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Fulkerson’s Conjecture and Loupekine Snarks

Kaio Karam∗ C. N. Campos†

Abstract

In 1976, F. Loupekine created a method for constructing new snarks from already
known ones. In the present work, we consider an infinite family of Loupekine’s snarks
constructed from the Petersen Graph, and verify Fulkerson’s Conjecture for this family.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The degree of a vertex
v ∈ V (G) is denoted by dG(v), or simply d(v). A graph is k-regular if all of its vertices have
degree equal to k. A 3-regular graph is also called a cubic graph. The maximum degree

of G, denoted by ∆(G), is the number max{d(v) : v ∈ V (G)}. Let X ⊆ V (G). The edge

cut ∂(X) is the set comprised of all edges with exactly one end in X. The edge cut ∂({v})
is also denoted by ∂(v). An edge e ∈ E(G) is a cut edge or bridge if, by removing e from
G, the resulting graph has more connected components than G. A cyclic edge cut is an
edge cut whose removal creates connected components each containing a cycle. A graph is
cyclically k-edge-connected if it does not contain a cyclic edge cut with less than k edges.

An edge-colouring of G is a map π : E(G) → C, where C is a set of colours, such that for
any two adjacent edges e, f ∈ E(G), π(e) 6= π(f). If |C| = k, then π is a k-edge-colouring
and G is k-edge-colourable. For each i ∈ C, set Ei := {e ∈ E(G) : π(e) = i} is a colour class

of π. Thus, an edge-colouring is a partition {Ei : i ∈ C} of E(G). A matching of G is a
set M ⊆ E(G) such that no two edges in M are adjacent. If v ∈ V (G) is incident with an
edge e ∈ M , then v is saturated by M or M -saturated. A matching M is perfect if every
vertex in V (G) is M -saturated. Since each colour class is a matching, a k-edge-coloring is
a partition of E(G) into k matchings. If G is k-regular, each matching in the partition is
perfect.

The following conjecture was independently formulated by C. Berge and D. R. Fulker-
son [13]. It was first published by Fulkerson [4], and it is called Fulkerson’s Conjecture1.

Conjecture 1 (Fulkerson’s Conjecture). Every bridgeless cubic graph has six perfect match-

ings such that each edge belongs to exactly two of them.

∗Institute of Computing, University of Campinas, Brazil. Partially supported by CNPq, process number
139489/2010-0

†Institute of Computing, University of Campinas, Brazil.
1It is sometimes called Berge-Fulkerson Conjecture [10].
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2 Karam and Campos

Despite its very simple statement, this conjecture has challenged researchers since its
publication in 1971. Not many partial results have been published since then. In a cubic
graph with a 3-edge-colouring, such a collection of six perfect matchings is constructed by
duplicating each colour class. Thus, the problem is reduced to verify the conjecture for
non-3-edge-colourable bridgeless cubic graphs. A few well-known infinite families of these
graphs have been shown to satisfy Fulkerson’s Conjecture [2, 3, 7].

The first discovery of a non-3-edge-colourable bridgeless cubic graph is due to Julius
Petersen [12] in 1898. Petersen found the smallest graph with these properties, the Petersen
Graph, depicted in Figure 1(a). After many years, only few discoveries happened, showing
that non-3-edge-colourable bridgeless cubic graphs are very hard to find. Because of this
difficulty, M. Gardner [5] named these graphs snarks, inspired by the elusive creature in
Lewis Caroll’s poem The Hunting of the Snark. In his definition of snarks, Gardner excluded
some trivial cases, such as graphs with cycles of size at most three, which can be easily
derived from smaller snarks. In order to also avoid other trivialities, snarks are currently
defined as cyclically 4-edge-connected non-3-edge-colourable cubic graphs with girth at least
five. Currently, many infinite families of snarks are known [6, 8, 9, 11]. There are several
good texts with more details on snarks, their motivation, history, and constructions [1, 11,
15, 16].

