup cost but fast steady-state
just-in-time compilation framework to translate the entire function to the host machine
language.

int boundary = global_var;

...

for (int I = 0, E = boundary; I < E; ++I) {

...

function(x);

}

JIT Engine

?

No Optimizations?

Standard Optimizations?

Aggressive Optimizations?

Figure 1: Example showing guest pseudo code and the virtual machine decision process for
emulation.

We can instrument this code to discover at run time how many times the loop will be
executed and thus extract a lower bound on how many times function() will be called. If
this number is sufficiently high, we may employ an optimized translation, since the amount
of time spent in just-in-time compilation will be paid off by the time gained when repeatedly
executing the optimized code.

However, it is difficult to utilize many important optimizations because their cost are
unknown and the system is not able to properly decide whether it is profitable to do so.
In this technical report, we analyze many LLVM optimization passes to discover how we
can better estimate for how long an optimization pass runs, which optimizations are more
time consuming and how we can use this information to leverage JIT systems to accurately
control code generation timings, providing a powerful technique to improve the JIT strategy.

3 The LLVM Framework

LLVA is a V-ISA (virtual ISA) [2], a class of ISAs that is not intended to be implemented
in hardware. Instead, LLVA was conceived to serve as an intermediate language that is well
suited for compiler optimizations and a framework for feedback directed optimizations that
enabled programs to increase its performance even after deployment. Later, LLVM [2], the
LLVA virtual machine, changed its focus and was leveraged to become a powerful open-
source static compiler used chiefly by Apple, rather than being used to support a language
in which programs are distributed.

Our experiments target the LLVM compiler infrastructure version 3.0. For a deeper
discussion on the issues involved in selecting this version, please refer to the Appendix.
LLVM is notable for its modularity and capability to be used in a virtual machine or DBT



4 Auler and Borin

framework. For instance, it is the first open-source compiler project to support writing the
program in intermediate language in a self-contained file [4], which can be later processed
by optimization and backend tools. This was essential to enable easy measurements of
specific parts of the compiler framework in which we were interested in order to discover
the behavior of just-in-time code generators.

Figure 2 depicts a diagram showing typical components of the LLVM framework and
how they are utilized to build a just-in-time virtual machine platform. Even though LLVM
can be used to build a static compiler, we focus on analyzing its JIT capabilities. Clang, the
compiler frontend, translates programs written in the C language to the LLVM intermediate
representation (IR). The LLVM IR is based on a three-address static single assignment
(SSA) [7] representation suitable for compiler target-independent optimizations. The LLVM
optimizer maps LLVM IR to LLVM IR, preserving program semantic but writing it in a
more efficient way. Last, the LLVM JIT engine lowers the three-address LLVM IR notation
to a DAG that is adequate to instruction selection. This translation process produces target
machine code, for example x86 code, which can be used to run functions of the C program
efficiently.

Program
C code Clang

I.R.

Optimizer

JIT
Machine Code

Figure 2: Diagram showing the usage of LLVM and its components as a just-in-time com-
piler.

Typically, LLVM performs method-based JIT compilation, translating each function
(or method) on demand as soon as it is called in program code. However, it is outside
the scope of this report to discuss method-based versus trace-based compilation, and we
concentrate on analyzing the program execution time of each compiler pass necessary to
the JIT compilation.

4 Methodology

4.1 Measuring the Just-in-Time Compilation Flow with Optimizations

Figure 3 shows a diagram explaining the experimental setup for our experiments. C/C++
SPEC CPU2006 benchmarks were compiled to LLVM bitcode, the intermediate language
representation readable by the LLVM suite, without using any kind of early optimizations.
The LLVM extract program, in charge of extracting a single function from the LLVM
bitcode and outputting it to a new LLVM bitcode file, was used to organize our experimental
inputs into separate functions. In this way, we could analyze JIT compilation time for each
SPEC CPU2006 function separately. This step finishes the input preparation.



A LLVM JIT Compilation Cost Analysis 5

Later, we measured the execution time of two important LLVM programs. The first
one is LLVM opt, responsible for reading an input LLVM bitcode, transforming the code
using target-independent optimizations and outputting optimized bitcode. The latter is
the LLVM llc, the LLVM compiler backend that converts LLVM bitcode to x86 assembly
language. Together, these two components form an optimizing JIT engine that is the subject
of analysis of our experiments.

These two programs are organized in passes, adhering to a classic compiler pipeline
concept in which the current optimization pass works using as input the output of the
preceding pass. After generating a LLVM bitcode file for each function of C/C++ SPEC
CPU2006 benchmarks, we run all opt passes that are activated with the “-O2” flag followed
by all llc passes that are activated by using the same flag in command line. The result is
the wall time for each individual pass in each individual SPEC function.

SPEC Program
C/C++ code

Clang/Clang++
(No optimizations)

Unoptimized LLVM I.R.

llvm-extract

LLVM I.R.
containing

one
function

Optimizer opt

-O2 (Pass Times
Collected)

Backend llc -O2

(Pass Times
Collected)

Experimental Setup

Time Measurements

Figure 3: Experimental setup diagram for opt -O2 and llc -O2 passes measurements.

4.1.1 Measuring Small Time Deltas

In our experiments we are interested in measuring time as the number of host cycles spent
in code translation. To do so, we adapted the LLVM framework to time each opt and
llc pass. When the pass starts, an Intel Core2 hardware performance counter is read to
determine the current cycle count since the processor started. After the pass ends, the
HPC is read once again and the delta is used to estimate, in processor cycles, the time
spent during a code optimization pass.

It may be complicated to measure and validate run times as small as the time needed
to perform a single optimization pass on a single function. The time unit used subjects
our data to high variability due to systematic errors introduced with operating system side
activities. To ameliorate these problems, we repeat every measurement 10 times, discard
two outliers and calculate the standard deviation.

We performed our experiments on an Intel Core2Quad Q6600 2.4GHz system with



6 Auler and Borin

4GB of RAM running Ubuntu 10.04. We booted Linux with the bash shell as the init
process, which creates a Linux environment with only one user process (the shell), to run
our experiments without unnecessary process switching activity that could disturb our time
measurements.

5 Results

5.1 Predicting Optimization Passes Timings Using a Single Predictor
Variable

We begin analyzing our data by assessing the efficiency of very simple models based on
a single predictor variable and explore their limitations. Figure 4 presents a histogram of
SPEC CPU2006 functions by its size, in number of instructions. Since our report focus on
the LLVM infrastructure, we will henceforth refer to instructions as the number of LLVM
intermediate representation instructions that compose the functions.

