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Generating Invariants for Non-linear Hybrid Systems

Rachid Rebiha∗ Arnaldo Vieira Moura† Nadir Matringe ‡

Abstract

We describe powerful computational techniques, relying on linear algebraic methods,
for generating ideals of non-linear invariants of algebraic hybrid systems. We show that
the preconditions for discrete transitions and the Lie-derivatives for continuous evolu-
tion can be viewed as morphisms, and so can be suitably represented by matrices. We
reduce the non-trivial invariant generation problem to the computation of the associated
eigenspaces by encoding the new consecution requirements as specific morphisms rep-
resented by such matrices. More specifically, our methods are the first to establish very
general sufficient conditions that show the existence and allow the computation of in-
variant ideals. Our methods also embody a strategy to estimate certain degree bounds,
leading to the discovery of rich classes of inductive, i.e. provable, invariants. By reduc-
ing the problem to related linear algebraic manipulations we are able to address various
deficiencies of other state-of-the-art invariant generation methods, including the efficient
treatment of non-linear hybrid systems. Our approach avoids first-order quantifier elim-
ination, Gröbner basis computation or direct system resolution, thereby circumventing
difficulties met by other recent techniques.

1 Introduction

Hybrid systems [1, 2] exhibit both discrete and continuous behaviors, as one often finds when
modeling digital system embedded in analog environments. Most safety-critical systems, e.g.
aircraft, automobiles, chemicals and nuclear power plants and biological systems, operate
semantically as non-linear hybrid systems. As such, they can only be adequately modeled
by means of non linear arithmetic over the real numbers involving multivariate polynomials
and fractional or transcendental functions. The analysis of hybrid systems has been one of
the main challenges for the formal verification community for several decades.

An invariant at a location of a system is an assertion true of any reachable state as-
sociated to this location. Some verification approaches for treating such models are based
on inductive invariant generation methods [3, 4] and also on the Abstract Interpretation
framework [5, 6], combined with the reduction of safety-critical properties to invariant prop-
erties [7, 8]. We look for invariants that strengthen what we wish to prove, and so allow us
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to establish the desired properties. Also, they can provide precise over-approximations of
the set of reachable states in the continuous state space.

Some more recent approaches to invariant generation have been constraint-based [9, 10,
11, 12, 13]. In these cases, a candidate invariant with a fixed degree and unknown parametric
coefficients, i.e., a template form, is proposed as the target invariant to be generated.
The conditions for invariance are then encoded, resulting in constraints on the unknown
coefficients whose solutions yield invariants. One of the main advantage of such constraint-
based approaches is that they are goal-oriented. But, on the other hand, they still require
the computation of several Gröbner Bases [14] or require first-order quantifier elimination
[15, 16]. And known algorithms for those problems are, at least, of double exponential
complexity. Alternatively, SAT Modulo Theory decision procedures and polynomial systems
[17, 18, 10] could also, eventually, lead to decision procedures for linear theories and, thus,
to decidable systems. evolution modes. Nonetheless, despite significant progress over the
years [9, 19, 20, 10, 12, 21, 22, 23, 24, 17, 13, 25], the problem of invariant generation for
hybrid systems remains very challenging for both non-linear discrete systems as well as
non-linear differential systems with non abstracted local and initial conditions.

In this work we use hybrid automata as computational models for hybrid systems.
A hybrid automaton describes the interaction between discrete transitions and continuous
dynamics, the latter being governed by local differential equations. We present new methods
for the automatic generation of non-linear invariants for non-linear hybrid systems. These
methods give rise to more efficient algorithms, with much lower time and space complexities.

First, we extend and generalize our previous work on invariant generation for hybrid
systems [26, 27, 28, 29]. To do so, we provide methods to generate non trivial basis of
provable invariants for local continuous evolution modes described by non linear differential
rules. These invariants can provide precise over-approximations of the set of reachable
states in the continuous state space. As a consequence, they can determine which discrete
transitions are possible and can also verify if a given property is fulfilled or not. Next,
in order to generate invariants for hybrid systems, we complete and extend our previous
work on non linear invariant generation for discrete programs [30, 31]. The contribution and
novelty in our approaches clearly differ from those in [9] as their constraint-based techniques
are based on several Gröbner Basis or Syzygy Basis [32] computations and on solving
non linear problems for each location. On the other hand, these works introduce a useful
formalism and we start from similar definitions for hybrid systems, inductive invariants and
consecution conditions.

We then propose methods to identify suitable morphisms to encode the relaxed con-
secution requirements. We show that the preconditions for discrete transitions and the
Lie-derivatives for continuous evolutions can be viewed as morphisms over a vector space of
terms, with polynomially bounded degrees, which can be suitably represented by matrices.
The relaxed consecution requirements are also encoded as morphisms represented by matri-
ces. By so doing, we do not need to start with candidate invariants that generate intractable
problems. Moreover, our methods are not constraint-based. Rather, we automatically iden-
tify the needed degree of a generic multivariate polynomial, or fractional, as a relaxation
of the consecution condition. The invariant basis are, then, generated by computing the
Eigenspace of another matrix that is constructed. We identify the needed approximations
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and the relaxations of the consecution conditions in order to guaranteed sufficient conditions
for the existence and computation of invariants. Moreover, the unknown parameters that
are introduced are all fixed in such a way that certain specific matrices will have a non null
kernel, guaranteeing a basis for non-trivial invariants.

The contribution of this work are summarized thus:

• We demonstrate powerful algorithms [27, 28, 26, 31, 33, 29], relying on linear algebraic
methods, capable of computing basis for ideals of non-trivial invariants for non-linear
hybrid systems. In other words, looking at complex hybrid systems, we are able to
extract automatically the generator basis of a vectorial space where each elements
provide us with non-trivial invariants.

• We reduce the non-trivial invariant generation problem to the computation of as-
sociated eigenspaces or nullspaces by encoding consecution requirements as specific
morphisms represented by matrices.

• Our methods display lower complexities than the mathematical foundations of previ-
ous approaches based on fixed point computation, as well as the present constraint-
based approaches and other approaches that use Gröbner basis calculations, Syzygy
calculations or quantifier elimination.

• We handle non-linear hybrid systems, extended with parameters and variables that
are functions of time. We note that the latter conditions are still not treated by other
state-of-the-art invariant generation methods.

• We establish general sufficient conditions guaranteeing the existence and allowing the
computation of invariant ideals for situations not treated by other modern invariant
generation approaches.

• Our algorithm incorporates a strategy for estimating optimal degree bounds for candi-
date invariants, thus being able to automatically compute basis for ideals of non-trivial
non-linear invariants.

In Section 2 we introduce ideals of polynomials, inductive assertions and algebraic hybrid
systems. In Section 3 we present new forms of approximating consecution for non-linear
differential systems. In Section 5, we discuss morphisms suitable to handle non-linear
differential rules and show how to generate invariants for differential rules. In Section 6 we
introduce a strategy that can be used to choose the degree of invariants. Section 7 presents
some experiments and in Section 8 we show how to handle discrete transition systems.
In Section 9, we show how to generate ideals for global invariants by taking into account
the ideal basis of local differential invariants, together with those derived from the discrete
transition analysis and the initial constraints. We present our conclusions in Section 10.

In this writing, we strive to precede the most important proofs by sketches. Full proofs,
more details and examples can be found in an Appendix and also in [26, 33, 31, 30].
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2 Algebraic Hybrid Systems and Inductive Assertions

Let K[X1, .., Xn] be the ring of multivariate polynomials over the set of variables {X1, .., Xn}.
An ideal is any set I ⊆ K[X1, .., Xn] which contains the null polynomial and is closed under
addition and multiplication by any element in K[X1, .., Xn]. Let E ⊆ K[X1, .., Xn] be a set
of polynomials. The ideal generated by E is the set of finite sums (E) = {

∑k
i=1 PiQi | Pi ∈

K[X1, . . . , Xn], Qi ∈ E, k ≥ 1}. A set of polynomials E is said to be a basis of an ideal I if
I = (E). By the Hilbert basis theorem, we know that all ideals have a finite basis.

Notationally, as is standard in static program analysis, a primed symbol x′ refers to the
next state value of x after a transition is taken. We may also write ẋ for the derivative
dx
dt . We denote by Rd[X1, .., Xn] the ring of multivariate polynomials over the set of real
variables {X1, .., Xn} of degree at most d. Also, V ect(v1, ..., vn) is the vector space generated
by v1, ..., vn.

Definition 2.1. A hybrid system is a tuple 〈V, Vt, L, T , C,S, l0,Θ〉, where

• V = {a1, .., am} is a set of parameters,

• Vt = {X1(t), .., Xn(t)} where Xi(t) is a function of t,

• L is a set of locations,

• l0 is the initial location,

• Θ is the initial condition, given as a first-order assertion over V ∪ Vt,

• C maps each location l ∈ L to a local condition C(l) denoting an assertion over V ∪Vt,
and S associates each location l ∈ L to a differential rule S(l) corresponding to an
assertion over V ∪ {dXi/dt|Xi ∈ Vt}.

Finally, a transition τ ∈ T is given by 〈lpre, lpost, ρτ 〉, where lpre and lpost name the pre-
and post- locations of τ , and the transition relation ρτ is a first-order assertion over V ∪
Vt ∪ V ′ ∪ V ′t .

A state is a pair (location and variable interpretations) from L× R|V |.

Example 2.1. The dynamic system of a bouncing ball ([34]) can be modeled by the following
hybrid automaton:

C(l) =
{
y ≥ 0

S(l) =

 ẏ = v
v̇ = −10
ε̇ = 1

τ = 〈l, l, ρτ =

 ε > 0 ∧ y = 0
v′ = −v/2

y′ = y ∧ ε′ = 0

〉

V = {y, v, ε}, Θ = (v = 16 ∧ y = ε = 0), l0 = l, L = {l} and T = {τ}.



Generating Invariants for Non-linear Hybrid Systems 5

The evolution of variables and functions in an interval must satisfy the local conditions
and the local differential rules.