Fulkerson’s Conjecture was verified for the families of flower snarks, Goldberg snarks,
generalised Blanuša snarks and for the Szekeres snark [3, 7]. In 1976, Isaacs described a
method proposed by F. Loupekine for constructing new snarks from already known ones [8].
This paper proposes a technique tied up with this construction to verify the conjecture for
a family of Loupekine’s snarks constructed from the Petersen Graph.

2 Loupekine’s snarks

F. Loupekine proposed a construction of two infinite families of snarks, using subgraphs of
other known snarks. Loupekine’s construction is presented here as described by Isaacs [8].
This section also provides some additional notation used in this paper.

Let G be a snark. Any subgraph of G obtained by removing a path of three vertices is
denoted by B(G). Figure 1 illustrates this operation for the Petersen Graph P . Since the
girth of G is at least five, B(G) has five different degree-two vertices, namely u, v, w, x, y,
called border vertices and labeled relatively to vertices of the path removed as shown in
Figure 1(b).

a

b

c

r t

u

v

w

x

y

(a) Petersen Graph P .

r t

u

v

w

x

y

(b) Graph B(P ).

ui

vi

wi

xi

yi

ri ti

(c) A block Bi.

Figure 1: Construction of a block from the Petersen Graph.
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Let G1, G2, . . . , Gk be snarks. The subgraphs B(Gi), with 1 ≤ i ≤ k, are called blocks

and are used in the construction of a new snark. Denote each block B(Gi) by Bi, and attach
index i to its vertex names, as in Figure 1(c). For each i, with 1 ≤ i ≤ k, add a pair of
edges linking each border vertex of {ui, vi} to a different border vertex of {xi+1, yi+1}. Here,
and throughout this text, indexes greater than k are taken modulo k.The resulting graph,
denoted by GB , is the block subgraph of the new snark. Figure 2(a) shows an example.

Notice that GB has exactly k vertices with degree two: w1, . . . , wk. Let GC be a graph
with exactly k vertices of degree one, namely z1, . . . , zk, and all the other vertices of degree
three. The edge incident with vertex zi is denoted by ezi . The graph GC is the central

subgraph of the new snark. An example of a central subgraph is depicted in Figure 2(b).
For each i, with 1 ≤ i ≤ k, identify vertices wi and zi. The resulting graph is cubic and
denoted by GL

k .

If k is odd, then GL
k is a snark, as shown by Isaacs [8]. If k is even, with k ≥ 6, it is

necessary to add a constraint to GC . The central subgraph cannot admit a 3-edge-colouring
π which satisfies the following property: π(ezi ) = π(ezi+1) either for all odd i ≤ k, or for all
even i ≤ k. A central subgraph satisfying this constraint is, for example, one that has three
vertices zi, zi+1, zi+2 adjacent to a common vertex. In any 3-edge-coloring of this graph, ezi+1

can never exhibit the same color of neither ezi or ezi+2. These two families of snarks, with
odd k ≥ 3 or even k ≥ 6, are the families proposed by Loupekine. These families are called
Loupekine snarks or L-snarks2. Figure 2 shows an example of Loupekine’s construction with
k odd. Notice that GB and GC form a decomposition of G into edge-disjoint subgraphs.

Let G be an L-snark such that each connected component of GC is isomorphic to one
of the graphs K2 and S3, with K2 being a complete graph with two vertices, and S3 a star
with three vertices of degree one. The graph G is an L1-snark. The graph of Figure 2(c)
is an L1-snark. Suppose that G is an L-snark such that each of its blocks is isomorphic to
B(P ) (see Figure 1(b)). Then, G is an LP -snark. Moreover, an L1-snark which is also an
LP -snark is called an LP1-snark.

Let Bi be a block of an LP -snark. Figure 3 shows Bi together with the edpge cut
∂(V (Bi)) = {eui , e

v
i , e

w
i , e

x
i , e

y
i }, also denoted by ∂Bi

. The edges of ∂Bi
and their ends

ui, u
′
i, vi, v

′
i, wi, w

′
i, xi, x

′
i, yi, y

′
i are named as shown in the figure. The extended block B+

i

is the graph with vertex set V (B+
i ) = V (Bi) ∪ {u′i, v

′
i, w

′
i, x

′
i, y

′
i} and edge set E(B+

i ) =
E(Bi) ∪ ∂Bi

. For simplicity, the index i is omitted whenever it is clear in the context.

