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Transcendental Invariants Generation for Non-linear Hybrid

Systems

Rachid Rebiha∗ Arnaldo Vieira Moura† Nadir Matringe ‡

Abstract

We present the first verification methods that automatically generate bases of in-
variants expressed by multivariate formal power series and transcendental functions.
We discuss the convergence of solutions generated over hybrid systems that exhibit
non-linear models augmented with parameters. We reduce the invariant generation
problem to linear algebraic matrix systems, from which one can provide effective meth-
ods for solving the original problem. We obtain very general sufficient conditions for the
existence and the computation of formal power series invariants over multivariate poly-
nomial continuous differential systems. The formal power series invariants generated
are often composed by the expansion of some well-known transcendental functions like
log or exp and have an analysable closed-form. This facilitates their use to verify safety
properties. Moreover, we generate inequality and equality invariants. Our examples,
dealing with non-linear continuous evolution similar to those present today in many
critical hybrid embedded systems, show the strength of our results and prove that some
of them are beyond the limits of other recent approaches.

1 Introduction

Hybrid systems [1], [2] exhibit discrete and continuous behaviors, as one often finds when
modeling digital system embedded in analog environments. Moreover, most safety-critical
systems, e.g. aircraft, automobiles, chemical plants and biological systems, operate as non-
linear hybrid systems and can only be adequately modeled by means of non-linear arithmetic
over the real numbers and involving multivariate polynomial, fractional or transcendental
functions.

In this work, we will use hybrid automata as computational models for hybrid systems.
A hybrid automaton can describe interactions between discrete transitions and continuous
dynamics, the latter being governed by local differential equations. We look for invariants
that strengthen what we wish to prove, and so allow us to establish the desired property.
Also, they can provide precise over approximations of the set of reachable states in the
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continuous state space. Given that, they can be used to determine which discrete transitions
are possible and can also be used to verify if a given property is fulfilled or not.

Some known verification approaches are based on inductive invariant generation [3] and
abstract interpretation [4], [5], which can be extended to hybrid systems to verify safety-
critical properties. Other recent approaches to invariant generation are constraint based [6],
[7],[8]. In these cases, a template form, described by a polynomial with fixed degree and
unknown parametric coefficients, is proposed as the target invariant to be generated. The
conditions for invariance are then encoded, resulting in constraints over the unknown coef-
ficients whose solutions yield the desired invariants. But they still require several computa-
tions of Gröbner bases [9], first-order quantifier elimination [10] or abstraction operations
at several steps, and known algorithms for those problems are, at least, of double expo-
nential time complexity. SAT modulo theory decision procedures and polynomial systems
[11], [7], [12] also could eventually lead to decision procedures for treating linear theories
and decidable systems. Such works strive to generate linear or polynomial invariants over
hybrid systems that exhibit affine or polynomial systems as continuous evolution modes.

Despite tremendous progress over the past years [6], [13], [14], [7], [15], [16], [17], [18],
[19], [20], [21], generating invariants for hybrid systems remains very challenging for non-
linear discrete systems, as well as for non-linear differential systems with non-trivial local
and initial conditions. In this work, we present new methods for the automatic generation of
invariants in the form of assertions where continuous functions are expressed by multivariate
formal power series. Such methods can then be applied to systems with continuous evolution
modes described by multivariate polynomials or fractional differential rules. As far as we
know, there are no other methods that deal with this type of systems or that can generate
this type of invariants.

We develop the new methods [22], [23] by first extending our previous work on non-linear
invariant generation for discrete models with nested loops and conditional statements that
describe multivariate polynomial or fractional systems [24], [25]. Then, we generalize our
previous work on non-linear invariant generation for hybrid systems [26],[27], [28], [29].

We summarize our contributions as follows:
• To the best of our knowledge, we present the first methods which generate bases of
formal power series and transcendental invariants, while dealing with non-linear continuous
models present in many critical hybrid and embedded systems. The problem of synthesizing
power series invariants and the results are clearly novel. We consider very general forms of
continuous modes, i.e., they are non-linear and augmented with parameters. Moreover, we
generate both inequality and equality invariants.
• We introduce a more general approximation of consecution, dealing with assertions ex-

pressed by multivariate formal power series. We show that the preconditions for discrete
transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and
suitably represented by matrices. In this way, we reduce the invariant generation problem
to linear algebraic matrix manipulations. We present an analysis of these matrices.
•We also provide resolution and convergence analysis for techniques that generate non triv-
ial bases of provable multivariate formal power series and generate transcendental invariants
for each local continuous evolution rules.
• Mathematically, we develop very general sufficient conditions allowing the existence and
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computation of solutions defined by formal power series for multivariate polynomial dif-
ferential systems. In order to achieve this goal we develop new methods, in the spirit of
Boularas [30].
• The contribution is significant as it provides invariants that can be used to prove safety

properties which also exhibit formal power series expressions or transcendental functions. To
reason symbolically about formal power series and transcendental functions, it is necessary
to be able to generate formal power series invariants, since they provide a more precise
reachability analysis. The formal power series invariants generated are often composed by
expansions involving transcendental functions like log or exp, which have analyzable closed
forms, and thus facilitates the use of these invariants to verify properties.

Example 1.1. (Motivational Example) Consider the following non-linear continuous sys-
tem with 2 variables x(t), y(t) and 2 parameters a, b:

(S3) =

{
˙x(t) = ax(t)
˙y(t) = ay(t) + bx(t)y(t).

Note that for this kind of systems, one could prove that no invariant can be obtained via
the standard constraint-based approaches based on constant, polynomial or fractional scaling
methods. Our method exhibits the following basis for the vector space of invariants

{x, e−bx/ay}.

Almost all elements in this space would provide transcendental invariants. More precisely,
by considering

F 1(x, y) = x

and
F 2(x, y) = e−bx/ay

we will be able to generate strong invariants expressed in a very simple form (e.g. x = 0)
and others expressed by multivariate formal power series and transcendental functions (e.g.
e−bx/ay = 0).

For instance, given any initial condition x(0) = x0, y(0) = y0, the following assertion

x(e−bx0/a)y0 − x0(e−bx/a)y = 0

is an inductive invariant whatever the initial conditions are. It depends smoothly on the
initial value and it is convergent everywhere. We are also able to generate inequality in-
variants, e.g., if we initially have a ≤ 0 and

F 2(x0, y0) ≤ 0

then we have the inequality invariant

e−bx0/ay0 ≤ e−bx/ay ≤ 0.

Such invariants are beyond the reach of current invariant generation techniques, even these
in a simple forms.
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This article is organized as follows. In Section 2 we first recall the notion of algebraic
hybrid systems, we introduce our notations and representations for multivariate formal
series. In Section 3 we present new forms for approximating consecution with multivariate
formal power series and we reduce the problem to triangular linear algebraic matrix systems.
In Section 4 we provide very general sufficient conditions for the existence of invariants
and, further, we show how to automatically compute such invariants. In Section 5 we
show how we treat general triangularizable systems. In Section 6 we present a running
example and a convergence analysis. We show the efficiency of our methods in Section 7
by generating closed-form invariants for systems that are intractable by other state-of-the-
art formal methods and static analysis approaches. In Section 8 we show how we handle
algebraic discrete transitions. Section 9 offers our conclusions.