Definition 2.2. A run of a hybrid automaton is an infinite sequence

(l0, κ0)→ · · · → (li, κi)→ · · ·

of states where l0 is the initial location and κ0 |= Θ.
For any two consecutive states (li, κi) → (li+1, κi+1) in such a run, we have a dis-

crete consecution if there exists a transition 〈q, p, ρi〉 ∈ T such that q = li, p = li+1

and 〈κi, κi+1〉 |= ρi where the primed symbols refer to κi+1. Otherwise, it is a continu-
ous consecution condition and we must have q ∈ L, ε ∈ R and a differentiable function
φ : [0, ε)→ R|V ∪Vt| such that the following conditions hold:

• (i) li = li+1 = q;

• (ii) φ(0) = κi, φ(ε) = κi+1;

• (iii) During the time interval [0, ε), φ satisfies the local condition C(q) and the local
differential rule S(q). That is, for all t ∈ [0, ε) we must have φ(t) |= C(q) and
〈φ(t), dφ(t)/dt〉 |= S(q).

A state (`, κ) is reachable if we have (`, κ) = (`i, κi) for some i ≥ 0.

Example 2.2. Returning to Example 2.1, consider the run:

(l, κ0)
µ0−→ (l, κ1)

µ1−→ (l, κ2),

where κ0 = (0, 16, 0). In a valuation (a, b, c) ∈ R3, a is the value of y, b is the value of v and
c is the value of ε. Clearly, κ0 |= Θ, as required. Now take κ1 = (0,−16, ε), where ε = 16

5 ,

and consider φ : [0, ε]→ R|Vt| such that φ(t) = (y(t), v(t), ε(t)) = (−5t2 + 16t,−10t+ 16, t).
Then φ(0) = (0, 16, 0) = κ0 and φ(ε) = (y(ε), v(ε), ε(ε)) = κ1. Further, for all t ∈ [0, ε] we
get φ(t) |= C(q) because y(t) is clearly non-negative for t ∈ [0, ε]. Also, for all t ∈ [0, ε] we
have 〈φ(t), dφ(t)/dt〉 |= S(q) because

dφ(t)/dt = (dy(t)/dt, dv(t)/dt, dε(t)/dt) = (v,−10, 1).

So, by construction, µ0 is a continuous consecution.
Now, since 〈(0,−16, ε), (0, 8, 0)〉 |= ρτ , if we let κ2 = (0, 8, 0), then µ1 is a discrete

consecution.

Definition 2.3. Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an invariant at
l ∈ L if κ |= ϕ whenever (l, κ) is a reachable state of W .

Definition 2.4. Let W be a hybrid system and let D be an assertion domain. An assertion
map for W is a map γ : L → D. We say that γ is inductive if and only if the following
conditions hold:

1. Initiation: Θ |= γ(l0);
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2. Discrete Consecution: for all 〈li, lj , ρτ 〉 ∈ T we have

γ(li) ∧ ρτ |= γ(lj)
′;

3. Continuous Consecution: for all l ∈ L, and two consecutive states (l, κi) and (l, κi+1)
in a possible run of W such that κi+1 is obtained from κi according to the local differ-
ential rule S(l), if κi |= γ(l) then κi+1 |= γ(l).

In item (3) of the previous definition, let γ(l) ≡ (Pγ(X1(t), .., Xn(t)) = 0) for all t ∈ [0, ε)
where Pγ is a multivariate polynomial in R[X1, .., Xn] such that it has null values on the
trajectory (X1(t), ..., Xn(t)) during the time interval [0, ε). If Pγ is not the null polynomial,
then C(l)∧ (Pγ(X1(t), .., Xn(t)) = 0) |= (d(Pγ(X1(t), .., Xn(t))/dt = 0) during the local time
interval. Hence, if γ is an inductive assertion map then γ(l) is an invariant at l for W .

Example 2.3. Consider the hybrid system of Example 2.1. It is easy to verify that the
assertion y = v× ε+ 5× ε2 is a provable, inductive invariant. We can see that the assertion
holds during discrete transitions and the continuous evolution.

3 New continuous consecution conditions

Now we show how to encode differential continuous consecution conditions. First, we es-
tablish some notation.

Definition 3.1. For a polynomial P in Rd[X1, .., Xn], we define the polynomial DP of
Rd[Y1, .., Yn, X1, .., Xn] thus:

DP (Y1, .., Yn, X1, .., Xn) =
∂P (X1, .., Xn)

∂X1
Y1 + ...+

∂P (X1, .., Xn)

∂Xn
Yn.

Consider a hybrid automaton W . Let l ∈ L be a location which could, eventually, be in
a circuit, and let η be an assertion map such that η(l) ≡ (Pη(X1(t), .., Xn(t)) = 0), where Pη
is a non-null multivariate polynomial in R[X1, .., Xn] with null values on the local trajectory
(X1(t), ..., Xn(t)) during the local time interval [0, ε). We have

dPη
dt

=
∂Pη(X1, . . . , Xn)

∂X1

dX1(t)

dt
+ · · ·+ ∂Pη(X1, . . . , Xn)

∂Xn

dXn(t)

dt
.

and so
dPη
dt = DPη(Ẋ1, .., Ẋn, X1, .., Xn). Now, let (l, κi) and (l, κi+1) be two consecutive

configurations in a run. Then we can express local state continuous consecutions as

C(l) ∧ (Pη(X1(t), .., Xn(t)) = 0) |= (dPη/dt = 0)

during the local time interval.

Next, we define some notions of continuous consecution.
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Definition 3.2. Let W be a hybrid automaton, l ∈ L a location and let η be an algebraic
inductive map with η(l) ≡ (Pη(X1(t), .., Xn(t)) = 0) for all t in the time interval of mode l
(so, Pη has a null value over the local trajectory (X1(t), .., Xn(t))). We identify the following
notions to encode continuous consecution conditions:

• η satisfies a differential Fractional-scale consecution at l if and only if there exists a
multivariate fractional T

Q such that C(l) |= (dPη/dt− T
QPη = 0). We say that Pη is a

fractional-scale and a T
Q -scale differential invariant.

• η satisfies a differential Polynomial-scale consecution at l if and only if there exist a
multivariate polynomial T such that C(l) |= dPη/dt − TPη = 0. We say that Pη is a
polynomial-scale and a T -scale differential invariant.

• η satisfies a differential Constant-scale consecution at l if and only if there exists a
constant λ ∈ R\{0} such that C(l) |= (dPη/dt − λPη = 0). We say that Pη is a
constant-scale and a λ-scale differential invariant.

• η satisfies a differential Strong-scale consecution at l if and only if C(l) |= (dPη/dt =
0). If so, Pη is a strong-scale differential invariant.

Differential Polynomial-scale consecution encodes the fact that the numerical value of
the Lie derivative of the polynomial Pη associated with assertion η(l) is given by T times
its numerical value throughout the time interval [0, ε]. First, we proposed methods [27, 28]
for T -scale invariant generation where T is a constant (constant-scaling) or null (strong-
scaling). As can be seen, the consecution conditions are relaxed when going from strong to
polynomial scaling. Also, the T polynomials can be understood as template multiplicative
factors. In other words, they are polynomials with unknown coefficients. In the next section,
we consider polynomial-scale consecution and then we could extend the methods of [26, 29]
to fractional-scale consecution conditions. In later sections we show how to combine these
conditions with others induced by discrete transitions. In [33, 31, 30, 26, 29] one can find
more details on how to handle other constraints associated to locations.

Theorem 3.1. (Soundness) Let P be a continuous function and let

S =

Ẋ1(t) = P1(X1(t), .., Xn(t))
...

Ẋn(t) = Pn(X1(t), .., Xn(t)


be a differential rule, with initial condition (x1, .., xn). Any polynomial which is a P -scale
differential invariant for these initial conditions is actually an inductive invariant.

Theorem 3.2. (Completeness) There exist a differential rule S such that its invariants
are not Polynomial-scale differential invariants. Such systems are then counter-example for
completeness.
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4 Differential Invariant Generation

Invariant generation for continuous time evolution is one of the main challenging steps in
the static analysis and verification of hybrid systems. That is why we first restrict the
analysis to differential system which appear in locations. We start with strong-differential
invariants generation.

4.1 Morphisms for strong-scale differential consecution

First, we consider a differential system of the form:

S =

Ẋ1 = P1(X1, . . . , Xn)
...

Ẋn = Pn(X1, . . . , Xn)

 . (1)

We have the following lemma.

Lemma 4.1. Let Q ∈ R[X1, .., Xn] such that DQ(P1, .., Pn, X1, .., Xn) = 0. Then Q is a
strong-scale differential invariant.

If P ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then the
degree of DP (P1, .., Pn, X1, .., Xn) is r + d− 1. Passing to linear algebra, consider the mor-
phism D : Rr[X1, . . . , Xn] → Rr+d−1[X1, . . . , Xn] where P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).
Let MD be the matrix of such a morphism D in the canonical basis of Rr[X1, ., Xn] and
Rr+d−1[X1, .., Xn].

Example 4.1. (MD for 2 variables, a degree 2 differential rule, and degree 2 invariants)
Consider the following differential rules:[

ẋ(t) = x2(t) + x(t)y(t) + 3y2(t) + 3x(t) + 4y(t) + 4
ẏ(t) = 3x2(t) + x(t)y(t) + y2(t) + 4x(t) + y(t) + 3

]
. (2)

In this example we write P1(x, y) = x2 + xy + 3y2 + 3x+ 4y + 4 and P2(x, y) = 3x2 + xy +
y2 + 4x + y + 3. Consider the associated morphism D from R2[x, y] to R3[x, y]. Using the
basis

B1 = (x2, xy, y2, x, y, 1)

of R2[x, y] and

B2 = (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R3[x, y], we can obtain MD. For that, compute D(P ) for all elements P in the basis

(x2, xy, y2, x, y, 1)

and express the results in the basis

(x3, x2y, xy2, y3, x2, xy, y2, x, y, 1).
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D(x2) = 2 x3 + 2 x2y + 6 xy2 + 0 y3 + 6 x2 + 8 xy + 0 y2 + 8 x+ 0 y + 0 × 1

MD =



2 3 0 0 0 0

2 2 6 0 0 0

6 2 2 0 0 0

0 3 2 0 0 0

6 4 0 1 3 0

8 7 8 1 1 0

0 4 2 3 1 0

8 3 0 3 4 0

0 4 6 4 1 0

0 0 0 4 3 0



.

Figure 4: Computing MD

For the first column of MD consider P (x, y) = x2, the first element of B1, and we
compute

D(P ) = DP (P1, P2, x, y)

which is expressed in B2 as shown in Figure 4.1.
As we can see, a differential system S and a degree r, are the only required informations

in order to build MD.

