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Necessary and Sufficient Condition for Termination of Linear

Programs

Rachid Rebiha∗ Nadir Matringe † Arnaldo Vieira Moura‡

Abstract

We describe new decidability results that respond completely to major conjectures
on termination analysis of linear loop programs, on all initial values interpreted over
the reals. To the best of our knowledge, we present the first necessary and sufficient
conditions from which we provide a complete decidability result and methods for termi-
nation analysis of such a class of programs. We reduce the termination analsysis for such
programs to the problem consisting in checking if a specific vector (related to the loop
condition encoding) belong to a specific vectorial space related to the matrix encoding
the assignements of the loop variables. We provide theoretical results guaranteeing the
soundness and completeness of the termination analysis while restrincting the variables
interpretation over a specific countable subring of the field of real numbers.

1 Introduction

Formal methods for program verification research [1, 2, 3, 4] aim at discovering mathematical
techniques and developing their associated algorithms to establish the correctness of soft-
ware, hardware, concurrent systems, embedded systems or hybrid systems. Static program
analysis [5, 2, 6], is used to check that a software is free of defects, such as buffers over flow
or segmentation faults, which are safety properties, or termination and non-termination,
which are liveness properties.

Proving termination of while loop programs is necessary for the verification of liveness
properties, that any well behaved engineered system, safety critcal systems and embedded
systems must guarantee. We could list here many verification approaches that are only prac-
tical, depending on the facility with which termination can be automatically determinated
(e.g., verification of temporal properties of infinite state systems [7] is an other example.).
More recent work on automated termination analysis of imperative loop programs has fo-
cused on a partial decision procedure based on the discovery and the synthesis of ranking
functions. Such function maps the loop variable to a well-defined domain where their value
decreases further at each iteration of the loop [8, 9]. Several interesting approaches, based
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on the generation of linear ranking functions, have been proposed [10, 11] for loop programs
where the guards and the instructions can be expressed in a logic with linear arithmetic.
For the generation of such functions, there are effective heuristics [12, 9], and in some cases,
there are also complete methods for the synthesis of linear ranking functions [13]. On the
other hand, it is easy to generate a simple linear terminant loop program that does not have
a linear ranking function. And in this case the mentioned complete synthesis methods [13]
fail to provide a conclusion on the termination or the non termination of such program.

In this work we address the termination problem for while linear loop programs. In other
words we consider the class of loop programs where the loop condition is a conjunction
of linear inequalities and the assignements to each of the variables (related to the loop
instruction block), are of affine/linear form. In matrix notations, the linear loop programs
will be represented in our most general form as:

while (Bx > b), {x := Ax+ c}.

Considering effective program transformations and simplification techniques, the termina-
tion analysis for programs presented in a more complex form can often be reduced to an
analysis of a program expressed in this basic affine form. Despite tremendous progress over
the years [14, 15, 16, 17, 18, 19, 20, 21], the problem of finding a practical, sound and
complete method for determining termination or non termination remains very challenging
for this class of programs on all initial values. We started our investigation from the line of
research proposed by A.Tiwari [22].

We summarize our contributions as follows:

• First we prove a sufficient condition for the termination of homogeneous linear pro-
grams. This statement is contained in the important work proposed in [22], but the
proof of the result contains a non trivially fixable mistake. The proof of this sufficient
condition requires expertise in several independent mathematical fields. We show how
this sufficient condition can be in used to determine termination of linear programs.
We also draw its limitations.

• We then generalize the previous results. To the best of our knowledge, we present the
first necessary and sufficient condition for the termination of linear programs. Infact,
this NSC exhibits a complete decidability result for the class of linear programs on all
initial values.

• Moreover, departing from this NSC, we show the scalability of our approach by demon-
strating that one can directly extract a sound and complete computational method
to determine termination or nontermination for linear programs.

• We provide theoretical results guaranteeing the soundness and completeness of the
termination analysis while restrincting the variables interpretation over a specific
countable subring of Rn. In other words, we show that it is enough to interprete
the variables over a specific countable field (or even its ring of integers) when one
wants to check the termination over the reals.
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The rest of this article is ordered as follows. Section 2, can be seen as a preliminary
section where we introduce our computational model of programs, the notations for the
rest of the paper, and the key notions of linear used in order to build our computational
methods. Section 3, provides the main theoretical contributions of this work. Infact, we
present our decidability results and a very useful necessary and sufficient condition allowing
us to propose a complete computational method. In Section 5, we show how we interprete
the variables over a countable field determining termination over the reals. Finally, Section
6 states our conclusion.

2 Linear Algebra and Linear Loop Programs

Here, we define key notions of linear algebra that are central in the theoretical and al-
gorithmic development of our methods. If V is a vector space over a field K, we write
V ect(v1, ..., vn) for the vector subspace generated by the family v1, ..., vn of vectors of V .
We denote byM(m,n,K) the set of m×n matrices with entries in K (and simplyM(n,K)
if m = n). If A belongs to M(m,n,K), with entry ai,j in position (i, j), we will some-
times denote it (ai,j). The transpose of the matrix A = (ai,j) is by definition the matrix
M> = (bi,j), such that bi,j = aj,i. The Kernel of A, also called its nullspace, and denoted
by Ker(A), is defined by: Ker(A) = {v ∈ Kn | A · v = 0Km}. In fact, when we deal with
square matrices, these Kernels are Eigenspaces. Let A be a n×n square matrix with entries
in K. A nonzero vector x ∈ K is an eigenvector for A associated with the eigenvalue λ ∈ K
if: A · x = λx, i.e., (A − λIn) · x = 0 where In is the n × n identity matrix. The nullspace
of (A− λIn) is called the eigenspace of A associated with eigenvalue λ. A non-zero vector
x is said to be a generalized eigenvector for A corresponding to λ if (A − λIn)k · x = 0
for some positive integer k. The spaces Ker((A − λIn)k) form an increasing sequence of
subspaces of k, which is stationary for k ≥ d, for some d ≤ n. We call the subspace
Ker((A− λIn)d) = Ker((A− λIn)n) the generalized eigenspace of A associated with λ.

