
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

A Complete Approach for Termination

Analysis of Linear Programs

Rachid Rebiha Nadir Matringe

Arnaldo V. Moura

Technical Report - IC-13-08 - Relatório Técnico

February - 2013 - Fevereiro

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.

A Complete Approach for Termination Analysis of Linear

Programs

Rachid Rebiha∗ Nadir Matringe † Arnaldo Vieira Moura‡

Abstract

We describe powerful computational methods, relying on new decidability results
that respond completely to major conjectures on termination analysis of programs with
conditional linear loops, on all initial values. Our approach is based on linear alge-
braic methods: we reduce the verification of the termination problem to checking the
orthogonality of a well determined vector-space and a certain vector, both related to
the loop. We obtain necessary and sufficient conditions from which we provide the first
complete method, which determines the termination of such a class of linear programs.
Our examples (dealing with a large number of randomly generated linear loops) show
the strength of our results, we actually prove that some of them are beyond the limits
of other recent approaches.

1 Introduction

Formal methods for program verification research [1, 2, 3, 4] aim at discovering mathematical
techniques and developing their associated algorithms to establish the correctness of soft-
ware, hardware, concurrent systems, embedded systems or hybrid systems. Static program
analysis [5, 2, 6], is used to check that a software is free of defects, such as buffers over flow
or segmentation faults, which are safety properties, or termination and non-termination,
which are liveness properties.

Proving termination of while loop programs is necessary for the verification of liveness
properties, that any well behaved engineered system, safety critcal systems and embedded
systems must guarantee. We could list here many verification approaches that are only prac-
tical, depending on the facility with which termination can be automatically determinated
(e.g., verification of temporal properties of infinite state systems [7] is an other example.).
More recent work on automated termination analysis of imperative loop programs has fo-
cused on a partial decision procedure based on the discovery and the synthesis of ranking
functions. Such function maps the loop variable to a well-defined domain where their value
decreases further at each iteration of the loop [8, 9]. Several interesting approaches, based

∗Instituto de Computação, Universidade Estadual de Campinas, 13081970 Campinas, SP. Pesquisa de-
senvolvida com suporte financeiro da FAPESP, processo 2011089471
†Université de Poitiers, Laboratoire Mathématiques et Applications and Institue de Mathematiques de

Jussieu Université Paris 7-Denis Diderot, France.
‡Instituto de Computação, Universidade Estadual de Campinas, 13081970 Campinas, SP.

1

2 R. Rebiha, N. Matringe e A.V. Moura

on the generation of linear ranking functions, have been proposed [10, 11] for loop programs
where the guards and the instructions can be expressed in a logic with linear arithmetic.
For the generation of such functions, there are effective heuristics [12, 9], and in some cases,
there are also complete methods for the synthesis of linear ranking functions [13]. On the
other hand, it is easy to generate a simple linear terminant loop program that does not have
a linear ranking function. And in this case the mentioned complete synthesis methods [13]
fail to provide a conclusion on the termination or the non termination of such program.

In this work we address the termination problem for while linear loop programs. In other
words we consider the class of loop programs where the loop condition is a conjunction
of linear inequalities and the assignements to each of the variables (related to the loop
instruction block), are of affine/linear form. In matrix notations, the linear loop programs
will be represented in our most general form as:

while (Bx > b), {x := Ax+ c}.

Considering effective program transformations and simplification techniques, the termina-
tion analysis for programs presented in a more complex form can often be reduced to an
analysis of a program expressed in this basic affine form. Despite tremendous progress over
the years [14, 15, 16, 17, 18, 19, 20, 21], the problem of finding a practical, sound and
complete method for determining termination or non termination remains very challenging
for this class of programs on all initial values. We started our investigation from the line of
research proposed by A.Tiwari [22].

We summarize our contributions as follows:

• First we prove a sufficient condition for the termination of homogeneous linear pro-
grams. This statement is contained in the important work proposed in [22], but the
proof of the result contains a non trivially fixable mistake. The proof of this sufficient
condition requires expertise in several independent mathematical fields. We show how
this sufficient condition can be in used to determine termination of linear programs.
We also draw its limitations.

• We then generalize the previous results. To the best of our knowledge, we present the
first necessary and sufficient condition for the termination of linear programs. Infact,
this NSC exhibits a complete decidability result for the class of linear programs on all
initial values.

• Moreover, departing from this NSC, we show the scalability of our approach by demon-
strating that one can directly extract a sound and complete computational method
to determine termination or nontermination for linear programs. We reduce the ter-
mination analsysis for such program class to the problem consisting in checking if a
specific vector (related to the loop condition encoding) belong to a specific vectorial
space related to the eigenvalues of the matrix encoding the assignements of the loop
variables.

A Complete Approach for Termination Analysis of Linear Programs 3

• The analysis of our associated alorithms shows that our method operates in few and
fast computational steps. The proposed computational method is of lower complexity
than the mathematical foundations of previous methods.

• We provide theoretical results guaranteeing the soundness and completeness of the
termination analysis while restrincting the variables interpretation over a specific
countable subring of Rn. In other words, we show that it is enough to interprete
the variables over a specific countable field (or even its ring of integers) when one
wants to check the termination over the reals.

• We provide experiments associated to our prototype. The cpu timing results while
determining termination or non termination over a large number of random affine
programs clearly demonstrate the practability of our approach.

The reader can find all the complete proofs, written rigourously, in this article or in our
other associated technical report [23].

The rest of this article is ordered as follows. Section 2, can be seen as a preliminary
section where we introduce our computational model of programs, the notations for the
rest of the paper, and the key notions of linear used in order to build our computational
methods. Section 3, provides the main theoretical contributions of this work. Infact, we
present our decidability results and a very useful necessary and sufficient condition allowing
us to propose a complete computational method described in Section 4. In Section 5, we
show that our approach and algortihms, scale in the handling of the class of affine programs.
In Section 6, we show how we interprete the variables over a countable field determining
termination over the reals. Finally, Section 7 exhibits our experiments and Section 8 states
our conclusion.

2 Linear Algebra and Linear Loop Programs

Here, we define key notions of linear algebra that are central in the theoretical and al-
gorithmic development of our methods. If V is a vector space over a field K, we write
V ect(v1, ..., vn) for the vector subspace generated by the family v1, ..., vn of vectors of V .
We denote byM(m,n,K) the set of m×n matrices with entries in K (and simplyM(n,K)
if m = n). If A belongs to M(m,n,K), with entry ai,j in position (i, j), we will some-
times denote it (ai,j). The transpose of the matrix A = (ai,j) is by definition the matrix
M> = (bi,j), such that bi,j = aj,i. The Kernel of A, also called its nullspace, and denoted
by Ker(A), is defined by: Ker(A) = {v ∈ Kn | A · v = 0Km}. In fact, when we deal with
square matrices, these Kernels are Eigenspaces. Let A be a n×n square matrix with entries
in K. A nonzero vector x ∈ K is an eigenvector for A associated with the eigenvalue λ ∈ K
if: A · x = λx, i.e., (A − λIn) · x = 0 where In is the n × n identity matrix. The nullspace
of (A− λIn) is called the eigenspace of A associated with eigenvalue λ. A non-zero vector
x is said to be a generalized eigenvector for A corresponding to λ if (A − λIn)k · x = 0
for some positive integer k. The spaces Ker((A − λIn)k) form an increasing sequence of
subspaces of k, which is stationary for k ≥ d, for some d ≤ n. We call the subspace
Ker((A− λIn)d) = Ker((A− λIn)n) the generalized eigenspace of A associated with λ.