3 Main Results

In this section, it is proved that every LP1-snark verifies Fulkerson’s Conjecture. Before
proceeding to the main results, some definitions and concepts are necessary. Let G be a
graph with ∆(G) ≤ 3 and let L be an index set such that |L| = 6. A Fulkerson Collection is
a family F = {Ml : l ∈ L} of matchings of G such that each edge of E(G) belongs to exactly
two members of F . By this definition, each vertex of G with degree three is saturated by
the six matchings of F . As a consequence, if G is cubic, then every matching of F is perfect.
Therefore, the following is true.

2The names of families of Loupekine snarks used here were taken from L. Vaux’s work [14].
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B1

B2

B3

B4B5

B6

B7

w1

w2

w3

w4w5

w6

w7

(a) A graph GB .

ez1

ez2 = ez4

ez3

ez5 = ez7

ez6

z1

z2

z3

z4z5

z6

z7

(b) A graph GC .

B1

B2

B3

B4B5

B6

B7

(c) An L-snark GL
7 .

Figure 2: An L-snark GL
7 and its subgraphs GB and GC . The graph GL

7 is also an L1-snark.

ui

vi

wi

xi

yiu′
i

v′i

w′
i

x′
i

y′i

Bi

ewi

exi

e
y
i

eui

evi

Figure 3: The edges of ∂Bi
and its end vertices in the graph B+

i .

Claim 2. A cubic graph satisfies Fulkerson’s Conjecture if and only if it admits a Fulkerson

Collection.

Let L(2) be the set of 2-element subsets of L. The function λ : E(G) → L(2), defined
as λ(e) = {l ∈ L : e ∈ Ml,Ml ∈ F}, is induced by F . It is easy to see that λ satisfies the
following property.
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F1 For all adjacent e, f ∈ Dom(λ), λ(e) ∩ λ(f) = ∅.

A Fulkerson Function of G is a function λ : E′ → L(2), with E′ ⊆ E(G) and |L| = 6,
satisfying F1. The image of λ is a set of unordered pairs of L. An unordered pair {p, q}
is also denoted by pq and p, q. A Fulkerson Function of G is complete if its domain is
E(G). Complete Fulkerson Functions and Fulkerson Collections are equivalent and are
used indistinctively in this paper.

In order to prove that LP1-snarks satisfy Fulkerson’s Conjecture, a complete Fulkerson
Function is constructed for an arbitrary LP1-snark. Initially, some useful properties of (not
necessarily complete) Fulkerson Functions of LP -snarks are shown.

Let π : E′ → L(2), with E′ ⊆ E(G) and L an index set with cardinality six. Let
L := {L1, L2, L3} be a partition of L with each part of cardinality two. Consider edges
eu, ev , ew, ex, ey of an extended block B+ and the following properties.
P1 π(ew) ∈ L.
P2 π satisfies exactly one of:

(a) π(ex) = π(ey) ∈ L
(b) π(ex), π(ey) /∈ L;

π(ex) and π(ey) are disjoint; and
π(ex) ∪ π(ey) = Ls ∪ Lt, Ls, Lt ∈ L.

P3 π satisfies exactly one of:
(a) π(eu) = π(ev) ∈ L;
(b) π(eu), π(ev) /∈ L;

π(eu) and π(ev) are disjoint; and
π(eu) ∪ π(ev) = Ls ∪ Lt, Ls, Lt ∈ L.

Let λ : E′ → L(2), with E′ ⊆ E(G), be a Fulkerson Function. Function λ is (B+,P1)-strong
if it satisfies property P1 concerning the edges of B+. Similarly for properties P2 and P3.