Roughly 90% of functions have less than 100 instructions of size. This is an important
observation because the run time necessary to compile very large functions may be very
different and difficult to incorporate into the model. In linear models, big functions have
a high predictor value and frequently a high leverage, possibly hindering the quality of
otherwise good linear fits for small-sized functions. For this reason we will use the strategy
of building segregated linear models: one for the majority of the functions (less than 100
instructions in size) and another for the remaining functions (larger than or equal to 100
instructions).

Function size in number of instructions (up to 500)

F
re

qu
en

cy

0 100 200 300 400 500

0
50

00
15

00
0

25
00

0

Figure 4: A histogram of SPEC CPU2006 functions sizes, in instructions.

Seeking to design a linear model that predicts the compilation time, we first try to fit
optimization pass times (the model response) with the size of the functions being compiled
(the predictor), and we assess the feasibility of building such a simple prediction model.



A LLVM JIT Compilation Cost Analysis 7

Our size criteria is the number of instructions of the function being compiled. In order to
do this, we applied the Ordinary Least Squares (OLS) [20] linear regression technique to
predict each execution pass times and measured the R2 quantity for each pass, the coefficient
of determination, which provides a ratio of the performance of the linear model for which
the number of instructions of the function is known in advance over the performance of a
crude model using the constant function of the average of the time spent in all cases as
a predictor. The coefficient of determination ranges from 0, no fit, to 1, fits perfectly a
linear combination of the predictor and a constant intercept value. Even though our data
exhibit some level of heteroscedasticity [20], which violates the assumptions to correctly use
statistical tests that depend on constant residual variance, this does not corrupt the R2

values per se nor the calculated predictor coefficients [20]. Table 1 presents the top 8 best
fits using the R2 criterion.

Tool – Pass Name R2

opt – Aggressive Dead Code Elimination 0.902

opt – Early Common Subexpression Elimination 0.895

opt – Sparse Conditional Constant Propagation 0.882

opt – Lower expect Intrinsics 0.833

llc – Calculate Spill Weights 0.817

opt – Module Verifier 0.802

opt – Reassociate Expressions 0.787

llc – DAG to DAG Instruction Selection 0.739

Table 1: The top 8 optimization and compilation passes whose run times are most easily
predictable using a linear model of the size of the function being compiled, in number of
instructions, according to the R2 criterion.

We measured 98 opt and llc passes, and 38 of them had R2 lower than 0.5. These
results show that estimating pass execution times using only the size of the input function
(the function being compiled) may lead to poor models.

Figure 5 shows two graphs with the execution times versus input function size for the
Aggressive Dead Code Elimination (ADCE) opt pass. In the first version of this graph, we
show all 72,000 C/C++ SPEC CPU2006 functions and after a visual inspection, we may
say that the linear model fits the data except for an outlier. However, since the majority
of functions have less than 100 instructions, this first graph makes it difficult to visualize
the most dense and important portion, and to address this problem the second graph focus
on these functions with less than 100 instructions. The marks are colored with additional
information to help us understand the effects of the number of loops in the time of this
optimization. Blue marks are functions with no loops, yellow marks are functions with 1
loop etc. Notice that on the first graph, since a larger set of functions are considered, this
range is much greater (from 1 to 60 loops).

Analyzing the second graph (size < 100), the functions seem to be more easily pre-
dictable if they have 1 loop. The graph also suggests an inflection point because larger
functions are frequently underestimated by the model while shorter ones are not. This may



8 Auler and Borin

Figure 5: The optimization time, in cycles, required to perform aggressive dead code elim-
ination versus the size of the function, in instructions. The first graph shows all 72.000
C/C++ SPEC CPU2006 functions and the second shows only the more dense region of
63.730 functions smaller than 100 instructions.

be addressed by adding a quadratic predictor to our model and, indeed, R2 scores for ADCE
improve by adding the size squared as a parameter.

In Figure 6 we present the graphs for other optimizations that have among the best
correlation factors between their run time and the size of the input function. These graphs
expose a big data variance, and although they suggest that it may not be difficult to make
a rough prediction of their execution time using a single predictor variable, there is still
room to improve the accuracy. For example it is possible to see in Figure 6 (b) that the
model misses the trend for small functions due to high leverages that forces the curve to fit
larger functions, as commented earlier. In Figures 6 (a), (c) and (d) we see an exacerbated
heteroscedascity – to use statistical parameters in this kind of fit, it is important to rebuild
the linear model using log versions of the values, which helps in reducing our kind of non-
constant variance. In Figure 6 (d) we see a typical case in which a simple predictor fails to
model accurately: two clusters that need additional predictor variables to be separated.

Passes that depend on control flow information, such as loop-based passes, tend to be
poorly predicted by the simple model that is based solely on the instruction count. The
graph in Figure 7 for the Loop Strength Reduction pass demonstrates this in practice. This
bad fit has R2 ≈ 0.10.



A LLVM JIT Compilation Cost Analysis 9

(a) Instruction Selection

(b) Early Common Subexpression Elimination

(c) Sparse Conditional Constant Propagation

(d) Reassociate Expressions

Figure 6: Graphs showing the relationship of the size of functions and the time required to
run optimizations on them.



10 Auler and Borin

Figure 7: An example of poor correlation between optimization time and size of the input
function. It is possible to argue that the Loop Strength Reduction has a stronger dependence
on the number of loops rather than the number of instructions.

5.1.1 Sparse Conditional Propagation Case Analysis

Even for those optimizations with the best correlation factors between their run time and
the size of their input, the observed variance is high. In the next paragraphs we focus on
an analysis of the causes of high variance in the model of the Sparse Conditional Constant
Propagation (SCCP) pass.

Sparse Conditional Constant Propagation run times, in cycles, for functions of size equal to 35 instructions

F
re

qu
en

cy

0 10000 20000 30000 40000 50000

0
10

20
30

40
50

Figure 8: A histogram of SPEC CPU2006 functions with size equal to 35 instructions
indicating that the sparse conditional propagation pass took different times to finish.

The histogram in Figure 8 shows SCCP run times when optimizing functions of 35
instructions of size. Ideally, all points should be concentrated around the 24,000 bin, since
the linear regression model predicts a function of 35 instructions to take 24,185 cycles in
the SCCP pass.