Now let Q ∈ R[X1, .., Xn] be a strong-scale differential invariant for a given differential
system defined by P1, .., Pn ∈ R[X1, .., Xn]. Then

(DQ(P1, .., Pn, X1, .., Xn) = 0) ⇔ (D(Q) = 0K[X1,..,Xn])

⇔ (Q ∈ Ker(MD)).

We can see that Q will be a strong-scale differential invariant if and only if it is in the kernel
of MD.

Theorem 4.1. A polynomial Q of Rr[X1, .., Xn] is a strong-scale differential invariant for
the differential system (1) if and only if it lies in the kernel of MD.

Now we want to know when one can assert the existence of a non-trivial polynomial
invariant of degree r. We denote by v(r) the dimension of Rr[X1, .., Xn]. If we consider
initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking for a strong-scale
differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) = 0,
i.e., we are looking for Q in

ker(MD) ∩ {P | P (u1, . . . , un) = 0} .

We deduce the following theorem.
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Theorem 4.2. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the differen-
tial system with initial values (u1, .., un) if and only if Q is in the intersection of Ker(MD)
and the hyperplane Q(u1, . . . , un) = 0.

The intersection of the hyperplane {P |P (u1, . . . , un) = 0} with constant polynomials
is always reduced to zero, and the intersection of any hyperplane with a subspace of
Rr[x1, . . . , xn] has dimension at least 1. From the preceding theorem and the remark that
follows it, there always exists non-trivial invariant when MD has a kernel of dimension at
least 2 (i.e. when MD has rank at most v(r) − 2) as it will intersect any initial (semi-
)hyperplane. We deduce the following corollary.

Corollary 4.1. There exists a strong-scale invariant of degree r for the differential system
with initial conditions (any initial conditions, actually), if and only if the kernel of MD

is of dimension at least 2. The basis of Ker(MD) gives a basis of a non-trivial invariant
ideal

So, if Corollary 4.1 holds for a given differential systems, we can compute the basis of
Ker(MD) to obtain a basis of non-trivial invariant. We will see that such strategies are
very effective and practical once the consecution condition is relaxed to constant-scaling and
polynomial-scaling. Now consider the following differential system with initial conditions ẋ(t) = x(t)

ẏ(t) = ny(y)
(x(0), y(0)) = (λ, µ)

 , (3)

where n is a parameter in V and x(t), y(t) are function of t in Vt. The solutions of
this system are well known: x(t) = λet and y(t) = µent. Consider the polynomial
Q(x, y) = xn/λn − y/µ. It is immediate that the polynomial assertion xn/λn − y/µ = 0
is an invariant. It is actually a generator of the ideal of invariants. For if Q′ is invariant,
it is null on the points (λu, µun) for u ∈ R and so xn/λn − y/µ divides Q′. For this
system it is the most significant invariant one can get. Now, Q(x, y) = xn/λn − y/µ is
not a strong-scale differential invariant because ∂xQ = nxn−1/λn and ∂yQ = −1/µ, and
∂xQ(x, y)x + ∂yQ(x, y)y = nxn/λn − y/µ 6= 0. In order to simplify the notation, take
n = 1. We show that there cannot exist a non-trivial strong-scale differential invariant for
the system [

ẋ = x
ẏ = y

]
. (4)

Suppose such an invariant exists. Write it asQ(x, y) =
∑

i,j ai,jx
iyj . The relation ∂xQ(x, y)x+

∂yQ(x, y)y = 0 implies
∑

i,j iai,jx
iyj +

∑
i,j jai,jx

iyj = 0, which gives (i + j)ai,j = 0. As
i ≥ 0 and j ≥ 0, this implies that all ai,j = 0 but for a0,0. Hence, Q is constant. Thus, even
in cases where very simple invariants can be found, one will not find strong-scale differen-
tial invariants which are non-trivial inductive invariants. We will show how to handle such
systems in Section 4.2, Example 4.5. Therefore, we can conjecture that strong invariants
exist in special cases. In the following we establish characterisation properties and classes
of differential systems admitting strong-scale differential invariants which are non-trivial
inductive invariants. We will use the following lemma.
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Lemma 4.2. Let Q1, . . . , Qn be n polynomials in R[X1, . . . , Xn]. Then there exists a poly-
nomial Q such that ∂1Q = Q1, . . . , ∂nQ = Qn if and only if for any i 6= j, 1 ≤ i, j ≤ n, one
has ∂iQj = ∂jQi.

Let Syz(P1, .., Pn) denote the Syzygy Module [35] of (P1, . . . , Pn).

Definition 4.1. Let P1, . . . , PK be k polynomials in R[X1, . . . , Xn]. Then Syz(P1, . . . , Pk)
is the following set:

{ (Q1, . . . Qk) ∈ R[X1, . . . Xn] | Q1P1 +Q2P2 + · · ·+QkPk = 0 }.

We can state the following theorem.

Theorem 4.3. There exists a strong-scale invariant for a differential system if and only if
there exists (Q1, .., Qn) in Syz(P1, .., Pn) such that for any i, j with i 6= j and 1 ≤ i, j,≤ n,
one has ∂iQj = ∂jQi.

For example, when n = 2, we get the following class of systems for which one can always
find a strong invariant: [

ẋ1 = P1(x1, x2)
ẋ2 = P1(x1, x2)

]
. (5)

with ∂2P2 = −∂1P1. Indeed, (P2−P1) always belongs to Syz(P1, P2). In fact, it is actually
a basis when P1 and P2 are relatively prime.

Example 4.2. Consider the following differential rules.[
ẋ = xy

ẏ = −y2/2

]
. (6)

Here, we indeed have ∂yP2 = −∂xP1 = −y. The corresponding invariant is Q(x, y) =
xy2/2.

Example 4.3. Another example of systems admitting strong invariants is a generalization
to dimension n of the rotational motion of a rigid body: ẋ1 = a1x2 . . . xn

...
ẋn = anx1 . . . xn−1

 . (7)

We treat the case when the ai’s are non zero parameters, other cases being easier. Indeed,
the vector

(Q1 = x1/a1, Q2 = −x2/(n− 1)a2, . . . , Qn = −xn/(n− 1)an)

belongs to Syz(P1, . . . , Pn), where Pi = aix1 . . . xi−1xi+1 . . . xn belongs to the set of polyno-
mials defining the differential rule. Now if i 6= j, one has ∂iQj = ∂jQi = 0, and applying
Theorem 4.3 we deduce that the system admits a strong invariant. In order to obtain an in-
variant, we just have to solve ∂1Q = x1/a1; ∂2Q = −x2/(n−1)a2; . . . ; ∂nQ = −xn/(n−1)an.
A trivial solution is Q(x1, . . . , xn) = x21/2a1 − x22/2(n − 1)a2 · · · − x2n/2(n − 1)an. Hence,
the system admits as strong invariant the following assertion: Q(x1, . . . , xn) = x21/2a1 −
x22/2(n− 1)a2 · · · − x2n/2(n− 1)an = 0.
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4.2 Morphisms for constant-scale differential consecution

Consider the differential system S depicted in (1). We state the following lemma.

Lemma 4.3. Let Q ∈ R[X1, ..., Xn] be such that

DQ(P1, .., Pn, X1, .., Xn) = λQ(X1, .., Xn).

Then Q is a λ-scale invariant.

If Q has degree r, and the maximal degree of the Pi’s is d, then we know that

DQ(P1, ..., Pn, X1, ..., Xn)

has degree r+d−1. Hence we deduce that, in general, constant-scale consecution will work
when the polynomials Pi of the differential transition system are of degree one, i.e. when
the transition system is affine. So, suppose that the Pi’s are of degree one. Now we want to
find an invariant Q of degree r. We reduce the problem again to linear algebra. Consider
the endomorphism D of Rr[X1, . . . , Xn] given by

P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).

Using lemma 4.3, Q will be a λ-invariant for constant-scale consecution of degree at most r
if and only if λ is an eigenvalue of D, and Q is an eigenvector for λ. By letting MD be the
matrix of D in the canonical basis of Rr[X1, .., Xn] we can state the following theorem.

Theorem 4.4. A polynomial Q of Rr[X1, .., Xn] is a λ-scale invariant for continuous scale
consecution of the differential system if and only if there exists an eigenvalue λ of MD such
that Q belongs to the eigenspace of MD corresponding to λ.

Zero is always an eigenvalue of MD, since its last column is always null. But this gives
a constant eigenvector, which is less interesting. In the following cases we describe the
methods in the most general case for 2 variables and the generation of λ-invariant of degree
2

Example 4.4. (General case for 2 variables and degree 2) Consider the differential system
of the following form: [

ẋ = a1x+ b1y + c1
ẏ = a2x+ b2y + c2

]
. (8)

The matrix MD in the basis (x2, xy, y2, x, y, 1) is

MD =


2a1 a2 2b2 0 0 0
2b1 a1 + b2 2a2 0 0 0
0 b1 0 0 0 0

2c1 c2 0 a1 0 0
0 c1 2c2 b1 b2 0
0 0 0 c1 c2 0

 .

This matrix is block lower triangular, with blocks of size 3 × 3. Hence, its characteristic
polynomial is the product of two degree 3 polynomials, and roots of such polynomials can
be computed by Cardan’s method. Thus, one will always be able to find non-null λ-scale
invariants in this case.
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We just proved the following proposition and gave a method for finding the correspond-
ing invariants.

Proposition 4.1. If we are looking at an affine differential transition system with polyno-
mials in two variables, then one is always able to find good scale invariants.

As we did in [30] when dealing with discrete consecution, we can identify large decidable
classes, e.g.

• (i) when MD is block triangular with 4× 4 blocks or less; and

• (ii) when the eigenspace associated with eigenvalue 1 is of dimension greater than 1;
among others.

Theorem 4.5. A polynomial Q in Rr[X1, .., Xn] is a λ-scale invariant for the differential
system with initial values (u1, . . . , un) if and only if there exists an eigenvalue λ of MD such
that Q belongs to the intersection of the eigenspaces corresponding to λ and the hyperplane
Q(u1, . . . , un) = 0.

Corollary 4.2. There will be a non-null polynomial invariant for any given initial values
if and only if there exists an eigenspace of MD with dimension at least 2.

