
�������������������� ��������������������������������������������������������������������������������������������
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Generating Invariants for Non-linear Loops by

Linear Algebraic Methods

Rachid Rebiha Arnaldo V. Moura

Nadir Matringe

Technical Report - IC-13-04 - Relatório Técnico

February - 2013 - Fevereiro

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.



Generating Invariants for Non-linear Loops by Linear

Algebraic Methods

Rachid Rebiha∗ Arnaldo Vieira Moura† Nadir Matringe ‡

Abstract

We present new computational methods that can automate the discovery and the
strengthening of non-linear interrelationships among the variables of programs contain-
ing non-linear loops, that is, that give rise to multivariate polynomial and fractional
relationships. Our methods have complexities lower than the mathematical founda-
tions of the previous approaches, which used Grobner basis computation, quantifier
elimination or cylindrical algebraic decomposition. We show that the preconditions for
discrete transitions can be viewed as morphisms over a vector space of degree bounded
by polynomials. These morphisms can, thus, be suitably represented by matrices. We
also introduce fractional and polynomial consecution, as more general forms for ap-
proximating consecution. The new relaxed consecution conditions are also encoded as
morphisms represented by matrices. By so doing, we reduce the non-linear loop in-
variant generation problem to the computation of eigenspaces of specific morphisms.
Moreover, as one of the main results, we provide very general sufficient conditions al-
lowing for the existence and computation of loop invariant ideals. As far as it is our
knowledge, it is the first invariant generation methods that handle multivariate frac-
tional loops. Our algorithm also incorporates a strategy to guess the degree bounds
which allow for the generation of ideals of non-trivial invariants.

1 Introduction

An invariant at a location of a program is an assertion true of any reachable program state
associated to this location. We present a new method that addresses various deficiencies of
other state-of-the-art non-linear invariant generation methods. More generally, we provide
mathematical techniques and design efficient algorithms to automate the discovery and the
strengthening of non-linear interrelationships among the variables of programs containing
non-linear loops, and which give rise to multivariate polynomial and fractional relationships.

It is well-known that the automation and effectiveness of formal verification depend
on the ease with which invariants can be automatically generated. Actually, the verifica-
tion problem of safety properties, such as no null pointer deferenciation, buffer overflows,
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memory leak or outbounds, and array accesses, can be reduced to the problem of invariant
generation [MP95]. Invariants are also essential to prove and establish liveness properties
such as progress or termination [MP95]. Furthermore, the standard techniques [MP95] for
program verification use invariant assertion directly to prove program properties, or to pro-
vide supporting lemmas that can be used to established other safety and liveness properties.
We look for invariants that strengthen what we wish to prove, and so allow us to estab-
lish the desired property. Also, they can provide precise over-approximations to the set of
reachable states.

Also, the weakest precondition method [Dij76, Flo67], the Floyd-Hoare [Flo67, Hoa69]
inductive assertion technique, and the standard ranking functions technique [MP95], all
require loop invariants in order to establish correctness and so render the verification method
completely automatic. Again, in order to establish termination verification, the standard
ranking functions technique requires the automatic generation of invariants.

In order to generate loop invariants, one need to discover inductive assertions that
hold at any step of the loop. An inductive assertion also holds at the first time the loop
location is reached — this is the initiation condition — and it is also preserved under every
instructions that cycle back to the loop location, this being the consecution condition. If we
choose transition systems as the representation model and automata as the computational
model, we can say that the invariant holds in the initial state of the system — the initial
condition — and that every possible transition preserves it — the consecution conditions.
In other words, the invariant holds in any possible reachable state.

In the case of loops describing a linear system, Farka’s lemma [Sch86] can be used to en-
code the conditions for linear invariants. On the other hand, for non-linear invariants, the
difficulty of automatic generation remains very challenging. By today known methods, they
require a high number of Gröbner Bases computation [SSM04b], first-order quantifier elimi-
nation [Wei97, Col75], or cylindrical algebraic decomposition [CXYZ07]. Invariants can also
be computed as fixed points of operations on ideals by fixed point techniques [RCK07a] and
using abstract interpretations [CC92, CC77] framework and Gröbner bases constructions.
Abstract interpretation introduces imprecision, and widening operators must be provided
manually by the user in order to assure termination. A too coarse abstraction would limit
these approaches to trivial invariant generation in the presence of non linear loops. Other
methods [KJ06, Kov08] attempt to generate invariants from a restricted class of P-solvable
loops. Their methods use techniques from algebra and combinatorics, like Gröbner bases
[JKP06], variable elimination, algebraic dependencies and symbolic summation, and so also
incurr in high computational complexities.

More recent approaches have been constraint-based [SSM04b, RCK07a, Kap04, RCK07b,
SSM04a, SA08, PJ04]. In these cases, a candidate invariant with a fixed degree and un-
known parametric coefficients, i.e., a template form, is proposed as the target invariant
to be generated. The conditions for invariance are then encoded, resulting in constraints
on the unknown coefficients whose solutions yield invariants. One of the main advantage
of such constraint-based approaches is that they are goal-oriented. The main challenge
for these techniques remains in the fact that they still require a high number of Gröbner
Bases [Buc96] computations, first-order quantifier elimination [Wei97, Col75], cylindrical
algebraic decomposition [CXYZ07], or abstraction operators. And known algorithms for
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those problems are, at least, of double exponential complexity.
Despite tremendous progress over the years [SSM04b, BBGL00, RCK07a, SYH96, CXYZ07,

Kov08, KJ06, Cou05, MOS02, RCK07b, SA08, A. 08, PC08], the problem of loop invariant
generation remains very challenging for non-linear discrete systems. In this work we present
new methods for the automatic generation of loop invariants for non-linear systems. As will
be seen, these methods give rise to more efficient algorithms, with much lower complex-
ity in space and time. We develop the new methods by first extending our previous work
on non-linear non-trivial invariant generation for discrete programs with nested loops and
conditional statements, [RMM08b, RMM10].

We can summarize our contributions as follows:

• We do not need to start with candidate invariants that generate intractable solving
problems. Instead, we show that the preconditions for discrete transitions can be
viewed as morphisms over a vector space of degree bounded by polynomials which
can, thus, be suitably represented by matrices.

• We introduce a more general form for approximating consecution, called fraction and
polynomial consecution. The new relaxed consecution requirements are also encoded
as morphisms, represented by matrices with terms that are the unknown coefficients
used to approximate the consecution conditions. As far as it is our knowledge, these
are the first methods that can effectively handle multivariate fractional systems.

• We succeed in reducing the non-linear loop invariant generation problem to the com-
putation of eigenspaces of specific endomorphisms and initial constraints.

• We provide general sufficient conditions guaranteeing the existence and allowing the
computation of invariant ideals. Further, our approaches do not generate an invariant
at a time. Instead we generate an ideal of invariants — an infinite structure —
by computing the basis of a specific vector space giving rise to provable, inductive
invariants.

• Our techniques comprise three computational steps, each of polynomial time complex-
ity. In contrast, the most recent and best performing constraint-based approaches can
be summarized in three main steps, with each of these steps inducing a number of
computations that are of double exponential time complexity. Further, as soon as
the loop contains non-linear instructions, the constraints considered at the final step
gives rise to non-linear systems of equations, rendering unfeasible their resolution;
see Section 4.3. We, therefore, propose a computational method of much lower time
complexity than other present approaches based on fixed point computation, or on
constraint-based approaches.