The lowest point, representing the largest negative residual or the fastest case of SCCP,



A LLVM JIT Compilation Cost Analysis 11

belongs to a libboost function used in the dealII benchmark, taking 8.709 cycles to optimize
35 instructions. This function is a wrapper of 11 arguments that uses 11 stack allocation
instructions, 11 stores to put the arguments into these positions, 11 load instructions to
load back these same values to a SSA register, a call instruction to the wrapped function
and a return instruction. The fastest case of functions with 35 instructions, therefore, is a
single basic block function without loops.

One case representing points from the upper quartile is a gcc function with 9 basic
blocks and 1 loop, requiring 38.000 cycles to optimize it. Due to the unoptimized nature of
the LLVM bitcode used, most of basic blocks in this function are unnecessary. The function
has a single argument. The comparison of these two extremes show that it is hard to model
time variations using a single predictor variable because of the different composition of the
functions – a wrapper function is extremely simple and most optimizations would quickly
dismiss it as a good candidate for optimization.

5.2 Correlation Study

Our experiment records the time of LLVM optimization passes, but it also stores additional
information from the input functions, garnered with a simple tool that uses the LLVM
library to read the functions and its attributes. They are all parameters known a priori
that may help guess the run times of passes. We recorded, for each function, its number of
basic blocks, the number of loops it has, the maximum nesting level of loops, the number of
arguments and also the number of occurrences of each instruction type. For example, the
400.perlbench function Perl allocmy, which is in charge of helping allocation of memory
space at Perl parse time, has 207 instructions, 40 basic blocks, only 1 loop and therefore
its maximum nesting level is also 1 and receives 1 argument, the name of the object to
be allocated. We also record the frequency of each instruction type for this instruction,
finishing the set of information we know before compilation.

We also record the number of host machine cycles spent in each pass and these compose
the set of information known a posteriori. We then performed hierarchical clustering of
the pairwise correlation of parameters and found that although some optimizations run
times correlates to a priori information, others are correlated with other optimizations run
times, suggesting that it is possible to use optimization times as predictor variables to
other optimization run times. For example, Figure 9 shows the graph of the number of
cycles spent in Live Variable Analysis versus the number of cycles spent in the Live Interval
Analysis pass, and we see that they share a strong dependence on each other.

This opens the possibility to a heuristic that is able to guess if the remaining compilation
time will be big or small based on the tallied run time. We could use the execution time
of early optimization passes to improve the predictor accuracy, enabling better compilation
decisions on the fly. For example, the JIT system could decide to stop optimizing if it
predicts the later optimization phases would take too long. Also, the system could add new
optimization passes into the flow if it predicts they will run quickly. Such a possibility is
illustrated in the diagram in Figure 10. Even though in our experiments the optimizations
that can be predicted by using the run time of previous optimizations did not spend a
fraction of the total compilation time large enough to yield substantial improvements in



12 Auler and Borin

Figure 9: Live Variable Analysis versus Live Interval Analysis

Unoptimized Function

Simplify CFG Early CSE

Reassociate
Expressions

Sparse Conditional
Constant Propagation

Instruction Selection Code Emission

Quit and back
to interpretation

Current path

Option 1

Option 2

Quit

We are here. Which
option is the best?

?

Figure 10: Hypothetical scenario of dynamic adaptive optimization scheduling.



A LLVM JIT Compilation Cost Analysis 13

our total compilation time model, this could be investigated in other scenarios and we leave
this as future work.