Let B+ be an extended block and let L = {a, b, c, d, e, f}. Figure 4 exhibits four different
Fulkerson Functions Λj : E(B+) → L(2), with 1 ≤ j ≤ 4, called models. These models are
used in the construction of a complete Fulkerson Function for an LP1-snark. The next
property relates properties P1, P2, and P3 to the functions presented in Figure 4. It is
easily verified by inspection.

Property 3. Let L = {ab, cd, ef}. Each model Λ1,Λ2,Λ3,Λ4 is (B+,P1)-strong, (B+,P2)-
strong, and (B+,P3)-strong. Moreover, the following statements are true:

(i) Λ1 satisfies P2(a) and Λ1(e
w) = Λ1(e

x);
(ii) Λ2 satisfies P2(a) and Λ2(e

w) ∩ Λ2(e
x) = ∅;

(iii) Λ3 satisfies P2(b) and Λ3(e
w) ⊂ (Λ3(e

x) ∪ Λ3(e
y);

(iv) Λ4 satisfies P2(b) and Λ4(e
w) 6⊂ (Λ4(e

x) ∪ Λ4(e
y)).

The following lemma is used in the proof of Theorem 6 for constructing a Fulkerson
Function for an LP1-snark.

Lemma 4. Let B+ be an extended block of an LP -snark. Let L := {1, 2, 3, 4, 5, 6} and L :=
{12, 34, 56}. If λ : {ew, ex, ey} → L(2) is a (B+,P1)-strong and (B+,P2)-strong Fulkerson

Function, then there exists a Fulkerson Function λ+ : E(B+) → L(2) which is (B+,P3)-
strong and such that λ is a restriction of λ+.
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a,b

a,b

a,b

a,b

a,b c,e

c,e
c,e

c,e

d,f

d,f

d,f

d,f

B

(a) Model Λ1.

a,b

a,c

a,f

a,f

b,d b,e

b,e c,d

c,d
c,e

c,e
d,f

d,f

B

(b) Model Λ2.

a,b

a,c

a,d

a,e

a,f

b,c

b,d

b,e

b,f c,e

c,f d,e

d,f

B

(c) Model Λ3.

a,b

a,b

a,b
a,b

a,b c,e

c,e

c,e

c,e

d,f

d,f

d,f

d,f

B

(d) Model Λ4.

Figure 4: Fulkerson Functions Λj : E(B+) → L(2), 1 ≤ j ≤ 4, with L = {a, b, c, d, e, f}.

Proof. Let B+, L, and L be defined as in the hypothesis. Let λ : {ew, ex, ey} → L(2) be a
Fulkerson Function which is (B+,P1)-strong and (B+,P2)-strong. We construct a Fulkerson
Function λ+ : E(B+) → L(2) using one of the models in Figure 4. Then, we show that λ+

is (B+,P3)-strong and that λ is a restriction of λ+.

Since λ is (B+,P1)-strong, λ(ew) ∈ L. Moreover, since λ is (B+,P2)-strong, λ satisfies
either P2(a) or P2(b). Suppose λ satisfies P2(a). Therefore, we have to consider two cases:
either λ(ew) = λ(ex) or λ(ew) ∩ λ(ex) = ∅. If λ satisfies P2(b), it is also necessary to
consider two cases: either λ(ew) ⊂ (λ(ex) ∪ λ(ey)) or λ(ew) 6⊂ (λ(ex) ∪ λ(ey)). Notice
that, by Property 3, each of the functions Λ1,Λ2,Λ3,Λ4 falls into exactly one of these
four cases. Using the appropriate function as a model, it is possible to define a function
λ+ : E(B+) → L(2) such that λ is a restriction of λ+. It can be done by finding a suitable
bijection from {a, b, c, d, e, f} to L. Moreover, since every Λ1,Λ2,Λ3,Λ4 is (B+,P3)-strong,
λ+ naturally is (B+,P3)-strong. Figure 5 exhibits an example of a function λ, a bijection,
and a function λ+ for the extended block B+.