• Also, we incorporate a strategy that attains optimal degree bounds for candidate
invariants. We also note that our existence results and methods can be reused in
other approaches in order to reduce their time complexity, since they can reduce the
number of Grobner basis computations or quantifier eliminations, for example.

Example 1.1. (Motivational Example) Consider the following program loop:
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...

While (...){

...

x := x*y + x;

...

y := y^2;

...

}

The most recent and best performing techniques for program verifications and static analysis
are not able to produce any conclusion that could be somehow related to the values of the
variables x and y because the semantic of the two instructions inside the loop relies non-
linear arithmetic. Such non-linearities are presently recognized by industry and academia as
a critical bottleneck for automatic program verification and static analysis. In this article,
we introduce new symbolic techniques with fast numerical approaches that can be used in
these situations. Our methods can directly compute {x2, x ∗ y − x, y2 − 2y + 1} as a basis
for the vector space of invariants, and we note that all elements in this space would provide
non-trivial invariants. We thus obtain an ideal for non trivial inductive invariants. In
other words, for all G1, G2, G3 ∈ R[x, y], we would get G1(x, y)(x2) + G2(x, y)(xy − x) +
G3(x, y)(y2 − 2y + 1) = 0 as an inductive invariant. Take, for instance, the initial step
(y = y0, x = 1). A possible invariant is, then, y0(1− y0)x2 +xy−x+ y2− 2y+ 1 = 0. Such
invariants are beyond the reach of other current invariant generation techniques.

In Section 2 we present ideals of polynomials and their possible interaction with inductive
assertions. In Section 3 we introduce new consecution conditions, and extend them to
fractional systems. In Section 4 we consider linear loops, and present results for the existence
of non-trivial invariants in these settings. We also recast the problem in term of linear
algebra present a complete decision procedure for the automatic generation of non-trivial
non-linear invariants. In Section 5 we extend our method to non-linear loops. In Section
6 we propose a strategy to obtain optimal degree bounds. In Section 7 we provide a
complete generalization by considering loops describing multivariate fractional systems,
and in Section 8 we show how to handle conditions and nested loops. Section 9 contains
a discussion and some experimental results. We conclude in Section 10. The appendix
contains a collections of proofs for all the theorems, lemmas and corollaries stated in this
article. Further examples examples can be found in companion technical reports and other
articles [RMM08a, RMM08b, RMM10, RM11a, RM11b].

2 Ideals of Polynomials and Inductive Assertions

We will use the following notations. The ring of multivariate polynomials over the set of
variables {X1, .., Xn} will be indicated by K[X1, .., Xn]. We will denote by Rd[X1, .., Xn]
the ring of multivariate polynomials of degree at most d over the set of real variables
{X1, .., Xn}. We will write V ect(v1, ..., vn) for the vector space generated by the basis
v1, ..., vn. We will write Ker(M) and Rank(M) for the kernel and rank, respectively, of a
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(vector space) morphism M . A primed x′ will refer to the next state value of a variable x,
after a transition is taken.

2.1 Ideals of Polynomials

Definition 2.1. An ideal is any set I ⊆ K[X1, .., Xn] such that

• it is closed under addition. In other words, if P,Q ∈ I then P +Q ∈ I;

• it is closed under multiplication by any element in K[X1, .., Xn], i.e., if P ∈ I and
Q ∈ K[X1, .., Xn] then PQ ∈ I;

• it includes the null polynomial, i.e. 0K[X1,..,Xn] ∈ I.

Let E ⊆ K[X1, .., Xn] be a set of polynomials. The ideal generated by E is the set of
finite sums

(E) = {
k∑
i=1

PiQi | Pi ∈ K[X1, . . . , Xn], Qi ∈ E, k ≥ 1}.

Definition 2.2. A set of polynomials E is said to be a basis of an ideal I if I = (E).

By the Hilbert basis theorem, we know that all ideals have a finite basis.

2.2 Inductive Assertions and Invariants

We use transition systems as representation of imperative programs and automata as their
computational models.

The contribution and novelty in our approach clearly set it apart from those in [SSM04b]
as their constraint-based techniques are based on several Grobner Basis computations and
on solving non linear problems for each location. Nevertheless, they introduce a useful
formalism to treat programs loops, and we start from similar definitions for transitions
systems, inductive invariants and consecution conditions.

Definition 2.3. A transition system is given by 〈V,L, T , l0,Θ〉, where

• V is a set of variables,

• L is a set of locations and l0 ∈ L is the initial location.

• A state is given by an interpretation of the variables in V .

• A transition τ ∈ T is given by a tuple 〈lpre, lpost, ρτ 〉, where lpre and lpost name the
pre- and post- locations of τ , and the transition relation ρτ is a first-order assertion
over V ∪ V ′.

• Θ is the initial condition, given as a first-order assertion over V .
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The transition system is said to be affine when ρτ is an affine form. And it is said to be
algebraic when ρτ is an algebraic form.

Example 2.1. Consider the program depicted at the left below, for multiplying two numbers.
Its computational model is described by the automaton at the right:

int s, i, j, j_0;

//initialization

(s=0)&&(j=j_0)

...

While (...){

s := s+i;

j := j-1;

}

l τ = 〈l, l, ρτ =


s′ = s+ i
j′ = j − 1
i′ = i
j′0 = j0

〉

with V = {s, i, j, j0}, Θ = (s = 0 ∧ j = j0),

l0 = l, L = {l} and T = {τ}.

Definition 2.4. Let W be a transition system. An invariant at location l ∈ L is an assertion
over V which holds at all states reaching location l. An invariant of W is an assertion over
V that holds at all locations.

Given our representational and computational models we want to say that an invariant
holds in the initial state of the system, a condition that will be guaranteed by an initial
condition. We also wnat to say that every possible transition preserves the invariant, when
specific consecution conditions hold. That is, in order to generate loop invariants one needs
to discover inductive assertions.

Definition 2.5. Let W = 〈V,L, T , l0,Θ〉 be a transition system and let D be an assertion
domain. An assertion map for W is a map η : L → D. We say that η is inductive if and
only if the following conditions hold:

• Initiation: Θ |= η(l0)

• Consecution: For all τ in T s.t. τ = 〈li, lj , ρτ 〉 we have η(li) ∧ ρτ |= η(lj)
′.

We know that if η is an inductive assertion map then η(l) is an invariant at l for W
[Flo67].

3 New continuous consecution conditions

In this section we treat discrete transitions by extending and adapting our previous work
on loop invariant generation for discrete programs [RMM08a, RMM08b, RMM10]. We
also consider discrete transitions that are part of connected components and circuits, thus
generalizing the case of simple propagations.

First, we show how to encode continuous consecution conditions.
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Definition 3.1. Consider a transition system W = 〈V,L, T , l0,Θ〉. Let τ = 〈li, lj , ρτ 〉 be
a transition in T and let η be an algebraic inductive map with η(li) ≡ (Pη(X1, .., Xn) = 0)
and η(lj) ≡ (P ′η(X1, .., Xn) = 0) where Pη is a multivariate polynomial in R[X1, .., Xn] such
that it has null values at li and at lj, i.e., before and after taking the transition. Note that
this des not imply that Pη is the null polynomial. We identify the following notions when
encoding continuous consecution conditions:

• We say that η satisfies a Fractional-scale consecution for τ if and only if there exists
a multivariate fractional TQ such that ρτ |= (Pη(X

′
1, .., X

′
n)− T

QPη(X1, .., Xn) = 0). We

also say that Pη is a T
Q -scale discrete invariant.