llc
_S

ta
ck

_S
lo

t_
C

ol
or

in
g

ud
iv

m
ul

_
su

b_ P
H

I
F

pT
ru

nc
sr

em sd
iv

llc
_I

ns
er

t_
st

ac
k_

pr
ot

ec
to

rs
llc

_M
ac

hi
ne

_M
od

ul
e_

In
fo

ra
tio

n
llc

_C
re

at
e_

G
ar

ba
ge

_C
ol

le
ct

or
_M

od
ul

e_
M

et
ad

at
a

llc
_D

el
et

e_
G

ar
ba

ge
_C

ol
le

ct
or

_I
nf

or
m

at
io

n
llc

_L
ow

er
_G

ar
ba

ge
_C

ol
le

ct
io

n_
In

st
ru

ct
io

ns
llc

_L
oc

al
_S

ta
ck

_S
lo

t_
A

llo
ca

tio
n

un
re

ac
ha

bl
e

ad
d_

ur
em

P
tr

To
In

t
ar

gu
m

en
to

s
B

itC
as

t
Ic

m
p

F
P

E
xt

In
tT

oP
tr

al
lo

ca
xo

r_
ls

hr
S

IT
oF

P
an

d_
fm

ul
fr

em
llc

_L
oo

p_
S

tr
en

gt
h_

R
ed

uc
tio

n
F

cm
p

fd
iv

in
vo

ke
llc

_S
im

pl
e_

R
eg

is
te

r_
C

oa
le

sc
in

g
tr

un
c_

llc
_L

iv
e_

S
ta

ck
_S

lo
t_

A
na

ly
si

s
llc

_G
re

ed
y_

R
eg

is
te

r_
A

llo
ca

to
r

as
hr

llc
_O

pt
im

iz
e_

fo
r_

co
de

_g
en

er
at

io
n

or
_

C
al

l_
sw

itc
h

llc
_E

xc
ep

tio
n_

ha
nd

lin
g_

pr
ep

ar
at

io
n

llc
_X

86
_P

IC
_G

lo
ba

l_
B

as
e_

R
eg

_I
ni

tia
liz

at
io

n
llc

_P
os

t_
R

A
_t

op
do

w
n_

lis
t_

la
te

nc
y_

sc
he

du
le

r
llc

_A
na

ly
ze

_M
ac

hi
ne

_C
od

e_
F

or
_G

ar
ba

ge
_C

ol
le

ct
io

n
llc

_S
pi

ll_
C

od
e_

P
la

ce
m

en
t_

A
na

ly
si

s
F

P
To

S
I

llc
_V

ir
tu

al
_R

eg
is

te
r_

M
ap

lo
ad

_
fs

ub
U

IT
oF

P
llc

_C
od

e_
P

la
ce

m
en

t_
O

pt
im

iz
er

lo
op

_n
es

tin
g

nu
m

_l
oo

ps
fa

dd
llc

_S
ca

la
r_

E
vo

lu
tio

n_
A

na
ly

si
s

llc
_I

nd
uc

tio
n_

V
ar

ia
bl

e_
U

se
rs

llc
_C

on
tr

ol
_F

lo
w

_O
pt

im
iz

er
llc

_E
lim

in
at

e_
P

H
I_

no
de

s_
fo

r_
re

gi
st

er
_a

llo
ca

tio
n

S
el

ec
t_ br

llc
_T

w
oA

dd
re

ss
_i

ns
tr

uc
tio

n_
pa

ss
st

or
e_

in
sc

ou
nt

llc
_M

ac
hi

ne
_I

ns
tr

uc
tio

n_
LI

C
M

llc
_C

an
on

ic
al

iz
e_

na
tu

ra
l_

lo
op

s
llc

_O
pt

im
iz

e_
m

ac
hi

ne
_i

ns
tr

uc
tio

n_
P

H
Is

llc
_M

ac
hi

ne
_N

at
ur

al
_L

oo
p_

C
on

st
ru

ct
io

n
llc

_N
at

ur
al

_L
oo

p_
In

fo
rm

at
io

n
ge

p
llc

_M
od

ul
e_

V
er

ifi
er

llc
_C

al
cu

la
te

_s
pi

ll_
w

ei
gh

ts
llc

_S
S

E
_e

xe
cu

tio
n_

do
m

ai
n_

fix
up

llc
_S

lo
t_

in
de

x_
nu

m
be

rin
g

llc
_X

86
_M

ax
im

al
_S

ta
ck

_A
lig

nm
en

t_
C

he
ck

llc
_X

86
_A

T
T

S
ty

le
_A

ss
em

bl
y_

P
rin

te
r

llc
_M

ac
hi

ne
_C

om
m

on
_S

ub
ex

pr
es

si
on

_E
lim

in
at

io
n

llc
_P

ee
ph

ol
e_

O
pt

im
iz

at
io

ns
llc

_P
ro

lo
gu

eE
pi

lo
gu

e_
In

se
rt

io
n_

F
ra

m
e_

F
in

al
iz

at
io

n
llc

_P
os

tR
A

_p
se

ud
o_

in
st

ru
ct

io
n_

ex
pa

ns
io

llc
_M

ac
hi

ne
_c

od
e_

si
nk

in
g

llc
_E

xp
an

d_
IS

el
_P

se
ud

oi
ns

tr
uc

tio
ns

llc
_L

iv
e_

In
te

rv
al

_A
na

ly
si

s
llc

_L
iv

e_
V

ar
ia

bl
e_

A
na

ly
si

s
llc

_R
em

ov
e_

de
ad

_m
ac

hi
ne

_i
ns

tr
uc

tio
ns

llc
_P

ro
ce

ss
_I

m
pl

ic
it_

D
ef

in
iti

on
s

so
m

a_
llc

llc
_D

eb
ug

_V
ar

ia
bl

e_
A

na
ly

si
s

llc
_M

ac
hi

ne
_F

un
ct

io
n_

A
na

ly
si

s
llc

_T
ai

l_
D

up
lic

at
io

n
llc

_X
86

_F
P

_S
ta

ck
ifi

er
llc

_B
ra

nc
h_

P
ro

ba
bi

lit
y_

A
na

ly
si

s
llc

_P
re

lim
in

ar
y_

m
od

ul
e_

ve
rif

ic
at

io
n

bb
s

llc
_D

A
G

D
A

G
_I

ns
tr

uc
tio

n_
S

el
ec

tio
n

llc
_R

em
ov

e_
un

re
ac

ha
bl

e_
bl

oc
ks

_f
ro

m
_t

he
_C

F
G

llc
_B

un
dl

e_
M

ac
hi

ne
_C

F
G

_E
dg

es
llc

_R
em

ov
e_

un
re

ac
ha

bl
e_

m
ac

hi
ne

_b
as

ic
_b

lo
ck

s
llc

_M
ac

hi
ne

D
om

in
at

or
_T

re
e_

C
on

st
ru

ct
io

n
llc

_D
om

in
at

or
_T

re
e_

C
on

st
ru

ct
io

n

llc_Stack_Slot_Coloring
udiv
mul_
sub_
PHI
FpTrunc
srem
sdiv
llc_Insert_stack_protectors
llc_Machine_Module_Inforation
llc_Create_Garbage_Collector_Module_Metadata
llc_Delete_Garbage_Collector_Information
llc_Lower_Garbage_Collection_Instructions
llc_Local_Stack_Slot_Allocation
unreachable
add_
urem
PtrToInt
argumentos
BitCast
Icmp
FPExt
IntToPtr
alloca
xor_
lshr
SIToFP
and_
fmul
frem
llc_Loop_Strength_Reduction
Fcmp
fdiv
invoke
llc_Simple_Register_Coalescing
trunc_
llc_Live_Stack_Slot_Analysis
llc_Greedy_Register_Allocator
ashr
llc_Optimize_for_code_generation
or_
Call_
switch
llc_Exception_handling_preparation
llc_X86_PIC_Global_Base_Reg_Initialization
llc_Post_RA_topdown_list_latency_scheduler
llc_Analyze_Machine_Code_For_Garbage_Collection
llc_Spill_Code_Placement_Analysis
FPToSI
llc_Virtual_Register_Map
load_
fsub
UIToFP
llc_Code_Placement_Optimizer
loop_nesting
num_loops
fadd
llc_Scalar_Evolution_Analysis
llc_Induction_Variable_Users
llc_Control_Flow_Optimizer
llc_Eliminate_PHI_nodes_for_register_allocation
Select_
br
llc_TwoAddress_instruction_pass
store_
inscount
llc_Machine_Instruction_LICM
llc_Canonicalize_natural_loops
llc_Optimize_machine_instruction_PHIs
llc_Machine_Natural_Loop_Construction
llc_Natural_Loop_Information
gep
llc_Module_Verifier
llc_Calculate_spill_weights
llc_SSE_execution_domain_fixup
llc_Slot_index_numbering
llc_X86_Maximal_Stack_Alignment_Check
llc_X86_ATTStyle_Assembly_Printer
llc_Machine_Common_Subexpression_Elimination
llc_Peephole_Optimizations
llc_PrologueEpilogue_Insertion_Frame_Finalization
llc_PostRA_pseudo_instruction_expansio
llc_Machine_code_sinking
llc_Expand_ISel_Pseudoinstructions
llc_Live_Interval_Analysis
llc_Live_Variable_Analysis
llc_Remove_dead_machine_instructions
llc_Process_Implicit_Definitions
soma_llc
llc_Debug_Variable_Analysis
llc_Machine_Function_Analysis
llc_Tail_Duplication
llc_X86_FP_Stackifier
llc_Branch_Probability_Analysis
llc_Preliminary_module_verification
bbs
llc_DAGDAG_Instruction_Selection
llc_Remove_unreachable_blocks_from_the_CFG
llc_Bundle_Machine_CFG_Edges
llc_Remove_unreachable_machine_basic_blocks
llc_MachineDominator_Tree_Construction
llc_Dominator_Tree_Construction

Figure 11: Heat map exposing the correlation factors between pairs of variables, ranging
from dark red, low correlation, to bright yellow, high correlation. It also shows a dendrogram
to identify clusters of correlated parameters. The bright yellow cluster in the upper right
corner shows that many parameters are correlated with the number of instructions.