Definition 5. Let G be an LP -snark with k blocks. The sequence {Gj}, 0 ≤ j ≤ k, of

subgraphs of G is defined as

Gj =

{

GC ∪G[{x1, x
′
1, y1, y

′
1}], j = 0

Gj−1 ∪B+
j , 1 ≤ j < k

.

Figure 6 shows examples of subgraphs in the sequence {Gj} of an LP1-snark G with
seven blocks.
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3,4

3,4

3,4

(a) Function λ : {ew, ex, ey} → L(2).

a

b

c

d

e

f

1

2

3

4

5

6

L

(b) Bijection φ based on λ and Λ1.

3,4

3,4

3,4

3,4

3,4

1,6

1,6
1,6

1,6
2,5

2,5

2,5

2,5

(c) Function λ+ : E(B+) → L(2).

Figure 5: Example of a construction based on Model Λ1 of a Fulkerson Function λ+ for an
extended block.
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(b) Subgraph G0.
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(d) Subgraph G2.
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(e) Subgraph G3.
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(f) Subgraph G6.

Figure 6: LP1-snark G with 7 blocks and its subgraphs G0, G1, G2, G3, G6 as established in
Definition 5.
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Theorem 6. Every LP1-snark has a complete Fulkerson Function.

Proof. Let G be an LP1-snark with k blocks. Let L := {1, 2, 3, 4, 5, 6}. We construct a
complete Fulkerson Function λ : E(G) → L(2). For this purpose, let L := {12, 34, 56} be a
partition of L.

First, we construct a complete Fulkerson Function λC for central subgraph GC such
that λC(e

w
k ) = 12. Graph GC is 3-edge-colourable since its connected components are

isomorphic to K2 and S3. Then, there exists a 3-edge-colouring λC : E(GC ) → L such that
λC(e

w
k ) = 12. It is easy to see that λC is a complete Fulkerson Function for GC .

As a second step, we prove by induction on j that there exists a complete Fulkerson
Function λj for the subgraph Gj , j ∈ [0, k − 1], such that
(i) λj(e

w
i ) = λC(e

w
i ), i ∈ [1, k];

(ii) λj(e
x
1) = λj(e

y
1) = 12;

(iii) λj is (B+
j+1,P2)-strong.

For j = 0, let function λ0 be defined as: λ0(e) := λC(e), if e ∈ Dom(λC); λ0(e) := 12,
if e ∈ {ex1 , e

y
1}. It is clear that λ0 satisfies conditions (i) and (ii). Since λ0(e

x
1) = λ0(e

y
1) =

12 ∈ L, then λ0 is (B+
1 ,P2)-strong. Thus, λ0 satisfies condition (iii). Moreover, ex1 (ey1)

is not adjacent to any other edge of E(G0). We conclude that λ0 is a complete Fulkerson
Function for G0 and the result follows for j = 0.

For j > 0, suppose that there exists λj−1 satisfying conditions (i), (ii), and (iii). By (i)
and by the construction of λC , function λj−1 is (B+

j ,P1)-strong. By (iii), λj−1 is (B+
j ,P2)-

strong. Then, we can apply Lemma 4 by letting λ be the restriction of λj−1 to {ewj , e
x
j , e

y
j}.

Suppose that λ+ : E(B+
j ) → L(2) is the Fulkerson Function obtained from Lemma 4. Then,

λj is defined as:

λj(e) :=

{

λj−1(e), e ∈ Dom(λj−1)
λ+(e), e ∈ Dom(λ+) \ {ewj , e

x
j , e

y
j }

. (1)

Note that Dom(λj−1) ∩ Dom(λ+) = {ewj , e
x
j , e

y
j}, and that λj−1(e) = λ+(e), for all e ∈

{ewj , e
x
j , e

y
j}. Therefore, since λj−1 and λ+ are Fulkerson Functions, we conclude that λj

also is.
Since λj−1 satisfies conditions (i) and (ii), and {ewi : i ∈ [1, k]} ∪ {ex1 , e

y
1} ⊆ Dom(λj−1),

then λj satisfies conditions (i) and (ii). Recall that {euj , e
v
j} = {exj+1, e

y
j+1}. By Lemma 4,

λ+ is (B+
j , P3)-strong. Moreover, P2 is essentially the same statement as P3 applied to

exj+1, e
y
j+1. Therefore, λj satisfies (iii). This completes the induction.