Example 4.5. Consider system (3) again, which we could not handle using strong-scale
invariant encoding. We recall that the differential system ẋ = x

ẏ = ny
(x(0), y(0)) = (λ, µ)

 (9)

has an associated endomorphism D : Q(x, y) 7→ ∂xQ(x, y)x + n∂yQ(x, y)y. Writing its
matrix in the basis (xn, xn−1y, . . . , xyn−1, yn, . . . . . . , x, y, 1) we have:

n . . . 0 0
0 MD 0 0
0 . . . n 0
0 . . . 0 0

 .

We see that the eigenspace corresponding to n has dimension at least 2, and it contains
V ect(xn, y) (the vector space generated by xn and y). Using the theorem on the existence on
solutions for any initial conditions, we deduce that for the initial values (x(0) = λ, y(0) = µ)
there exists an invariant of the form axn + by, and which must verify aλn + bµ = 0. If λ
and µ are non zero, which is the interesting case, one can take a = λ−n and b = −µ−1,
which gives the inductive invariant

Q(x, y) = xn/λn − y/µ = 0.
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5 Handling non-linear differential systems

We consider a non-linear differential system of the form:

S =

Ẋ1(t) = P1(X1(t), .., Xn(t))
...

Ẋn(t) = Pn(X1(t), .., Xn(t))

 ,
with the Pi’s in R[X1, .., Xn].We know that as soon as one of the Pi’s has degree more than
one, we must use polynomial-scale consecution in order to obtain interesting invariants [33].
We have the following lemma.

Lemma 5.1. Let Q ∈ R[X1, .., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = TQ

with T in R[X1, .., Xn]. Then Q is a T -scale invariant.

If P ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then the
degree of DP (P1, .., Pn, X1, .., Xn) is r + d− 1. Hence, T must be searched in the subspace
of R[X1, .., Xn], which is of degree at most r + d− 1− r = d− 1.

Consider the morphism

D : Rr[X1, . . . , Xn]→ Rr+d−1[X1, . . . , Xn],

where
P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).

LetMD be the corresponding matrix in the canonical basis of Rr[X1, ., Xn] and Rr+d−1[X1, .., Xn].
Here, we construct matrices MD in a same manner as we did and described in Section 4.1,
Example 4.1.

Choosing a generic T in Rd−1[X1, .., Xn], we define the associated morphism

T : Rr[x1, . . . , xn]→ Rr+d−1[x1, . . . , xn],

where
P 7→ TP.

Denote by LT its matrix in the canonical basis, obtained as in the computation of MD.
Matrices LT corresponding to multiplication by polynomials T of Rd−1[x1, . . . , xn] have a
very precise form, dependent on the coefficients of T . Thus, for fixed n, r and d, they can be
easily identified. We will denote by M(pol) the set of such matrices. It is, in fact, a (vector)
subspace of matrices corresponding to morphisms from Rr[x1, . . . , xn] to Rr+d−1[x1, . . . , xn].
To be even more precise, if T is a generic template in Rd−1[X1, .., Xn], let t1, .., tv(d−1) be
its coefficients where v(d− 1) is the dimension of Rd−1[X1, .., Xn]. Then the coefficients of
LT are in {t1, .., tv(d−1)} and it has a natural block decomposition. In order to fix ideas, we
show what happens for two variables Pi of maximal degree 3. Thus, we are looking for an
invariant in R2[x, y]. Hence, T lies in R2[x, y].
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T (x2) = t1 x
4 + t2 x

3y + t3 x
2y2 + 0 xy3 + 0 y4 + t4 x

3 + t5 x
2y + 0 xy2 + 0 y3 + t6 x

2 +

0 xy + 0 y2 + 0 x+ 0 y + 0 × 1

t1 0 0 0 0

t2 0 0 0 0

t3 t1 0 0 0

0 t2 0 0 0

0 t3 0 0 0

t4 0 t1 0 0

t5 0 t2 t1 0

0 t4 t3 t2 0

0 t5 0 t3 0

t6 0 t4 0 t1

0 0 t5 t4 t2

0 t6 0 t5 t3

0 0 t6 0 t4

0 0 0 t6 t5

0 0 0 0 t6



.

Figure 5: The matrix of T in basis B4

Example 5.1. A generic T is of the form

T (x, y) = t1x
2 + t2xy + t3y

2 + t4x+ t5y + t6.

Using the basis
B2 = (x2, xy, y2, x, y, 1)

of R2[x, y] and the basis

B4 = (x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R4[x, y], we obtain the matrices LT . To do so, we compute T (P ) for all elements P in the
basis B2 and we express the results in the basis B4. In other words, to get the first column
of LT we first consider P (x, y) = x2 the first element of B2, and we compute T (P ) = TP
which is expressed in B4 as in Figure 5. This determines M(pol).

Now let Q ∈ R[X1, .., Xn] be a T -scale invariant for a given differential system defined
by P1, .., Pn ∈ R[X1, .., Xn]. Then

(DQ(P1, .., Pn, X1, .., Xn) = TQ) ⇔ D(Q) = T (Q)

⇔ ((D − T )(Q) = 0R[X1,..,Xn])

⇔ (Q ∈ Ker(MD − LT )).

So, a T -scale invariant is nothing else than a vector in the kernel of MD − LT .
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Theorem 5.1. There is a polynomial-scale invariant for the differential system if and only
if there exists a matrix LT in M(pol), corresponding to a polynomial T of Rd−1[x1, .., Xn],
such that Ker(MD −LT ) is not reduced to zero. And, any vector in the kernel of MD −LT
will give a T -scale differential invariant.

Notice that MD − LT with a non trivial kernel is equivalent to it having rank strictly
less than the dimension v(r) of Rr[x1, . . . , xn]. By a classical theorem [36], this is equivalent
to the fact that each v(r)×v(r) sub-determinant of MD−LT is equal to zero. Those determi-
nants are polynomials in (t1, .., tv(d−1)), which we denote by E1(t1, ..., tv(d−1)), ..., Es(t1, ..., tv(d−1)).

Theorem 5.2. There is a non trivial T -scale invariant if and only if the polynomials
(E1, .., Es) admit a common root, other than the trivial one (0, ..., 0).

This theorem provides us with important existence results. But we can provide a more
practical way to get invariant ideals without computing common roots. Consider initial
values given by unknown parameters x1(0) = u1, . . . , xn(0) = un. The initial step de-
fines a linear form on Rr[x1, . . . , xn], namely Iu : P 7→ P (u1, ..., un). Hence, initial values
correspond to a hyperplane of Rr[X1, .., Xn] given by the kernel Iu, which is

{Q ∈ Rr[X1, .., Xn] | Q(u1, . . . , un) = 0}.

Theorem 5.3. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the dif-
ferential system with initial values (u1, .., un) if and only if there exists a matrix LT 6= 0
in M(pol), corresponding to T in Rd−1[X1, .., Xn], such that Q is in the intersection of
Ker(MD − LT ) and the hyperplane Q(u1, . . . , un) = 0.

Now, if Dim(Ker(MD − LT )) ≥ 2 then Ker(MD − LT ) would intersect any initial
hyperplane.

Corollary 5.1. There are non-trivial invariants for any given initial values if and only if
there exists a matrix LT in M(pol) such that Ker(MD −LT ) has dimension at least 2.

Also, we have that Dim(Ker(MD − LT )) ≥ 2 if and only if we also have Rank(MD −
LT ) ≤ Dim(Rr[X1, .., Xn])−2. Further, we also show how to assign values to the coefficients
of T in order to guarantee the existence and generation of invariants.

Example 5.2. (Running example) Consider the following differential rules with P1 = x2 +
2xy + x and P2 = xy + 2y2 + y:[

ẋ(t) = x2(t) + 2x(t)y(t) + x(t)
ẏ(t) = x(t)y(t) + 2y2(t) + y(t)

]
. (10)

• Step 1: We build the matrix MD − LT .
The maximal degree of the systems is d = 2 and the T -scale invariant will be of degree
r = 2. Then, T is of degree d−1 = 1 and we write t1, t2, t3 for its unknown coefficients,
i.e. the canonical form is T (x, y) = t1x+t2y+t3. Using the basis (x2, xy, y2, x, y, 1) of
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R2[x, y] and the basis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of R3[x, y], the matrix MD −
LT is:

MD − LT =



2− t0 0 0 0 0 0
4− t1 2− t0 0 0 0 0
−t2 4− t1 2− t0 0 0 0
0 0 4− t1 0 0 0
2 0 0 1− t0 0 0
0 2− t2 0 2− t1 1− t0 0
0 0 2− t2 0 2− t1 0
0 0 0 1− t2 0 −t0
0 0 0 0 1− t2 −t1
0 0 0 0 0 −t2


.

• Step 2: Now all unknown ti is given a value so as to guarantee the existence of
invariants. Our algorithm fixes t1 = 2, t2 = 4 and t3 = 2 to get T (x, y) = 2x+ 4y+ 2.
Matrix MD − LT has its second and third columns equal to zero. So, the rank of
MD − LT is less than 4 and its kernel has dimension at least 2. Any vector in this
kernel will be a T -scale differential invariant.

• Step 3 Now, Corollary 5.1 applies to MD − LT . So, there will always be invariants,
whatever the initial values. We compute and output the basis of Ker(MD−LT ). Using
our prototype Ideal Inv Gen, to be presented shortly, we get

Polynomial scaling continuous evolution

T(x,y) = 2 x + 4 y + 2

Module of degree 6 and rank 2 and Kernel of dimension 4

{{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}}

Vectors of the basis are interpreted in the canonical basis of R2[x, y]. We get as output:

Basis of invariant Ideal

{x y, y^2}

We have an ideal for non trivial inductive invariants and we search for one of the
form axy + by2. If the system has initial conditions x(0) = λ and y(0) = µ, then
aλµ+ bµ2 = 0, and µxy − λy2 = 0 is an invariant for all µ and λ.