We denote by < , > the canonical scalar product on Rn.
Notationally, as it is standard in static program analysis, a primed symbol x′ refers to

next state value of x after a transition is taken. First, we present transition systems as
representations of imperative programs and automata as their computational models.

Definition 2.1. A transition system is given by 〈x, L, T , l0,Θ〉, where

• x = (x1, ..., xn) is a set of variables,

• L is a set of locations and l0 ∈ L is the initial location.

• A state is given by an interpretation of the variables in x.

• A transition τ ∈ T is given by a tuple 〈lpre, lpost, qτ , ρτ 〉, where lpre and lpost designate
the pre- and post- locations of τ , and the transition relation ρτ is a first-order assertion
over x ∪ x′. The transition guard qτ is a conjunction of inequalities over x, it is
intuitively the pre-condition for the transition to be fired.

• Θ is the initial condition, given as a first-order assertion over x.
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The transition system is said to be affine when ρτ is an affine form. And it is said to be
algebraic when ρτ is an algebraic form.

Here, we will use the following matrix notations to represent loop programs and their
associated transitions systems.

Definition 2.2. Let P be a loop program represented by the transition system 〈x = (x1, ..., xn), l0, T =
〈l0, l0, qτ , ρτ 〉, l0,Θ〉. We say that P is a linear loop program if the following conditions hold:

• the loop condition (i.e. the transition guard gτ ) is a conjunction of linear inequalities.
We represent the loop condition in the matrix form Bx > b where B ∈ M(m,n,R)
and b ∈ Rm (by Bx > b, we mean that each coordinate of the column Bx is strictly
greater than the corresponding coordinate of b).

• the transition relation ρτ , representing the assignements to each of the variables, is
an affine/linear form. We represent the linear assignements (related to the loop in-
structions block) in the matrix form x := Ax+ c where A ∈M(n,R) and c ∈ Rn.

The linear loop program P = P (A,B, b, c) will be represented in its most general form as:
while (Bx > b), {x := Ax+ c}.

In this work, we use the following linear loop program classifications.

Definition 2.3. Let P be a linear loop program. We identify the following three type of
linear loop programs, from the more specific to the more general form:

• Homogeneous: We denote by PH the set of programs where all linear assignements
consist of homogeneous expressions, and where the linear condition loop consists of
at most one inequality. If P is in PH, then P will be interpreted in matrix terms as
while (< w>, x >> 0), {x := Ax}, where w is a (n × 1)-vector corresponding to the
loop condition, and where A ∈ M(n,R) is related to the list of assignements of the
loop. We say that P has a homogeneous form and it will be identified as P (A,w).

• Generalized Condition: We denote by PG the type of linear loop programs where the
condition of the loop is generalized to a conjonction of multiple linear inequalities.
Also the considered inequalities and assignements remain as homogeneous expressions.
If P is in PG then P will be interpreted as while (Bx > 0), {x := Ax} where B is a
(m×n)-matrix corresponding to the loop condition. We say that P is in a generalized
loop condition form and it will be identified as P (A,B).

• Affine Form: We denote by PA the set of loop programs where the inequalities and
the assignements associated are generalized to affine/nonhomogeneous expressions. If
P is in PA, it will be interpreted as while (Bx > b), {x := Ax + c}, for A and B
as before, b ∈ Rm, and c ∈ Rn. We say that P is in an affine form and it will be
identified by the signature P (A,B, b, c).

Example 2.1. Consider the program depicted at the left below, for multiplying two numbers.
Its computational model is described by the automaton at the right:
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(i) Pseudo code:

...

While (j>0){

s := s+i;

j := j-1;

}

...

(ii) Transition systems:

l

τ = 〈gρ = (j > 0), ρτ =

[
s′ = s+ i
j′ = j − 1

]
〉

with V = {s, i}, Θ = (s = 0∧ j = j0), l0 = l,

L = {l} and T = {τ}.

(iii) Matrix notations: P (A,B, b, c) with A =

1 0 1
0 1 0
0 0 1

, B = (0, 1, 0), b = (0, 0, 0)>

and c = (0,−1, 0)>.

3 New Decibability Results for Termination of Linear Pro-
grams

In this section we introduce the theoretical foundations of our approach. Here, we provide
decidability results for the termination of the complete class of linear programs.

For this section, it is enough to consider only the class of homogeneous linear programs
PH (see Definition 2.3). In fact, as we will show in section 4, the problem of termination of
linear programs in PA (i.e. the class of affine programs, see Definition 2.3) reduces to the
problem of termination of homogeneous linear programs PH.

First we establish a sufficient condition for the termination of homogeneous linear pro-
grams. Then, we present the main result, which provides the first necessary and sufficient
condition for the termination problem considering the complete class of linear programs.
Those decidability results lead us to a complete method, associated to fast algorithms to
determines termination of linear programs.

3.1 Sufficient Condition for the Termination of Homogeneous Linear Pro-
grams

Here, we prove a sufficient condition for the termination of homogeneous linear programs
P (A,w) ∈ PH : while (< w>, x >> 0), {x := Ax}.

Theorem 3.1. Let n be a positive integer, and let P (A,w) be program in PH, defined by the
linear assignements encoded by a matrix A in M(n,R), and the inequality loop condition
described by the vector w ∈ Rn − {0}.
If P (A,w) is nonterminant, i.e. if there exists a vector x ∈ Rn such that 〈Akx,w〉 > 0 for
all k ≥ 0, then A has a positive eigenvalue.
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This statement can actually be found as Theorem 1 of the important work proposed
in [22], however, the proof of the result contains a non trivially fixable mistake, which we
explain. The author of [22] applies the Brouwer’s fixed point theorem to a subspace of the
projective space P (Rn) (not Rn−1 as said in [22]). However, this is not an euclidian space,
and convexity is not well defined in it, hence one can’t apply Brouwer’s fixed point theorem
to such a set. Moreover, using notations of the proof of Theorem 1 of [22], the closure NT ′

of the set NT can contain zero, so that its image in P (Rn) is not well defined. Actually
this extremal case needs to be treated carefully.