Now, consider subgraph Gk−1 and its complete Fulkerson Function λk−1 : E(Gk−1) →
L(2) previously constructed, satisfying conditions (i), (ii), and (iii). Figure 7 shows a repre-
sentation of G with Gk−1. Note that E(Gk−1) = E(G) \ E(Bk).

Let Fk−1 := {Ml : l ∈ L}, where each Ml is the set {e ∈ E(Gk−1) : l ∈ λk−1(e)}. Remark
that, from F1, Ml is a matching. Let v ∈ V (Gk−1). Then v has degree either one or three
in Gk−1 (see Figure 7). If v has degree three, then v is saturated by every matching of
Fk−1. If v has degree one, then it is saturated by precisely two matchings of Fk−1, and it
is incident with exactly one edge of ∂Bk

, with ∂Bk
= {euk , e

v
k, e

w
k , e

x
k, e

y
k}.

Let V3(Gk−1) be the set of vertices with degree three in Gk−1. Observe from Figure 7
that |V3(Gk−1)| = |V (G)| − |V (Bk)|. From the fact that G is cubic, we have that |V (G)| is
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y′
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e
y
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eu
k

ev
k

Gk−1

Bk

Figure 7: A decomposition of G into two edge disjoint subgraphs: Gk−1, in the shaded part,
and Bk, in bold lines.

even. Also, by the construction of a block, |V (Bk)| is odd. Therefore,

|V3(Gk−1)| ≡ 1 (mod 2). (2)

Let l ∈ L. Recall that Ml saturates every vertex in V3(Gk−1). Also, every edge in Ml ∩ ∂Bk

has only one end in V3(Gk−1). Thus, |V3(Gk−1)| = 2|Ml|− |Ml ∩∂Bk
|. By (2), we have that

|Ml ∩ ∂Bk
| is odd. Therefore,

|Ml ∩ ∂Bk
| ≥ 1. (3)

Remark that λk−1(e
x
1) = λk−1(e

y
1) = λk−1(e

w
k ) = 12. Therefore, |M1 ∩ ∂Bk

| ≥ 3 and
|M2 ∩ ∂Bk

| ≥ 3. Considering this and (3), and from the fact that |∂Bk
| = 5,

|Ml ∩ ∂Bk
| = 3, l = 1, 2 (4)

|Ml ∩ ∂Bk
| = 1, l = 3, 4, 5, 6. (5)

By construction, λk−1 is (B+
k ,P2)-strong. By P2 and by (5), we have that {λk−1(e

x
k),

λk−1(e
y
k)} is equal to either {35, 46} or {36, 45}, thus satisfying P2(b). By (i) and by

construction of λC , λk−1(e
w
k ) = 12. Then, λk−1(e

w
k ) 6⊂ (λk−1(e

x
k) ∪ λk−1(e

y
k)). There-

fore, by Property 3(iv), we can use model Λ4 (Figure 4(d)) to define a Fulkerson Function
λ+
k : E(B+

k ) → L. Figure 8 exhibits two examples. The other possibilities, by exchanging
λk−1(e

x
k) and λk−1(e

y
k), are very similar. Consider the function λ defined as

λ(e) :=

{

λk−1(e), e ∈ Dom(λk−1)
λ+
k (e), e ∈ Dom(λ+

k ) \ {e
u
k , e

v
k, e

w
k , e

x
k, e

y
k}

. (6)

Remark that λk−1(e) = λ+
k (e) for every e ∈ Dom(λk−1) ∩ Dom(λ+

k ) = {euk , e
v
k, e

w
k , e

x
k , e

y
k},

and that Dom(λ) = Dom(λk−1) ∪ Dom(λ+
k ) = E(Gk−1) ∪ E(B+

k ) = E(G). Thus, λ is a
complete Fulkerson Function of G.