2 Hybrid Systems, Inductive Assertions and Formal Power
Series

We present our approaches within a framework for hybrid systems. Let K[X1, .., Xn] be
the ring of multivariate polynomials over the set of variables {X1, .., Xn}. An ideal is
any set I ⊆ K[X1, .., Xn] which contains the null polynomial and is closed under addition
and multiplication by any element in K[X1, .., Xn]. Let E ⊆ K[X1, .., Xn] be a set of
polynomials. The ideal generated by E is the set of finite sums (E) = {

∑k
i=1 PiQi | Pi ∈

K[X1, . . . , Xn], Qi ∈ E, k ≥ 1}. A set of polynomials E is said to be a basis of an ideal
I if I = (E). By the Hilbert basis theorem, we know that all ideals have a finite basis.
Notationally, as is standard in static program analysis, a primed symbol x′ refers to next
state value of x after a transition is taken. We may also write ẋ for the derivative dx

dt . We
denote by Rd[X1, .., Xn] the ring of multivariate polynomials of degree at most d over the
set of real variables {X1, .., Xn}.

We use the notion of hybrid automata as the computational models for hybrid systems.

Definition 2.1. A hybrid system is described by a tuple 〈V, Vt, L, T , C,S, l0,Θ〉, where
V = {a1, .., am} is a set of parameters, Vt = {X1(t), .., Xn(t)} where Xi(t) is a function
of t, L is a set of locations and l0 is the initial location. A transition τ ∈ T is given by
〈lpre, lpost, ρτ 〉, where lpre and lpost name the pre- and post- locations of τ , and the transition
relation ρτ is a first-order assertion over V ∪ Vt ∪ V ′ ∪ V ′t . Also, Θ is the initial condition,
given as a first-order assertion over V ∪ Vt. And C maps each location l ∈ L to a local
condition C(l) denoting an assertion over V ∪ Vt. Finally, S associates each location l ∈ L
to a differential rule S(l) corresponding to an assertion over V ∪{dXi/dt|Xi ∈ Vt}. A state
is any pair from L× R|V ∪Vt|, that is a location and interpretation of the variables.

The evolution of variables and functions in an interval must satisfy the local conditions
and differential rules.

Definition 2.2. A run of a hybrid automaton is an infinite sequence (l0, κ0) → · · · →
(li, κi)→ · · · of states where l0 is the initial location and κ0 |= Θ. For any two consecutive
states (li, κi)→ (li+1, κi+1) in such a run, the condition describes a discrete consecution if
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there exists a transition 〈q, p, ρi〉 ∈ T such that q = li, p = li+1 and 〈κi, κi+1〉 |= ρi where
the primed symbols refer to κi+1. Otherwise, it is a continuous consecution condition and
there is some ε ∈ R, ε > 0, and a differentiable function φ : [0, ε) → R|V ∪Vt| such that the
following conditions hold: (i) li = li+1 = q; (ii) φ(0) = κi, φ(ε) = κi+1; (iii) During the
time interval [0, ε), φ satisfies the local condition C(q) and the local differential rule S(q)
such that for all t ∈ [0, ε) we must have φ(t) |= C(q) and 〈φ(t), dφ(t)/dt〉 |= S(q). A state
(`, κ) is reachable if there is a run and some i ≥ 0 such that (`, κ) = (`i, κi).

Definition 2.3. Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an invariant at
l ∈ L if κ |= ϕ whenever (l, κ) is a reachable state of W .

Definition 2.4. Let W be a hybrid system and let D be an assertion domain. An assertion
map for W is a map γ : L → D. We say that γ is inductive if and only if the following
conditions hold:
1. Initiation: Θ |= γ(l0);
2. Discrete Consecution: for all 〈li, lj , ρτ 〉 ∈ T we have γ(li) ∧ ρτ |= γ(lj)

′;
3. Continuous Consecution: for all l ∈ L, and two consecutive states (l, κi) and (l, κi+1)
in a possible run of W such that κi+1 is obtained from κi according to the local differential
rule S(l), if κi |= γ(l) then κi+1 |= γ(l). .

Hence, if γ is an inductive assertion map then γ(l) is an invariant at l for W . Note that,
in a continuous consecution, if γ(l) ≡ (P (X1(t), .., Xn(t)) = 0), for all t ∈ [0, ε), where P
is a multivariate polynomial in R[X1, .., Xn] such that it has null values on the trajectory
(X1(t), .., Xn(t)) during the time interval [0, ε), which is not to say that P is the null

polynomial, then C(l) ∧ (P (X1(t), .., Xn(t)) = 0) |= (d(P (X1(t),..,Xn(t))
dt = 0) during the local

time interval.

Definition 2.5. A formal power series in the indeterminates x1, . . . , xn is an expression
of the following form: ∑

(i1,...,in)∈Nn

fi1,...,inx
i1 ...xin ,

where the coefficients fi1,...,in belong to R.

Definition 2.6. Whenever i = (i1, ..., in) ∈ Nn, we denote the sum i1 + · · · + in by |i|.
We say that an order < is a lexicographical total ordering in Nn if for any two elements
i = (i1, ..., in) and j = (j1, ..., jn) in Nn we have that (j1, ..., jn) < (i1, ..., in) holds if and
only if one of the following condition holds: (i) |j| < |i|; or (ii) |j| = |i|, and the first non
null component of i− j is positive.

With |i| = k, where i = (i1, .., in), the monomials xi11 · · ·xinn , form an ordered basis for
the vector space of homogeneous polynomials of total degree k. This means that any
homogeneous polynomial of total degree k can be written in the following ordered form:∑
|i|=k fi1,...,inx

i1
1 . . . x

in
n . As a consequence, since a formal power series F (x1, .., xn) is the

direct sum of its homogeneous components, it can be written in the following ordered form:

F (x1, .., xn) =
∑
k≥1

∑
|i|=k

fi1,...,inx
i1
1 . . . x

in
n .
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We will denote the coefficients of homogeneous polynomials of degree k by [30]

Fk =
[
fk,0,0,...,0 fk−1,1,0,...,0 fk−1,0,1,...,0 . . . f0,0,0,...,k

]>
and the basis of homogeneous monomials of degree k will be denoted by the following vector

Xk = [ x1
k x1

k−1x2 x1
k−1x3 . . . xn

k ]>,

with the coordinates ordered with respect to the lexicographical total ordering given in
Definition 2.6. We may now write the formal power series F (x1, .., xn) as∑

k≥1
Fk ·Xk = F1 ·X1 + ...+ Fk ·Xk + ...,

where Fk ·Xk denotes the scalar product 〈Fk, Xk〉. The polynomial Pi(x1, . . . , xn) can thus
be written in the form Pi(x1, . . . , xn) = P i1 ·X1 + ... + P im ·Xm, where m is the maximal
degree among all polynomials Pi, and the P ij are the coefficient vectors of Pi. Denote by

x(t) the vector (x1(t), ..., xn(t))>. Then S can be written as

ẋ = A1 ·X1(t) + ...+Am ·Xm(t),

where Aj =
[
P 1
j . . . Pnj

]>
. In particular, A1 is the n × n matrix equal to the Jacobian

matrix of the polynomial system given by the Pi’s at zero.