4 R. Rebiha, N. Matringe e A.V. Moura

We denote by < , > the canonical scalar product on Rn.

Notationally, as it is standard in static program analysis, a primed symbol x′ refers to
next state value of x after a transition is taken. First, we present transition systems as
representations of imperative programs and automata as their computational models.

Definition 2.1. A transition system is given by 〈x, L, T , l0,Θ〉, where

• x = (x1, ..., xn) is a set of variables,

• L is a set of locations and l0 ∈ L is the initial location.

• A state is given by an interpretation of the variables in x.

• A transition τ ∈ T is given by a tuple 〈lpre, lpost, qτ , ρτ 〉, where lpre and lpost designate
the pre- and post- locations of τ , and the transition relation ρτ is a first-order assertion
over x ∪ x′. The transition guard qτ is a conjunction of inequalities over x, it is
intuitively the pre-condition for the transition to be fired.

• Θ is the initial condition, given as a first-order assertion over x.

The transition system is said to be affine when ρτ is an affine form. And it is said to be
algebraic when ρτ is an algebraic form.

Here, we will use the following matrix notations to represent loop programs and their
associated transitions systems.

Definition 2.2. Let P be a loop program represented by the transition system

〈x = (x1, ..., xn), l0, T = 〈l0, l0, qτ , ρτ 〉, l0,Θ〉.

We say that P is a linear loop program if the following conditions hold:

• the loop condition (i.e. the transition guard gτ) is a conjunction of linear inequalities.
We represent the loop condition in the matrix form Bx > b where B ∈ M(m,n,R)
and b ∈ Rm (by Bx > b, we mean that each coordinate of the column Bx is strictly
greater than the corresponding coordinate of b).

• the transition relation ρτ , representing the assignements to each of the variables, is
an affine/linear form. We represent the linear assignements (related to the loop in-
structions block) in the matrix form x := Ax+ c where A ∈M(n,R) and c ∈ Rn.

The linear loop program P = P (A,B, b, c) will be represented in its most general form as:
while (Bx > b), {x := Ax+ c}.

In this work, we use the following linear loop program classifications.

Definition 2.3. Let P be a linear loop program. We identify the following three type of
linear loop programs, from the more specific to the more general form:

A Complete Approach for Termination Analysis of Linear Programs 5

• Homogeneous: We denote by PH the set of programs where all linear assignements
consist of homogeneous expressions, and where the linear condition loop consists of
at most one inequality. If P is in PH, then P will be interpreted in matrix terms as
while (< w>, x >> 0), {x := Ax}, where w is a (n × 1)-vector corresponding to the
loop condition, and where A ∈ M(n,R) is related to the list of assignements of the
loop. We say that P has a homogeneous form and it will be identified as P (A,w).

• Generalized Condition: We denote by PG the type of linear loop programs where the
condition of the loop is generalized to a conjonction of multiple linear inequalities.
Also the considered inequalities and assignements remain as homogeneous expressions.
If P is in PG then P will be interpreted as while (Bx > 0), {x := Ax} where B is a
(m×n)-matrix corresponding to the loop condition. We say that P is in a generalized
loop condition form and it will be identified as P (A,B).

• Affine Form: We denote by PA the set of loop programs where the inequalities and
the assignements associated are generalized to affine/nonhomogeneous expressions. If
P is in PA, it will be interpreted as while (Bx > b), {x := Ax + c}, for A and B
as before, b ∈ Rm, and c ∈ Rn. We say that P is in an affine form and it will be
identified by the signature P (A,B, b, c).

Example 2.1. Consider the program depicted at the left below, for multiplying two numbers.
Its computational model is described by the automaton at the right:

(i) Pseudo code:

...

While (j>0){

s := s+i;

j := j-1;

}

...

(ii) Transition systems:

l

τ = 〈gρ = (j > 0), ρτ =

[
s′ = s+ i
j′ = j − 1

]
〉

with V = {s, i}, Θ = (s = 0∧ j = j0), l0 = l,

L = {l} and T = {τ}.

(iii) Matrix notations: P (A,B, b, c) with A =

1 0 1
0 1 0
0 0 1

, B = (0, 1, 0), b = (0, 0, 0)>

and c = (0,−1, 0)>.

6 R. Rebiha, N. Matringe e A.V. Moura

3 New Decibability Results for Termination of Linear Pro-
grams

In this section we introduce the theoretical foundations of our approach. Here, we provide
decidability results for the termination of the complete class of linear programs.

For this section, it is enough to consider only the class of homogeneous linear programs
PH (see Definition 2.3). In fact, as we will show in section 5, the problem of termination of
linear programs in PA (i.e. the class of affine programs, see Definition 2.3) reduces to the
problem of termination of homogeneous linear programs PH.

First we establish a sufficient condition for the termination of homogeneous linear pro-
grams. Then, we present the main result, which provides the first necessary and sufficient
condition for the termination problem considering the complete class of linear programs.
Those decidability results lead us to a complete method, associated to fast algorithms to
determines termination of linear programs.

3.1 Sufficient Condition for the Termination of Homogeneous Linear Pro-
grams

Here, we prove a sufficient condition for the termination of homogeneous linear programs
P (A,w) ∈ PH : while (< w>, x >> 0), {x := Ax}.

Theorem 3.1. [23]-Theorem 1.
Let n be a positive integer, and let P (A,w) be program in PH, defined by the linear assigne-
ments encoded by a matrix A in M(n,R), and the inequality loop condition described by the
vector w ∈ Rn − {0}. If P (A,w) is nonterminant, i.e. if there exists a vector x ∈ Rn such
that 〈Akx,w〉 > 0 for all k ≥ 0, then A has a positive eigenvalue.

The proof of Theorem 3.1 requires notions from in several independent mathematical
fields. In fact, the core of the proof requires three lemmas and two propositions. The reader
can find the complete proof in the annex of this article or in our associated technical report
[23]. This statement can actually be found as Theorem 1 of the important work proposed
in [22], however, the proof of the result contains a non trivially fixable mistake, which we
explain. The author of [22] applies the Brouwer’s fixed point theorem to a subspace of the
projective space P (Rn) (not Rn−1 as said in [22]). However, this is not an euclidian space,
and convexity is not well defined in it, hence one can’t apply Brouwer’s fixed point theorem
to such a set. Moreover, using notations of the proof of Theorem 1 of [22], the closure NT ′

of the set NT can contain zero, so that its image in P (Rn) is not well defined. Actually
this extremal case needs to be treated carefully.