Corollary 7. Every LP -snark G such that GC is 3-edge-colorable admits a Fulkerson Col-

lection.

Note that the family of Goldberg snarks [6] can be obtained by Loupekine’s construc-
tion3. A simple definition of this family is given by Hao et. al. [7]. Every Goldberg snark is

3It is worth noting that Goldberg’s construction [6], which encompasses the so-called Goldberg snarks,
is more general than Loupekine’s construction.
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(b) λ+
k (e

x
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k (e
y

k) = 45

Figure 8: Fulkerson Function λk : E(B+
k ) → L based on model MD4.

also an LP -snark. Moreover, the central subgraph of a Goldberg snark is 3-edge-colourable.
Thus, Corollary 7 shows that Goldberg snarks verify Fulkerson’s Conjecture, as an alterna-
tive to the proofs given by Hao et. al. [7] and Fouquet et. al. [3].

4 Application to additional subfamilies of Loupekine snarks

The technique used in the previous section can be adapted to show that Fulkerson’s Con-
jecture is verified by a larger subfamily of Loupekine snarks. For this purpose, let G be
any snark. The construction of a block B(G) is sketched in Figure 9, which also shows the
indexed block Bi. Since Figure 2(c) represents only vertices u, v, w, x, y of each block, it
can be regarded as the sketch of an L1-snark, assuming that its blocks are obtained from
arbitrary snarks.
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(b) A block B(G).
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(d) Extended block B+.

Figure 9: Construction of a generic block and an extended generic block.

Let B+ be an extended block obtained from a generic block B, in a way similar to the
extended block derived from B(P ). Figure 9(d) shows a sketch of the extended generic block
B+. Let L := {a, b, c, d, e, f}. Consider the labels of edges eu, ev, ew, ex, ey in the models of
Figure 4. We use these labels in the extended block of Figure 9(d) to define generic models

Λj : ∂B → L(2), 1 ≤ j ≤ 4, depicted in Figure 10. It is possible to generalise Theorem 6 to
subfamilies of L1-snarks other than LP1-snarks. Let B be a set of non-isomorphic generic
blocks. An LB-snark is a Loupekine snark each block of which is isomorphic to a block of
B.

Suppose that, for each block B ∈ B, there exist four Fulkerson Functions from E(B+)
to L(2), with L = {a, b, c, d, e, f}, such that each generic model is a restriction of one of
these functions. Then, we have four models for each block of B. These models can be
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a,b

a,b

a,b

c,e

d,f

(a) Model Λ1.

a,b

c,d

c,dc,e

d,f

(b) Model Λ2.

a,b

a,ca,e

b,db,f

(c) Model Λ3.

a,b

a,b

a,b

c,e

d,f

(d) Model Λ4.

Figure 10: Fulkerson Functions Λj : ∂B → L(2), 1 ≤ j ≤ 4, with L = {a, b, c, d, e, f}.

used in the constructions in Lemma 4 and Theorem 6, in order to prove that LB1-snarks
admit complete Fulkerson Functions. Moreover, analogously to Corollary 7, we can prove
that every LB-snark with a 3-edge-colourable central subgraph has a complete Fulkerson
Function.

As an example, consider the first of the two infinite families of generalised Blanuša
snarks, described by John. J. Watkins [16]. Let G1, G2, . . . denote the graphs of this family.
Figure 11(a) shows G1, with four of its vertices labeled a, b, c, d. A member Gi, i > 1, is
recursively obtained in the following way. Remove edges ac and bd from Gi−1. Take a copy
of the link graph G′, shown in Figure 11(b) with its degree-two vertices labeled a′, b′, c′, and
d′. Add edges aa′, bb′, cc′, and dd′. The resulting graph is Gi. As an example, Figure 11(c)
shows member G2 with the new edges drawn as dashed lines. Additionaly, in Gi, rename
vertices c′ and d′ from the link graph to a and b, respectively, and maintain the labels of
vertices c and d from Gi−1. Then, Gi has four vertices labeled a, b, c, d, used to construct
Gi+1.

a

bc

d

(a) Member G1 of the family.

a′

b′ c′

d′

(b) Link graph G′.

a

bc

d

(c) Member G2 of the family.