From now on, let us describe the continuous evolution rules by a polynomial differential
system S of the form:

S =


ẋ1(t) = P1(x1(t), ..., xn(t))
ẋ2(t) = P2(x1(t), ..., xn(t))

. . .
ẋn(t) = Pn(x1(t), ..., xn(t))

 (1)

3 Reduction to linear algebra

Now, we encode differential continuous consecution conditions. Let S be a polynomial
differential system as in Eq.(1).

Definition 3.1. A function F from Rn to R is said to be a λ-invariant for a system S if
d
dtF (x1(t), .., xn(t)) = λF (x1(t), .., xn(t)), for any solution x(t) = (x1(t), .., xn(t)) of S.

In Definiton 3.1, the numerical value of the Lie derivative of F is given by λ times
its numerical value throughout the time interval [0, ε). Without loss of generality we will
assume that λ is a constant. It is worth noticing, however, that our methods will also
work when λ is a multivariate fractional or multivariate polynomial, as is the case for
multivariate polynomial invariants generation [26], [27], [28]. Next, we establish sufficient
conditions over S for it to admit λ-invariants which are formal power series. Note that a
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formal power series F (x) = F1 · X1 + ... + Fk · Xk + ... is a λ-invariant if the following

conditions holds:
∑n

i=0
∂F (x)
∂xi

Pi(x) = λF (x). Using our notation, we obtain:

n∑
i=0

∂(F1 ·X1 + ...+ Fk ·Xk + ...)

∂xi
(P i1 ·X1 + ...+ P im ·Xm)

−λ(F1 ·X1 + ...+ Fk ·Xk + ...) = 0.

By directly expanding the left side of the equation described just above and collecting terms
corresponding to increasing degrees, we have:

(1) :
∑n

j=1
∂(F1X1)
∂xj

P j1X
1 − λF1X

1 = 0

(2) :
∑n

j=1[
∂(F1X1)
∂xj

P j2X
2 + ∂(F2X2)

∂xj
P j1X

1]− λF2X
2 = 0

(3) :
∑n

j=1[
∂(F1X1)
∂xj

P j3X
3 + ∂(F2X2)

∂xj
P j2X

2 + ∂(F3X3)
∂xj

P j1X
1]

−λF3X
3 = 0

. . . . . .

(m) :
∑n

j=1[
∂(F1X1)
∂xj

P jmXm + ∂(F2X2)
∂xj

P jm−1X
m−1+

+ · · ·+ ∂(FmXm)
∂xj

P j1X
1]− λFmXm = 0

(m+ 1) :
∑n

j=1[
∂(F2X2)
∂xj

P jmXm + ∂(F3X3)
∂xj

P jm−1X
m−1+

+ · · ·+ ∂(Fm+1Xm+1)
∂xj

P j1X
1]− λFm+1X

m+1 = 0

. . . . . .

The equation corresponding to degree k is:∑n
j=1[

∂(Fk−min(k,m)+1X
k−min(k,m)+1)

∂xj
P jmin(k,m)X

min(k,m)

+
∂(Fk−min(k,m)+2X

k−min(k,m)+2)

∂xj
P jmin(k,m)−1X

min(k,m)−1

+ · · ·+ ∂(FkX
k)

∂xj
P j1X

1 ]− λFkXk = 0.

With a different notion of consecution, we can treat more general systems than those that
appeared in the determinant analysis of integrability of differential systems in Boularas [30].
Take the linear morphism Dp−k,p from Rp−k[x1, . . . , xn] to Rp[x1, . . . , xn], given by

Rp−k[x1, . . . , xn] 7→ Rp[x1, . . . , xn]

P (X = x1, . . . , xn) 7→
∑

j=1,...,n

(∂jP (X))P jk+1.X
k+1.

which is the matrixMp−k,p in the ordered canonical basis of Rp−k[x1, . . . , xn] and Rp[x1, . . . , xn],
respectively. Its l-th column represents the decomposition of the polynomial∑

j=1,...,n

(∂jP (X))P jk+1.X
k+1,

where P (X) is the l-th monomial in the ordered basis

{xp1, x
p−1
1 x2, x

p−1
1 x3, . . . , x

p
n}.
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We can reduce the infinite system, described just above, to the following linear algebraic
system: 

(M1,1 − λI2)F1 = 0
M1,2F1 + (M2,2 − λI2)F2 = 0
M1,3F1 +M2,3F2 + (M3,3 − λI4)F3 = 0
. . .
Mk−min(k,m)+1,kFk−min(k,m)+1+

+Mk−min(k,m)+2,kFk−min(k,m)+2+

+ · · ·+ (Mk,k − λIk+1)Fk = 0
. . .

By using the definitions of Dp−k,p and Dp,p, we will see that we can symbolically compute
all the matrices that will appear during the resolution of the mentioned linear algebraic
system. We will use the following result

Lemma 3.1. Assume that matrix A = M1,1 is triangular,i.e. A =


λ1
? λ2

? ?
. . .

? ? ? λn−1

? ? ? ? λn

.

Then Mp,p is also triangular with diagonal terms i1λ1+· · ·+inλn, where i1+· · ·+in = p.

Proof. We get P j1 .X
1 = λjxj + aj,j+1xj+1 + · · ·+ aj,nxn. Now consider the monomial basis

P (X) = xi11 . . . x
in
n , where i1 + · · ·+ in = p. One has

Dp,p(X) = i1x
i1−1
1 . . . xinn (λ1x1 + a1,2x2 + · · ·+ a1,nxn)

+i2x
i1
1 x

i2−1
2 . . . xinn (λ2x2 + a2,3x3 + · · ·+ a2,nxn)

+ · · ·+ inx
i1
1 . . . x

in−1
n (λnxn)

= (i1λ1 + · · ·+ inλn)xi11 . . . x
in
n + Ω,

where Ω is a sum of higher term monomials that come after xi11 . . . x
in
n in the ordered basis

of Rp[x1, . . . , xn].

Then, the matrixMp,p corresponding toDp,p in the canonical ordered basis of Rp[x1, . . . , xn],
is: 

pλ1
? (p− 1)λ1 + λ2

? ?
. . .

? ? ?

n∑
k=1

ikλk

? ? ? ?
. . .