Naturally, not all passes are correlated with others and easily predictable, but our anal-
ysis reveals that more than half of all the a priori and a posteriori parameters we collected
share some correlation factor in larger or smaller groups of correlated parameters. Figure 11



14 Auler and Borin

shows a matrix with the correlation coefficient between pairs of variables, ranging from dark
red, the lowest correlation coefficients, to bright yellow, the highest ones. For example, the
number of instructions parameter is correlated with several optimizations, as revealed by
the bright yellow cluster in the upper right corner of the Figure 11. It is in accordance with
the analysis of the previous subsection, where we showed that the number of instructions
is a good predictor variable to many optimizations. However, there are examples of small
clusters of parameters that do not share correlation or share with a small group: the nesting
level parameter is only correlated with Canonicalize Natural Loops and the other number
of loops parameter.

In another interesting example, the number of occurrences of a peculiar instruction, the
LLVM unreachable instruction, which is used to inform the optimizer that a particular
portion of the code is not reachable, can also be used as a good indicative of the time required
to perform the Exception Handling Preparation pass. Therefore, the study of correlation
coefficients also provided valuable information to determine a priori parameters.

5.3 Predicting Optimization Passes Times Using Many Predictor Vari-
ables

In this final section, we focus on building a more accurate and complete model to compilation
passes run times, in contrast with the single predictor variable analyzed previously. To this
end, we focus on a reduced set of compilation passes: the llc LLVM backend passes.
We do not consider the passes of the opt LLVM target-independent optimizer because we
suppose that program binaries would already be optimized and applying target-independent
optimizations again would not improve code quality in our method-based JIT environment.

LLC Pass Name Run Time Coverage and Std. Deviation Maximum Minimum

DAG to DAG Instruction Selection 49.52%±7.14% 81.44% 7.31%
Assembly Printer 8.93%±2.67% 15.80% 0.44%

Greedy Register Allocator 8.59%±2.78% 70.13% 0.38%
Live Variable Analysis 4.19%±1.58% 19.75% 0.32%
Live Interval Analysis 2.85%±1.26% 21.74% 0.20%

Prologue/Epilogue Insertion 1.90%±0.66% 3.97% 0.05%
Virtual Register Map 1.79%±0.83% 4.14% 0.005%

Simple Register Coalescing 1.64%±0.81% 57.65% 0.28%
Optimize for Code Generation 1.61%±0.69% 12.28% 0.02%

Module Verifier 1.22%±0.37% 6.02% 0.10%
Dominator Tree Construction 1.22%±0.45% 2.64% 0.004%
Machine Function Analysis 1.13%±0.43% 2.42% 0.05%

Machine CSE 1.08%±0.24% 4.14% 0.10%
Machine Dominator Tree Construction 1.06%±0.41% 2.20% 0.004%

Control Flow Optimizer 1.03%±0.36% 23.54% 0.002%
Calculate Spill Weights 0.96%±0.56% 2.34% 0.01%

Two-Address Instruction Pass 0.93%±0.26% 6.69% 0.13%
Machine Instruction LICM 0.85%±0.35% 2.32% 0.003%
Loop Strength Reduction 0.77%±2.93% 81.99% 0%

Remove Dead Machine Instructions 0.64%±0.16% 1.25% 0.03%

Table 2: The top 20 optimization and compilation passes whose run times takes the largest
fraction of the total llc execution time, on average.



A LLVM JIT Compilation Cost Analysis 15

In Table 2 we show the top 20 llc passes that, on average, take the largest fractions
of the total llc execution time. It is noteworthy that the most time-consuming pass, the
instruction selection, has a strong dependence on the size of the input function according to
Table 1. Therefore it is important to accurately predict the instruction selection run time
because it takes, on average, almost half of the entire llc execution time.

The algorithm for the LLVM instruction selection pass iterates on the number of basic
blocks and later applies pattern matching on the instructions inside a basic block. The
time of the pattern matching depends on the type of the instructions. For instance, a call

instruction activates a lowering routine that converts the high level language call to the
calling conventions required for performing this operation on the host machine. On the
other hand, add instructions require a simpler node translation and less changes to the
Directed Acyclic Graph (DAG) representation.

We saw in our previous analysis that some parameters may have unexpected correlation
with the time of an optimization pass, that the quadratic term of the number of instructions
may improve the model quality and the importance of building separate models for each
range of function sizes. For example, we know that SPEC functions may range from 0 to
25,000 instructions of size, and attempting to fit a curve using the entire range results in
high R2 linear models because they can converge to model larger functions. The problem
lies in the fact that the improved fit of larger functions happens at the cost of a worse fit of
smaller functions. This effect can be seen comparing the pair of graphs for the instruction
selection and early CSE in Figure 6 – the fit seems good for all functions, but if we focus
on the dense region of less than 100 instructions, we see that the curve clearly misses the
trend. This is not a profitable trade off to our model because larger functions are rare and
often cannot be predicted using a simple extrapolation of the linear fit for smaller functions.
This happens due to the lack of a perfect model which would explain time variations for
the compilation of any function size.

Considering these points, to increase the accuracy of our predictions of the total time
needed to run all llc passes, we employ an OLS multivariate linear regression based on our
data. We have different models for functions smaller than 100 instructions and for those
greater than or equal to 100 instructions. The models use a large number of predictors:
the number of instructions, the number of instructions squared, number of loops, nesting
level of loops, number of basic blocks and the number of occurrences of each instruction
type – a model with 43 predictors. We are not worried in building smaller models because
all these parameters are easily computed in a simple pass on the input function. However,
we eliminate some instruction type predictors due to its low significance without affecting
the model quality, reaching 32 predictor variables and the intercept value. The selected
predictor variables are:

Basic Blocks, Instruction Count2, Instruction Count, Loops, Loop Nesting, In-
vokes, Switches, Truncs, GEPs, No. of Function Formal Arguments, BRs, Un-
reachables, Fadds, Fsubs, Muls, FMuls, Udivs, Ashrs, Ands, Ors, Xors, Loads,
Stores, FPToSIs, UIToFPs, SIToFPs, FpTruncs, PtrToInts, IntToPtrs, Bit-
Casts, Fcmps and Selects

To assess its capacity of predicting the total llc (LLVM backend) run time using these



16 Auler and Borin

predictors, we divided our data into training set and test set. The first model and most
important, which predicts the compilation time of functions smaller than 100 instructions, is
trained with a set of 50,000 SPEC functions and tested with a set of 13,730 SPEC functions.
The elements of these sets are randomly selected from a pool of 63,730 functions smaller
than 100 instructions. After training and testing the model, we calculated the percentage
of the error (error rate) in a single test using its expected value and the predicted value.
Figure 12 presents the density function of the error rates found when testing with 13,730
functions. We can see that the number of errors above 50% are negligible.