6 Obtaining optimal degree bounds

In order to guarantee the existence of non-trivial invariants of degree r, we need a polyno-
mial T such that Ker(MD − LT ) 6= 0. First, define T as a polynomial with parametrized
coefficients. We can then create a decision procedure to assign values to the coefficients of T
in such a way that Ker(MD−LT ) 6= 0. Algorithm 1 illustrates this strategy. Its contribution
relies on very general sufficient conditions for the existence and the computation of invari-
ants. From the differential rules, we obtain matrix MD (see line 5) with real entries. We can
then define degree bounds for matrices LT that can be used to approximate the consecution
requirements (see line 6). As we recall from Section 5, Ker(MD − LT ) 6= 0 is equivalent to
having MD −LT with rank strictly less than the dimension v(r) of Rr[x1, . . . , xn]. We then
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Algorithm 1: Ideal Inv Gen(r, P1, ..., Pn, X1, ..., Xn)

Data: r is the degree for the set of invariants we are looking for, P1, ..Pn are the n
polynomials given by differential rules, and X1, ..Xn ∈ Vt are functions of time.

Result: BInv, a basis of ideal of invariants.
begin

1 int d; Template T ; Matrix MD, LT ;
2 d←− Max degree({P1, ..., Pn}); /*d is the maximal degree of Pi’s*/;
3 if d >= 2 then
4 T ←− Template Canonical Form(d− 1);
5 MD ←− Matrix D(r, r + d− 1, P1, ..., Pn);
6 LT ←− Matrix L(r, r + d− 1, T );

7 M ←− Reduce Rank Assigning Values(MD − LT );

8 if Rank(M) >= Dim(Rr[X1, .., Xn]) then
/*Increase the degree r of candidate invariants.*/;

9 return Ideal Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn);

10 else
/*There is an ideal that we can compute*/;

11 return Nullspace Basis(M );

12 else
... /*See our previous work for strong and constant scaling.*/;

reduce the rank of MD − LT by assigning values of terms in MD to parameters in LT (see
line 7).

Next, we determine whether matrix M has a trivial kernel by first computing its rank
and then checking if (Rank(M) < Dim(Rr[X1, .., Xn])) holds (see line 8). By so doing,
we can increase the degree r of invariants until Theorem 5.1 (or Corollary 5.1) applies or
until stronger hypotheses occur, e.g. if all v(r)× v(r) sub-determinants are null. Then, we
compute and output the basis of the nullspace of matrix M in order to construct an ideal
basis for non trivial invariants (see Nullspace Basis, line 10). We can directly see that if
there is no ideal for non-trivial invariants for a value ri then we conclude that there is no
ideal of non-trivial invariants for all degrees k ≤ ri. This could guide other constraint-based
techniques, since checking for invariance with a template of degree less or equal to ri will
not be necessary. In case there is no ideal for invariants of degree r (see line 8), we first
increment the value of r by 1 before the recursive call to Ideal Inv Gen.

We thus showed how to reduce the invariant generation problem to the problem of
computing a kernel basis for polynomial mappings. For the latter, we use well-known
state-of-the-art algorithms, e.g. that the software Mathematica provides. These algorithms
calculate the eigenvalues and associated eigenspaces of M when it is a square matrix. When
M is a rectangular matrix, we can use its singular value decomposition (SVD). A SVD of
M provides an explicit representation of its rank and kernel by computing unitary matrices
U and V and a regular diagonal matrix S such that M = USV . We compute the SVD of
a v(r + d − 1) × v(r) matrix M by a two step procedure. First, reduce it to a bi-diagonal
matrix, with a cost of O(v(r)2v(r + d − 1)) flops. The second step relies on an iterative
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method, as is also the case for other eigenvalue algorithms. In practice, however, it suffices
to compute the SVD up to a certain precision, i.e. up to a machine epsilon. In this case,
the second step takes O(v(r)) iterations, each using O(v(r)) flops. So, the overall cost
is O(v(r)2v(r + d − 1)) flops. For an implementation of the algorithm we could rewrite
Corollary 5.1 as follow.

Corollary 6.1. Let M = U ·S ·V be the singular value decomposition of matrix M described
just above. There will be a non trivial T -invariant for any given initial condition if and
only if the number of non-zero elements in matrix S is less than v(r) − 2, where v(r) is
the dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace obtained
from the decomposition directly gives an ideal for non-linear invariants.

It is important to emphasize that eigenvectors of M are computed after the parameters
of LT have been assigned. When the differential system has several variables and none or
few parameters, M will be over the reals and there will be no need to use the symbolic
version of these algorithms.

7 Examples and Experimental Results

By reducing the problem to linear algebra, we obtain new optimization techniques, as
illustrated in the following examples. Depending on the form of the monomials present
in the system, we may be able to find T and a vector X such that X ∈ Ker(MD − LT )
without defining T as a template, i.e. without using a polynomial with unknown coefficients
for scaling consecution. The idea is to directly obtain a suitable T by factorization. The
following are examples of large classes of systems where the methods apply.

Example 7.1. Let s ∈ N be positive and consider the differential rules: ẋ1(t) =
∑s

k=0 akx1(t)
k+1x2(t)

k · · ·xn(t)k

...
ẋn(t) =

∑s
k=0 akx1(t)

k · · ·xn−1(t)kxn(t)k+1

 . (11)

This differential system contains parameters and variables that are time functions. We
denote the polynomials thus

P1 =

s∑
k=0

akx
k+1
1 xk2 . . . x

k
n; · · · ;Pn =

s∑
k=0

akx
k
1 . . . x

k
n−1x

k+1
n

Let D be the morphism associated with (11) and let MD be its matrix in the canonical basis.
Then, it is immediate that DP (xi) = Pi. Now, for this particular class of Pi’s, we see that
DP (xi) = xiT , where T =

∑s
k=0 akx

k
1x

k
2 . . . x

k
n−1x

k
n. This means that if T is the morphism

associated to multiplication by T , we have DP (xi) = T (xi) for each i. Let LT be its matrix
in the canonical basis. We deduce that V ect(x1, .., xn) ⊂ Ker(MD−LT ). Hence, for n ≥ 2,
the space Ker(MD − LT ) has dimension greater than 2, and we can apply our existence
theorem for invariants, given any initial values. We can then search for an invariant of
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the form a1x1 + · · · + anxn. Given the initial conditions x1(0) = λ1, . . . , xn(0) = λn, a
vector (a1, · · · , an)> is such that the polynomial a1x1 + · · ·+ anxn is an invariant for (11)
whenever it belongs to the kernel of the linear form with matrix (λ1, . . . , λn). Summarizing,
with polynomial scaling, any polynomial Q = a1x1 + · · · + anxn with (a1, · · · , an)> in the
kernel of (λ1, . . . , λn) is an invariant for (11).

Example 7.2. In order to handle air traffic management systems [25, 37] automatically,
we consider the given differential system:[

ẋ1 = a1cos(ωt+ c)
ẋ2 = a2sin(ωt+ c)

]
. (12)

This models the system satisfied by one of the two airplanes. We introduce the new vari-
ables d1 and d2 to handle the transcendental functions, axiomatizing them by differential
equations, so that d1 and d2 satisfy [

ḋ1 = −a1/a2ωd2
ḋ2 = a2/a1ωd1.

]
(13)

If D is the morphism associated to this system, it is immediate that D(a22d
2
1) = −2a1a2ωd1d2

whereas D(a21d
2
2) = 2a1a2ωd1d2. From [27, 28], this implies that V ect(a22d

2
1 + a21d

2
2) ⊂

Ker(D) and so a22d
2
1 + a21d

2
2 is a strong-scale invariant ( i.e. a T -scale invariant where T is

null) for the system. But ẋ1 = d1 = [a1/(a2ω)]ḋ2 and ẋ2 = d2 = [−a2/(a1ω)]ḋ1. Therefore,
there exist constants c1 and c2, determined by the initial values, such that x1 = a1/a2ωd2+c1
and x2 = d2 = −a2/a1ωd1 + c2.

This implies that (a2x1 − k1)2 + (a1x2 − k2)2 = 0, with k1 = a2c1 and k2 = a1c2, is
an invariant of the first system. Hence the two airplanes, at least for some lapse of time,
follow an elliptical path.

In the following two examples we have shown again how to deal with differential systems
with parameters and several variables.

Example 7.3. Consider the following differential rules:[
ẋ = ax2(t) + bx(t)y(t) + cx(t)
ẏ = ax(t)y(t) + by2(t) + cy(t)

]
. (14)

We have two polynomials of degree 2, variables x(t) and y(t) in Vt and parameters a, b, c,
in V with P1 = ax2 + bxy + cx and P2 = axy + by2 + cy. With basis (x2, xy, y2, x, y, 1)
of R2[x, y] and (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of R3[x, y], the matrix MD is at the left
below

MD =



2a 0 0 0 0 0
2b 2a 0 0 0 0
0 2b 2a 0 0 0
0 0 2b 0 0 0
2c 0 0 a 0 0
0 2c 0 b a 0
0 0 2c 0 b 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 0


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LT =



t1 0 0 0 0 0
t2 t1 0 0 0 0
t3 t2 t1 0 0 0
0 0 t2 0 0 0
0 0 0 t1 0 0
0 t3 0 t2 t1 0
0 0 t3 0 t2 0
0 0 0 t3 0 t1
0 0 0 0 t3 t2
0 0 0 0 0 t3


Here the polynomial T we use for scaling must be of degree 1. Hence T (x, y) = t1x+t2y+

t3 where t1, t2, t3 are unknown parameters that will be assigned values in order to guarantee
the existence and generation of invariants. The associated matrix LT of the T -multiplication
morphism has the form depicted at the right above. Then taking T (x, y) = 2ax+ 2by + 2c,
i.e. t1 = 2a, t2 = 2b and t3 = 2c one verifies that the matrix MD − LT has its second and
third columns equal to zero. Hence, the rank of MD − LT is less than 4, and our existence
theorem for any given initial values applies.

Example 7.4. Consider the following differential rules:ẋ(t) = x2(t) + x(t)y(t)− x(t)z(t)
ẏ(t) = 2x(t)y(t) + y2(t)
ż(t) = z(t)y(t)− 2z2(t)

 . (15)

The method gives x2(t)−y(t)z(t)−x0 = 0 as an inductive invariant with polynomial scaling
T = 2(x+ y − z), and with x0 = x(0) as an initial parameter.

Table 1 summarizes the type of linear algebraic problems associated with each consecu-
tion approximation. The last column gives some existential results that could be reused by
any constraint-based approach or reachability analysis.