? ? ? ? ? λn−1 + (p− 1)λn
? ? ? ? ? ? pλn


Thus, it is also triangular with diagonal i1λ1 + · · ·+ inλn, where i1 + · · ·+ in = p.
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4 Sufficient existence conditions

First, we show what happens when a λ-invariant converges. Next, we examine the compu-
tation of λ-invariants.

Theorem 4.1. (Soundness) Let F be a λ-invariant for a system S. Let U be an open
subset of Rn, where F is defined by a normally convergent power series. If there is an initial
condition x1(0), ..., xn(0) in U such that F (x1(0), ..., xn(0)) = 0, then F (x1(t), ..., xn(t)) = 0
for all t such that x1(t), ..., xn(t) remain in U , i.e., F is an invariant of S for the initial
condition (x1(0), ..., xn(0)).

Proof. As the power series defining F converges normally on U , so does any of its derivatives.
Thus,

Ḟ (x1(t), ..., xn(t)) =
∑n

i=1 ∂iF (x1(t), ..., xn(t))ẋi(t)
= λF (x1(t), ..., xn(t))

,

given the λ-invariant property. So, F (x1(t), ..., xn(t)) must be equal to t 7→ keλt for some
constant k. Thus k is zero since F (x1(0), ..., xn(0)) = 0. Hence, so is F (x1(t), ..., xn(t)), for
any t such that (x1(t), . . . , xn(t)) ∈ U .

Now we can state the following results, which allow for the computation of invariants
which are inequality assertions.

Corollary 4.1. (Inequality invariants) Given the system S and an λ-invariant F for S.
Let U be an open subset of Rn on which F is defined by a normally convergent power series.
For any initial value x1(0), ..., xn(0) in U denote F (x1(0), .., xn(0)) by F (x(0)) and denote
F (x1(t), ..., xn(t)) by F (x(t)). The following holds:

(i) If λ ≥ 0 and F (x(0)) ≥ 0, then for all t ≥ 0 we have the invariant F (x(t)) ≥ F (x(0));

(ii) If λ ≥ 0 and F (x(0)) ≤ 0, then for all t ≥ 0 we have the inequality invariant F (x(t)) ≤
F (x(0));

(iii) If λ < 0 and F (x(0)) ≥ 0, then for all t ≥ 0 we have the invariant 0 ≤ F (x(t)) ≤
F (x(0));

(iv) If λ < 0 and F (x(0)) ≤ 0, then for all t ≥ 0 we have the invariant F (x(0)) ≤ F (x(t)) ≤
0.

Proof. Let F be a λ-invariant system S. By definition, we have d
dtF (x(t)) = λF (x(t))

for solutions (x1(t), .., xn(t)) of S. So, F (x(t)) must be equal to t 7→ ceλt with c =
F (x1(0), .., xn(0)). (i)For all t ≥ 0 we know that eλt ≥ 1 (as the function exp increases).
So, we have F (x(t)) = F (x(0))eλt ≥ F (x(0)) for all t ≥ 0. (ii) We still have eλt ≥ 1 but
F (x(t)) = F (x(0))eλt ≤ F (x(0)). (iii) We have 0 < eλt ≤ 1 and 0 ≤ F (x(t)) = F (x(0))eλt ≤
F (x(0)) for all t ≥ 0. (iv) We still have 0 < eλt ≤ 1 but 0 ≥ F (x(t)) = F (x(0))eλt ≥ F (x(0))
for all t ≥ 0.



10 R. Rebiha, A.V. Moura and N. Matringe

4.1 Sufficient general existence conditions

We have the following main results on the existence of formal power series invariants for
systems described by Eq. (1).

Theorem 4.2. Let A be the Jacobian matrix at zero for the polynomial P = (P1, ..., Pn)
defining system S. Its expression is: (∂iPj(0, ..., 0), i, j ∈ [1, n]2). Let Pk(0, .., 0) = 0. If
A is triangularizable with eigenvalues λ1 ≤ ... ≤ λn, then there exists a λ-invariant formal
power series for S when all eigenvalues are positive, or are all negative, with λ = λ1.

Proof. Up to a linear change of variables, we can assume that matrix A is triangular with
diagonal terms λ1 ≤ ... ≤ λn. We know that matrix Mk,k has the form described in Lemma
3.1 and its proof. As A is triangular, so is Mk,k, and its diagonal terms are the real numbers
i1λ1 + · · · + inλn, where i1 + · · · + in = k. Hence, the diagonal terms of Mk,k − λIk+1 are
0 ≤ λ2 − λ... ≤ λn − λ when k = 1. Also, it has a nontrivial kernel, and so we can
chose a nonzero F1 such that (M1,1 − λI2)F1 = 0. For k ≥ 2 and i1 + · · · + in = k, the
diagonal terms i1λ1 + · · ·+ inλn−λ of the triangular matrix Mk,k −λIk+1 are greater than
i1λ1 + · · ·+ inλn − λ = kλ− λ > λ > 0. So, Mk,k − λIk+1 is invertible.

Hence, we can choose:

• F2 = −(M2,2 − λI3)−1M1,2F1,

• F3 = −(M3,3 − λI4)−1(M1,3F1 +M2,3F2),

· · ·

• Fk = −(Mk,k − λIk+1)
−1(M`,kF`,k + · · ·+Mk−1,kFk−1),

where ` = k−min{k,m}+ 1. Then, (F1, F2, . . . , Fk, . . . ) is a nonzero solution of the system
and the formal power series

∑
i FiX

i is a λ-invariant.

The proof also describes a method for the resolution of the triangular matrix system. We
can, then, generate nonzero formal power series

∑
i FiX

i which are λ-invariants associated
to the nonzero solution (F1, F2, . . . ). In the examples that follow, we used Maple to compute
the matrix products necessary to obtain Fk in its symbolic form. We treat the case when
all eigenvalues are negative in a similar way. That is, with λ = λn, λ will be the eigenvalue
with the minimum absolute value. Also, we recall that triangularizable matrices of Mn(R)
with eigenvalues of the same sign form a positive measure in the set of all matrices.

4.2 Inductive invariants and initial conditions

We state the following important result.

Theorem 4.3. Let A be the Jacobian matrix at zero of the polynomial P = (P1, ..., Pn)
defining a system S, as in Eq. (1), and whose expression is (∂iPj(0, ..., 0), i, j ∈ [1, n]2).
Assume, further, that Pk(0, .., 0) = 0. Suppose that A is triangularizable with eigenvalues
λ1 ≤ ... ≤ λn. Denote λ1 by λ and assume that the eigenspace associated with λ is of dimen-
sion at least 2. Let F1 and F2 be two independent λ-invariants. Then, for any initial value
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(x1,0, . . . , xn,0), the power series F2(x1,0, . . . , xn,0)F1−F1(x1,0, . . . , xn,0)F2 defines an induc-
tive invariant on U for the solution of S with initial conditions x1(0) = x1,0, . . . , xn(0) =
xn,0.