Proof of Theorem 3.1
We present now the complete proof of Theorem 3.1 requires notions from in several inde-
pendent mathematical fields. In fact, the core of the proof requires three lemmas and two
propositions.

We first recall some basic facts about generalised eigenspaces. Let E be an R-vector
space of finite dimension, and u belong to EndR(E), the space of linear maps from E to
itself. If λ ∈ R, we denote by Eλ(u) the subspace {x ∈ E,∃k ≥ 0, (u − Id)k(x) = 0}. This
space is non zero if and only if λ is an eigenvector of u, in this case, it is called a generalised
eigenspace. If χu is the characteristic polynomial of u, if one calls d the multiplicity of
(X − λ) in χu (maybe 0 if λ is not an eigenvalue), then Eλ(u) = Ker(u − λId)

d. It is
obvious that Eλ(u) is u-stable. We denote by Spec(u) the set of real eigenvalues of u.

The following property of generalised eigenspaces is well-known, and contained in the
previous discussion:

Proposition 3.1. Let E be an R-vector space of finite dimension, and u belong to EndR(E),
then Eλ(u) = Ker(u−λId)d, for some d ≤ n (in particular, Eλ(u) = Ker(u−λId)n, because
the sequence Ker(u− λId)n is increasing).

Proof. We just said that one can choose d to be such that

(X − λ)d\χu,

hence

d ≤ d◦(χu) = n.

We will also need the following two standard lemmas:

Lemma 3.1. In the previous situation, there is a supplementary space E′ of Eλ(u) (i.e.
E = Eλ(u)⊕ E′), and two polynomials A and B in R[X], such that A(u) is the projection
on Eλ(u) with respect to E′, and B(u) is the projection on E′ with respect to Eλ(u). In
particular E′ is also u-stable, and for any u-stable subspace L of E, we have

L = L ∩ Eλ(u)⊕ L ∩ E′.
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Proof. Let χu = (X − λ)dQ, with Q(λ) 6= 0. By the Kernel’s decomposition Lemma, we
have

E = Ker(u− λId)d ⊕Ker(Q(u)).

We set E′ = Ker(Q(u)). It is thus u-stable. Moreover, by Bezou’s identity, there are P
and P ′ in R[X], such that

P (u) ◦ (u− λId)d + P ′(u) ◦Q(u) = Id,

then we set

B = P (X − λ)d,

and

A = P ′(u) ◦Q(u).

Finally, if L is u-stable, we always have

L ∩ Eλ(u)⊕ L ∩ E′ ⊂ L.

Now write an element l of L as l1 + l2, with l1 ∈ Eλ(u), and l2 ∈ E′, we have A(u)(l) = l1,
but L being u-stable, it is A(u)-stable as well, hence l1 ∈ L, similarly we have l2 ∈ L, thus

L = L ∩ Eλ(u)⊕ L ∩ E′.

Lemma 3.2. Let E∗ be the space HomR(E,R), for E a finite dimensional vector space, and
f0, . . . , fm be linear forms in E∗. Then this family spans E∗ if and only if ∩mi=0Ker(fi) =
{0}.

Proof. Suppose that f0, . . . , fm spans E∗, then if x belongs to ∩mi=0Ker(fi), then x belongs
to the kernel of any element of E∗. But then, if B = (e1, . . . , en) is a basis of E, and
B∗ = (e∗1, . . . , e

∗
n) is its dual basis, we have x = x1.e1 + · · · + xn.en, and e∗i (x) = xi = 0,

hence x = 0.
Conversely, if ∩mi=0Ker(fi) = {0}, Let g1, . . . , gr be a maximal linearly independantfamily
in f0, . . . , fm, hence

V ect(g1, . . . , gr) = V ect(f0, . . . , fm).

We thus have r ≤ n (because dim(E∗) = dim(E) = n), and ∩ri=1Ker(gi) = {0}. If r was
< n, then ∩ri=1Ker(gi) would be an intersection of r subspaces of codimension 1, hance it
would be of codimension at most r, i.e. ∩ri=1Ker(gi) would be dimension at least n− r > 0,
which is absurd, thus r = n, and (g1, . . . , gr) is a basis of E∗, thus

V ect(f0, . . . , fm) = E∗.

We will also use the following fact about quotient vector-spaces:
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Lemma 3.3. Let E be an R-vector space, and u belong to EndR(E), and suppose that L
is a u-stable subspace of L. Let u : E/L→ E/L, be the element of EndR(E/L), defined by
u(x + L) = u(x) + L, then Spec(u) ⊂ Spec(u). More generally, for any λ ∈ Spec(u), the
generalised eigenspace Eλ(u) maps surjectively to Eλ(u) in E/L.

Proof. Let B1 be a basis of L, and B2 be a basis of any supplementary space. Call B2 the
image of the elements of B2 in E = E/L, then B2 is a basis of E. Let B = B1 ∪B2, it is a
basis of B, and MatB(u) is of the form (

X Y
0 Z

)
.

Then X = MatB1(u|L), and Z = MatB2
(u), and the second statement follows from this

second fact.
Now if x belongs to Eλ(u), then

(u− λId)ax = 0

for some a ≥ 0. This means that

(u− λId)ax ∈ L.

We write x = xλ + x′ ∈ Eλ(u)⊕ > E′, for E′ as in the Lemma 3.1. Then

(u− λId)ax = (u− λId)axλ + (u− λId)ax′,

and
(u− λId)axλ ∈ Eλ(u),

and
(u− λId)ax′ ∈ E′.