In Table 3, we present the percentiles of our error population. For example, the second
line shows that 10% of the errors are less than or equal to 1.69%. According to Table 3,
the 90th percentile is 20.74%, meaning that in 90% of the cases we can expect the model
to be accurate within ±20.74% of the predicted value. The coefficient of determination R2

for this model is 0.9163. In contrast, the simple linear model using a single predictor and
whose domain is all function sizes has a 90th percentile of 49.37% of error and a coefficient of
determination R2 of 0.5178. In our experience, any predictor that is related to the function
size roughly approximate the compilation time, but some extra parcels are important to
improve accuracy. For example, the number of instructions squared parcel improves the fit
considerably. Other parcels give minor improvements, but when combined together lead to
a substantial accuracy improvement.

Percentile Error Ratio

0% 0.002%
10% 1.69%
20% 3.47%
30% 5.30%
40% 7.05%
50% 9.14%
60% 11.59%
70% 13.92%
80% 16.79%
90% 20.74%
100% 155.39%

Table 3: Percentiles values for the error rates found when training the model that predicts
total compilation time for functions containing up to 100 instructions.

Trying to predict total compilation time for functions larger than 100 instructions is
much harder, since there are fewer data to train the linear model. The 90th percentile for
the model predicting such big functions is 58%, even though its coefficient of determination
R2 is 0.928.

By measuring errors as a percentage of the predicted values, we abide by the fact that
the data exhibits heteroscedacity: the variance is larger when the predicted compilation
time is larger.



A LLVM JIT Compilation Cost Analysis 17

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6

Error fraction

D
en

si
ty

Figure 12: Density function of the error rates for the model predicting total compilation
time for functions containing up to 100 instructions.

6 Related Work

Shaw Jr. et al. [19] proposed, in 1989, a linear fit model to predict ADA compilers run times
using software science parameters. These parameters and the basic equation was originally
created by Halstead [12] and aim at capturing software complexity to estimate the time
required by a programmer to complete its implementation. Shaw Jr. et al. extended this
work to estimate the time required by a compiler to generate machine code. Since it is a
generic model, it could be applied to any compiler and be used to compare compilers and
computers. We focus on separate functions smaller than 100 instructions, while Shaw Jr.
focus on entire compilation units. However, only the coefficient of determination R2 and the
F test are used to measure the model quality. We trained our model and tested on separate
data to evaluate its real predicting capacity on new data. Nevertheless, using the coefficient
of determination as a quality factor, our model fits with R2 = 0.9163 while the software
science best model had R2 = 0.8381 in one of the systems tested. We believe this difference
exists because our model focus on smaller compilation units (functions) and predictors tied
closely to LLVM. Similar to our analysis, Shaw Jr. et al. also observed heteroscedacity in
their data.

The Jikes RVM (Research Virtual Machine) [1], formerly an IBM internal project called
Jalapeño JVM, is a large open-source project and a Java [16] virtual machine implemen-
tation frequently used for research. Arnold et al. [3] describe an analytical model used by
Jikes’ Controller to determine when it is profitable to compile a given code region and in
which optimization level, similar to a multi-staged DBT which is able to apply different op-
timization levels. Arnold et al. measure the speed of compilation as the “compilation rate”
in bytecodes per millisecond calculated using the average over seven benchmarks. Thus,
they rely on a simple model using only the bytecode size as the linear model predictor.



18 Auler and Borin

They do not comment on the accuracy of their model.

An important related field of study is in determining the best set of optimizations to
apply on a given compilation unit [5, 6, 10, 13, 15, 17, 18]. Since this problem involves
the phase ordering problem, it is not trivial and typical solutions apply a fixed set of
optimizations to all programs. Cavazos et al. [5] were able to reduce the Jikes virtual
machine execution time on the SPECjvm98 benchmark by 29% on average. They employ
machine learning techniques to train the Jikes system to recognize methods and decide
which subset of optimizations to apply and its order. Pan et al. [17], Haneda et al. [13]
and Pekhimenko et al. [18] investigate methods to automatically find a good subset of
optimizations to apply to a given program.

Perkhimenko et al. apply a similar technique of Cavazos to a commercial static compiler,
reporting a compilation run time speed up by a factor of at least 2. To do this, a feature
vector – characteristics that describe a method – is computed from a program at compile
time (statically) for the commercial compiler Toronto Portable Optimizer (TPO), similar
to our technique of computing the predictor variables for the open-source LLVM compiler.
They also extract instruction types and loop-based parameters to describe methods, using
a simpler set of instruction types but a richer set of loop-based parameters. They do
not explore using other optimization times as features, and their model differs from ours
because it is built to predict a set of 24 values of optimization parameters that preserve
code quality while reducing compilation time. Our model focus on the similar problem of
predicting compilation time to help scheduling the right subset of optimizations in the JIT
compilation.

The GCC MILEPOST project [10] is an adaptive compiler framework that was created
for research purposes. MILEPOST relies on machine learning techniques to train the tra-
ditional open-source compiler GCC [9] in how to best optimize programs for configurable
heterogeneous embedded processors, controlling the internal optimization decisions of GCC
via the Interactive Compilation Interface (ICI). The feature vector used by MILEPOST
has 55 elements, while we use 32 predictor variables. The majority of the features used by
MILEPOST express CFG properties, as the number of edges in the CFG or the number of
basic blocks with a single successor, but they do not experimented with using other opti-
mization times as features. Using MILEPOST, Fursin et al. [10] were able to learn a model
that improved the performance of the MiBench [11] benchmark by 11%.

7 Conclusion

We present the results of an experiment aimed at assessing the LLVM compilation cost and
propose a model to predict the compilation cost. We measured the compilation time spent
in code generation and optimization of each SPEC CPU2006 function for C/C++ programs
when using the LLVM compiler infrastructure. In order to do this, we measured the time
required for each optimization pass separately. We analyzed if it is reasonable to model
the time spent in each optimization using a simple linear model based on function size
in number of instructions and found that, although the time spent in some optimizations
exhibit strong correlation with the number of instructions, this is not true for most passes



A LLVM JIT Compilation Cost Analysis 19

because they may depend on other parameters.