Proof. We can see that both F1 and F2 converge to a solution (x1(t), ..., xn(t)) with initial
values (x1,0, ..., xn,0). Moreover, since F1 and F2 are independent,

F = F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

is a nonzero λ-invariant which vanishes at (x1,0, .., xn,0). So, according to Theorem 4.1, F
is an inductive invariant.

5 Triangularizable systems

Now we show how to treat the following general system with parameters a, b, c, a1,1, a1,2,
a2,2, b1,1,b1,2, b2,2 in V , and variables x, y in Vt:

ẋ(t) = ax(t) + by(t) + a1,1x
2(t) + a1,2x(t)y(t) + a2,2y

2(t)

ẏ(t) = cy(t) + b1,1x
2(t) + b1,2x(t)y(t) + b2,2y

2(t).

The Jacobian matrix at zero of the polynomials defining the system is

(
a 0
b c

)
. From

Theorem 4.2, we already know how to find a formal power series F which is an a-invariant.
Looking more closely at the coefficients of such a series we will show that it must converge
in some appropriate neighborhood of 0. In this section it is not necessary to assume that
a > c or a < c, since we will choose λ = min{a, c}.

In subsection 5.1 we compute symbolically the matrices Mp−k,p as they naturally appear
in the resolution of the linear system. In subsection 5.2 we show how to reduce and solve
the latter in order to generate λ-invariants by applying Theorem 4.2. In subsection 5.3 we
present our convergence analysis methods for the discovered λ-invariants. We take a = c
only from subsection 5.4 onwards, in which case Theorem 4.3 applies and we obtain inductive
invariants that hold for any initial conditions.

5.1 The matrices Mp−k,p

Using our notation, we have P 1
i = 0 and P 2

i = 0 for all i > 2. Then Mp−k,p is the matrix
whose l-th column is the vector corresponding to the decomposition of the polynomial

∂1[(0, ..., 0, 1︸︷︷︸
l−th position

, 0, ..., 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, ..., 0, 1︸︷︷︸
l−th position

, 0, ..., 0)Xp−k]P 2
k+1X

k+1

in the ordered canonical basis of Rp[x, y]. Here, the polynomial (0, .., 0, 1︸︷︷︸
l−th position

, 0, .., 0)Xp−k

is the l-th monomial of the canonical basis of Rp−k[x, y]. Therefore, the matrices Mp−k,p
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
(p− 1)a1,1 b1,1
(p− 1)a1,2 (p− 2)a1,1 + b1,2 2b1,1
(p− 1)a2,2 (p− 2)a1,2 + b2,2 (p− 3)a1,1 + 2b1,2 3b1,1

. . .
. . .

. . .
. . .

3a2,2 2a1,2 + (p− 3)b1,2 a1,1 + (p− 2)b1,2 (p− 1)b1,1
2a2,2 a1,2 + (p− 2)b2,2 (p− 1)b1,2

a2,2 (p− 1)b2,2

.

Figure 1: The matrix Mp−1,p

are zero unless k = 0 or k = 1. When k = 0, the general form of Mp,p is given in Section 3
and, in our particular case, it is


pa
p.b (p− 1)a+ c

(p− 1)b (p− 2)a+ 2c
. . .

. . .

2b a+ (p− 1)c
b pc

 .

Note that p+ 1 is actually the dimension of Rp[x, y] and so Mp−1,p is rectangular with p+ 1
rows and p columns. Here, the l-th monomial in the basis of Rp−1[x, y] is xp−l−1yl. Also,
the polynomial P 1

2X
2 is a1,1x

2+a1,2xy+a2,2y
2 and the polynomial P 2

2X
2 is b1,1x

2+b1,2xy+
b2,2y

2. Hence, matrix Mp−1,p can be written as depicted in Figure (1):

5.2 Resolution of the infinite system

We are looking for λ-scale invariants and we know that we can choose λ = min{a, c}. Then,
the system to solve is

(M1,1 − λI2)F1 = 0

M1,2F1 + (M2,2 − λI3)F2 = 0

M2,3F2 + (M3,3 − λI4)F3 = 0

· · ·
Mk−1,kFk−1 + (Mk,k − λIk+1)Fk = 0

· · · .
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This linear algebraic system can be written as:

(M1,1 − λI2)F1 = 0

F2 = −(M2,2 − λI3)−1M1,2F1

F3 = −(M3,3 − λI4)−1M2,3F2

· · ·
Fk = −(Mk,k − λIk+1)

−1Mk−1,kFk−1

· · · .

One can choose any F1, and then let Fk = (−1)k+1Uk(F1), where Uk is the matrix with
k + 1 rows and 2 columns:

[ (Mk,k − λIk+1)
−1Mk−1,k] · [(Mk−1,k−1 − λIk)−1Mk−2,k−1]·

· · · · · [(M3,3 − λI4)−1M2,3] · [(M2,2 − λI3)−1M1,2 ].

We know that matrix Mk,k has the form described in Section 3, Lemma 3.1 and its
proof. Then, Mk,k − λIk+1 is

ka− λ
k.b (k − 1)a+ c− λ

(k − 1)b (k − 2)a+ 2c− λ
. . .

. . .

2b a+ (k − 1)c− λ
b kc− λ


which can be decomposed as the product DT :

d1
d2

d3
. . .

dk
dk+1




1
t2 1

t3 1
. . .

. . .

tk 1
tk+1 1

 ,

where di = (k+1−i)a+(i−1)c−λ and tj = (k+2−j)b/dj . So, (Mk,k−λIk+1)
−1 = T−1D−1,

where D−1 has the obvious form and T−1 is
1
−t2 1
t2t3 −t3 1
−t2t3t4 t3t4 −t4 1

? ? ? ? ?
(−1)kt2 . . . tk+1 (−1)k−1t3 . . . tk+1 . . . tktk+1 −tk+1 1

.

We also know that Mk−j,k has the form described in Section 5.1. Finally, all the matrices
appearing in the product Uk are defined and Fk can be symbolically computed.
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5.3 Convergence of the λ-invariant

We want to show that if λ > 2b, the coefficients of the Fi vectors decrease quickly enough
so that the invariant F converges in a neighborhood of zero. Let us first recall some basic
properties of norms in finite dimension real vector spaces, as well as the associated matrix
norms. If v, with coordinates vi, belongs to Rn, we denote by |v|∞ the value maxi=1,...,n |vi|.
If A is a matrix with m rows and n columns, representing a morphism from (Rn, |.|∞) to
(Rm, |.|∞) in the canonical basis, it is well-known that associated with the norm |.|∞ is the
matricial norm ||.|| on Mm,n(R), where ||A|| = maxi=1,...,m(

∑n
j=1 |Ai,j |). Moreover, using

this norm, if v ∈ Rn then one has |Av|∞ ≤ ||A||.|v|∞. This implies that if A and B are two
matrices belonging, respectively, to Mm,n(R) and Mn,p(R), then we get

||AB|| ≤ ||A|| · ||B||.