Theorem 3.1 provides a sufficient condition for the termination of linear program. In
other words, Theorem 3.1 says that the linear program terminates when there is no positive
eigenvalues, but one can not conclude on the termination problem using theorem 3.1 if there
exists at least one positive eigenvalue. Intuitively, we could say that theorem 3.1 provides
us with a decidability result for the termination problem considering the subclass of linear
program where the associated assignement matrix A has no positive eigenvalues (i.e., all

A Complete Approach for Termination Analysis of Linear Programs 7

/*...*/

while(3x - y > 0){

x := 3x - 2y;

y := 4x - y;

}

/*...*/

(a)

/*...*/

while(z > 0){

x:= x + y;

z:= -z;

}

/*...*/

(b)

Figure 1: Examples of homogeneous linear programs

eigenvalues are complex or negative). In the following example, we illustrate when Theorem
3.1 applies and when it does not.

Example 3.1. Consider the homogeneous linear program 1a depicted in the figure 1 that

we denote by P (A, v). The associated matrix A is given by A =

(
3 −2
4 −1

)
, and the vector

v enconding the loop condition, is such that v = (3,−1)>. The eigenvalues of the matrix A
are the complex numbers: 1 + 2i and 1 − 2i. As S does not have any positive eigenvalues,
we can consider the contrapose of Theorem 3.1’s statement, and conclude that the program
P (A, v) terminates on all possible inputs.

Example 3.2. Now, consider the homogeneous linear program 1b depicted in Figure 1, that

we denote by P (A1, v1). The associated matrix A1 given by A1 =

1 1 0
0 1 0
0 0 −1

, has eigen-

values 1 and −1. As A has a positive eigenvalues, one can not determine the termination
(or the nontermination) of P (A1, v1) using the theorem 3.1.

However, We will see how to handle this case in a very automated efficient way in the
following sections.

In the next section, we generalize Theorem 3.1, and obtain stronger decidability results.

3.2 Necessary and Sufficient Condition for the Termination of Linear
Program

In this section, we strengthen the theorem 3.1, in order to obtain a complete decidability
result leading us to a sound and complete methods with very few computational steps
executed by fast algorithms.

Infact, in the following main theorem 3.2 we provide a necessary and sufficient condition
for the termination of programs P (A, v) ∈ PH : while (< v>, x >> 0), {x := Ax}.

Theorem 3.2. [23]-Theorem 2.
Let A ∈ Mn(R) and w 6= 0 ∈ Rn. The program P (A, v) : {x := Ax, < v, x >> 0}
terminates if and only if for every positive eigenvalue λ of A, the generalised eigenspace
Eλ(A) is orthogonal to v (i.e. < Eλ(A), v >= 0).

8 R. Rebiha, N. Matringe e A.V. Moura

Theorem 3.2 gives a necessary and sufficient condition that we use as the foundation
to build a complete procedure. In order to determine termination, we have to check, for
each positive eigenvalues, if the vector v, encoding the loop condition, is orthogonal to the
associated generalized eigenspace. In other words we want to verify if v is orthogonal to
the nullspace Ker((A− λIn)n).

Example 3.3. Consider the program 1b depicted in Figure 1 that we denoted as P (A1, v1).
The matrix A1 is given in Example 3.1. The vector enconding the loop condition is v1 =
e3 = (0, 0, 1)>. We recall that A1 has eigenvalues 1 and −1. The generalised eigenspace
E1(A1) is equal to V ect(e1, e2), where e1 and e2 are the first two vectors of the canonical
basis of R3. Hence E1(A1) is orthogonal to v1. According to Theorem 3.2, the program
P (A,w) terminates.

Example 3.4. Now, if we change the loop condition of the program 1b depicted in Figure
1 to become (y > 0). Then, we obtain the program P (A1, v2) with the new considered loop
condition encoded by v2 = e2 = (0, 1, 0)>. The eigenvalues of A1 are (still) 1 and −1 and
the generalised eigenspace E1(A1) = V ect(e1, e2). Hence E1(A) is not orthogonal to v2,
because it contains v2. Theorem 3.2 tells us that the program P (A1, v2) does not terminate
in this case.

In both of these examples, we are able to determine the termination/nontermination
using Theorem 3.2. On the other hand, the first Theorem 3.1 does not allow us to say
anything about the termination of these programs (because the assignement matrix A′

exhibit at least one positive eigenvalue).
In order to avoid the computation of the basis of generalised eigenspaces, we first intro-

duce the notion of Row Space(M), and use the following lemma. Let M ∈M(m,n,R), by
definition, Row Space(M) denotes the vector subspace of Rn spanned by the row vectors
of M .

Lemma 3.1. Let M be a matrix in M(m,n,K). Then every vector in the nullspace of M
is orthogonal to every vector in the Row Space(M).

Proof. Let w be in Ker(M) and v in the column space of M>. We denote by {c1, ..., cm}
the set of column vectors of M>. Then, exists a vector k ∈ Rn such that v =< M, k >
(because v is a linear combination of the column vectors of M>). Now, we have < w, v >=
w> · v = w>· < M, k >= w> · M> · k = (M · w)> · k = 0 because w ∈ Ker(M) and
M · w = 0.

From Lemma 3.1, a basis of Row Space(M) is a basis of the orthogonals of Ker(M).
Thus, for square matrix A, a vector v is orthogonal to Ker((A−λIn)n) (i.e. < Eλ(A), v >=
0) if an only if v belongs to Row Space((A − λIn)n). We directly deduce the following
corollary.

Corollary 3.1. Let A ∈ Mn(R) and v 6= 0 ∈ Rn. The program P (A, v) terminates if and
only if for every positive eigenvalue λ of A, v belongs to the vector space Row Space((A−
λId)

n).

A Complete Approach for Termination Analysis of Linear Programs 9

Proof. Using Lemma 3.1, we know that the basis of Row Space((A − λId)n)) is the basis
of the orthogonals of Ker((A− λId)n)). We can then us directly Theorem 3.2 to complete
the proof.

In practice, we will use the corollary 3.1 through three computational steps associated
to fast algorithms as it is illustrated in the following example.

Example 3.5. (Running example) Consider the program P (A, v) depicted as follow:

(i) Pseudo code:

while(z+t-x-y>0){

x := 2x - y;

y := -x + 2y -z;

z := -y + 2z +t;

t := 2t;}

(ii) Associated matrices:

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 1
0 0 0 2

, and v =


0
0
−1
1

.