We gathered information about the number of basic blocks, number of instructions,
number of loops, nesting level of loops, number of formal arguments and an instruction type
histogram for each function and used a subset of these parameters as predictor variables
of a linear model to predict the total compilation time spent in the LLVM backend. We
also separated the model into two different curves, one for the majority of SPEC functions
which are smaller than 100 instructions and other for the rest. We found this model to
be more accurate than the simple linear model based solely on function size in number of
instructions, fitting it with R2 above 0.9. We tested the model prediction on functions that
were not used for training and found that in 90% of the tests the error was less than 20.74%
for small functions.

We show evidence that it is possible to predict the run time of some optimizations by
using the time of other optimizations as predictor variables, but in our experiments these
optimizations did not spend a fraction of the total compilation time large enough to yield
substantial improvements in our total compilation time model.

References

[1] Jikes RVM. http://jikesrvm.org. Accessed February 2013.

[2] V Adve, C Lattner, M Brukman, A Shukla, and B Gaeke. LLVA: a low-level virtual
instruction set architecture, 2003.

[3] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F Sweeney.
Adaptive optimization in the Jalapeno JVM. ACM SIGPLAN Notices, 35(10):47–65,
2000.

[4] Amy Brown and Greg Wilson. The Architecture of Open Source Applications. lulu.com,
2012.

[5] John Cavazos and Michael FP O’boyle. Method-specific dynamic compilation using
logistic regression. In ACM SIGPLAN Notices, volume 41, pages 229–240. ACM, 2006.

[6] Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steven Reeves, Devika Sub-
ramanian, Linda Torczon, and Todd Waterman. ACME: adaptive compilation made
efficient. In ACM SIGPLAN Notices, volume 40, pages 69–77. ACM, 2005.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.

[8] James C Dehnert, Brian K Grant, John P Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta Code Morphing Software: us-
ing speculation, recovery, and adaptive retranslation to address real-life challenges.
In Proceedings of the international symposium on Code generation and optimization:



20 Auler and Borin

feedback-directed and runtime optimization, pages 15–24. IEEE Computer Society,
2003.

[9] Free Software Foundation, Inc. Using the GNU compiler collection, Mar 2013. For
GCC version 4.9.0.

[10] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,
Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, et al.
MILEPOST GCC: machine learning based research compiler. In GCC Summit, 2008.

[11] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge,
and Richard B Brown. MiBench: A free, commercially representative embedded bench-
mark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop on, pages 3–14. IEEE, 2001.

[12] Maurice Howard Halstead. Elements of software science, volume 19. Elsevier New
York, 1977.

[13] Masayo Haneda, Peter MW Knijnenburg, and Harry AG Wijshoff. Automatic selection
of compiler options using non-parametric inferential statistics. In Parallel Architectures
and Compilation Techniques, 2005. PACT 2005. 14th International Conference on,
pages 123–132. IEEE, 2005.

[14] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, September 2006.

[15] Kenneth Hoste, Andy Georges, and Lieven Eeckhout. Automated just-in-time compiler
tuning. In Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, pages 62–72. ACM, 2010.

[16] Tim Lindholm and Frank Yellin. Java virtual machine specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[17] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler op-
timizations for automatic performance tuning. In Code Generation and Optimization,
2006. CGO 2006. International Symposium on, pages 12–pp. IEEE, 2006.

[18] Gennady Pekhimenko and Angela Demke Brown. Efficient program compilation
through machine learning techniques. Software Automatic Tuning: From Concepts
to State-of-the-Art Results, page 335, 2010.

[19] Wade H Shaw Jr, James W Howatt, Robert S Maness, and Dennis M Miller. A
software science model of compile time. Software Engineering, IEEE Transactions on,
15(5):543–549, 1989.

[20] Jeffrey Wooldridge. Introductory Econometrics: A Modern Approach. South-Western
College Pub, 2 edition, July 2002.



A LLVM JIT Compilation Cost Analysis 21

A Appendix: List and Order of LLVM Optimizations

Tables 4 and 5 list the correct order in which LLVM optimizations are applied using the
-O2 switch. This list shows both opt and llc passes and also shows the relative cost of
each optimization, which was calculated using the sum of the number of cycles spent in
each pass for all analyzed SPEC functions and then divided by the total number of cycles
spent in all passes.

We excluded the Xalan benchmark from this analysis and considered all other C/C++-
based benchmarks because if it is included, we observe a distortion in the opt pass times for
Basic Call Graph Construction, Target Library Information, Dead Argument Elimination,
Remove Unused Exception Handling Info and Function Integration/Inlining. The reason is
that we use the llvm-extract tool as part of our experiment framework (see Section 4) to
isolate a single function from a LLVM bitcode, and, in version 3.0, llvm-extract bundles
into the output too many unnecessary function declarations for the Xalan functions. Al-
though unnecessary function declarations seem harmless to the compilation time, some opt

passes operates over Call Graph Strongly Connected Components (SCC) and the LLVM
pass manager interprets each function declaration as a new call graph component. Even
though the passes do not perform useful work using these components as inputs, they do
have the time-consuming task of iterating over each component, which can reach over 1200
independent components for Xalan functions and cause SCC-dependent passes to signifi-
cantly raise their time in an unrealistic way.

We also tested versions 3.1 and 3.2, but although llvm-extract was fixed to avoid
including unnecessary function declarations, these versions were non-functional for many
functions from the SPEC benchmark. Since this effect is harmless for llc passes and all
other opt passes and Xalan contributes to a significant number of functions to our analysis
(roughly 50%), we chose to do not exclude Xalan for all other analysis in this technical
report.



22 Auler and Borin

opt Pass Relat. Cost Acc. llc Pass Relat. Cost Acc.