In particular,

||Uk|| ≤ ||Mk,k − λIk+1| · |||Mk−1,k|| . . . ||M2,2 − aI3|| · ||M1,2||.

But, from the expressions for the Mk−1,k matrices, we have that ||Mk−1,k|| ≤ f(k − 1),
where f = 4 ·max(|ai,j |, |bi′,j′ |). From the preceding paragraph again, we deduce that

||(Mk,k − λIk+1)
−1|| ≤ ||D−1|| · ||T−1||.

But ||D−1|| = maxi(d
−1
i ) ≤ [(k − 1)λ]−1, because λ = min(a, c), and so

||T−1|| = max
i

(1 + ti + ti−1ti + · · ·+ t2t3 . . . ti−1ti).

But each tj is less than

(k + 2− j)b/dj ≤ kb/[(k − 1)λ] ≤ 2b/λ.

Suppose that λ > 2b. Then

||T−1|| ≤ 1 + 2b/λ+ · · ·+ (2b/λ)k ≤ 1/(1− 2b/λ).

By letting e be the constant 1/(1− 2b/λ), we can write

||(Mk,k − λIk+1)
−1|| ≤ e/(k − 1)λ.

Finally, ||Uk|| is less than (ef/λ)k−2 = rk−2. Eventually,

|Fk|∞ = |Uk(F1)|∞ ≤ ||Uk||.|F1|∞ ≤ rk−2|F1|∞.

Let t be max{|x|, |y|}. Then,

|F (x, y)| ≤ |F1X
1|+ |F2X

2| · · ·+ |FkXk|+ . . .

≤ 2|F1|∞t+ 3|F2|∞t2 + · · ·+ (k + 1)|Fk|∞tk + . . . .

The right part of the inequality is itself inferior to

1/r2|F1|∞[2(rt) + 3(rt)2 + · · ·+ (k + 1)(rt)k + . . . ],

which, from the classical theory of one variable power series, is convergent in the open disk
centered at zero and of radius 1/r. Hence, we have proved the following.
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Proposition 5.1. Consider the system described at the beginning of Section 5 with a and
c positive and greater than 2b. Let λ be the minimum between a and c. Then there ex-
ists a λ-invariant, obtained as described in Theorem 4.2, and which always converges in a
neighborhood of zero.

5.4 The case of eigenspaces with dimension 2

Now, suppose that the eigenspace corresponding to λ has multiplicity 2, i.e. a = c = λ > 0
and b = 0. We know, from the previous subsection, that any λ-invariant will converge in
a ball of radius 1/r and centered at zero. Moreover, according to Theorem 4.3, this will
give an inductive invariant for the system for any initial solutions within this ball. More
precisely, by letting F 1

1 = (1, 0)> and F 2
1 = (0, 1)>, we get a basis F 1(x, y) and F 2(x, y) of

λ-invariants that converge in the open |.|∞-disk of radius 1/r and centered at zero.

Note that the monomial of degree one in the Taylor series of F 1 is x, and it is y in the
Taylor series of F 2. In other words, if we take the first coefficient of F as (1, 0)>, we obtain
a λ-invariant

F = F 1(x, y)

and, similarly, if we take the second coefficient of F as (0, 1)>, we obtain another λ-invariant

F = F 2(x, y).

Moreover, these two invariants form a basis for invariants that converge in the open
|.|∞-disk of radius 1/r and centered at zero. Assume now that we are given initial values,
x(0) = x0 and y(0) = y0, as solutions in this open disk. Then, there will always exist two
real numbers, λ and µ, such that

λ(x0, y0)F
1(x0, y0) + µ(x0, y0)F

2(x0, y0) = 0,

where

λ(x0, y0) = F 2(x0, y0)

and

µ(x0, y0) = −F 1(x0, y0).

Then,

(λ(x0, y0)F
1 + µ(x0, y0)F

2 = 0)

is an inductive invariant for the solution corresponding to the initial condition (x0, y0). So,
given (x0, y0) in the |.|∞-disk of radius 1/r and centered at zero, the invariant depends
smoothly on the initial condition.

6 A Running example

In this section, we discuss a running example and explain how the sufficient conditions for
invariance are used, and how a basis for invariant ideals is automatically obtained. We treat
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sub-classes of non linear differential rules that we often find in local continuous modes in
hybrid systems. More specifically, we show how our method applies to systems:

ẋ(t) = ax(t) + bx(t)y(t)

ẏ(t) = ay(t) + dx(t)y(t).

Next, we show how to generate invariant ideals. The Jacobian matrix at zero is

(
a 0
0 a

)
.

From Theorem 4.2, we can find a formal power series F which is an a-invariant. We will
show that it must converge in some neighborhood of 0.

Step 1: Computation of the matrices Mp−k,p.

The coefficient vectors Pi are zero, for i ≥ 2. So, Mp−k,p is the matrix whose l-th column
is the vector corresponding to the decomposition of the polynomial

∂1[(0, . . . , 0, 1︸︷︷︸
l−th position

, 0, . . . , 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, . . . , 0, 1︸︷︷︸
l−th position

, 0, . . . , 0)Xp−k]P 2
k+1X

k+1

in the ordered canonical basis of Rp[x, y]. Hence, in this case, the matrices Mp−k,p are zero
unless k = 0 or k = 1. When k = 0, the general form of Mp,p, as detailed in Section
3, is given by paIp+1. But p + 1 is actually the dimension of Rp[x, y] and so Mp−1,p is
rectangular with p + 1 rows, and p columns. Then the l-th monomial of the basis of
Rp−1[x, y] is xp−l−1yl. Then, the polynomial P 1

2X
2 is bxy, and the polynomial P 2

2X
2 is

dxy. Hence, ∂1[(0, .., 0, 1︸︷︷︸
l−th position

, 0, .., 0)Xp−1]P 1
2X

2+

∂2[(0, .., 0, 1︸︷︷︸
l−th position

, 0, .., 0)Xp−1]P 2
2X

2

reduces to b(p− l− 1)xp−l−1yl+1 + dlxp−lyl. Eventually, it can be seen that the matrix can
be written as:

Mp−1,p =



0
(p− 1)b d

(p− 2)b 2d
. . .

. . .

2b (p− 2)d
b (p− 1)d

0


.

Step 2: Resolution of the linear system.

When looking for λ-scale invariants, we already know that we must choose λ = a. Then,
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we need to solve

(M1,1 − aI2)F1 = 0

M1,2F1 + (M2,2 − aI2)F2 = 0

M2,3F2 + (M3,3 − aI3)F3 = 0

. . .

Mk−1,kFk−1 + (Mk,k − aIk)Fk = 0

. . . .

Since Mk,k is equal to kaIk+1, the system becomes:

0 · F1 = 0

F2 = −a−1M1,2F1

F3 = −(2a)−1M2,3F2

. . .