• We say that η satisfies a Polynomial-scale consecution for τ if and only if there exists
a multivariate polynomial T such that ρτ |= (Pη(X

′
1, .., X

′
n) − TPη(X1, .., Xn) = 0).

We also say that Pη is a polynomial-scale and a T -scale discrete invariant.

• We say that η satisfies a Constant-scale consecution for τ if and only if there exists
a constant λ such that ρτ |= (Pη(X

′
1, .., X

′
n)− λPη(X1, .., Xn) = 0). We also say that

Pη is a constant-scale, or a λ-scale discrete invariant.

Constant-scale consecution encodes the fact that the numerical value of the polynomial
Pη, associated with assertion η(li), is given by λ times its numerical value throughout
the transition τ . Polynomial-scale consecution encodes the fact that the numerical value
of the polynomial Pη, associated with assertion η(li), is given by T times its numerical
value throughout the transition τ , where T is a polynomial in R[X1, ..., Xn]. Also, the T
polynomials can be understood as template multiplicative factors. In other words, they are
polynomials with unknown coefficients. We are able to handle the general case when the loop
describes a multivariate fractional system with Fractional-scale consecution. Fractional-
scale consecution encodes the fact that the numerical value of the polynomial Pη, associated
with assertion η(li), is given by T

Q times its numerical value throughout the transition τ . The

fractionals T
Q can contain unknown coefficients. As can be seen, the consecution conditions

are relaxed when going from constant to fractional scaling.

4 Discrete transition and affine systems

In this section we use constant-scale consecution encodings. Consider a transition systems
corresponding to the loop τ = 〈li, li, ρτ 〉 and its affine transition relation ρτ :

ρτ ≡

X
′
1 = L1(X1, . . . , Xn)

...
X ′n = Ln(X1, . . . , xn)

 , (1)

where Li(X1, ..., Xn) =
∑n

k=1 ci,k−1Xk + ci,k are affine or linear forms.
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4.1 Generating λ-scale invariants

We have the following λ-scale invariant characterization.

Theorem 4.1. Consider a transition system corresponding to a loop τ as described in Eq.
(1). A polynomial Q in R[X1, .., Xn] is a λ-scale invariant for constant-scale consecution
with parametric constant λ ∈ R for τ if and only if

Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn). (2)

In this case, Q ∈ R[X1, .., Xn] is of degree r. We show that for good choices of λ there al-
ways exists such a λ-invariant that is also not trivial. We note thatQ(L1(X1, .., Xn), .., Ln(X1, .., Xn))
is also of degree r because all Li’s are of degree 1. Recasting the situation and Eq. (2) into
linear algebra, consider the morphism

M :

{
Rr[X1, . . . , Xn] → Rr[X1, . . . , Xn]
Q(X1, ..., Xn) 7→ Q(L1(X1, .., Xn), . . . , Ln(X1, .., Xn)).

This is indeed an endomorphism because all Li’s are of degree 1. Let M be its matrix in
the canonical basis of Rr[X1, ., Xn]. First, we show how we can build matrix M .

Example 4.1. (Running example) Consider the following loop τ = 〈li, li, ρτ 〉 with

ρτ =

[
x′1 = 2x1 + x2 + 1
x′2 = 3x2 + 4

]
. (3)

We have two polynomials of degree 1, in two variables. They are L1(x1, x2) = 2x1 +
x2 +1, and L2(x1, x2) = 3x2 +4. Consider the associated endomorphism M from R2[x1, x2]
to R2[x1, x2]. We want to obtain an associated matrix M . For that, we can use B1 =
(x2

1, x1x2, x
2
2, x1, x2, 1) as a basis for R2[x1, x2] and . compute M (P ) for all elements P in

the basis B1, expressing the results in the same basis. For the first column of M we first
consider P (x1, x2) = x2

1 as the first element of B1, and compute

M (P ) = P (L1(x1, x2), L2(x1, x2)),
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which is expressed in B1 as

M (x21) = 4 x21 + 4 x1x2 + 1 x22 + 4 x1 + 2 x2 + 1 × 1

M =



4 0 0 0 0 0

4 6 0 0 0 0

1 3 9 0 0 0

4 8 0 2 0 0

2 7 24 1 3 0

1 4 16 1 4 1


.

Now, let Q ∈ R[X1, .., Xn] be a λ-scale invariant for constant-scale consecution with
parametric constant λ ∈ R for a given system defined by L1, .., Ln ∈ R[X1, .., Xn]. By
Theorem 4.1, we have

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn).

Using the associated endomorphism M , we have:

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn) ⇔
M (Q) = λQ ⇔
M (Q) = λI (Q) ⇔

(M − λI )(Q) = 0R[X1,..,Xn] ⇔
Q ∈ Ker(M − λI),

where I is the identity endomorphism and I is the associated identity matrix of Rr[X1, ..Xn].
Hence, λ must be an eigenvalue of M if we want to find a non null λ-invariant whose coef-
ficients will be those of an eigenvector. We can now state the following theorem.

Theorem 4.2. A polynomial Q of Rr[X1, .., Xn] is λ-invariant for constant-scale consecu-
tion if and only if there exists an eigenvalue λ of M such that Q belongs to the eigenspace
corresponding to λ.

We also notice that, by construction, the last column of M is always (0, . . . , 0, 1)>. Thus
1 is always an eigenvalue of M with a corresponding eigenvector which gives the trivial λ-
invariant Q(X1, .., Xn) = a, where a is the coefficient of the constant term. . Eigenvalue 1
always gives the constant polynomial as a λ-invariant, but it might give better invariants
for other eigenvectors if dim(Ker(M − λI)) ≥ 2, as we will see in the sequel.

Example 4.2. Looking at the eigenvalues of the matrix M of the previous running Exam-
ple 4.1, if we fix λ to be 4, we get that the corresponding eigenspace is generated by the
vector (1,−2, 1,−6, 6, 9)>. As a λ-invariant polynomial Q for constant-scale consecution
with parameter 4, we get the following output from our prototype Ideal Inv Gen (see also
Section 9):
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Constant scaling discrete step

Lambda = 4 Eigenspace

{{1, -2, 1, -6, 6, 9}}

Interpreted in the canonical basis of R[x1, x2], the associated 4-invariant is

Q(x1, x2) = 1x1
2 − 2x1x2 + x2

2 − 6x1 + 6x2 + 9.

Example 4.3. (General Case for 2 Variables) We first treat the general case where the
transition system has only two variables. We will look for a λ-invariant Q of degree two.
Let

ρτ =

[
x′1 = c1,0x1 + c1,1x2 + c1,2

x′2 = c2,0x1 + c2,1x2 + c2,2

]
.