Dominator Tree Construction† 0.43% 0.43% Preliminary Module Verification† 0.01% 33.84%

Simplify CFG† 1.21% 1.63% Dominator Tree Construction† 0.43% 34.27%

Early CSE 0.73% 2.37% Module Verifier† 0.51% 34.77%
Target Library Information 0.29% 2.66% Preliminary Module Verification – 34.77%

Global Variable Optimizer 0.26% 2.92% Natural Loop Information† 0.20% 34.97%
Interprocedural Sparse Constant
Propagation

0.72% 3.64% Canonicalize Natural Loops 0.15% 35.12%

Dead Argument Elimination 0.49% 4.14% Scalar Evolution Analysis 0.08% 35.20%

Combine Redundant Instructions† 3.52% 7.65% Induction Variable Users 0.86% 36.06%
Simplify CFG – 7.65% Loop Strength Reduction 2.14% 38.20%
Basic Call Graph Construction 0.81% 8.47% Lower Garbage Collection Instruc-

tions
0.01% 38.21%

Remove Unused Exception Info 0.89% 9.36% Remove Unreachable Blocks from
CFG

0.06% 38.27%

Function Integration/Inlining 1.29% 10.65% Exception Handling Preparation 0.17% 38.44%
Deduce Function Attributes 1.22% 11.87% Optimize for Code Generation 0.77% 39.21%
Early CSE – 11.87% Insert Stack Protectors 0.01% 39.22%
Simplify Well-Known Libcalls 0.36% 12.23% Preliminary Module Verification – 39.22%
Combine Redundant Instructions – 12.23% Module Verifier – 39.22%

Tail Call Elimination 0.09% 12.32% Machine Function Analysis† 0.40% 39.62%
Simplify CFG – 12.32% Natural Loop Information – 39.62%

Reassociate Expressions 0.29% 12.60% Branch Probability Analysis† 0.13% 39.75%
Dominator Tree Construction – 12.60% DAG to DAG Instruction Selection

(Includes legalization and schedul-
ing)

35.14% 74.89%

Natural Loop Information 0.18% 12.79% Natural Loop Information – 74.89%

Canonicalize Natural Loops† 0.15% 12.94% Dominator Tree Construction – 74.89%

Loop-Closed SSA Form Pass† 0.13% 13.06% Branch Probability Analysis – 74.89%
Rotate Loops 0.30% 13.36% X86 PIC Global Base Reg Initial-

ization
0.01% 74.90%

Loop Invariant Code Motion 0.41% 13.77% Expand ISel Pseudo Instructions 0.02% 74.93%
Loop-Closed SSA Form Pass – 13.77% Tail Duplication 0.09% 75.02%
Unswitch Loops 0.04% 13.82% Optimize Machine Instruction PHIs 0.03% 75.13%
Combine Redundant Instructions – 13.82% Local Stack Slot Alloc. 0.01% 75.14%
Scalar Evolution Analysis 0.07% 13.89% Remove Dead Machine Instructions 0.29% 75.43%
Canonicalize Natural Loops – 13.89% Machine Dominator Tree

Construction†
0.38% 75.81%

Loop-Closed SSA Form Pass – 13.89% Machine Natural Loop

Construction†
0.16% 75.97%

Induction Variable Simplification 1.45% 15.34% Machine Instruction LICM 0.41% 76.38%
Recognize Loop Idioms 0.04% 15.37% Machine CSE 0.60% 76.97%
Delete Dead Loops 0.04% 15.41% Machine Code Sinking 0.26% 77.23%
Unroll Loops 0.14% 15.55% Peephole Optimizations 0.13% 77.37%

Memory Dependence Analysis† 0.09% 15.64% X86 Maximal Align Check 0.01% 77.38%
Global Value Numbering 3.18% 18.82% Remove Unreachable Machine

Blocks
0.07% 77.45%

Memory Dependence Analysis – 18.82% Live Variable Analysis 3.04% 80.49%
MemCpy Optimization 0.15% 18.97% Eliminate PHI nodes for RA 0.44% 80.93%
Sparse Conditional Constant Prop-
agation

0.35% 19.32% Two Address Ins. Pass 0.55% 81.49%

Combine Redundant Instructions – 19.32% Process Implicit Definitions 0.19% 81.68%
Lazy Value Information Analysis 0.08% 19.40% Slot Index Numbering 0.32% 82.00%
Jump Threading 0.78% 20.17% Live Interval Analysis 2.03% 84.03%
Value Propagation 0.71% 20.89% Debug Variable Analysis 0.14% 84.17%
Dominator Tree Construction – 20.89% Simple Register Coalescing 2.97% 87.14%
Memory Dependence Analysis – 20.89% Calculate Spill Weights 0.48% 87.62%
Dead Store Elimination 0.25% 21.14% Live Stack Slot Analysis 0.02% 87.64%
Aggressive Dead Code Elimination 0.13% 21.27% Virtual Register Map 0.48% 88.12%
Simplify CFG – 21.27% Bundle Machine CFG Edges 0.03% 88.15%
Combine Redundant Instructions – 21.27% Spill Code Placement Analysis 0.08% 88.23%
Strip Unused Function Prototypes 0.02% 21.29% Greedy Register Allocator 6.27% 94.50%
Bitcode Writer 12.53% 33.82% Stack Slot Coloring 0.16% 94.66%
†Pass ran multiple times – total time on its first appearance. Continued on the next page on Table 5.

Table 4: The order of optimizations that the opt and llc tools apply when using the -O2

switch and their cost in time. The time required for optimizing and compiling all C/C++
SPEC CPU2006 (Xalan excluded) functions was tallied and we show the share that each
optimization pass has on this total time. Since some optimizations are applied multiple
times and we do not discriminate the time used for each different invocation of the same
pass, we report their total share in their first appearances in the table.



A LLVM JIT Compilation Cost Analysis 23

llc Pass (continuing from Ta-
ble 4)

Relat. Cost Acc. llc Pass (continuing) Relat. Cost Acc.

Machine Instruction LICM – 94.66% Control Flow Optimizer 0.94% 96.50%
Bundle Machine CFG Edges – 94.66% Tail Duplication – 96.50%
X86 FP Stackifier 0.21% 94.86% Analyze Machine Code for GC 0.01% 96.51%
Post-RA Pseudo Instruction Ex-
pansion

0.06% 94.92% Machine Dominator Tree Construc-
tor

– 96.51%

Prologue/Epilogue Insertion &
Frame Finalization

0.64% 95.56% Machine Natural Loop Constructor – 96.51%

Post-RA Top-Down List Latency
Scheduler

0.08% 95.56% Code Placement Optimizer 0.05% 96.57%

Machine Natural Loop Constructor – 95.56% SSE Execution Domain Fixup 0.12% 96.69%
Machine Dominator Tree Construc-
tor

– 95.56% Assembly Printer 3.32% 100.00%

†Pass ran multiple times – total time on its first appearance.

Table 5: Continuing the list of passes, in order, that the llc tool applies when using the -O2
switch and their relative time cost based on the sum of the time for optimizing all C/C++
SPEC CPU2006 functions (Xalan excluded).