Fk = −[(k − 1)a]−1Mk−1,kFk−1

. . .

This means that one can choose any F1, and then choose Fk as (−1)k+1a−k+1Uk(F1), where
Uk is the matrix with k + 1 rows and 2 columns given by the product

[1/(k − 1)Mk−1,k] · [1/(k − 2)Mk−2,k−1] . . . [1/2M2,3]M1,2.

Step 3: Convergence of the invariant.
Now we show that the invariant F converges in a neighborhood of zero. In particular,

the norm ||Uk|| is less than or equal to the product 1
(k−1)! ||Mk−1,k|| . . . ||M1,2||. Then from

Mk−1,k we get ||Mk−1,k|| ≤ ck, where c = max{|b|, |d|}. Hence, ||Uk|| ≤ ck!/(k − 1)! = ck.
Eventually, we get

|F (x, y)| ≤ |F1X
1|+ |F2X

2| · · ·+ |FkXk|+ . . .
≤ 2|F1|∞t+ 3|F2|∞t2 + · · ·+ (k + 1)|Fk|∞tk + . . .

The right side of the inequality is inferior to

ac|F1|∞[2(
t

a
) + 3.2(

t

a
)2 + · · ·+ (k + 1)k(

t

a
)k + . . . ].

From the theory of one variable power series, it must converge in the open disk of radius a
and centered at zero.

More precisely, taking F 1 and F 2, respectively, as (1, 0)> and (0, 1)>, we get a basis
F 1(x, y) and F 2(x, y) for a-invariants which converge in the open |.|∞-disk of radius a and
centered at zero. Assume now that we are given initial values with parameters x0 = x(0)
and y0 = y(0) for solutions of the system within this open disk. Then,

F 2(x0, y0)F
1(x, y)− F 1(x0, y0)F

2(x, y) = 0

is an inductive invariant. Again, for (x0, y0) in the |.|∞-disk of radius a and centered at
zero it depends smoothly on the initial condition.
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7 Experimental results

We give some examples in dimension 2 where x, y are variables in Vt and a, b are parameters

in V . All the following systems will have a Jacobian matrix

(
a 0
0 a

)
. We will see that we

already get interesting invariants which are polynomial in the first case, rational in the
second case, transcendental in the last case.

First, as we already saw in the previous sections, for all k ≥ 1, only Mk,k and Mk−1,k
are nonzero. Moreover Mk,k is equal to Diag(ka, . . . , ka) in Mk+1,k+1(R). And we saw in
Section 5.2 that

F (X) =
∑
i

FiX
i

is an a-invariant if and only if

Fk = (−1)k−1Uk(F1)

with k ≥ 2 and where

Uk = [(Mk,k − aIk+1)
−1Mk−1,k]. . . . .[(M2,2 − aI3)−1M1,2]

is in Mk+1,2(R). Because of the form of Mk,k, we get

Uk =
1

ak−1(k − 1)!
.Mk−1,k. . . . .M1,2.

From the results of Section 5, in all these cases the vector space of a-invariants will
be of dimension 2 and we can find precise invariants convergent near zero . Also, the
transcendental invariants obtained in the forthcoming Example (7.3) converge everywhere
for any initial conditions.

Example 7.1. Consider S1 as

ẋ(t) = ax(t)

ẏ(t) = ay(t) + bx2(t).

Here P1(x, y) = ax and P2(x, y) = ay + bx2 and we have

Mk−1,k =


0 b
0 0 2b

. . .
. . .

. . .

0 0 (k − 1)b
0 0

0

 ∈Mk+1,k(R).

Thus U2 =

(
0 b/a
0 0
0 0

)
∈M3,2(R), and Uk is zero for k ≥ 3.

Taking first F1 = (1, 0)>, one has Fk = (0, 0, . . . , 0)> for k ≥ 2 and then we get
F 1(x, y) = x as the first basis-vector of the space of a-invariants.
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Now, with

F1 = (0, 1)>,

one has

F2 = (−b/a)(1, 0, . . . , 0)>,

and Fk is zero for k ≥ 3. So, we get

F 2(x, y) = y − bx2/a

as the second basis-vector of the space of a-invariants.
Hence, F 1(x, y) = x and F 2(x, y) = y − bx2/a form a basis of the vector space of a-
invariants:

Lambda=a

U[2]=[[0,0,0],[-b/a,0,0]]

F[1]=[[1,0]]; F[k]=[[0,..,0]]

F[1]=[[0,1]]; F[k]=[[-b/a,0,..,0]]

Basis of Vector Space Lambda Invariants:

{x, y- b*x^2/a}

Finally for an initial condition (x0, y0),

F (x, y) = x0(y − bx20/a)− x(y0 − bx2/a) = 0

is an inductive polynomial invariant whatever are the initial conditions, i.e. for all x0 and
y0. Applying Corollary 4.1, we can observe several box or inequality invariants. If a > 0 and
F 2(x0, y0) ≥ 0 then we have the following inequality invariants, that hold for any solution
x(t), y(t) of S1 with initial conditions (x0, y0):

y − bx2/a ≥ y0 − bx02/a ≥ 0.

If we still have a > 0 and F 1(x0, y0) ≥ 0 then we have the following inequality invariants

x ≥ x0 ≥ 0.

Also, if a < 0 and

F 2(x0, y0) ≥ 0

then we have the following (box) inequality invariants:

0 ≤ y − bx2/a ≤ y0 − bx02/a.

Example 7.2. Let S2 be

ẋ(t) = ax(t) + bx2(t)

ẏ(t) = ay(t).
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Here P1(x, y) = ax+ bx2 and P2(x, y) = ay and

Mk−1,k =


(k − 1)b 0

0 (k − 2) 0
. . .

. . .
. . .

0 b 0
0 0

0

 ∈Mk+1,k(R).

Thus Uk =


(−b/a)k−1 0

0 0
...

...
0 0

 ∈Mk+1,2(R).

Taking
F1 = (1, 0)>,

one has
Fk = (−b/a)k−1(1, 0, . . . , 0)>.

Then, we obtain the rational function

F 1(x, y) =
∑
k≥1

(−b/a)k−1xk = x/(1 + bx/a)

as the first basis-vector of the space of a-invariants, which is convergent for |x| < |a/b|.
Now, if we take

F1 = (0, 1)>,

one has
Fk = (0, 0, . . . , 0)>

for k ≥ 2, and we get
F 2(x, y) = y

as the second basis-vector of the space of a-invariants:

Lambda=a

U[k]=[[(-b/a)^(k-1),0,..,0],[0,..,0]]

F[1]=[[1,0]]; F[k]=[[(-b/a)^(k-1),..,0]]

F[1]=[[0,1]]; F[k]=[[0,..,0]]

Basis of Vector Space Lambda Invariants:

{x/(1+b*x/a), y}

For an initial condition (x0, y0) with |x0| < |a/b|, we obtain, for instance, the following
inductive rational invariants:

F (x, y) = x0y/(1 + bx0/a)− xy0/(1 + bx/a) = 0.