Let d be λ’s multiplicity as a root of χu, for k large enough kd such that kd ≥ a, we have

(u− λId)kdxλ = 0

and
(u− λId)kdx = (u− λId)kdx′.

But take P ∈ R[X] as in the proof Lemma 3.1, we obtain that

P (u) ◦ (u− λId)d

is the identity when restricted to E′, in particular, this implies that

x′ = P (u)k(u− λId)kdx,

and thus x′ ∈ L. Finally, we obtain
x = xλ,

and this ends the proof as xλ ∈ Eλ(u).
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We denote by < , > the canonical scalar product on Rn. We say that a subset of Rn
is a convex cone if it is convex, and stable under multiplication by elements of R>0. It is
obvious that an intersection of convex cones is still a convex cone, hence one can speak of
the convex cone spanned by a subset of Rn.

Proposition 3.2. Let C be a convex cone of Rn non reduced to zero, and contained in the
closed cone

∆ = {x ∈ Rn, ∀ i, xi ≥ 0}.

If A is an invertible endomorphism of Rn, with A(C) ⊂ C, then A has a positive eigenvalue.

Proof. Consider C ′ = C−{0}, then C ′ is also a convex cone. It is obviously still stable under
multiplication by elements of R>0. Moreover, if x and y belong to C ′, then for t ∈ [0, 1],
the vector tx+ (1− t)y belongs to C by convexity, but it cannot be equal to zero, because
otherwise, as both x and y have non negative coefficients, this would imply that x or y is
null, which is absurd.
Now let H1 be the affine hyperplane

H1 = {x ∈ Rn, x1 + . . . xn = 1,

and call f the linear form on Rn, defined by

f : x 7→ x1 + · · ·+ xn,

sothat
H = f−1(1).

This linear form is positive on ∆, hence we can define the projection

p : ∆− {0} → H,

given by

x 7→ 1

f(x)
x,

it is obviously continuous. We call C1 the set p(C ′), we claim that

C1 = C ′ ∩H1,

in particular it is convex. Indeed, C1 ⊂ H by definition, and C1 ⊂ C ′ because C ′ is stable
under R>0. Conversely, the restriction of p to C ′ ∩ H1 is the identity, hence C1 contains
C ′ ∩H1 = p(C ′ ∩H1). It is also clearly stable under the continuous map

s = p ◦A : ∆− {0} → H

(as A(C ′) ⊂ C ′). In particular, its closure C1 is stable under s as well. It is again convex,
and compact, as a closed subset of the compact set

{x ∈ Rn, ∀ i, xi ≥ 0, x1 + · · ·+ xn = 1}.
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According to Brouwer’s fixed point theorem, this implies that s has a fixed x point in

C1 ⊂ ∆− {0},

but we then have A(x) = f(x)x. As f(x) > 0 for any x in ∆ − {0}, this proves the
Lemma.

Finally we will prove the following statement equivalent to Theorem 3.1 (i.e., we just
rewrite the statement of Theorem 3.1 in terms of morphisms just because it is more handy
to work with).

Theorem 3.2. Let E be an R-vector space of dimension n, let u be a endomorphism of E,
and f a nonzero linear form on E. If there exists a vector x ∈ E, such that f(uk(x)) > 0
for all k ≥ 0, then u has a positive eigenvalue.

Proof. We prove this by induction on n. For n = 1, we can identify E with R. Then u
is of the form x 7→ tu.x, for some nonzero tu, and {f ≥ 0} is either R≥0, or R≤0. Hence,
x belongs to R>0, or R<0, and tku.x belongs to the same half-space for every k ≥ 0, hence
tu > 0.
Now if u is non invertible, then we can replace E by Im(u), and x by u(x), the hypothesis
are still verified by u’s restriction to Im(u), but Im(u) being a subspace of E of strictly
smaller dimension, we conclude by induction hypothesis.
We are thus left with the case u invertible. Let m be the maximal non negative integer
such that (f, f ◦ u, . . . , f ◦ um) is a linearly independant family of E∗. It is easy to see that
L = ∩k≥0Ker(f ◦ uk) is equal to ∩mk=0Ker(f ◦ uk), hence it is u-stable. The space L is a
proper subspace of E, because it is contained in Ker(f). Considering the quotient space
E = E/L, the linear map u induces

u : E → E,

and f induces a linear form f on Ē. Let x̄ be the image of x in E, the quadruplet

(E, u, f, x̄)

still satisfies the hypothesis of the theorem. If L is not zero, by induction, the linear map u
has a positive eigenvalue λ > 0, but λ is necessarily an eigenvalue of u by Lemma 3.3, and
we are done in this case.
Otherwise Eλ(u)∩L is zero. Let E′ be as in the statement of Lemma 3.1. In particular, as
L is u-stable, we have

L = L ∩ Eλ(u)⊕ L ∩ E′ = L ∩ E′,

hence L ⊂ E′. Now let y be a preimage of y in E, and write y = v0 + e′, with v0 ∈ Eλ(u),
and e′ in E′. We have u(y) = λy + l, for some l in L, as u(y) = y. Then u(v0) − λv0 =
−u(e′) + λe′ + l, but the RHS of this equality belongs to E′, and the LHS to Eλ(u), as the
intersection of those spaces is zero, we deduce u(v0) = λv0, and u(e′) = λe′ + l. Hence in
E′/L, we have

λ ∈ Spec(u|E′) ⊂ Spec(u|E′),
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/*...*/

while(3x - y > 0){

x := 3x - 2y;

y := 4x - y;

}

/*...*/

(a)

/*...*/

while(z > 0){

x:= x + y;

z:= -z;

}

/*...*/

(b)

Figure 1: Examples of homogeneous linear programs

which is absurd. This implies that

v0 = y,

and thus v0 is nonzero, moreover

f(v0) = f(v0) = f(y) = f(y) ≥ 0,

and this concludes the proof when L 6= {0}.
Finally, if L = {0}, then

(e∗1 = f, e∗2 = f ◦ u, . . . , e∗n = f ◦ um)

is a basis of E∗ according to Lemma 3.2. Take (e1, . . . , en) its dual basis in E, and identify
E with Rn thanks to this basis. Then uk(x) belongs to the space {v,∀i, vi > 0} ⊂ ∆ for all
k ≥ 0, hence the convex cone C spanned by this family as well. It is clearly u-stable, and
it is not reduced to zero as it contains x. We conclude by applying Proposition 3.2.