Step 1: We compute the list eλ of positive eigenvalues for A:

[[2 - sqrt(2), sqrt(2) + 2,2], [1, 1, 2]]

Hence, we have three positive eigenvalue λ1 = 2, λ2 = 2 −
√

2, λ3 = 2 +
√

2 (with, respec-
tively, the multiplicity 2, 1 and 1).
Step 2: We compute the matrix Eλ = (A− λIn)n for λ ∈ eλ:

(A - (e[i])*Id_m)^d

[18 16*sqrt(2) 14 -4*sqrt(2)]

[16*sqrt(2) 32 16*sqrt(2) -14]

[14 16*sqrt(2) 18 -12*sqrt(2)]

[0 0 0 4]

Step 3: We check if v ∈ Row Space(E):
Here we use a standard procedure, from linear algebra, used to check if a given vector belongs
to a vector space spanned by a list of vectors. We compute the unique reduced row echelon
form of the matrix E>λ . It means that we operate a Gaussian elimination on the rows
using the Gauss-Jordan elimination algorithm. The generated matrix provides us a basis of
Row Space(Eλ):

(E[i].T).echelon_form()

[1 0 0 -sqrt(2)]

[0 1 0 2]

[0 0 1 -sqrt(2)]

[0 0 0 0]

We augement the computed basis with the vector v to form the following matrix.

block_matrix([[Er[i], V.T]])

[1 0 0 -sqrt(2)| 1]

[0 1 0 2| -1]

[0 0 1 -sqrt(2)| 0]

[0 0 0 0| 1]

10 R. Rebiha, N. Matringe e A.V. Moura

Finally, we generate its reduced row echelon form to obtain the matrix R Sλ:

(block_matrix([[Er[i], V.T]])).echelon_form()

[1 0 0 -sqrt(2)| 0]

[0 1 0 2| 0]

[0 0 1 -sqrt(2)| 0]

[0 0 0 0| 1]

From the Gauss-Jordan elimination properties, it is well-known that v belongs to the space
Row Space(Eλ) if and only if R Sλ(n, n+ 1) = 0. Here we have R Sλ(n, n+ 1) = 1, which
means that v is not in Row Space(Eλ). Thus, by Corollary 3.1 one concludes that the
program P (A, v) is nonterminant.

The necessary and sufficent conditions (see Theorem 3.2 and its Corollary 3.1) obtained,
allows us to determine the termination of any homogeneous linear program, considering all
initial values. In section 5, we will see that the termination analysis of affine linear programs
in PA, reduces to the class of homogeneous linear programs. Thus the presented necessary
and sufficient condition provides a decidability result and a complete computational method
for determining the termination of the full class of linear/affine programs. As we show in
Example 3.5, we avoid the computation of generalized eigenspaces in practice, and instead,
use the exact algorithm associated to Corollary 3.1. The following section presents, in more
details, our complete approach and its associated algorithm.

4 Complete Procedure to Determine Termination and Non-
termination

We use the necessary and sufficient conditions provided by Theorem 3.2 and its related
practical corollary 3.1 to build a sound and complete procedure to establish the termination
of linear programs. Moreover, the method obtained is based on few computational steps
associated to fast numerical algorithms.

The pseudo code depicted in Algorithm 1 illustrates the strategy.

Our algorithm takes as input the number of variables, the choosen field where the
variables are interpreted, the assignement matrix A and the vector w encoding the loop
condition. We first compute the list of posivite eigenvalues (see 1, line 1 and 2), if this list
is empty we can then respond that the loop is terminant (see 1, line 3 and 4). Otherwise we
will have to countinue our analysis on the nonempty list of positive eigenvalues. For each
positive eigenvalues e′[i] we will first need to compute the matrix Ei = (A − e′[i]In)n (see
1, line 6). Using Corollary 3.1, we know that the loop is terminant if and only if w is in
the Row Space of (A− e′[i]In)n for every positive eigenvalue e′[i]. In other words, for each
positive eigenvalue, we have to check if w is in the vector space spanned by the basis of the
Row Space of the associated matrix Ei. In order to do so, one first need to consider the
linearly independent vectors {r1, ..., rn} that form a basis of the Row Space (this basis is
obtained from the list of row vectors of Ei). The efficient way to check if w is in the vector
space spanned by the basis {r1, ..., rn} is composed by the following computational steps:

A Complete Approach for Termination Analysis of Linear Programs 11

1. We build the augmented matrix EA formed by the vectors r1, ..., rn and w (see 1, line
7).

2. We compute the reduced row echelon form of matrix EA (see 1, line 8). It means that
we applied Gaussian elimination on the rows. This reduced, canonical form is unique
and exactly computed by Gauss-Jordan elimination.

3. We know that the added vector w is in the vector space spanned by r1, ..., rn if and
only if the bottom right entry of the reduced row echelon matrix ER is null.

Thus if ER(n, n+1) 6= 0, we conclude that there exists a positive eigenvalue e′[i] such that w
is not in Row Space(A− e′[i]In)n, which is equivalent to say that the loop is nonterminant
(see 1, line 9 and line 10). Otherwise if he have exhausted the list of positive eigenvalues
and always found that w is in the Row Space of the associated matrix, we conclude that
the loop is terminant see (1, line 11).

Algorithm 1: Termination linear Loop (n,K, A,w)

/*Determining the termination for linear homogeneous programs.*/;
Data: n the number of program variables, K the field, P (A,w) ∈ PH where

A ∈M(n,K) and w ∈M(n, 1,K)
Result: Determine the Termination/Nontermination
begin

1 {e[1], ..., e[r]} ←− eigenvalues(A);
2 {e′[1], ..., e′[s]} ←− striclty positives({e[1], ..., e[r]});
3 if {e′[1], ..., e′[s]} = ∅ then there is no positive eigenvalues.
4 return TERMINANT;

5 for i = 1 to s do
6 E←− (A− e′[i]In)n;

7 EA ←− augmented(E>A, w);
8 ER ←− echelon form(EA);
9 if ER(n, n+ 1) 6= 0 then

10 return NONTERMINANT;

11 return TERMINANT;

The function echelon form computes the reduced row echelon by Guass-Jordan elimi-
nation and its time complexity is of order O(n3). We interprete the variables in a specified
field (i.e. an extension of Q) choosen according to the discussion made in section 6. By
using efficient mathematical packages (e.g. Maple, Mathematica, Sage, Lapack, Eispack, ...)
one can expect the eigenvalues to be in closed-form algebraic expression (i.e. the solution
of an algebraic equation in terms of the coefficients, relying only on addition, subtraction,

12 R. Rebiha, N. Matringe e A.V. Moura

multiplication, division, and the extraction of roots) for our experiments. Also, with n < 5,
the eigenvalues computed by the function eigenvalues are already exhibited as such alge-
braic numbers. Moreover, the algorithm for eigenvalue computation has a time complexity
that is of order O(n3), and this beeing said, the overall time complexity of the algorithm
Termination linear Loop remains of the same order.

5 Termination for Linear Programs Reduce to Homogeneous
Forms

In this section we show how the termination problem for the classes PG and PA (see
Definition 2.3) can be reduced to the problem of termination of programs in the class PH.
In other words, we show how Theorem 3.2, Corollary 3.1 and the induced computational
method detailed in the previous Section 4 extends to the complete class of linear programs.