In Table 2 we list some experimental results. More recent approaches have been constraint-
based [9, 10, 11, 12, 13]. In these approaches, the local differential systems are seen as
varieties and their algebraic assertions and their induced ideal J . First, the Gröbner bases
of J is computed. Then, a candidate invariant Q is considered. Next, Q is taken with a
fixed degree and unknown parametric coefficients, i.e., it is a template form that can be un-
derstood as the target invariant to be generated. Then, the normal form reduction NFG(Q)
of G over Q is obtained in order to generate a system (NFG(Q) = 0) of equations encoding
the conditions for invariance, resulting in constraints on the unknown coefficients whose
solutions yield invariants. Each single computation step, i.e., computations of Gröbner
bases, normal form reductions of the template and the resolution of the constraints, require
a high numbers of operations, and are of double exponential complexity. Moreover the set
of constraints they generate remains non-linear when the local continuous rules are non-
linear differential systems. Even for linear local continuous rules, the constraints generated
could form a very complex non-linear differential system which makes their resolution in-
tractable. In terms of performance and efficiency, our techniques have few computational
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Table 1: Linear algebraic problems and consecution approximations

Aprox.Consec. Lin. Alg. Prob. Existence Conditions
Strong nullspaces Ker(MD) 6= ∅ or (see [27]) ∃(Q1, .., Qn) ∈

Syz(P1, .., Pn), s.t. ∂iQj = ∂jQi
Lambda eigenspaces Ker(MD) ≥ 2 for any init. cond., and

Ker(MD) 6= ∅ otherwise.
Polynomial nullspaces Ker(MD −LT ) ≥ 2 for any init. cond., and

Ker(MD − LT ) 6= ∅ otherwise.

steps of polynomial complexity: we compute first some specific matrices and we then com-
pute their nullspaces. Further, our approaches do not generate an invariant at a time.
Instead we generate the basis of a vector space providing us with an ideal of invariants (an
infinite structure). Moreover, as one of the main results, we provide very general sufficient
conditions allowing for the existence and computation of invariant ideals. Note that these
conditions could be directly used by any invariant generation method.

8 Handling algebraic discrete transition systems

In this section we treat discrete transitions by extending and adapting our previous work on
loop invariant generation for discrete programs [31, 30]. We also consider discrete transitions
that are part of connected components and circuits, thus generalizing the case for simple
propagation. We recall that Vk denotes the subspace of R[X1, .., Xn] of degree at most k.

Definition 8.1. Let τ = 〈li, lj , ρτ 〉 be a transition in T and let η be an algebraic inductive
map with η(li) ≡ (Pη(X1, .., Xn) = 0) and η(lj) ≡ (P ′η(X1, .., Xn) = 0).

• Then η satisfies a Fractional-scale consecution for τ if and only if there exists a
multivariate fractional T

Q such that ρτ |= (Pη(X
′
1, .., X

′
n) − T

QPη(X1, .., Xn) = 0). We

also say that Pη is a T
Q -scale discrete invariant.

• Then η satisfies a Polynomial-scale consecution for τ if and only if there exists a
multivariate polynomial T such that ρτ |= (Pη(X

′
1, .., X

′
n)− TPη(X1, .., Xn) = 0). We

also say that Pη is a polynomial-scale and a T -scale discrete invariant.

8.1 Discrete transition with polynomial systems

Consider an algebraic transition system:

ρτ ≡ [X ′1 = P1(X1, .., Xn), ..., X ′n = Pn(X1, .., Xn)],

where the Pi’s are in R[X1, .., Xn]. We have the following T -scale discrete invariant charac-
terization.



Generating Invariants for Non-linear Hybrid Systems 23

Table 2: Experimental results: Basis of invariant ideals obtained automatically by our
prototype. All examples are treated in Section 4.1, Section 4.2, Section 5 and Section 7

Differential Systems. Scaling CPU/s
See Section 7, system 14. Polynomial 1.12

See Section 7, system 13. Polynomial 2.04

See Section 7, system 15. Polynomial 0.34

See Section 7, systems 11. Polynomial 98.49

See Section 5, system 10. Polynomial 0.43

See Section 4.2, system 9. Lambda 2.48

See Section 4.1, system 6. Strong 0.02

See Section 7, systems 12. Strong 1.29

See Section 4.1, system 4. Lambda 0.03

See Section 4.1, system 7 Strong 15.90

See Section 4.2, system 8 Lambda 1.04

From [33] Ex.6. Polynomial 2.4

From [28] Ex.1. Polynomial 0.35

From [26] Polynomial 10.1

From [26] Ex.2. Polynomial 0.45

From [27] Ex.2. Lambda 2.5

From [33] Strong 0.2

From [26]. Ex.4. Strong 1.3

From [33]). Ex.4. Lambda 0.05

From [33]). Lambda 1.06

From [27]). Strong 6.80

Theorem 8.1. A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for polynomial-
scale consecution with parametric polynomial T ∈ R[X1, ..., Xn] for τ if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

If Q ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then we
are looking for a T of degree e = dr − r. Write its ordered coefficients as λ0, ..., λs, with
s + 1 being the number of monomials of degree inferior to e. Let M be the matrix, in the
canonical basis of Vr and Vdr, of the morphism M from Vr to Vdr given by Q(X1, .., Xn) 7→
Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)). Let L be the matrix, in the canonical basis of Vr and
Vdr, of the morphism L from Vr to Vdr given by P 7→ TP . Matrix L will have a very simple
form: its non zero coefficients are the λi’s, and it has a natural block decomposition. Now
let Q ∈ R[X1, .., Xn] be a T -scale discrete invariant for a transition relation defined by the
Pi’s. Then

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn)

⇔M (Q) = L (Q)

⇔ (M −L )(Q) = 0R[X1,..,Xn]

⇔ Q ∈ Ker(M − L).
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A T -scale discrete invariant is nothing else than a vector in the kernel of M − L. Our
problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 8.2. Consider M as described above. Then, (i) there will be a T -scale discrete
invariant if and only if there exists a matrix L (corresponding to P 7→ TP ) such that M−L
has a nontrivial kernel. Further, any vector in the kernel of M − L will give a T -scale
invariant polynomial; (ii) there will be a non trivial inductive invariant if and only if there
exists a matrix L such that the intersection of the kernel of M −L and the hyperplane given
by the initial values is not zero. The invariants correspond to vectors in the intersection;
and (iii) if dim(Ker(M − L)) ≥ 2, then the basis of Ker(M − L) is a basis for non trivial
inductive invariants, whatever the initial conditions.

Example 8.1. (Running example) Let’s consider the following transition:

τ = 〈li, lj , ρτ ≡ [ x′ = xy + x ; y′ = y2 ]〉.

Step 1: We build matrix M − L. The maximal degree of the system ρτ is d = 2 and the
T -scale invariant will be of degree r = 2. Then, T is of degree e = dr − r = 2 and we write
λ0, ..., λ5 as its ordered coefficients i.e. its canonical form is T = λ0x

2 + λ1xy + λ2y
2 +

λ3x + λ4y + λ5. Consider the associated morphisms M and L from R2[x, y] to R4[x, y].
Using the basis

C1 = (x2, xy, y2, x, y, 1)

of R2[x, y] and the basis

C2 = (x4, yx3, y2x2, y3x, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R4[x, y], our algorithm compute the matrix M − L as

M − L =



−λ0 0 0 0 0 0
−λ1 −λ0 0 0 0 0

1− λ2 −λ1 −λ0 0 0 0
0 1− λ2 −λ1 0 0 0
0 0 1− λ2 0 0 0
−λ3 0 0 −λ0 0 0

2− λ4 −λ3 0 −λ1 −λ0 0
0 1− λ4 −λ3 −λ2 −λ1 0
0 0 −λ4 0 −λ2 0

1− λ5 0 0 −λ3 0 −λ0
0 −λ5 0 1− λ4 −λ3 −λ1
0 0 −λ5 0 1− λ4 −λ2
0 0 0 1− λ5 0 −λ3
0 0 0 0 −λ5 −λ4
0 0 0 0 0 1− λ5



.

Step 2: We then reduce the rank of M − L by assigning values to the λi’s. Our procedure
fixes λ0 = λ1 = λ3 = 0, λ2 = λ5 = 1 and λ4 = 2, so that T (x, y) = y2 + 2y + 1. The first
column of M − L becomes zero and the second column is equal to the fourth. Hence, the
rank of M − L is less than 4 and its kernel has dimension at least 2. Any vector in this
kernel will be a T -invariant.
Step 3: Now matrix M − L satisfies the hypotheses of Theorem 8.2(iii). So, there will
always be invariants, whatever the initial values. We compute the basis of Ker(M − L).
Our prototype Ideal Inv Gen outputs:
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Polynomial scaling discrete step

T(x,y) = y^2 + 2 y + 1

Module of degree 6 and rank 3 and Kernel of dimension 3

{{1, 0, 0, 0, 0, 0}, {0, 1, 0, -1, 0, 0}, {0, 0, 1, 0, -2, 1}}

The vectors of the basis are interpreted in the canonical basis C1 of R2[x, y]:

Basis of invariant Ideal

{x^2, x y - x, y^2 - 2 y + 1}

We thus obtained an ideal of non trivial inductive invariants. In other words, for all G1,
G2, G3 ∈ R[x, y], (G1(x, y)(x2) + G2(x, y)(xy − x) + G3(x, y)(y2 − 2y + 1) = 0) is an
inductive invariant. For instance, consider the initial step (y = y0, x = 1). An invariant is
y0(1− y0)x2 + xy − x+ y2 − 2y + 1 = 0.

8.2 Discrete transition with fractional systems

We now want to deal with transition systems ρτ of the following type:

[X ′1 = P1(X1, .., Xn)/Q1(X1, .., Xn), .., X ′n = Pn(X1, .., Xn)/Qn(X1, .., Xn)],

where the Pi’s and Qi’s belong to R[X1, .., Xn] and Pi is relatively prime to Qi. One need
to relax the consecution conditions to fractional-scale as soon as fractions appear in the
transition relation.

Theorem 8.3. (F -scale inv. charac.) A polynomial Q in R[X1, .., Xn] is a F -scale invari-
ant for fractional discrete scale consecution with a parametric fractional F ∈ R(X1, .., Xn)

for τ if and only if Q
(
P1
Q1
, .., PnQn

)
= FQ.