Recall that we must solve the equation Q(c1,0X1 + c1,1X2 + c1,2, c2,0X1 + c2,1X2 + c2,2) =
λQ(X1, X2). Thus, for M we get the following matrix:

c1,0
2 c1,0c2,0 c2,0

2 0 0 0
2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1 0 0 0
c1,1

2 c1,1c2,1 c2,1
2 0 0 0

2c1,0c1,2 c1,0c2,2 + c1,2c2,0 2c2,0c2,2 c1,0 c2,0 0
2c1,1c1,2 c1,1c2,2 + c1,2c2,1 2c2,1c2,2 c1,1 c2,1 0
c1,2

2 c1,2c2,2 c2,2
2 c1,2 c2,2 1

 .

We see that the last column is as predicted, plus the matrix is block diagonal. Thus its
characteristic polynomial is P (λ) = (1 − λ)P1(λ)P2(λ), with P1 being the characteristic
polynomial of (

c1,0 c2,0

c1,1 c2,1

)
,

and P2 being the charateristic polynomial of c1,0
2 c1,0c2,0 c2,0

2

2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1

c1,1
2 c1,1c2,1 c2,1

2

 .

Here P2 is of degree 3 and has at least one real root. This root can be computed by the La-
grange resolvent method. Choosing λ to be this root, the corresponding eigenvectors will give
non-trivial λ-invariants of degree two, since at least one of the coefficients of the monomial
x2

1, x1x2 and x2r must be non null for such an eigenvector.

Corollary 4.1. Let M be the matrix introduce in this section. The problem of finding a
non-trivial λ-invariant is decidable if one of the following assertions is true:

• M is block triangular (with 4× 4 blocks or less),

• The eigenspace associated with eigenvalue 1 is of dimension greater than 1.
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4.2 Intersection with initial hyperplanes

Let Q ∈ Rr[X1, .., Xn] be a λ-invariant for constant-scale consecution, that is,

Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn).

Now let u1, ..., un be the initial values ofX1, ..., Xn. For the initial step we needQ(u1, ..., un) =
0. We have P 7→ P (u1, ..., un) as a linear form in Rr[X1, ..., Xn]. Hence initial values corre-
spond to a hyperplane in Rr[X1, ..., Xn], given by the kernel of P 7→ P (u1, ..., un). Now, if
we add the initiation step, Q(X1, ..., Xn) = 0 will be an inductive invariant (see Definition
2.4) if and only if there exists an eigenvalue λ of M such that Q belongs to the intersection
of the eigenspace corresponding to λ and the hyperplane Q(u1, . . . , un) = 0.

Theorem 4.3. A polynomial Q in Rr[X1, .., Xn] is an inductive invariant for the affine
loop (see Definition 2.5) with initial values (u1, . . . , un) if and only if there is an eigen-
value λ of M such that Q is in the intersection of the eigenspace of λ and the hyperplane
Q(u1, . . . , un) = 0.

In the following corollary, we state an important result.

Corollary 4.2. There will be a non-null invariant polynomial for any given initial values
if and only if there exists an eigenspace of M with dimension at least 2.

Example 4.4. We return to running Example 4.1. Matrix M has 6 distinct eigenvalues,
and so the corresponding eigenspaces are of dimension 1. We denote by Eλ the eigenspace
corresponding to λ. Then E4 has basis (1,−2, 1,−6, 6, 9)>, E6 has basis (0, 1,−1, 2,−5, 6)>,
E9 has basis (0, 0, 1, 0, 4, 4)>, E2 has basis (0, 0, 0, 1,−1,−3)>, E3 has basis (0, 0, 0, 0, 1, 2)>,
and E1 has basis (0, 0, 0, 0, 0, 1)>. Also, suppose that the initiation step is given by (x1 =
0, x2 = −2), i.e. (u1, u2) = (0, 2) which corresponds to the hyperplane Q(0, 2) = 0 in
R2[x1, x2].

We start with simple initial conditons and consider general conditions in the sequel.
Theorem 4.3 applies, and since it is clear that (0, 0, 1, 0, 4, 4)> belongs to the hyperplane,
we get X2

2 + 4X2 + 4 = 0 is an inductive invariant for that loop with these specific initial
conditions.

Example 4.5. We study the following transition system [SSM04b], corresponding to the
multiplication of 2 numbers, and where the transition considered is τ = 〈li, li, ρτ 〉, with

ρτ =


s′ = s+ i
j′ = j + 1
i′ = i
j′0 = j0

 .
We need to find a λ such that Q(s+ i, j + 1, i, j0) = λQ(s, j, i, j0).
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• Step 1: We build the associated matrix M :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0
0 1 0 −1 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 1



.

• Step 2: We compute the eigenvectors which will provide us with a basis for non-trivial
λ-invariants. Here, an evident eigenvalue is 1.

• Step 3: It is clear, in view of the matrix M , that dim(Ker(M − I)) ≥ 2. As the
eigenspace associated to eigenvalue 1 is of dimension 2, Corollary 4.2 applies. For
example, the vector

(1, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0)>

is the eigenvector corresponding to the λ-invariant s+ ji− ij0.

Note that without computing Gröbner bases or performing quantifier elimination, we found
the invariant s+ji−ij0 = 0 obtained by Sankaranarayanan, Sipma and Manna in [SSM04b].
The consecution scale technique will give a non-null invariant whatever the initial values
are, and this explains why a non-trivial invariant was found in that work.

4.3 Limits of constant-scale consecution

Let ρτ be the algebraic transition relation

ρτ ≡

 x
′
1 = P1(x1, . . . , xn)

...
x′m = Pm(x1, . . . , xn)

 , (4)

where each polynomial Pi has a degree greater than 1.

Example 4.6. Consider the following loop:

ρτ ≡
[
x′ = x(y + 1)

y′ = y2

]
.

At step k of the iteration, this loop computes the sum 1 + y + · · · + y2k−1. Let P (x, y) =
a0x

2 + a1xy + a2y
2 + a3x + a4y + a5 be a candidate λ-invariant. With the Gröbner Bases



Generating Invariants for Non-linear Loops by Linear Algebraic Methods 13

{x′ − x(y + 1), y′ − y2}, with the total-degree lexicographic ordering given by the precedence
x′ > y′ > x > y, we can get the loop ideal of K[x′, y′, x, y]. Modulo this loop ideal, we
have P (x′, y′) = P (x(y + 1), y2). Put P ′(x, y) = P (x(y + 1), y2). After expanding we get
P ′(x, y) = a0x

2y2 + a1xy
3 + a2y

4 + 2a0x
2y + a1xy

2 + a0x
2 + a3xy + a4y

2 + a3x+ a5. If we
try a constant-scale consecution with parameter λ we obtain:

a0 = 0 a1 = 0 a3 = λa3

a1 = 0 a0 = λa0 λa4 = 0

a2 = 0 a3 = λa1 a5 = λa5

2a0 = 0 a4 = λa2.

After simplifications, we get: a0 = a1 = a2 = a3 = a4 = 0 and a5 = λa5. If λ 6= 1 then
a5 = 0, which leads to a null invariant. Otherwise, λ = 1 and we obtain the constant
invariant a5. Also, the initial condition implies that the constant invariant a5 is null.
So, using a constraint-based approach with constant-scaling [SSM04b] we can obtain only
constant or null, i.e. trivial, invariants.

In the following section, we show how we handle this problem.

5 Algebraic discrete transition systems

In this section, we approach discrete systems.