Theorem 3.1 provides a sufficient condition for the termination of linear program. In
other words, Theorem 3.1 says that the linear program terminates when there is no positive
eigenvalues, but one can not conclude on the termination problem using theorem 3.1 if there
exists at least one positive eigenvalue. Intuitively, we could say that theorem 3.1 provides
us with a decidability result for the termination problem considering the subclass of linear
program where the associated assignement matrix A has no positive eigenvalues (i.e., all
eigenvalues are complex or negative). In the following example, we illustrate when Theorem
3.1 applies and when it does not.

Example 3.1. Consider the homogeneous linear program 1a depicted in the figure 1 that

we denote by P (A, v). The associated matrix A is given by A =

(
3 −2
4 −1

)
, and the vector

v enconding the loop condition, is such that v = (3,−1)>. The eigenvalues of the matrix A
are the complex numbers: 1 + 2i and 1 − 2i. As S does not have any positive eigenvalues,
we can consider the contrapose of Theorem 3.1’s statement, and conclude that the program
P (A, v) terminates on all possible inputs.
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Example 3.2. Now, consider the homogeneous linear program 1b depicted in Figure 1, that

we denote by P (A1, v1). The associated matrix A1 given by A1 =

1 1 0
0 1 0
0 0 −1

, has eigen-

values 1 and −1. As A has a positive eigenvalues, one can not determine the termination
(or the nontermination) of P (A1, v1) using the theorem 3.1.

However, We will see how to handle this case in a very automated efficient way in our
more applied approach associated technicalk report [23].

In the next section, we generalize Theorem 3.1, and obtain stronger decidability results.

3.2 Necessary and Sufficient Condition for the Termination of Linear
Program

In this section, we strengthen the theorem 3.1, in order to obtain a complete decidability
result leading us to a sound and complete methods with very few computational steps
executed by fast algorithms.

Infact, in the following main theorem 3.3 we provide a necessary and sufficient condition
for the termination of programs P (A, v) ∈ PH : while (< v>, x >> 0), {x := Ax}.

Theorem 3.3. Let A ∈ Mn(R) and w 6= 0 ∈ Rn. The program P (A, v) : {x := Ax, <
v, x >> 0} terminates if and only if for every positive eigenvalue λ of A, the generalised
eigenspace Eλ(A) is orthogonal to v (i.e. < Eλ(A), v >= 0).

Proof of Theorem 3.3

First we will prove the following theorem written in linear algebraic terms.

Theorem 3.4. Let E be an R-vector space of finite dimension, let u be an endomorphism of
E, and f be a nonzero linear form on E. There exists a vector x ∈ E, such that f(uk(x)) > 0
for all k ≥ 0, if and only if there is λ > 0 ∈ Spec(u), such that Eλ(u) 6⊂ Ker(f).

Proof. First suppose that here is λ > 0 ∈ Spec(u), with Eλ(u) 6⊂ Ker(f). Then there is
r ≥ 1, such that Ker(u− λId)r−1 ⊂ Ker(f), but Ker(u− λId)r 6⊂ Ker(f). Let thus x be
an element of Ker(u − λId)r −Ker(f) such that f(x) > 0 (it is always possible, because
Ker(u − λId)r −Ker(f) is stable under y 7→ −y). Because x ∈ Ker(u − λId)r, it is clear
that u(x) − λx ∈ Ker(u − λId)r−1. Then let L be Ker(u − λId)r−1, and E = E/L. As L
is u-stable, then u is well defined, and

u(x) = λx

because u(x)− λx ∈ L. Moreover, L ⊂ Ker(f), hence f is well defined and

f(uk(x)) = f(uk(x))

for every k ≥ 0. As uk(x) = λkx, we deduce that

f(uk(x)) = λkf(x) > 0
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for all k ≥ 0.
Conversely, suppose that there exists a vector x ∈ E, such that f(uk(x)) > 0 for all k ≥ 0,
we are going to prove by induction on n that u has an eigenvalue λ > 0, such that Eλ(u) is
not contained in Ker(f).
If n = 1, then

u : t 7→ λt

for λ ∈ R, and thus,

λk(f(x)) > 0

for all k ≥ 0, which implies λ > 0, and we can take r = 1, and v = x.
If n > 1, according to Theorem 3.2, we know that u admits positive eigenvalue µ. If Eµ(u)
is not a subset of Ker(f), then we are done.
If L = Eµ(u) ⊂ Ker(f), then we consider

E = E/L.

This vector space is of dimension < n, and

f(uk(x)) = f(uk(x)) > 0

for all k ≥ 0. By induction hypothesis, there is

λ > 0 ∈ Spec(u),

such that

Eλ(u) 6⊂ Ker(f).

But λ belongs to Spec(u) according to Lemma 3.3, and Eλ(u) maps surjectively on Eλ(u)
according to this same Lemma. In particular, we have

f(Eλ(u)) = f(Eλ(u)),

but the LHS is not reduced to zero in this equality, hence

f(Eλ(u)) 6= {0},

i.e. Eλ(u) 6⊂ Ker(f), and this terminates the proof.

Indeed, It has the statement of Theorem 3.3 as immediate corollary.