Let d be the maximal degree of the Pi’s and Qi’s, and let Π be the least common multiple
(lcm) of the Qi’s. Further, suppose that we are looking for a F -invariant Q of degree r. Let
M be the morphism of vector spaces

Q 7→ ΠrQ(P1/Q1, .., Pn/Qn)

from Vr to Vnrd, and let M be its matrix in a canonical basis. Let T be a polynomial in
Vnrd−r, let L denote the morphism of vector spaces

Q 7→ TQ

from Vr to Vnrd, with L its matrix in a canonical basis. As we show in the following theorem,
our problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 8.4. Consider M and L as described above. Then,
(i) there exists F -scale invariants (with F is of the form T/Πr) if and only if there exists a
matrix L such that

Ker(M − L) 6= ∅.

In this situation, any vector in the kernel of M − L will give a F -scale discrete invariant;
(ii) we have a non trivial invariant if and only if there exists a matrix L such that the
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intersection of the kernel of M − L and the hyperplane given by the initial values is not
zero, the invariants will correspond to vectors in the intersection; and
(iii) we will have a non-trivial invariant for any non-trivial initial value if there exists a
matrix L such that

dim(Ker(M − L)) ≥ 2.

Example 8.2. Consider the system

ρτ ≡ [ x′1 = x2/(x1 + x2) ; x′2 = x1/(x1 + 2x2) ].

We are looking for a F -scale invariant polynomial of degree two. The lcm of (x1 + x2) and
(x1+2x2) is their product, so that M is given by: [Q ∈ V2 7→ [(x1+x2)(x1+2x2)]

2Q(x1/(x1+
x2), x2/(x1 + 2x2))]. As both x2/(x1 + x2) and x1/(x1 + 2x2) have “degree” zero, [(x1 +
x2)(x1 + 2x2)]

2Q(x2/(x1 + x2), x1/(x1 + 2x2)) will be a linear combination of degree four,
if it is non null. Hence, M has values in V ect(x41, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). For T and Q in

V2 to verify [(x1 + x2)(x1 + 2x2)]
2Q(x2/(x1 + x2), x1/(x1 + 2x2)) = TQ, as the left member

is in V ect(x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2), T must be of the form λ0x

2
1 + λ1x1x2 + λ2x

2
2 and Q

of the form a0x
2
1 + a1x1x2 + a3x

2
2. We see that we can take Q in V ect(x21, x1x2, x

2
2), and

similarly for T . Then both M , L : (Q 7→ TQ) will be morphisms from V ect(x21, x1x2, x
2
2)

in V ect(x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). In the corresponding canonical basis, the matrix M − L

is

M − L =


−λ0 0 1
−λ1 1− λ0 2

1− λ2 3− λ1 1− λ0
4 2− λ2 −λ1
4 0 −λ2

 .

Taking λ0 = 1, λ1 = 3 and λ2 = 2 cancels the second column. Hence, the kernel equals
V ect(0, 1, 0). Now, Theorem 8.4(iii) applies to M − L. We get from our prototype:

Fractional scaling discrete step

T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2

Module of degree 3 and rank 1 and Kernel of dimension 2

{{0, 1, 0}}

Basis of invariant Ideal

{ x y }

It was clear from the beginning that the corresponding polynomial x1x2 is 1/[(x1 + x2)(x1 +
2x2)]

2-scale invariant. For instance, it is an invariant for the initial values (0, 1). Moreover,
it clearly never cancels x1 + x2 and x1 + 2x2, because they are of the form (a, 0) or (0, b)
with a and b strictly positive.

9 Putting it all together: Global invariants

In the previous sections and in Section 8 we have shown how to handle continuous and
discrete consecution conditions and how to generate ideals of invariants for each location.
To be more precise, we thus generated a basis of a vector space which describes invariants for
each location, transitions and initial conditions. A global invariant would be any invariant
which is in the intersection of these three vector spaces. In this way, we avoid the definition
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of a single isomorphism for the whole hybrid system. Instead, we generate the basis for
each separate consecution condition. To compute the basis of global invariants, we could
use Theorem 9.1. It proposes to multiply all the elements of each computed basis. By so
doing, we also avoid the heavy computation of ideal intersections. This approach is a sound,
but not complete, way of computing ideals for global hybrid invariants, and it has a low
computational complexity.

Theorem 9.1. Let W be a hybrid system and let l be one of its locations. Let I =

{I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)1, ..., f
(j)
nj ) where j ∈ [1, k].

Let �(I1, ..., Ik) = {δ1, ..., δn1n2...nk} be such that all elements δi in �(I1, ..., Ik) are formed
by the product of one element from each ideal in I. Assume that the Ij’s are collections
of invariant ideals associated to S(l), its differential rule C(l), its local conditions, and all
invariant ideals generated considering incoming transitions at l. Then �(I1, ..., Ik) is a
non-trivial invariant ideal for location l.

Corollary 9.1. Let l be a state and let C(l) ≡ (Pi(x1, .., xn) < 0) be its semi-algebraic
local conditions and Q be an inductive invariant for its differential rule D(l), and all ideals
of invariants generated considering all incoming transitions at l. Then (Pi(x1, .., xn) −
Q(x1, .., xn) < 0) is an inductive invariant.

Semi-algebraic local state conditions, as well as initiation and transition guards are
assertions of the form (Pi(x1, .., xn) < 0) with Pi ∈ K[x1, .., xn]. Then, we obtain an
operator, similar to the one introduced in Theorem 9.1, to generate ideals of non-trivial
invariants at a state l with semi-algebraic local conditions. We can then generate ideals of
non-trivial semi-algebraic invariants.

10 Conclusions

It is presently established in industry and academia that reasoning about non-linear dif-
ferential systems is a critical bottleneck for automated verification and static analysis of
hybrid systems. In this article, we introduced new symbolic techniques with fast numer-
ical computations. In terms of performance and efficiency, we succeeded in reducing the
invariant generation problem for non-linear hybrid systems to linear algebraic problems,
i.e. to the computation of eigenspaces of specific morphisms. We proposed a method of
lower complexity than previous modern approaches based on fixed point computation and
constraint-based approaches. Each computational step required by our techniques remains
of polynomial complexity. We compute first specific matrices and then we compute their
nullspaces.

We can also handle non-linear hybrid systems, extended with parameters and variables
that are functions of time. We note that these type of hybrid system are still not treated by
other state-of-the-art invariant generation methods. Instead of generating an invariant at a
time, our approaches are capable of computing an ideal of invariants which is an enormous,
i.e. infinite, structure. Our algorithm embodies a strategy to guess the degree bounds
which allow the non-triviality of the computed invariants.
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It is also important to emphasize that the very general sufficient conditions allowing
for the existence and computation of invariant ideals provided in this work could also be
directly used by any constraint-based invariant generation method [10, 9, 13, 12], or by any
analysis methods based on over-approximations and reachability [38, 25, 39].

The examples discussed are beyond other current state-of-the-art approaches, and illus-
trate the strength of our methods.
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A Proofs for Section 3

Proof of Theorem 3.1
Suppose that Q ∈ R[X1, .., Xn] is such an invariant. Then if (X1(t), .., Xn(t)) is a solution of
(S) then, by the definition of P -scale invariant, one would have DQ(P1, .., Pn, X1, .., Xn) =
PQ(X1, .., Xn). Denote by f(t) the function Q(X1(t), .., Xn(t)). Then we get ḟ(t) =
P (X1(t), .., Xn(t))f(t). Call R(t) an anti-derivative of P (X1(t), .., Xn(t)). Then f must
be of the form t 7→ λeR(t) for some scalar λ. Now taking into account the initial conditions,
if Q(x0, .., xn) = 0 ⇔ f(0) = 0, then λ must be zero. Hence, f(t) = Q(X1(t), .., Xn(t)) is
the zero function, and Q is an invariant of (S).

Proof of Theorem 3.2
Consider polynomial-scale consecution. The system {ẋ = ax(t); ẏ = ay(t) + bx(t)y(t)}
could be cited as counter-example for completeness as its invariants are not P -scale differ-
ential invariants.

B Proofs for Section 4

Proof of Lemma 4.1
Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = 0.

then dQ/dt = 0 and Q is a strong invariant as dXi(t)
dt = Pi(X1, ..., Xn) for all i in [1, n] and

by construction of DQ.

Proof of Theorem 4.1
Let Q ∈ R[X1, .., Xn] be a polynomial. Then

(DQ(P1, .., Pn, X1, .., Xn) = 0) ⇔ (D(Q) = 0K[X1,..,Xn])

⇔ (Q ∈ Ker(MD)).

Using the definition of an invariant and Lemma 4.1, we can see that Q will be a strong-scale
invariant if and only if it is in the kernel of MD.

Proof of Theorem 4.2
We first consider Theorem 4.1. The initiation step defines on Rr[x1, . . . , xn] a linear form on
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this space, namely, Iu : P 7→ P (u1, ..., un). Hence, initial values correspond to a hyperplane
of Rr[X1, .., Xn] given by the kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}.
If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking
for a strong-scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane
P (u1, . . . , un) = 0, i.e., we are looking for Q in ker(MD) ∩ {P | P (u1, . . . , un) = 0}.

Proof of Corollary 4.1
(⇒) If there is a non-trivial strong-scale invariant for any initial value, then the correspond-
ing kernel has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at
least necessary to have strong-invariants), taking any non-zero vector Q in the kernel (i.e.
a strong-invariant), Q should lie in any hyperplane of initial values, i.e. for every n-tuple
(u1, . . . , un), one would have Q(u1, . . . , un) = 0, i.e. Q = 0, which is absurd.
(⇐) A kernel of MD with dimension at least 2 will intersect any space, or semi-hyperplane,
given by any initial constraints.

Proof of Lemma 4.2
We treat the case of two variables, the case of n variables being a straight generaliza-
tion. Suppose that ∂iQj = ∂jQi for each pair (i, j). We choose a polynomial Q1, an
anti-derivative of Q1 with respect to x1. Now ∂1(∂2Q

1) = ∂2(∂1Q
1) = ∂2Q1 = ∂1Q2. Hence

∂1(∂2Q
1 − Q2) = 0, and so ∂2Q

1 = Q2 + b(x2, . . . , xn) for some function b of (x2, . . . , xn)
which is actually a polynomial. Choosing an anti-derivative B(x2, . . . , xn) of b(x2, . . . , xn)
with respect to x2, one verifies that Q1,2 = Q1 − B(x2, . . . , xn) is such that ∂1Q1,2 = Q1

and ∂2Q1,2 = Q2. Now, ∂1∂3Q1,2 = ∂3∂1Q1,2 = ∂3Q1 = ∂1Q3, and ∂2∂3Q1,2 = ∂2Q3 as
well. Hence, ∂3Q1,2−Q3 = c(x3, . . . , xn) for a polynomial c. Taking C as an anti-derivative
of c with respect to x3, one deduces that Q1,2,3 = Q1,2 − C is such that ∂iQ1,2,3 = Qi
for i = 1, 2, 3. Repeating the process, we construct Q1,...,n such that ∂iQ1,...,n = Qi, for
i = 1, 2, 3.