5.1 From Generalized Condition to Homogeneous Programs

In this section, we treat the case where the loop condition is generalized to a conjunction
of a finite number of linear inequalities. These inequalities are encoded by a matrix B of
M(m,n,R). Let P (A,B) : while(Bx > 0){x := Ax} be a program in the class PG, where
B is an element of M(m,n,R), x is a vector in Rn and A is an element of M(n,R). We
will say that Bx is positive, and write Bx > 0, if each coordinate of the vector Bx ∈ Rm
is > 0. If B has top row row1, then second row row2, ..., last bottom row rowm, and
Bx = y = (y1, . . . , ym)>, then yi = rowi.x =< row>i , x >. Hence to say that Bx > 0, is to
say that for i between 1 and m, the scalar product < row>i , x > is strictly positive.

Hence, if we consider the general program associated P (A,B) which does x := Ax as
long as Bx > 0, it will be terminating if and only if one of the programs P (A, row>i) is
terminating for i between 1 and m. Following this statement, we establish the following
Theorem 5.1.

Theorem 5.1. Let A be a matrix in M(n,R) and B be a matrix in M(m,n,R). And we
denote by (row1, · · · rowm) the m row vectors of B. The program P (A,B) is terminating if
and only if there is i ∈ 1, . . . ,m such that for all positive eigenvalues λ of A, the generalised
eigenspace Eλ(A) is orthogonal to row>i .

Proof. if we consider the general program associated P (A,B) which does x := Ax as long as
Bx > 0, it will be terminating if and only if one of the programs P (A, row>i) is terminating
for i between 1 and m. By Theorem 3.2, we know that the statement ”P (A, row>i) is
terminating” is equivalent to say that for every positive eigenvalue λ of A, the generalised
eigenspace Eλ(A) is orthogonal to row>i

The following example illustrates the application of Theorem 5.1 on two programs.

Example 5.1. Consider the program P (A1, B1) depicted as follow:

A Complete Approach for Termination Analysis of Linear Programs 13

(i) Pseudo code:

while((x+z>0)&&(x+y>0)){

x := 2x + y +3z;

y := -y;

z := 2z;}

(ii) Associated matrix:

A1 =

2 1 3
0 −1 0
0 0 2

, and B1 =

(
1 0 1
1 1 0

)
.

Then the program P (A1, B1) is nonterminating, because 2 is the only positive eigenvalue
of A, and the generalised eigenspace E2(A1) = V ect(e1, e3) has V ect(e2) as an orthognal,
which contains neither (1, 0, 1)>, nor (1, 1, 0)>.

Example 5.2. Consider the same program depicted in 5.1, but we change the loop condition
to the following one: (x+ +y+ z > 0)∧ (y > 0). This modified loop condition is encoded by

the matrix matrix B2 =

(
1 1 1
0 1 0

)
. The assignement matrix remains unchanged and we

still consider A1.
The program P (A1, B2) terminates because the second row of B2 is e>2 , and e2 is or-

thogonal to E2(A1).

In practice we implement and use the following corollary.

Corollary 5.1. Let A be a matrix inM(n,R) and B be a matrix inM(m,n,R). We denote
by {row1, ..., rowm} the row vectors of B. The program P (A,B) ∈ PG is terminating if and
only if there is i ∈ 1, . . . ,m such that for all positive eigenvalues λ of A, the vector row>i
belong to Row Space((A− λId)n).

Proof. The proof is very similar to the one detailed in the proof of the previous Theorem
5.1. Here we just need to apply Corollary 3.1 instead.

Example 5.3. Consider the program P (A,B) ∈ PG depicted as follow:

(i) Pseudo code:

while((x+z>0)&&

(y+z>0)&&

(x+y>0)){

x := 4x + 2y +6z;

y := 2y;

z := 6x+ 4y + 4z;}

(ii) Associated matrices:

A =

4 2 6
0 2 0
6 4 4

, and B =

1 0 1
0 1 1
1 1 0

.

First, We compute the list eλ of positive eigenvalues for A: [10, 2, [1,1]]. Hence, we
have two positive eigenvalues λ1 = 10, λ2 = 2 (both with multiplicity 1).
We check if there exists a row ri in matrix B such that r>i is in Row Space((A− λ1Id)3))
and in Row Space((A−λ2Id)3)). By Corollary 5.1, we know that if so, the program P (A,B)
terminates, and if there is no such ri for all i ∈ {1 . . . 3}, the program P (A,B) is nonter-
minating.

In this case, matrix B has three rows: r1 = (1, 0, 1), r2 = (0, 1, 1) and r3 = (1, 1, 0).

• We start with the row r1 and we check first if it is in Row Space((A− λ1Id)3)). Our
algorithm performs the computational steps illustrated in Example 3.5, by calling the

14 R. Rebiha, N. Matringe e A.V. Moura

procedure described in Section 4. We obtain the following final augemented matrix in
row reduced echelon form:

(block_matrix([[Er[i], B[j].T]])).echelon_form()

[8 20992 -18376 0]

[0 55296 -48384 0]

[0 0 0 1]

We can see that the last element of the last column of the final matrix R S (described
just above) is not null as R S(3, 4) = 1, which is equivalent to say that r>1 is not in
Row Space((A−λ1Id)3)). So we have to try with an other row ri of B with i ∈ {2, 3}.

• We try with r2 = (0, 1, 1), and we find that r>2 is not in Row Space((A − λ1Id)3))
calling the same procedure.

• Then, we try with the last row r3 = (1, 1, 0) of B.

– We check if r>3 ∈ Row Space((A − λ1Id)3)). We obtain the final augemented
matrix in row reduced echelon form:

(block_matrix([[Er[i], B[j].T]])).echelon_form()

[8 20992 -18376 1]

[0 55296 -48384 1]

[0 0 0 0]

Hence, we know that r>3 ∈ Row Space((A − λ1Id)3)) (as the bottom row of the
matrix above is null) and we have now to consider the other positive eigenvalue
λ2.

– We check if r>3 ∈ Row Space((A − λ2Id)3)). We obtain the final augemented
matrix in row reduced echelon form:

(block_matrix([[Er[i], B[j].T]])).echelon_form()

[8 0 184 1]

[0 0 256 1]

[0 0 0 0]

Hence we have r>3 ∈ Row Space((A− λ2Id)3)).

Finally, one can conclude that r>3 is in the row space of (A − λ1Id)3) associated to
the first positive eigenvalue λ1 and it also belongs to the row space of (A − λ2Id)3)
associted to the other and last positive eigenvalue λ2. By Corollary 5.1, we conclude
that the program P (A,B) terminates.

A Complete Approach for Termination Analysis of Linear Programs 15

5.2 Termination Analysis for Affine Programs

We ow show that the affine case reduces to the homogeneous case. Moreover, in the following
procedure, we show how one can apply directly Theorem 3.2 and its corollary 3.1 to establish
termination of affine programs.

For A ∈ M(n,R), B ∈ M(m,n,R), b = (b1, . . . , bm)> a vector in M(1,m,R) and c a
vector inM(1, n,R). We denote by P (A,B, b, c) ∈ PA the program which does x := Ax+ c
as long as Bx > b. Now we build the matrices A′ ∈M(n+1,R) and B′ ∈M(m+1, n+1,R)
as follows:

c1

A
...

cn

0 · · · 0 1



A′ =

−b1

B
...