Figure 11: First family of generalized Blanuša snarks.

Let Gi be a member of the first family of generalised Blanuša snarks. Let abc be
the path of three vertices of Gi shown in Figure 12(a). The block Bi ⊆ Gi, depicted in
Figure 12(b), is obtained by removing a, b, and c. Let BBlanuša := {B1, B2, B3, . . . } be a
set of non-isomorphic blocks, with each Bi obtained from Gi by removing vertices a, b, and
c, as shown in Figure 12. Observe that each block Bi is uniquely defined.

Lemma 8. Every extended block Bi+, with Bi ∈ BBlanuša and i ≥ 1, admits Fulkerson

Functions Λi
j : E(Bi+) → L(2), with L = {a, b, c, d, e, f} and 1 ≤ j ≤ 4, such that model Λj

is a restriction of Λi
j.

Proof. We prove the statement by induction on i. Take B1 of BBlanuša. The extended block
B1+ is depicted in Figure 13. Let L := {a, b, c, d, e, f}. Let Λ1

1, Λ
1
2, Λ

1
3, Λ

1
4 be the Fulkerson
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a

b

c

(a) A generalised Blanuša snark.

u
v

w

x
y

(b) Block obtained from the snark in (a).

Figure 12: Construction of a block from a generalised Blanuša snark.

Functions from E(B1+) to L(2) exhibited in Figure 13. By inspection of Figure 10 and
Figure 13, it is easy to see that Λj is a restriction of Λ1

j , 1 ≤ j ≤ 4.

Suppose that B(i−1)+, with i > 1, admits Fulkerson Functions Λ
(i−1)
j , 1 ≤ j ≤ 4, as

stated in the lemma. The extended block Bi+ can be constructed from B(i−1)+ by attaching
the link graph G′ to B(i−1)+, in a way similar to the construction of Gi. For each j = 1, 2, 3,

and 4, proceed as follows. Take a copy of B(i−1)+ with each edge e labeled with Λ
(i−1)
j (e).

Let Λ′
j be the Fulkerson Function of G′ exhibited in Figure 13. Take a copy of G′ with each

edge e labeled with Λ′
j(e). Then, attach the copy of G′ to the copy of B(i−1)+ to obtain

Bi+. New edges are added with this operation. For each new edge e, proceed as follows.
Let u ∈ V (B(i−1)+) and v ∈ V (G′) be the ends of e. Assign to e the labels of the removed
edge of B(i−1)+ which was incident with u. Note that, by construction, these labels are
exactly the labels missing in the edges of G′ incident with v. Thus, the resulting labeling of
Bi+ induces a Fulkerson Function Λi

j : E(Bi+) → L(2). Notice that the labels of the edges

of ∂Bi are equal to their labels in B(i−1)+. Since Λj is a restriction of Λi−1
j , Λj is also a

restriction of Λi
j .

By applying the method described in this section, the following result is obtained.

Theorem 9. Every Loupekine snark G each block of which is isomorphic to a block of

BBlanuša ∪ {B(P )}, and such that the central subgraph GC is 3-edge-colourable, admits a

complete Fulkerson Function.

In this work, we verified Fulkerson’s Conjecture [4] for the infinite family of LP1-snarks,
constructed from the Petersen Graph using Loupekine’s method. Moreover, we showed how
the technique used in this proof can be adapted to verify the conjecture for other families
of L-snarks constructed from snarks other then the Petersen Graph. This technique can
also be applied to some Loupekine snarks without a 3-edge-colourable central subgraph. It
can be applied without great effort to snarks produced by connecting two independently
generated block subgraphs, as suggested by Issacs [8]. These results contribute as one more
evidence that Fulkerson’s Conjecture is true.
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4 for the generalised Blanuša snarks. In each case,
models are provided for B1+ and G′.
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