Theorem 3.3 gives a necessary and sufficient condition that we use as the foundation
to build a complete procedure. In order to determine termination, we have to check, for
each positive eigenvalues, if the vector v, encoding the loop condition, is orthogonal to the
associated generalized eigenspace. In other words we want to verify if v is orthogonal to
the nullspace Ker((A− λIn)n).
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Example 3.3. Consider the program 1b depicted in Figure 1 that we denoted as P (A1, v1).
The matrix A1 is given in Example 3.1. The vector enconding the loop condition is v1 =
e3 = (0, 0, 1)>. We recall that A1 has eigenvalues 1 and −1. The generalised eigenspace
E1(A1) is equal to V ect(e1, e2), where e1 and e2 are the first two vectors of the canonical
basis of R3. Hence E1(A1) is orthogonal to v1. According to Theorem 3.3, the program
P (A,w) terminates.

Example 3.4. Now, if we change the loop condition of the program 1b depicted in Figure
1 to become (y > 0). Then, we obtain the program P (A1, v2) with the new considered loop
condition encoded by v2 = e2 = (0, 1, 0)>. The eigenvalues of A1 are (still) 1 and −1 and
the generalised eigenspace E1(A1) = V ect(e1, e2). Hence E1(A) is not orthogonal to v2,
because it contains v2. Theorem 3.3 tells us that the program P (A1, v2) does not terminate
in this case.

In both of these examples, we are able to determine the termination/nontermination
using Theorem 3.3. On the other hand, the first Theorem 3.1 does not allow us to say
anything about the termination of these programs (because the assignement matrix A′

exhibit at least one positive eigenvalue).
The necessary and sufficent conditions (see Theorem 3.3) and its Corollaries obtained

and presented in our associated technical reports [23], allow us to determine the termination
of any homogeneous linear program, considering all initial values. In section 4, we will
see that the termination analysis of affine linear programs in PA, reduces to the class
of homogeneous linear programs. Thus the presented necessary and sufficient condition
provides a decidability result and a complete computational method for determining the
termination of the full class of linear/affine programs.

Remark 3.1. As we show in [23], we avoid the computation of generalized eigenspaces
in practice, and instead, use the exact algorithms and associated corollaries obtained from
Theorem 3.3 and presented in [23].

4 Termination for Linear Programs Reduce to Homogeneous
Forms

In this section we show how the termination problem for the classes PG and PA (see
Definition 2.3) can be reduced to the problem of termination of programs in the class PH.
In other words, we show how Theorem 3.3 extends to the complete class of linear programs.

4.1 From Generalized Condition to Homogeneous Programs

In this section, we treat the case where the loop condition is generalized to a conjunction
of a finite number of linear inequalities. These inequalities are encoded by a matrix B of
M(m,n,R). Let

P (A,B) : while(Bx > 0){x := Ax}
be a program in the class PG, where B is an element of M(m,n,R), x is a vector in Rn
and A is an element ofM(n,R). We will say that Bx is positive, and write Bx > 0, if each
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coordinate of the vector Bx ∈ Rm is > 0. If B has top row row1, then second row row2,
..., last bottom row rowm, and Bx = y = (y1, . . . , ym)>, then yi = rowi.x =< row>i , x >.
Hence to say that Bx > 0, is to say that for i between 1 and m, the scalar product
< row>i , x > is strictly positive.

Hence, if we consider the general program associated P (A,B) which does x := Ax as
long as Bx > 0, it will be terminating if and only if one of the programs P (A, row>i ) is
terminating for i between 1 and m. Following this statement, we establish the following
Theorem 4.1.

Theorem 4.1. Let A be a matrix in M(n,R) and B be a matrix in M(m,n,R). And we
denote by (row1, · · · rowm) the m row vectors of B. The program P (A,B) is terminating if
and only if there is i ∈ 1, . . . ,m such that for all positive eigenvalues λ of A, the generalised
eigenspace Eλ(A) is orthogonal to row>i .

Proof. if we consider the general program associated P (A,B) which does x := Ax as long as
Bx > 0, it will be terminating if and only if one of the programs P (A, row>i ) is terminating
for i between 1 and m. By Theorem 3.3, we know that the statement ”P (A, row>i ) is
terminating” is equivalent to say that for every positive eigenvalue λ of A, the generalised
eigenspace Eλ(A) is orthogonal to row>i .

The following example illustrates the application of Theorem 4.1 on two programs.

Example 4.1. Consider the program P (A1, B1) depicted as follow:

(i) Pseudo code:

while((x+z>0)&&(x+y>0)){

x := 2x + y +3z;

y := -y;

z := 2z;}

(ii) Associated matrix:

A1 =

2 1 3
0 −1 0
0 0 2

, and B1 =

(
1 0 1
1 1 0

)
.

Then the program P (A1, B1) is nonterminating, because 2 is the only positive eigenvalue
of A, and the generalised eigenspace E2(A1) = V ect(e1, e3) has V ect(e2) as an orthognal,
which contains neither (1, 0, 1)>, nor (1, 1, 0)>.

Example 4.2. Consider the same program depicted in 4.1, but we change the loop condition
to the following one: (x+ +y+ z > 0)∧ (y > 0). This modified loop condition is encoded by

the matrix matrix B2 =

(
1 1 1
0 1 0

)
. The assignement matrix remains unchanged and we

still consider A1.
The program P (A1, B2) terminates because the second row of B2 is e>2 , and e2 is or-

thogonal to E2(A1).

4.2 Termination Analysis for Affine Programs

We ow show that the affine case reduces to the homogeneous case. Moreover, in the following
procedure, we show how one can apply directly Theorem 3.3 to establish termination of
affine programs.
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For A ∈ M(n,R), B ∈ M(m,n,R), b = (b1, . . . , bm)> a vector in M(1,m,R) and c a
vector inM(1, n,R). We denote by P (A,B, b, c) ∈ PA the program which does x := Ax+ c
as long as Bx > b. Now we build the matrices A′ ∈M(n+1,R) and B′ ∈M(m+1, n+1,R)
as follows:

c1

A
...

cn

0 · · · 0 1



A′ =

−b1

B
...