5.1 T -scale invariant generation

Consider an algebraic transition system:

ρτ ≡

X
′
1 = P1(X1, .., Xn)

...
X ′n = Pn(X1, .., Xn)

 , (5)

where the Pi’s are in R[X1, .., Xn]. We have the following T -scale discrete invariant charac-
terization.

Theorem 5.1. A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for polynomial-
scale consecution with a parametric polynomial T ∈ R[X1, ..., Xn] for τ if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

Example 5.1. Reconsider Example 4.6. We now take (y = y0, x = 1) as initial values.
We want to obtain a polynomial scale consecution with a parametric polynomial T (x, y) =
b0y

2 + b1x + b2y + b3. We thus obtain P ′(s, x) = (b0y
2 + b1x + b2y + b3)P (x, y). In other

words, we obtain the following multi-parametric linear system with parameters b0, b1, b2, b3:
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a0 = b0a0 0 = b2a5 + b3a4 a3 = b1a4 + b2a3 + b3a1

a1 = b0a1 0 = b0a4 + b2a2 a4 = b0a5 + b2a4 + b3a2

a2 = b0a2 a3 = b1a5 + b3a3 a1 = a3b0 + b1a2 + b2a1

a5 = b3a5 a0 = b1a3 + b3a0

0 = b1a0 2a0 = b1a1 + b2a0.

Now we describe a decision procedure for parameter valuation. Consider the first three
equations and choose b0 = 1. In this way we aim at a high degree invariant for, otherwise,
the coefficients a0, a1, a2 of the highest degree terms would be null. Then, we are lead
to another system with b1a0 = 0. For the same reason, choose b1 = 0. Then we have
b2a0 = 2a0. As a direct consequence, b2 is set to 2. Since equation b3a0 = a0 is in the
resulting system, b3 is set to 1. Finally, we obtain the following system :

a3 + a1 = 0

a4 + 2a2 = 0

a2 − a5 = 0.

Having less equations than variables, we will have a non-trivial solution for the generating of
T -invariants. Now, we add the hyperplane corresponding to the initial values, that is, a2y0

2+
(a1 + a4)y0 + a0 + a1 + a5 = 0. As there are six variables and four equations, we will have
again a non-trivial solution. A possible solution is the vector (y0(1 − y0), 1, 1,−1,−2, 1)>.
Here, y0(1−y0)x2+xy+y2−x−2y+1 = 0 is an invariant. Note that T (x, y) = y2+y+1.

Remark 5.1. That is a simple constraint-based procedure, which can fail in more complex
cases. Shortly, we will present a superior technique, from a more encompassing point of
view.

5.2 A general theory for discrete transitions with polynomial systems

If Q ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then we are
looking for a T of degree e = dr − r. Write its ordered coefficients as λ0, ..., λs, with s+ 1
being the number of monomials of degree inferior to e.

Let M be the matrix, in the canonical basis of Rr[X1, .., X2] and Rdr[X1, .., Xn], of the
morphism

M :

{
Rr[X1, . . . , Xn] → Rdr[X1, . . . , Xn]
Q(X1, ..., Xn) 7→ Q(P1(X1, .., Xn), . . . , Pn(X1, .., Xn)).

Let L be the matrix, in the canonical basis of Rr and Rdr, of the morphism

L :

{
Rr[X1, . . . , Xn] → Rdr[X1, . . . , Xn]

P 7→ TP.
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Matrix L has a very simple form: its non zero coefficients are the λi’s, and it has a nat-
ural block decomposition. Now let Q ∈ R[X1, .., Xn] be a T -scale discrete invariant for a
transition relation defined by the Pi’s. Then,

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn) ⇔
M (Q) = L (Q) ⇔

(M −L )(Q) = 0R[X1,..,Xn] ⇔
Q ∈ Ker(M − L).

A T -scale discrete invariant is nothing else than a vector in the kernel of M − L. Our
problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 5.2. Consider M as described above. Then, there will be a T -scale discrete
invariant if and only if there exists a matrix L, corresponding to P 7→ TP , such that M −L
has a nontrivial kernel. Further, any vector in the kernel of M−L will give rise to a T -scale
invariant.

Again, the last column of M is (0, ..., 0, 1)>. The last column of L is (0, .., 0, λ0, .., λs)
>.

Hence, choosing every λi to be zero, except for λs = 1, the last column of M - L will
be null. With this choice of L (or T = 1), we get at least T -invariants corresponding to
constant polynomials. Now, M − L having a non trivial kernel is equivalent to its rank
being less than the dimension v(r) of Vr. This is equivalent to the fact that each v(r)×v(r)
subdeterminant of M−L is equal to zero [Lan02]. Those determinants are polynomials with
variables (λ0, λ1, · · · , λs), which we will denote by V1(λ0, λ1, · · · , λs), . . . , Vs(λ0, λ1, · · · , λs).

Theorem 5.3. There is a non trivial T -scale invariant if and only if the polynomials
(V1, .., Vs) admit a common root, other than the trivial one (0, . . . , 0, 1).

Remark 5.2. This theorem provides us with important existence results. But there is a
more practical way of computing invariant ideals without computing common roots and
subdeterminants. We will examine that in the next section.

Example 5.2. (Loop with two variables, T -scale invariant of degree 2) We first study the
general case of degree two algebraic transition systems with two variables in the loop. Such
transition systems have the form:

ρτ ≡
[
x′ = c0x

2 + c1xy + c2y
2 + c3x+ c4y + c5

y′ = d0x
2 + d1xy + d2y

2 + d3x+ d4y + d5

]
.

In this case, matrices M and L will be as follows:

M =



c0
2 c0d0 d0

2 0 0 0
2c0c1 c0d1 + c1d0 2d0d1 0 0 0

2c0c2 + c1
2 c0d2 + c1d1 + c2d0 2d0d2 + d1

2 0 0 0
2c1d1 c1d2 + c2d1 2d1d2 0 0 0

c2
2 c2d2 d2

2 0 0 0
2c0c3 c0d3 + c3d0 2d0d3 0 0 0

2(c0c4 + c1c3) c0d4 + c1d3 + c3d1 + c4d0 2(d0d4 + d1d3) 0 0 0
2(c1c4 + c2c3) c1d4 + c2d3 + c3d2 + c4d1 2(d1d4 + d2d3) 0 0 0

2c2c4 c2d4 + c4d2 2d2d4 0 0 0

2c0c5 + c3
2 c0d5 + c3d3 + c5d0 2d0d5 + d3

2 c0 d0 0
2(c1c5 + c3c4) c1d5 + c3d4 + c4d3 + c5d1 2(d1d5 + d3d4) c1 d1 0

2c2c5 + c4
2 c2d5 + c4d4 + c5d2 2d2d5 + d4

2 c2 d2 0
2c3c5 c3d5 + c5d3 2d3d5 c3 d3 0
2c4c5 c4d5 + c5d4 2d4d5 c4 d4 0

c5
2 c5d5 d5

2 c5 d5 1



,
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L =



λ0 0 0 0 0 0
λ1 λ0 0 0 0 0
λ2 λ1 λ0 0 0 0
0 λ2 λ1 0 0 0
0 0 λ2 0 0
λ3 0 0 λ0 0 0
λ4 λ3 0 λ1 λ0 0
0 λ4 λ3 λ2 λ1 0
0 0 λ4 0 λ2 0
λ5 0 0 λ3 0 λ0
0 λ5 0 λ4 λ3 λ1
0 0 λ5 0 λ4 λ2
0 0 0 λ5 0 λ3
0 0 0 0 λ5 λ4
0 0 0 0 0 λ5



.