Using Corollary 4.1, we can also identify several inequality invariants. For instance, if we
initially have a > 0 and F 1(x0, y0) ≥ 0 then we get the inequality invariant x/(1 + bx/a) ≥
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x0/(1 + bx0/a) ≥ 0. Also, if we initially have a < 0 and F 1(x0, y0) ≤ 0 the have the
inequality invariant

x0/(1 + bx0/a) ≤ x/(1 + bx/a) ≤ 0.

Example 7.3. Here is an example where our method exhibits a transcendental invariant.
Most importantly, note that this kind of results can not be obtained via the classical con-
stant, polynomial or fractional scale methods. Moreover, the invariant obtained converge
everywhere.

The formal power series invariant generated are often composed by expansion of some
well-known transcendental function and hence has an analyzable closed form. Being able to
compute closed forms for the invariants allows us to reason symbolically about formal power
series. This facilitates the use of the invariants to verify properties. Consider the system
S3 given by

˙x(t) = ax(t)

˙y(t) = ay(t) + bx(t)y(t).

Here P1(x, y) = ax and P2(x, y) = ay + bxy and we get

Mk−1,k =


0 0
0 b 0

. . .
. . .

. . .

0 (k − 2)b 0
0 (k − 1)b

0

 ∈Mk+1,k(R),

thus Uk is equal to (−b)k−1

ak−1(k−1)!


0 1
0 0
...

...
0 0

 ∈Mk+1,2(R).

Taking F1 = (1, 0)>, one has Fk = (0, 0, . . . , 0)> for k ≥ 2, so that we get F 1(x, y) = x
as the first basis-vector of the space of a-invariants.

With

F1 = (0, 1)>,

one has

Fk = (0,
(−b)k−1

ak−1(k − 1)!
, . . . , 0)>

for k ≥ 2. Then we obtain the transcendental function

F 2(x, y) =
∑
k≥1

(−bx)k−1y

ak−1(k − 1)!
= e−bx/ay

as the second basis-vector of the space of a-invariants.
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Lambda=a

U[k]=[[0,..,0],[((-b)^(k-1))/(a^(k-1)*(k-1)!),0,..0]]

F[1]=[[1,0]]; F[k]=[[0,..,0]]

F[1]=[[0,1]]; F[k]=[[0,((-b)^(k-1))/(a^(k-1)*(k-1)!),0,..,0]]

Basis of Vector Space Lambda Invariants:

{x, exp(-b*x/a)*y}

Finally, for any given initial condition (x0, y0), the following assertion

F (x, y) = x(e−bx0/a)y0 − x0(e−bx/a)y = 0

is an inductive invariant whatever are the initial conditions, i.e. for all x0 and y0. Clearly it
depends smoothly on the initial value and is convergent everywhere. By applying Corollary
4.1, we can also identify several inequality invariants. For instance, if we initially have
a > 0 and F 1(x0, y0) ≤ 0 then we get the inequality invariant

e−bx/ay ≤ e−bx0/ay0.

Also, if we initially have a ≤ 0 and F 1(x0, y0) ≤ 0 we get the inequality invariant

e−bx0/ay0 ≤ e−bx/ay ≤ 0.

In Table 1 we summarizes some experimental results. The second column gives the
closed-form type of the basis generators. We emphasize the fact that the issue of finding
invariants absolutely does not reduce only to the computation of such a radius. The main
issue is the computations of the coefficients Uk, which is equivalent to the knowledge of
the invariant. As a consequence, the fact that we are able to find closed forms is a nice
observation, but should not be considered as the most important one. The invariant is
really given by its coefficients.

8 Handling discrete transitions

The methods presented so far automatically generate bases of non trivial multivariate for-
mal power series invariants for each differential rule associated to locations in the hybrid
automaton. The basis of vector space invariants provided by our techniques, generate very
precise invariants that could be used as a primitive in any static reachability analysis and
verification framework for hybrid systems with non-linear continuous modes.

In order to handle the discrete transition relations, we can adapt and extend the methods
proposed in our previous works on static analysis of hybrid systems [26], [27], [28] and
discrete programs [26], [24]. Such techniques are completely orthogonal and different from
those presented here. Those provide methods to handle discrete algebraic transitions that
can be integrated in order to develop a full technique for hybrid systems. In fact, many
other methods from different approaches could be seen as complementary techniques.
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Table 1: Examples and experimental results: generation of basis of transcendental invariants

Diff. Syst. Closed-form Time/s
Ex.(7.1) Polynomial 6.1
Ex.(7.2) Rational 7.6
Ex.(7.3) Transcendental 18.9
ẋ = 7x,

ẏ = 1/2x2 + 7y. Polynomial .7
ẋ = 3x,

ẏ = 9x ∗ y + 3y. Transcendental 1.1
ẋ = 8x2 + 5x,

ẏ = 5y. Rational .8
ẋ = b ∗ x,

ẏ = b ∗ y ∗ (1 + x). Transcendental 11.3
ẋ = b ∗ x ∗ (1 + x),

ẏ = b ∗ y. Rational 6.5
ẋ = b ∗ x,

ẏ = b ∗ (x2 + y). Polynomial 4.5
ẋ = x− x ∗ y,
ẏ = y − x ∗ y. Transcendental 2.1
ẋ = x ∗ y,
ẏ = x ∗ y. Transcendental 1.6

ẋ = x+ a ∗ x2,
ẏ = y. Rational 4.1

[26] Ex.(2) Transcendental 1.8
[29] Eq.(3) Transcendental 1.4
[29] Eq.(4) Transcendental .4

[28] Polynomial 2.4
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9 Conclusions

Invariant generation problems for continuous time evolution is the most challenging step in
static analysis and verification of hybrid systems. Computationally, hybrid systems were
an inspiration and motivation for this research. Once these invariants are generated, we are
able to use and compose several techniques from static analysis for discrete state jumps.
In order to verify safety properties expressed with transcendental functions and to reason
symbolically about formal power series, it is necessary to be able to generate formal power
series invariants. We presented methods which generate bases of multivariate formal power
series and transcendental invariants for hybrid systems with non-linear behavior. Also, our
methods generate inequality and equality invariants.

The problem of generating power series invariants and the results are clearly novel.
Importantly, there is no other known methods that generate this type of invariants. We
can prove that some of the examples that were dealt with do not have“finite” polynomial
invariants. Hence, they are beyond the limits of other recent approaches. As for efficiency,
we used linear algebra methods which do not require several Gröbner basis computations
or quantifier eliminations. We also provide very general sufficient conditions allowing for
the existence and computation of invariants defined by convergent formal power series for
multivariate polynomial differential systems. Those conditions could also be used directly
as primitives in any static analysis and verification framework for hybrid systems.
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