−bm
0 · · · 0 1



B′ =

We augmented the matrix A with the vector c and the row (0, · · · 0, 1), and the matrix
B with the vector −b and the row (0, · · · 0, 1). Here we adapt the Proposition 2 of [22] on
the reduction of affine program in order to extend our necessary and sufficient condition
to the class PA. The programm P (A,B, b, c) terminates if and only if the homogeneous
program P (A′, B′) (which does x′ := A′x′ as long as B′x′ > 0) terminates. Considering the
reduction of the termination analysis to the class PH done in the previous section. We can
already note that the termination analysis of programs in PA reduces to the same analysis
for programs in PH.

Theorem 4.2. For A ∈M(n,R), B ∈M(m,n,R), b = (b1, . . . , bm)> a vector inM(1,m,R)
and c a vector inM(1, n,R). Let B′ ∈M(m+1, n+1,R) and A′ ∈M(n+1,R) be the ma-

trices built as such: B′ =

(
B −b
0 1

)
and A′ =

(
A c
0 1

)
. We denote by rowi the i-th row of

B and by ri the i-th row of B′. By the definition of B′, we have r1 = (row1,−b1), . . . , rm =
(row1,−bm), and rm+1 = (0, . . . , 0, 1).
The program P (A,B, b, c) is terminating if and only if there is i ∈ 1, . . . ,m+ 1 such that for
all positive eigenvalues λ of A′, the generalised eigenspace Eλ(A′) is orthogonal to ri.

Proof. The programm P (A,B, b, c) terminates if and only if the homogeneous program
P (A′, B′) by construction of the matrix A′ and B′. To prove this statement we can thus
apply directly Theorem 4.1 for P (A′, B′).

The following Example 4.3, illustrate the application of Theorem 4.2 on two programs.

Example 4.3. Consider the affine program P (A1, B1, b1, c1) ∈ PA depicted as follow:

(i) Pseudo code:

while((x+z>1)&&(x+y>1)){

x := x + y +3z+1;

y := -y;

z := z+1;}

(ii) Associated matrix:

A1 =

1 1 3
0 −1 0
0 0 1

, B1 =

(
1 0 1
1 1 0

)
,

b1 = (1, 1)> and c1 = (1, 0, 1)>.

We define the matrix A′1, B′1 such that:
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A′1 =


1 1 3 0
0 −1 0 0
0 0 1 1
0 0 0 1

, and B′1 =

1 0 1 −1
1 1 0 −1
0 0 0 1

.

Then the program P (A1, B1, b1, c1) is nonterminating, because 1 is the only positve eigen-
value of A′1, and the generalised eigenspace E1(A

′
1) = V ect(e1, e3, e4) has V ect(e2) as an

orthognal, which contains none of the transpose of the rows of B′1.

Example 4.4. Consider again the program depicted in 4.3, where we change the loop condi-
tion to the following one: (x++y+z > 1)∧(y > 0). This modified loop condition is encoded

by the matrix matrix B2 =

(
1 1 1
0 1 0

)
and the vector b2 = (1, 0)>. The assignment matrix

remains unchanged and we still consider A1 and c1. Then the matrix A′1 introduced in the

previous program at Example 4.3, remains unchanged and we have B′2 =

1 0 1 −1
0 1 0 0
0 0 0 1

.

The program P (A1, B2, b2, c1) terminates because the second row of B2 is e>2 , but e2 is
orthogonal to E1(A

′
1), and 1 is the only positive eigenvalue of A1.

In practice we use corollaries and the algorithms deducted from Theorem 3.3 and intro-
duced in our associated applied technical reports [23].

5 Interpreting the Variables Over Countable Sets is Suffi-
cient

In this section, we show that we can restrict the interpretation of the variables to a specific
countable subset of Rn while we prove the termination over the reals.

First, we study an example, which is already interesting in itself, and which will prove
that we can not restrict the interpretation of the variable to the rational field Q if we want
to prove the termination for all real inputs.

We start with two elements of Q(
√

2)−Q, which are conjugate under the Galois group
GalQ(Q(

√
2)), of opposite signs, and the negative one of absolute value strictly greater than

the one with positive absolute value. For instance, take

λ− = −1−
√

2, and λ+ = −1 +
√

2.

They are the roots of the polynomial P (X) = (X − λ−)(X − λ+) = X2 + 2X − 1. Now let

A =

(
0 1
1 −2

)
be the associated compagnon matrix, so that its characteristic polynomial

is P , and its eigenvalues are λ− and λ+. Its generalised eigenspaces are easy to compute,
and we find:

Eλ−(A) = R.
(

1
λ−

)
= R.e− and Eλ+(A) = R.

(
1
λ+

)
= R.e+. Now let v = (1, 0)>, we have

< v, e+ >= 1, hence, according to Theorem 3.3, the program P (A, v) associated to A and
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v does not terminate. We can actually locate the points of R2 for which the program is not
terminating.

Proposition 5.1. Let A, v and P1 be as above, the program P1 does not terminate for
initial condition x ∈ R2, if and only if x ∈ Eλ+(A) and < x, v >> 0, i.e. x ∈ R>0.e

+.

Proof. If x = t.e+, with t > 0, then Ak(x) = tλ+
k
.x, and

< v,Ak(x) >= tλ+
k
> 0

for all k ≥ 0, hence the program does not terminate for such x as initial condition.
Conversely, suppose that x satsifies < v,Ak(x) >> 0 for all k ≥ 0. Decompose x on the
basis (e−, e+). Then x = s.e− + t.e+, and

Ak(x) = sλ−
k
.e− + tλ+

k
.e+,

so that < v,Ak(x) >= sλ−
k

+ tλ+
k
.