For the rank of M −L to be less than 6, one has to calculate each 6× 6 subdeterminant
obtained by canceling 9 lines of M − L. They will be polynomials of degree less than 6 in
the variables (λ0, ..., λ5). Then, L is such that M − L will be of degree less than 6 if and
only if (λ0, ..., λ5) are roots of each of those polynomials.

Remark 5.3. In many cases, it is easy to find a matrix L such that M−L has a non trivial
kernel. We describe two decidable classes: (i) suppose that in the previous case, c2, c4 and
c5 are null, then one can choose (λ0, . . . , λs) in order to make the first column zero; and
(ii) the third column can be canceled using good choices for the λi’s, if d0, d3 and d5 are
zero.

5.3 Generating invariant ideals with an initiation step

Consider initial values given by unknown parameters (X1 = u1, . . . , Xn = un). The initial
step defines, on Rr[x1, . . . , xn], a linear form P 7→ P (u1, ..., un). Hence, initial values corre-
spond to a hyperplane of Rr[X1, .., Xn], given by the kernel of P 7→ P (u1, ..., un), which is
{Q ∈ Rr[X1, .., Xn] | Q(u1, . . . , un) = 0}.

Theorem 5.4. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the tran-
sition system with initial values (u1, .., un) if and only if there exists a matrix L 6= 0 (the
one of P 7→ TP ), corresponding to T in Re[X1, .., Xn], such that Q is in the intersection
of Ker(M − L) and the hyperplane given by the initial values Q(u1, . . . , un) = 0. The
invariants will correspond to vectors in the intersection.

Now, if Dim(Ker(M − L)) ≥ 2 then Ker(M − L) would intersect any initial (semi-
)hyperplane. We can state the following Corollary, important in practice.

Corollary 5.1. There are non-trivial invariants for any given initial values if and only
if there exists a matrix L such that Ker(M − L) has dimension at least 2. The basis of
Ker(M − L) being a basis for non-trivial invariants.

There are non-trivial invariants for any given initial values if and only if there exists a
matrix L, corresponding to the template multiplicative in T , such that Ker(M − L) has
dimension at least 2.
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5.4 Example

Example 5.3. (Running example) Consider the following transition:

τ = 〈li, lj , ρτ ≡
[
x′ = xy + x
y′ = y2

]
〉.

• Step 1: We build the matrix M − L. The maximal degree of ρτ is d = 2, and so
the T -scale invariant will be of degree r = 2. Also, T is of degree e = dr − r = 2
and we write λ0, ..., λ5 as its ordered coefficients. Then its canonical form is T =
λ0x

2 + λ1xy + λ2y
2 + λ3x+ λ4y + λ5. Consider the associated morphisms M and L

from R2[x, y] to R4[x, y]. Using the basis C1 = (x2, xy, y2, x, y, 1) of R2[x, y] and also
the basis C2 = (x4, yx3, y2x2, y3x, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of R4[x, y], our
algorithm compute the matrix M − L as

M − L =



−λ0 0 0 0 0 0
−λ1 −λ0 0 0 0 0

1− λ2 −λ1 −λ0 0 0 0
0 1− λ2 −λ1 0 0 0
0 0 1− λ2 0 0 0
−λ3 0 0 −λ0 0 0

2− λ4 −λ3 0 −λ1 −λ0 0
0 1− λ4 −λ3 −λ2 −λ1 0
0 0 −λ4 0 −λ2 0

1− λ5 0 0 −λ3 0 −λ0

0 −λ5 0 1− λ4 −λ3 −λ1

0 0 −λ5 0 1− λ4 −λ2

0 0 0 1− λ5 0 −λ3

0 0 0 0 −λ5 −λ4

0 0 0 0 0 1− λ5



.

• Step 2: We then reduce the rank of M−L by assigning values to the λi’s. Our procedure
fixes λ0 = λ1 = λ3 = 0, λ2 = λ5 = 1 and λ4 = 2, so that T (x, y) = y2 + 2y + 1.
The first column of M −L becomes zero and the second column is equal to the fourth.
Hence, the rank of M − L is less than 4 and its kernel has dimension at least 2. Any
vector in this kernel will be a T -invariant.

• Step 3: Now matrix M − L satisfies the hypotheses of Theorem 5.2. So, there will
always be invariants, whatever the initial values. We compute the basis of Ker(M−L):

Polynomial scaling discrete step

T(x,y) = y^2 + 2 y + 1

Module of degree 6 and rank 3 and Kernel of dimension 3

{{1, 0, 0, 0, 0, 0}, {0, 1, 0, -1, 0, 0}, {0, 0, 1, 0, -2, 1}}

The vectors of the basis are interpreted in the canonical basis C1 of R2[x, y]:

Basis of invariant Ideal

{x^2, x y - x, y^2 - 2 y + 1}
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We have thus obtained an ideal for non trivial inductive invariants. In other words, for all
G1, G2, G3 ∈ R[x, y],

G1(x, y)(x2) +G2(x, y)(xy − x) +G3(x, y)(y2 − 2y + 1) = 0

is an inductive invariant. For instance, consider the initial step (y = y0, x = 1). A possible
invariant is

y0(1− y0)x2 + xy − x+ y2 − 2y + 1 = 0.

6 Obtaining optimal degree bounds for discrete transition
systems

In order to guarantee the existence of non-trivial invariants, we are looking for a polynomial
T such that Ker(M − L) 6= 0. The pseudo code depicted in Algorithm 1 illustrates the
strategy. Its contribution relies on very general sufficient conditions for the existence and
the computation of invariants.

As input we have r, the candidate degree for the set of basis invariant elements, and P1, ..Pn,
the n polynomials given by the transition relation in considered loop. We first compute d,
the maximal degree of the Pi’s as can be seen by Max degree({P1, ..., Pn}), at line 4. Then,
we detail the cases were the transitions are defined by non-linear systems, i.e. d ≤ 2. Then,
we define T as a polynomial of degree dr − r in its canonical form,i.e. with parameterized
coefficients. See Template Canonical Form(dr−r), at line 7. We can, then, build a decision
procedure to assign values to the coefficients of T in such a way that Ker(M −L) 6= 0. As
we saw in the previous section, Ker(M − L) 6= 0 is equivalent to having

Rank(M − L) < Dim(Rr[X1, . . . , Xn]).