Proof of Theorem 4.3
Immediate, using Lemma 4.2.

Proof of Lemma 4.3
Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = λQ(X1, .., Xn).

As dXi(t)
dt = Pi(X1, ..., Xn) for all i in [1, n] and by construction of DQ we obtain dQ

dt = λQ.

So, dQ
dt − λQ = 0 and Q is a λ-scale invariant.
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Proof of Theorem 4.4

(DQ(P1, .., Pn, X1, .., Xn) =λQ(X1, ..., Xn)) ⇔
(D(Q) =λId(Q)) ⇔

((D − λId)(Q) = 0R[X1,..,Xn]) ⇔
(Q ∈ Ker(D − λId)) ⇔
(Q ∈ Ker(MD − λI)).

Using the definition of an invariant and Lemma 4.3, we can see that Q will be a strong-scale
invariant if and only if it is in the kernel of MD.

Proof of Theorem 4.5
It follows by a similar reasoning as the proof of Theorem 4.2. Thus we would looking at
ker(MD − λI) ∩ {P | P (u1, . . . , un) = 0}.
Proof of Corollary 4.2
(⇒) If there is a λ-scale invariant for any initial value, then the corresponding eigenspace
has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at least
necessary to have λ-invariants), taking any non-zero vector Q in the eigenspace (i.e. a λ-
invariant), Q should lie in any hyperplane of initial values, i.e. for every n-tuple (u1, . . . , un),
one would have Q(u1, . . . , un) = 0, i.e. Q = 0, which is absurd.

(⇐) An eigenspace of MD with dimension at least 2 will intersect any space, or semi-
hyperplane, given by any initial constraints.

C Proofs for Section 5

Proof of Lemma 5.1
Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = TQ(X1, .., Xn).

As dXi(t)
dt = Pi(X1, ..., Xn) for all i in [1, n] and by construction of DQ we obtain dQ

dt = TQ.

So, dQ
dt − TQ = 0 and Q is a T -scale invariant.

Proof of Theorem 5.1
The sketch of the proof is induced by the constructed linear algebraic reduction. As-
sume that there is an invariant Q in Rr[x1, . . . , xn] for differential polynomial-scale conse-
cution corresponding to the differential system. And, there exists a polynomial T such that

˙Q(x1, ..., xn) = T (x1, .., xn)Q(x1, .., xn). By definition, we haveDQ(P1, . . . , Pn, x1, . . . , xn) =
TQ and then D(Q) = T (Q). In other words (D − T )(Q) = 0, i.e. Q ∈ Ker(MD − LT )
which means that Ker(MD − LT ) 6= ∅. On the other hand if Ker(MD − LT ) 6= ∅ then
there exists a polynomial P such that MD(P ) = LT (P ). By definition, D(P ) = T (P ) and
DP (P1, . . . , Pn, x1, . . . , xn) = TP . In other words, ˙P (x1, ..., xn) = T (x1, .., xn)P (x1, .., xn)
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and P is a T invariant in Rr[x1, . . . , xn] for differential polynomial-scale consecution corre-
sponding to the differential system.

Proof of Theorem 5.2
From linear algebra, we know that MD − LT with a non trivial kernel is equivalent to
it having rank strictly less than the dimension v(r) of Rr[x1, . . . , xn]. This is equiva-
lent to the fact that each v(r) × v(r) sub-determinant of MD − LT is equal to zero.
Those determinants are polynomials with variables (t1, .., tv(d−1)), which we will denote by
E1(t1, ..., tv(d−1)), ..., Es(t1, ..., tv(d−1)). From the form of LT , this is zero when (t1, ..., tv(d−1)) =
(0, ..., 0). Hence, in this case, MD −LT has its last column equal to zero, giving a common
root for these polynomials, corresponding to the constant invariants.

Proof of Theorem 5.3
We first consider Theorem 5.1. The initiation step defines on Rr[x1, . . . , xn] a linear form on
this space, namely, Iu : P 7→ P (u1, ..., un). Hence, initial values correspond to a hyperplane
of Rr[X1, .., Xn] given by the kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}. If
we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking for a T -
scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) =
0, i.e., we are looking for Q in ker(MD − LT ) ∩ {P | P (u1, . . . , un) = 0}.

Proof of Corollary 5.1
Considering T -scale invariant for any initial value and the kernel of MD −LT , it follows by
a similar reasoning as the proof of Corollary 4.2.

D Proofs for Section 6

Proof of Corollary 6.1
The right singular vectors corresponding to vanishing singular values of M span the null
space of M . The left singular vectors corresponding to the non-zero singular values of M
span the range of M . As a consequence, the rank of M equals the number of non-zero
singular values which is the same as the number of non-zero elements in the matrix S.

E Proofs for Section 8

Proof of Theorem 8.1
If Q(X ′1, .., X

′
n) − TQ(X1, .., Xn) belongs to the ideal I generated by the family (X ′1 −

P1, . . . , X
′
n−Pn), then there exists a family (A1, . . . , An) of polynomials in R[X ′1, .., X

′
n, X1, .., Xn]

such that Q(X ′1, .., X
′
n)−λQ(X1, .., Xn) = (X ′1−P1)A1+· · ·+(X ′n−Pn)An. Letting X ′i = Pi,

we obtain that Q(P1(X1, ..., Xn), ..., Pn(X1, ..., Xn)) = TQ(X1, ..., Xn).

Conversely letQ(P1(X1, . . . , Xn), .., Pn(X1, . . . , Xn)) = TQ(X1, . . . , Xn). Then asQ(X ′1, .., X
′
n)

is equal to Q(P1, .., Pn) modulo the ideal I, we get that Q(X ′1, .., X
′
n) = λQ(X1, . . . , Xn)

modulo I.
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Proof of Theorem 8.2
Claim (i): Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T -invariant if
and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e. if and only if M (Q) = L (Q) ⇔ (M −L )(Q) = 0R[X1,..,Xn]. Using matrices we have
((M − L)Q = 0)⇔ (Q ∈ Ker(M − L)), and we are done.
Claim (ii): Consider Claim (i). It follows by a similar reasoning as the proof of Theorem
4.5.
Claim (iii): Considering T -scale discrete invariant for any initial value and the kernel of
M − L, it follows by a similar reasoning as the proof of Corollary 4.2.

Proof of Theorem 8.3
If Q(X ′1, .., X

′
n) − FQ(X1, .., Xn) belongs to the fractional ideal J generated by the fam-

ily (X ′1 − P1/Q1, . . . , X
′
n − Pn/Qn), then there exists a family (A1, . . . , An) of fractional

functions in R(X ′1, .., X
′
n, X1, .., Xn) such that Q(X ′1, .., X

′
n) − FQ(X1, .., Xn) = (X ′1 −

P1/Q1)A1 + · · · + (X ′n − Pn/Qn)An. Letting X ′i = Pi
Qi

, we obtain that Q( P1
Q1
, .., PnQn ) =

λQ(X1, . . . , Xn). Conversely suppose Q( P1
Q1
, .., PnQn ) = FQ(X1, .., Xn), then as Q(X ′1, .., X

′
n)

is equal to Q( P1
Q1
, .., PnQn ) modulo the ideal J , we get that Q(X ′1, .., X

′
n) = FQ(X1, .., Xn)

modulo J .

Proof of Theorem 8.4
Claim (i): Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T/Πr-invariant
if and only if Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T/Πr(X1, .., Xn)Q(X1, .., Xn), which is
equivalent to

ΠrQ(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e. if and only if (M (Q) = L (Q))⇔ ((M−L )(Q) = 0R[X1,..,Xn] Writing this in equivalent
terms of matrices: ((M − L)Q = 0) ⇔ (Q ∈ Ker(M − L)), we get the statement of the
theorem.
Claim (ii):Consider Claim (i). It follows by a similar reasoning as the proof of Theorem 4.5.
Claim (iii) : Considering F -scale discrete invariant for any initial value and the kernel of
M − L, it follows by a similar reasoning as the proof of Corollary 4.2.

F Proofs for Section 9

Proof of Theorem 9.1

Let f
(j)
1 , ..., f

(j)
nj in K[X1, .., Xn] such that Ij = (f (j)1, ..., f

(j)
nj ), for all j in [1, k]. Let

β ∈ (�(I1, ..., Ik)), then there exists e1, .., en1n2..nk in K[X1, .., Xn] such that β = e1δ1 +
.. + en1n2..nkδn1n2..nk . Also, by the construction of �(I1, ..., Ik) we know that for all r ∈
[1, .., n1n2..nk], δr ∈ �(I1, ..., Ik), there is (α

(r)
1 , .., α

(r)
k ) ∈ I1 × I2 × .. × Ik such that
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δr =
∏k
i=o α

(r)
i . Then we have β =

∑n1n2..nk
j=1 [λj

∏k
i=1 α

(j)
i ]. Now, for all m in [1, k], if

Im correspond to a pre-computed inductive ideal of invariants associated to one of the tran-

sition τm at the location l, then for all j ∈ [1, n1n2..nk], α
(j)
m (X1, .., Xn) = 0. And so for all

j ∈ [1, n1n2..nk],
∏k
i=1 α

(j)
i = 0. Finally we have β(X1, .., Xn) = 0 for all m in [1, n1n2..nk].

That is, (β(X1, .., Xn) = 0) is an algebraic assertion true at any step of the iteration of the
loop for any transition τm that could possibility be taken. Then (β(X1, .., Xn) = 0) is an
inductive invariant and we can conclude that (�(I1, ..., Ik)) is an ideal of inductive invariant.

Proof of Corollary 9.1
This is immediate from the fact that (Pi(x1, .., xn)−Q(x1, .., xn) < 0) will be an invariant
as soon as Q(x1, .., xn) = 0 is an inductive invariant at l. We get the result using Theorem
9.1.