−bm
0 · · · 0 1



B′ =

We augmented the matrix A with the vector c and the row (0, · · · 0, 1), and the matrix
B with the vector −b and the row (0, · · · 0, 1). Here we adapt the Proposition 2 of [22] on
the reduction of affine program in order to extend our necessary and sufficient condition
to the class PA. The programm P (A,B, b, c) terminates if and only if the homogeneous
program P (A′, B′) (which does x′ := A′x′ as long as B′x′ > 0) terminates. Considering the
reduction of the termination analysis to the class PH done in the previous section. We can
already note that the termination analysis of programs in PA reduces to the same analysis
for programs in PH.

Theorem 5.2. For A ∈M(n,R), B ∈M(m,n,R), b = (b1, . . . , bm)> a vector inM(1,m,R)
and c a vector inM(1, n,R). Let B′ ∈M(m+1, n+1,R) and A′ ∈M(n+1,R) be the ma-

trices built as such: B′ =

(
B −b
0 1

)
and A′ =

(
A c
0 1

)
. We denote by rowi the i-th row of

B and by ri the i-th row of B′. By the definition of B′, we have r1 = (row1,−b1), . . . , rm =
(row1,−bm), and rm+1 = (0, . . . , 0, 1).
The program P (A,B, b, c) is terminating if and only if there is i ∈ 1, . . . ,m+ 1 such that for
all positive eigenvalues λ of A′, the generalised eigenspace Eλ(A′) is orthogonal to ri.

Proof. The programm P (A,B, b, c) terminates if and only if the homogeneous program
P (A′, B′) by construction of the matrix A′ and B′. To prove this statement we can thus
apply directly Theorem 5.1 for P (A′, B′).

The following Example 5.4, illustrate the application of Theorem 5.2 on two programs.

Example 5.4. Consider the affine program P (A1, B1, b1, c1) ∈ PA depicted as follow:

(i) Pseudo code:

while((x+z>1)&&(x+y>1)){

x := x + y +3z+1;

y := -y;

z := z+1;}

(ii) Associated matrix:

16 R. Rebiha, N. Matringe e A.V. Moura

A1 =

1 1 3
0 −1 0
0 0 1

, B1 =

(
1 0 1
1 1 0

)
,

b1 = (1, 1)> and c1 = (1, 0, 1)>.

We define the matrix A′1, B′1 such that:

A′1 =


1 1 3 0
0 −1 0 0
0 0 1 1
0 0 0 1

, and B′1 =

1 0 1 −1
1 1 0 −1
0 0 0 1

.

Then the program P (A1, B1, b1, c1) is nonterminating, because 1 is the only positve eigen-
value of A′1, and the generalised eigenspace E1(A

′
1) = V ect(e1, e3, e4) has V ect(e2) as an

orthognal, which contains none of the transpose of the rows of B′1.

Example 5.5. Consider again the program depicted in 5.4, where we change the loop condi-
tion to the following one: (x++y+z > 1)∧(y > 0). This modified loop condition is encoded

by the matrix matrix B2 =

(
1 1 1
0 1 0

)
and the vector b2 = (1, 0)>. The assignment matrix

remains unchanged and we still consider A1 and c1. Then the matrix A′1 introduced in the

previous program at Example 5.4, remains unchanged and we have B′2 =

1 0 1 −1
0 1 0 0
0 0 0 1

.

The program P (A1, B2, b2, c1) terminates because the second row of B2 is e>2 , but e2 is
orthogonal to E1(A

′
1), and 1 is the only positive eigenvalue of A1.

In practice we use the following corollary.

Corollary 5.2. Let A, A′, B, B′, b and c be the matrices and vectors introduced in the
statement of Theorem 5.2. We denote by {r1, . . . , rm} the row of the matrix B′. The
program P (A,B, b, c) is terminating if and only if there is i ∈ 1, . . . ,m+ 1 such that for all
positive eigenvalues λ of A′, the vector r>i belong to Row Space((A′ − λId)n).

Proof. The proof is obtain directly using Theorem 5.2 and Corollary 3.1.

Example 5.6. Consider the program P (A,B, b, c) ∈ PA depicted as follow:

(i) Pseudo code:

while ((2x+y+z>-2)&&

(y-z>-1)){

x := 7x -3z +2;

y := -9x -2y -2/3z +1;

z := 18x -8z +1;}

(ii) Associated matrices:

A =

 7 0 −3
−9 −2 −2/3
18 0 −8

, B =

(
2 1 1
0 1 −1

)
,

b = (−2,−1)> and c = (2, 1, 1)>.

First we build the matrix A′ and B′ according to their definition given in Theorem 5.2.

A Complete Approach for Termination Analysis of Linear Programs 17

Aprime

[7 0 -3| 2]

[-9 -2 -2/3| 1]

[18 0 -8| 1]

[--------------+----]

[0 0 0| 1]

Bprime

[2 1 1| 2]

[0 1 -1| 1]

[--------+--]

[0 0 0| 1]

Following the Corollary 5.2, we know that program P (A,B, b, c) ∈ PA is terminant if
and only if the program P (A′, B′) ∈ PG is terminant. Hence we have to proceed with the
procedure given by Corollary 5.1, and illustrated in Example 5.3.

We compute the positive eigenvalues of A′.

[1, [2]]

We have one positive eigenvalue λ1 = 1 (with multiplicity 2). Thus, we only need to check if
there exists a row ri in matrix B′ such that r>i is in Row Space((A−λ1Id)4)). By Corollary
5.1, we know that if so, the program P (A′, B′) terminates, whereas if there is no such ri for
all i ∈ {1 . . . 3}, the program P (A′, B′) is nonterminating.

In this case, the matrix B′ has three rows: r1 = (2, 1, 1, 2), r2 = (0, 1,−1, 1) and r3 =
(0, 0, 1). We start by considering r1. We augment the basis of the row space of (A′ − Id)4
with the vector r1. Then put the obtained matrix in its redruced row echelon form R S given
below.

[1 0 -1/2 -1/2| 0]

[0 1 31/18 -247/54| 0]

[0 0 0 0| 1]

[0 0 0 0| 0]

We conclude that r1 is in Row Space((A − λ1Id)4)) because R S(4, 5) = 0. As λ1 is the
unique positive eigenvalue, we can already conclude, by using Corollary 5.2, that the program
P (A,B, b, c) is terminant.

6 Interpreting the Variables Over Countable Sets is Suffi-
cient

In this section, we show that we can restrict the interpretation of the variables to a specific
countable subset of Rn while we prove the termination over the reals.

First, we study an example, which is already interesting in itself, and which will prove
that we can not restrict the interpretation of the variable to the rational field Q if we want
to prove the termination for all real inputs.

We start with two elements of Q(
√

2)−Q, which are conjugate under the Galois group
GalQ(Q(

√
2)), of opposite signs, and the negative one of absolute value strictly greater than

the one with positive absolute value. For instance, take

λ− = −1−
√

2, and λ+ = −1 +
√

2.