In other words, it is the same as having M − L with rank strictly less than the dimension
v(r) of Rr[X1, . . . , Xn]. We then reduce the rank of M − L by assigning values of terms in
M to parameters in L. See, at line 10, the call to Reduce Rank Assigning Values(M−L).
By so doing we can zero or identify some columns or lines of M − L. Next, we determine
whether the matrix obtained, M − L, has a trivial kernel by first computing its rank and
then checking if Rank(M − L) < Dim(Rr[X1, .., Xn]) holds, at line 11. When M − L has a
trivial kernel, we can increase the degree r of the invariants until Theorem 5.2 (or Corollary
5.1) applies, or until stronger hypotheses occur, e.g. if all v(r)× v(r) sub-determinants are
null. Note, at line 12, the call to return Ideal Loop Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn.
If there is no ideal for non-trivial invariants for a value ri then we conclude that there is
no ideal of non-trivial invariants for all degrees k ≤ ri. This can also be used to guide
other constraint-based techniques, since checking for invariance with a template of degree
less or equal to ri will not be necessary. Otherwise, we compute and output the basis
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Algorithm 1: Ideal Loop Inv Gen(r, P1, ..., Pn, X1, ..., Xn)

/*Guessing the degree bounds for discrete transisions.*/;
Data: r is the candidate degree for the set of basis invariants elements we are

looking for, P1, ..Pn the n are polynomials given by the considered loop, and
X1, ..Xn ∈ V

Result: Ideal Inv, a basis of ideal of invariants.
begin

1 int d;
2 Template T ;
3 Matrix M , L;
4 d←− Max degree({P1, ..., Pn});
5 /*d is the maximal degree of Pi’s*/;
6 if d >= 2 then
7 T ←− Template Canonical Form(dr − r);
8 M ←− Matrix D(r, dr, P1, ..., Pn);
9 L←− Matrix L(r, dr, T );

10 ¯M − L←− Reduce Rank Assigning Values(M − L);
11 if Rank(M̄) >= Dim(Rr[X1, .., Xn]) then
12 return Ideal Loop Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn);
13 /*We need to increase the degree r of candidates invariants.*/;

14 else
15 return Nullspace Basis( ¯M − L);
16 /*There exists an ideal of invariants that we can compute*/;

17 else
18 ... /*We refer to our previous work for constant scaling.*/;

of the nullspace of the matrix M − L, in order to construct an ideal basis for non-trivial
invariants. See Nullspace Basis, at line 15. For the latter, we use well-known state-of-the-
art algorithms, for example those that Mathematica provides. These algorithms calculate
the eigenvalues and associated eigenspaces of M − L when it is a square matrix. When
M − L is a rectangular matrix, we can use its singular value decomposition (SVD). A SVD
of M − L provides an explicit representation of its rank and kernel by computing unitary
matrices U and V and a regular diagonal matrix S such that M − L = USV . We compute
the SVD of a v(r + d − 1) × v(r) matrix M by a two step procedure. First, we reduce it
to a bi-diagonal matrix, with a cost of O(v(r)2v(r + d − 1)) flops. The second step relies
on an iterative method, as is also the case for other algorithms that compute eigenvalues.
In practice, however, it suffices to compute the SVD up to a certain precision, i.e. up to a
machine epsilon. In this case, the second step takes O(v(r)) iterations, each using O(v(r))
flops. So, the overall cost is O(v(r)2v(r + d− 1)) flops.

For the implementation of the algorithm we could rewrite Corollary 5.1 as follows.
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Corollary 6.1. Let M − L = USV be the singular value decomposition of matrix M − L
described just above. There will be a non trivial T -invariant for any given initial condition
if and only if the number of non-zero elements in matrix S is less than v(r) − 2, where
v(r) is the dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace
obtained from the decomposition directly gives an ideal for non-linear invariants.

Remark 6.1. It is important to emphasize that eigenvectors of M − L are computed after
the parameters of LT have been assigned. When the discrete transition system has several
variables and none or few parameters, which correspond to practical cases, M − L will be
over the reals and there will be no need to use the symbolic version of these algorithms.

7 Invariant generation for discrete transitions and fractional
systems

We now want to deal with transition systems ρτ of the following type:
X ′1 = P1(X1,..,Xn)

Q1(X1,..,Xn)
...

X ′n = Pn(X1,..,Xn)
Qn(X1,..,Xn)

 , (6)

where the Pi’s and Qi’s belong to R[X1, .., Xn] and each Pi is relatively prime to the corre-
sponding Qi. In this case, one needs to relax the consecution conditions to fractional-scale
as soon as fractions appear in the transition relation.

Theorem 7.1. (F -scale invariant characterization) A polynomial Q in R[X1, .., Xn] is a
F -scale invariant for fractional discrete scale consecution with a parametric fractional F ∈
R(X1, .., Xn) for τ if and only if

Q

(
P1

Q1
, ..,

Pn
Qn

)
= FQ.

Let d be the maximal degree of the Pi’s and Qi’s, and let Π be the least common multiple
of the Qi’s. Now let U = X1

i1 ..Xn
in be a monomial of degree less than r, i.e., i1+..+in ≤ r.

Then,
ΠrU(P1/Q1, . . . , Pn/Qn) = Πr(P1/Q1)i1 ...(Pn/Qn)in .

But as Q
ij
j divides Πij , for all j, we see that Qi11 ...Q

in
n divides Πi1+...+ir , which divides Πr.

We deduce that ΠrQ(P1/Q1, . . . , Pn/Qn) is a polynomial for every Q in Rr[X1, .., Xn].
Now suppose that F = T/S, with T relatively prime to S, satisfies the equality of the

previous theorem. Suppose, further, that we are looking for bases for invariants Q of degree
r. Then, multiplying by Πr we get

ΠrQ(P1/Q1, . . . , Pn/Qn) = (ΠrTQ)/S.
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As we have no a priory information on Q, in most cases Q will be relatively prime to S. In
this situation we see that S will divides Πr, and we can suppose that it has denominator
Πr. So, let F be of the form T/Πr, and we just argued that this constraint is weak.

Now let M be the morphism

M :

{
Rr[X1, . . . , Xn] → Rnrd[X1, . . . , Xn]

Q 7→ ΠrQ( P1
Q1
, .., PnQn ).

Let M be its matrix in the canonical basis, T be a polynomial in Rnrd−r[X1, .., Xn], and let
L denote the vector space morphism

L :

{
Rr[X1, . . . , Xn] → Rnrd[X1, . . . , Xn]

Q 7→ TQ.

Also, let L be its matrix in the canonical basis. As we state in the following theorem, our
problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 7.2. Consider M and L as described above. Then, there exist F -scale invariants,
where F is of the form T/Πr, if and only if there exists a matrix L such that Ker(M−L) 6= ∅.
In this situation, any vector in the kernel of M − L will give rise to a F -scale discrete
invariant.

This is similar to Theorems 5.3 and 5.4. For the initiation step, we have a hyperplane
in Vr. In order for the transition system to make sense, the n-tuple of initial values must
not be a root of any of the Qi’s, and so for further iterations, as long as the loop is applied.
In this way, they will not cancel Πr. We have the following result.

Theorem 7.3. (Non trivial invariants using fractional scale consecution) We have a non
trivial invariant if and only if there exists a matrix L such that the intersection of the
kernel of M − L and the hyperplane given by the initial values is not zero, the invariants
corresponding to vectors in the intersection.

We also have the following important corollary.

Corollary 7.1. (Non trivial invariants using fractional-scale consecution and for any initial
value) We will have a non-trivial invariant for any non-trivial initial value if there exists a
matrix L such that the dimension of Ker(M − L) is at least 2.