Suppose that s is not zero. As |λ−| > |λ+|, for k large enough, the scalar < v,Ak(x) > will

be of the same sign as sλ−
k
, which is alternatively positive and negative. This is absurd,

hence s = 0.
Now as < v,Ak(x) >= tλ+

k
, this imples that t > 0, and we the Proposition is proved.

Proposition 5.1 leads us to the following corollary.

Corollary 5.1. With A and v as above, the program P1 is terminating on Q2, but not on
R2

Proof. We already saw that P1 does not terminate on R2. Now let x be an element of Q2.
If P1 was not terminating with x as an initial value, this would imply that x belongs to
R>0.e

+ according to Lemma 5.1. However, no element of Q2 belongs to R>0.e
+, because

the quotient of the coordinates of e+ is not rational. This implie sthat P1 terminates on
Q2.

This proves that even if A and v are rational, one can not guarantee the termination
over the reals if the interpretation of the variables are restricted to rationals. It is clear
that one cannot hope to produce any valid conjecture of this type if A and v have wild
coefficients (transcendental for example).

However, when A and v have algebraic coefficients, thanks to Theorem 3.3, one can find
a simple remedy. It is indeed enough to replace Q by a finite extension of the field Q. Such
an extension K is called a number field, and is known to be countable, indeed, it is a
Q-vector space of finite dimension (i.e. K = Q.k1 ⊕ · · · ⊕Q.kl for some l ≥ 1, and elements
ki of K).
It is moreover known that K is the fraction field of its ring of integers OK , which is a
free Z-module of finite type, (in fact OK = Z.o1 ⊕ · · · ⊕ Z.ol for the same l ≥ 1, and the
elements oi can be choosed equal to the ki, for well chosen ki’s).
We say that a number field is real if it is a subfield of R.
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Theorem 5.1. Let A ∈ Mn(R) and v 6= 0 ∈ Rn, and suppose that their coefficients are
actually in Q (or more generally in a real number field K). Then there is a well-determined
real finite extension L of Q (or of K in the general case) contained in R, such that the
program P (A, v) associated to A and v terminates, if and only if it terminates on the
countable set Ln. We can choose L to be the extension Q(λ1, . . . , λt) of Q (K(λ1, . . . , λt)
in general) spanned by the positive eigenvalues (λ1, . . . , λt) of A. It is actually enough to
check the termination of the program on OnL.

Proof. We deal with the general case, the reader not familiar with field extensions can just
replace K by Q.
It is obvious that if the program terminates, it terminates on Ln for any subset L of R.
Now λ1, . . . , λr be the positive eigenvalues of A. They ar all roots of the minimal (or
characteristic) polynomial Q of A, which belongs to K[X], they are thus all algevbraic on
K (hence on Q, as K/Q is finite). Let L = K(λ1, . . . , λr) ⊂ R. Suppose that the program
P1 does not terminate. Then there is i ∈ {1, . . . , r}, such that

< Eλi , v > 6= 0

according to Corollary 3.3. Let r be the integer ≥ 1 such that Ker((A − λiIn)r) 6⊂ v⊥,
but Ker((A − λiIn)r−1) ⊂ v⊥. We saw in the proof of Theorem 3.3, that for any x in
Ker((A − λiIn)r) − Ker((A − λiIn)r−1), such that < v, x > 0, the programm does not
terminate. We fix such an x. Both spaces Ker((A − λiIn)r) and Ker((A − λiIn)r−1) are
defined by linear equations with coefficients in L, hence there is a basis of Ker((A−λiIn)r)
with coefficients in Ln, containing a basis of Ker((A− λiIn)r−1) with coefficients in Ln. It
is easy to see, that this fact implies that

Ln ∩ [Ker((A− λiIn)r)−Ker((A− λiIn)r−1)]

is dense in

Ker((A− λiIn)r)−Ker((A− λiIn)r−1)

(because L contains Q which is dense in R). Hence there is a sequence xk in Ln∩ [Ker((A−
λiIn)r)−Ker((A−λiIn)r−1)] wich tends to x, in particular < v, xk > 0 for k large enough.
The programm does thus not terminate for xk for k such that < v, xk >> 0. This shows
that P1 does not terminate on Ln. Now, the fact that P1 doesn’t terminate on OL is a
trivial consequence of the fact that any element of L is the quotient of two elements of Ol,
in particular, if P1 doesn’t terminate on x ∈ Ln, take a > 0 in OL, such that ax ∈ OnL, then
the program does not terminate on ax.

Let’s see how Theorem 5.1 work on our previous example.

Example 5.1. For the program associated to the matrix A =

(
0 1
1 −2

)
, and the vector

v = (0, 1)>, the field L is equal to L = Q(λ+) = Q(
√

2) = {a + b
√

2, a ∈ Q, b ∈ Q}. It’s
ring of integers is equal OL = Z(λ+) = Z(

√
2) = {a + b

√
2, a ∈ Z, b ∈ Z}. Theorem 5.1

asserts that, as the programm P (A, v) is non terminating, it is already non terminating on
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O2
L. Indeed, Take x+ as an intial value, then x+ =

(
1

−1 +
√

2

)
belongs to O2

L, and the we

saw that P (A, v) does not terminate on x+.

6 Conclusion

We present the first necessary and sufficient condition for the termination of linear pro-
grams. Infact, this NSC exhibits a complete decidability result for the class of linear pro-
grams on all initial values and provides us with a sound, complete and fast computational
method for the termination analysis of such linear programs. In practice we use additional
corollaries and the algorithms introduced in our associated applied technical reports [23], in
order to avoid the computation of any eigenspaces or eigenvectors. Section 5, and especially
the example of this section, shows that an important notion is the locus of initial values for
which a linear program terminates. In our example, it allows us to answer that the program
terminates on all rational initial values. Actually, we think that this type of methods can be
vastly generalised, to tackle the termination problem of linear programs on rational initial
values (see conjecture 1 of [22]). Because of the difficulty of the problem, we think that it
should require some non trivial Galois theory, and leave this investigation to a near future.
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