18 R. Rebiha, N. Matringe e A.V. Moura

They are the roots of the polynomial P (X) = (X − λ−)(X − λ+) = X2 + 2X − 1. Now let

A =

(
0 1
1 −2

)
be the associated compagnon matrix, so that its characteristic polynomial

is P , and its eigenvalues are λ− and λ+. Its generalised eigenspaces are easy to compute,
and we find:

Eλ−(A) = R.
(

1
λ−

)
= R.e− and Eλ+(A) = R.

(
1
λ+

)
= R.e+. Now let v = (1, 0)>, we have

< v, e+ >= 1, hence, according to Theorem 3.2, the program P (A, v) associated to A and
v does not terminate. We can actually locate the points of R2 for which the program is not
terminating.

Proposition 6.1. Let A, v and P1 be as above, the program P1 does not terminate for
initial condition x ∈ R2, if and only if x ∈ Eλ+(A) and < x, v >> 0, i.e. x ∈ R>0.e

+.

Proof. If x = t.e+, with t > 0, then Ak(x) = tλ+
k
.x, and < v,Ak(x) >= tλ+

k
> 0 for all

k ≥ 0, hence the program does not terminate for such x as initial condition.
Conversely, suppose that x satsifies < v,Ak(x) >> 0 for all k ≥ 0. Decompose x on the basis

(e−, e+). Then x = s.e− + t.e+, and Ak(x) = sλ−
k
.e− + tλ+

k
.e+, so that < v,Ak(x) >=

sλ−
k

+ tλ+
k
.

Suppose that s is not zero. As |λ−| > |λ+|, for k large enough, the scalar < v,Ak(x) > will

be of the same sign as sλ−
k
, which is alternatively positive and negative. This is absurd,

hence s = 0.
Now as < v,Ak(x) >= tλ+

k
, this imples that t > 0, and we the Proposition is proved.

Proposition 6.1 leads us to the following corollary.

Corollary 6.1. With A and v as above, the program P1 is terminating on Q2, but not on
R2

Proof. We already saw that P1 does not terminate on R2. Now let x be an element of Q2.
If P1 was not terminating with x as an initial value, this would imply that x belongs to
R>0.e

+ according to Lemma 6.1. However, no element of Q2 belongs to R>0.e
+, because

the quotient of the coordinates of e+ is not rational. This implie sthat P1 terminates on
Q2.

This proves that even if A and v are rational, one can not guarantee the termination
over the reals if the interpretation of the variables are restricted to rationals. It is clear
that one cannot hope to produce any valid conjecture of this type if A and v have wild
coefficients (transcendental for example).

However, when A and v have algebraic coefficients, thanks to Corollary 3.1, one can find
a simple remedy. It is indeed enough to replace Q by a finite extension of the field Q. Such
an extension K is called a number field, and is known to be countable, indeed, it is a
Q-vector space of finite dimension (i.e. K = Q.k1 ⊕ · · · ⊕Q.kl for some l ≥ 1, and elements
ki of K).
It is moreover known that K is the fraction field of its ring of integers OK , which is a
free Z-module of finite type, (in fact OK = Z.o1 ⊕ · · · ⊕ Z.ol for the same l ≥ 1, and the

A Complete Approach for Termination Analysis of Linear Programs 19

elements oi can be choosed equal to the ki, for well chosen ki’s).
We say that a number field is real if it is a subfield of R.

Theorem 6.1. Let A ∈ Mn(R) and v 6= 0 ∈ Rn, and suppose that their coefficients are
actually in Q (or more generally in a real number field K). Then there is a well-determined
real finite extension L of Q (or of K in the general case) contained in R, such that the
program P (A, v) associated to A and v terminates, if and only if it terminates on the
countable set Ln. We can choose L to be the extension Q(λ1, . . . , λt) of Q (K(λ1, . . . , λt)
in general) spanned by the positive eigenvalues (λ1, . . . , λt) of A. It is actually enough to
check the termination of the program on OnL.

Proof. We deal with the general case, the reader not familiar with field extensions can just
replace K by Q.
It is obvious that if the program terminates, it terminates on Ln for any subset L of
R. Now λ1, . . . , λr be the positive eigenvalues of A. They ar all roots of the minimal
(or characteristic) polynomial Q of A, which belongs to K[X], they are thus all algebraic
on K (hence on Q, as K/Q is finite). Let L = K(λ1, . . . , λr) ⊂ R. Suppose that the
program P1 does not terminate. Then there is i ∈ {1, . . . , r}, such that < Eλi , v > 6= 0
according to Corollary 3.2. Let r be the integer ≥ 1 such that Ker((A − λiIn)r) 6⊂ v⊥,
but Ker((A − λiIn)r−1) ⊂ v⊥. We saw in the proof of Theorem ??, that for any x in
Ker((A − λiIn)r) − Ker((A − λiIn)r−1), such that < v, x > 0, the programm does not
terminate. We fix such an x. Both spaces Ker((A − λiIn)r) and Ker((A − λiIn)r−1) are
defined by linear equations with coefficients in L, hence there is a basis of Ker((A−λiIn)r)
with coefficients in Ln, containing a basis of Ker((A− λiIn)r−1) with coefficients in Ln. It
is easy to see, that this fact implies that Ln ∩ [Ker((A− λiIn)r)−Ker((A− λiIn)r−1)] is
dense in Ker((A−λiIn)r)−Ker((A−λiIn)r−1) (because L contains Q which is dense in R).
Hence there is a sequence xk in Ln∩ [Ker((A−λiIn)r)−Ker((A−λiIn)r−1)] wich tends to
x, in particular < v, xk > 0 for k large enough. The programm does thus not terminate for
xk for k such that < v, xk >> 0. This shows that P1 does not terminate on Ln. Now, the
fact that P1 doesn’t terminate on OL is a trivial consequence of the fact that any element
of L is the quotient of two elements of Ol, in particular, if P1 doesn’t terminate on x ∈ Ln,
take a > 0 in OL, such that ax ∈ OnL, then the program does not terminate on ax.

Let’s see how Theorem 6.1 work on our previous example.

Example 6.1. For the program associated to the matrix A =

(
0 1
1 −2

)
, and the vector

v = (0, 1)>, the field L is equal to L = Q(λ+) = Q(
√

2) = {a + b
√

2, a ∈ Q, b ∈ Q}. It’s
ring of integers is equal OL = Z(λ+) = Z(

√
2) = {a + b

√
2, a ∈ Z, b ∈ Z}. Theorem 6.1

asserts that, as the programm P (A, v) is non terminating, it is already non terminating on

O2
L. Indeed, Take x+ as an intial value, then x+ =

(
1

−1 +
√

2

)
belongs to O2

L, and the we

saw that P (A, v) does not terminate on x+.

20 R. Rebiha, N. Matringe e A.V. Moura

7 Experimental Results

In Table 1 we list some experimental results. The column Set-i refers to a set of loops
gerenated randomly. The column #Loops gives the number of loops treated (each set
provides the analysis of 500 loops). The column P gives the class of the linear loop programs
of the considered set. There are the three definied linear class defined in this article: PH, PG

and PA. We give the fields associated to the entries of the matrix considered in the column
Fi. The ring L refers to the considered countable subset described in Section 6. The column
Dim refers to the dimention of the initial systems (the number of variables). The column
#T returns the number of programs found as terminant and the column #NT gives the
number of loops programs found nontermiant. Finaly, column CPU/s[T] refers to the cpu
time results while proving all the terminant loop programs and CPU/s[N] gives the cpu
time taken to conclude for all the nonterminant programs. The column CPU/s[total] gives
the cpu time results for concluding on the termination for the given set of 500 loops. We
have implemeted our prototype using Sage [24] through interfaces written in python. By
doing so, we were able to have access to several useful mathematical packages. As expected
we can see that it produces more nonterminant programs (easier to write) and it take much
more time to prove termination than to prove nontermination.

8 Conclusion

We present the first necessary and sufficient condition for the termination of linear pro-
grams. Infact, this NSC exhibits a complete decidability result for the class of linear pro-
grams on all initial values and provides us with a sound, complete and fast computational
method for the termination analysis of such linear programs. The analysis of our associated
alorithms are the evidences showing that our method operates in few and fast computational
steps. The proposed computational method is of lower complexity than the mathematical
foundations of previous methods. Section 6, and especially the example of this section,
shows that an important notion is the locus of initial values for which a linear program
terminates.

References

[1] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conf. Record
of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Los Angeles, California, ACM Press, NY (1977) 238–252

[2] Manna, Z.: Mathematical Theory of Computation. McGrw-Hill (1974)

[3] Clarke, E.M., Grumberg, O., Peled, D. MIT Press, Cambridge, MA (2000)

[4] Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar.
In: Proceedings of the 5th Colloquium on International Symposium on Programming,
London, UK, Springer-Verlag (1982) 337–351

A Complete Approach for Termination Analysis of Linear Programs 21

Table 1: Experimental results on randomly generated linear loop programs

RandSet #Loops P Fi Dim #T #NT CPU/s[T] CPU/s[N] CPU/s[total]
Set-1 500 PH Z 3 152 348 10.02 8.79 18,24
Set-2 500 PH Q 3 195 305 8.97 9.11 18.08
Set-5 500 PG Z 3 233 267 15.07 12, 78 27,85
Set-6 500 PG Q 3 223 277 12.49 10.42 22.91
Set-9 500 PA Z 3 246 254 12.52 11.59 24,11
Set-10 500 PA Q 3 222 278 13.30 10.35 23.66
Set-13 500 PH R 4 122 378 27.8 16.51 44.31
Set-14 500 PH Q 4 184 316 42,67 21.90 53.80
Set-17 500 PG R 4 145 355 31.91 18.05 49.97
Set-18 500 PG Q 4 171 329 41.16 22.37 63.54
Set-21 500 PA Z 4 185 315 43.03 24.22 67.25
Set-22 500 PA Q 4 176 324 40.36 19.95 60.32
Set-1 500 PH R 5 183 317 126.24 66.95 193.20
Set-1 500 PH Q 5 227 273 155.80 81.29 237.10
Set-21 500 PG Z 5 178 322 103.90 43.47 146.57
Set-22 500 PG Q 5 161 339 169.92 54.00 223.92
Set-23 500 PA R 5 199 299 171.92 66.75 238.68
Set-24 500 PA Q 5 209 201 174.91 70.32 254.24
Set-1 500 PH Z 6 141 359 236.0 70.19 306.20
Set-25 500 PH Q 6 173 327 387.80 105.69 493.50
Set-26 500 PG Z 6 192 308 342.70 101.89 444,59
Set-27 500 PG Q 6 188 312 352.40 165.41 517.81
Set-28 500 PA Z 6 231 270 402.71 174.56 577.28
Set-29 500 PA Q 6 184 316 385.00 190.94 575.94
Set-30 500 PH Q 7 171 329 851.18 194.21 1044.39
Set-31 500 PG Q 7 139 361 699.03 174.65 873.68
Set-32 500 PA Q 7 174 336 876.62 238.94 1115.56

[5] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3) (1992) 103–179

[6] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Tucson, Arizona, ACM Press,
New York, NY (1978) 84–97

[7] Sipma, H.B., Uribe, T.E., Manna, Z.: Deductive model checking. Form. Methods Syst.
Des. 15(1) (July 1999) 49–74

[8] Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. TACAS 2001, London, UK, UK, Springer-Verlag (2001) 67–81

22 R. Rebiha, N. Matringe e A.V. Moura

[9] Col’on, M.A., Sipma, H.B.: Practical methods for proving program termination. In:
In CAV2002: Computer Aided Verification, volume 2404 of LNCS, Springer (2002)
442–454

[10] Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: In CAV,
Springer (2005) 491–504

[11] Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops.
In: In CONCUR, Springer-Verlag (2005) 488–502

[12] Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Workshop on Advances in Verification. (2000) 1–8

[13] Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking
functions. In: VMCAI. (2004) 239–251

[14] Braverman, M.: Termination of integer linear programs. In: In Proc. CAV06, LNCS
4144, Springer (2006) 372–385

[15] Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
In VMCAI’2005: Verification, Model Checking, and Abstract Interpretation, volume
3385 of LNCS, Springer (2005) 113–129

[16] Chen, H.Y., Flur, S., Mukhopadhyay, S.: Termination proofs for linear simple loops.
In: Proceedings of the 19th international conference on Static Analysis. SAS’12, Berlin,
Heidelberg, Springer-Verlag (2012) 422–438

[17] Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Sixth International Confer-
ence on Verification, Model Checking and Abstract Interpretation (VMCAI’05), Paris,
France, LNCS 3385, Springer, Berlin (January 17–19 2005) 1–24

[18] Cousot, P., Cousot, R.: An abstract interpretation framework for termination. SIG-
PLAN Not. 47(1) (January 2012) 245–258

[19] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. SIG-
PLAN Not. 41(6) (June 2006) 415–426

[20] Ben-Amram, A.M., Genaim, S., Masud, A.N.: On the termination of integer loops.
In: VMCAI. (2012) 72–87

[21] Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: Proceedings of the 40th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. POPL ’13, New York, NY, USA,
ACM (2013) 51–62

[22] Tiwari, A.: Termination of linear programs. In Alur, R., Peled, D., eds.: Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA. Vol-
ume 3114 of Lecture Notes in Computer Science., Springer (2004) 70–82

A Complete Approach for Termination Analysis of Linear Programs 23

[23] Rebiha, R., Matringe, N., Moura, A.V.: Necessary and sufficient condition for ter-
mination of linear programs. Technical Report TR-IC-13-07, Institute of Computing,
University of Campinas (January 2013)

[24] Stein, W., Joyner, D.: SAGE: System for Algebra and Geometry Experimentation.
ACM SIGSAM Bulletin, volume 39, number 2, pages 61–64 (2005)