Example 7.1. (Running example) Consider the system

ρτ ≡

[
x′1 = x2

(x1+x2)

x′2 = x1
(x1+2x2)

]
. (7)

We are looking for F -scale invariant polynomials of degree 2. The least common multiple
of (x1 + x2) and (x1 + 2x2) is their product, so that M is given by:

Q ∈ R2[x1, x2] 7→ [(x1 + x2)(x1 + 2x2)]2Q(
x1

(x1 + x2)
,

x2

(x1 + 2x2)
)].
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As both x2
(x1+x2) and x1

(x1+2x2) have degree zero,

[(x1 + x2)(x1 + 2x2)]2Q(
x2

(x1 + x2)
,

x1

(x1 + 2x2)
)

will be a linear combination of degree 4, if it is non-null.
Hence, M has values in V ect(x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). With T and Q in R2[x1, x2] we

verify that

[(x1 + x2)(x1 + 2x2)]2Q(
x2

(x1 + x2)
,

x1

(x1 + 2x2)
) = TQ.

As the left member is in V ect(x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2), T must be of the form λ0x

2
1+λ1x1x2+

λ2x
2
2, and Q must be of the form a0x

2
1 + a1x1x2 + a3x

2
2. We see that we can take Q in

V ect(x2
1, x1x2, x

2
2), and similarly for T . Then both M , L : (Q 7→ TQ) are morphisms from

V ect(x2
1, x1x2, x

2
2) into V ect(x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). In the corresponding canonical basis,

the matrix M − L is

M − L =


−λ0 0 1
−λ1 1− λ0 2

1− λ2 3− λ1 1− λ0
4 2− λ2 −λ1
4 0 −λ2

 .

Taking λ0 = 1, λ1 = 3 and λ2 = 2, the second column cancles out and the kernel will be
equal to V ect(0, 1, 0). Now, Corollary 7.1 applies to M − L:

Fractional scaling discrete step

T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2

Module of degree 3 and rank 1 and Kernel of dimension 2

{{0, 1, 0}}

Basis of invariant Ideal

{ x y }

It was clear from the beginning that the corresponding polynomial x1x2 is 1
[(x1+x2)(x1+2x2)]2

-

scale invariant. In particular, it is an invariant for the initial values (0, 1). Moreover, it
clearly never cancels x1 + x2 and x1 + 2x2, because they are of the form (a, 0) or (0, b) with
a and b strictly positive.

8 Branching conditions and nested loops

We have generated a basis of a vector space which describes invariants for transition systems.
A global invariant would be any invariant which is in the intersection of these vector spaces.
In this way, we avoid the definition of a single isomorphism for the whole transition system.
Instead, we generate the basis for each separate consecution condition. To compute a basis
of global invariants, we could use the following Theorem. It suggests to multiply all the
elements of each computed basis. By so doing, we also avoid the heavy computation of ideal
intersections. This approach is a sound, but not complete, way of computing ideals for global
invariants, and it has a low computational complexity. In order to take into account initial
conditions we intersect these vector spaces of invariants with the initial semi-hyperplanes
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deduced from the isomorphism associated with initial requirements. Here, we show how
our method deals with the conditional statements inside loops. Let’s consider the following
type of loop

while(B_1){

[I_1;]

if(B_2){

[I_2;]

}

else{

[I_3;]

}

[I_4;]

},

where each Ii represent a block of multivariate fractional instructions. First we represent
the loop with the following two transitions τ1 = 〈li, li, (B1 ∧ B2), ρτ1〉 and τ2 = 〈li, li, (B1 ∧
¬B2), ρτ2〉, where: ρτ1 ≡ [x′1 = F1,[I1;I2;I4;]◦(x1, ...xn), . . . , x′n = Fn,[I1;I2;I4;]◦(x1, ..., xn)] and
ρτ2 ≡ [x′1 = F1,[I1;I3;I4;]◦(x1, ...xn) . . . , x′n = Fn,[I1;I3;I4;]◦(x1, ..., xn)], with [; ; ]◦ denoting our
operator based on separation rewriting rules and used to compose blocks of instructions.
We first independently generate the ideals of invariants ξ1 = (µ1, ..., µn) and ξ2 = (κ1, ..., κp)
for the respective transitions τ1 and τ2. Any element µi ∈ ξ1 refers to an inductive invariant
µi(X1, ..., Xn) = 0 corresponding to the partial loops described by transition τ1. Similarly,
any κi ∈ ξ2 refers to an inductive invariant κi(X1, ..., Xn) = 0 for the loop described by
transition τ2. Then we can take µi(X1, ..., Xn)∗κi(X1, ..., Xn) = 0 as global loop invariants,
since these invariant will remain true in any sequence of transitions during the execution of
the loop.

Theorem 8.1. Let I = {I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj )

where j ∈ [1, k]. Let �(I1, ..., Ik) = {δ1, ..., δn1n2...nk} be such that all elements δi in
�(I1, ..., Ik) are formed by the product of one element from each ideal in I. Assume that all
Ij’s are ideals for invariants for a loop at location lj, described by a transition τj. Now, if
all lj describe the same location or program point l, then we have several transitions looping
at the same point. Thus we can obtain an encoding of possible execution paths of a loop
containing conditional statements. It is clear then that �(I1, ..., Ik) is an ideal of non-trivial
non-linear invariants for the entire loop located at l.

We deal with loop conditions using the same methods that we propose to handle initi-
ation conditions. We know, for instance, that if our Corollary 5.1 holds, then there exist
invariants for any (semi-)hyperplane that could be induced by the loop conditions. We
illustrate this point in Figure 1. Let (Pi(x1, .., xn) < 0) be semi-algebraic loop conditions at
location l and let Q be an inductive invariant for D(l). Thus (Pi(x1, .., xn)−Q(x1, .., xn) < 0)
is also an inductive invariant. Then, we can build an operator, similar to the one introduced
in Theorem 8.1, to generate, in a different way, ideals of non-trivial invariants at a state l
with semi-algebraic loop conditions. If a loop condition has the form Ci(x1, .., xn) = 0 we
could then associate it directly to polynomial systems induced by the transition relations.

Example 8.1. Consider the following loop.
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Figure 1: Intersection between the conditional loop: 800 < (x− 5)2 + (y− 5)2 + (y0− 5)2 <
1000 and the invariant y0(1 − y0)x2 + xy − x + y2 − 2y + 1 = 0 from the invariant ideal
({x2, xy − x, y2 − 2y + 1}) computed for the running example 5.3.

int u_0; //initialization

((M > 0)&&(Z = 1)&&(U = u_0)...)

...

While ((X>=1) || (Z>=z_0)){

If(Y > M){

X = Y / (X + Y);

Y = X / (X + 2 * Y);

}

Else{

Z = Z * (U + 1);

U = U^2;

}

}

We first generate an invariant for the loop corresponding to the first conditional if, using
Fractional-Scaling and obtain:

If_1 :

Fractional scaling discrete step

T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2

...

Basis of invariant Ideal

{ x y }

...
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See Example 7.1 for more details. Then, we compute the invariant and get

Else_1 :

...

Basis of invariant Ideal

{ u_0z^2-u_0^2z^2+zu+u^2-z-2u+1, ... }

...

corresponding to the other alternative transition τ2 of the loop, namely, the Else. The Join

operator now retunrs the invariants:

While_1 :

...

{ xyu_0z^2-u_0^2z^2+xyzu+xyu^2-xyz-2xyu+xy, ... }

...

So, xyu0z
2 − u2

0z
2 + xyzu+ xyu2 − xyz − 2xyu+ xy = 0 is one typical invariant that can

be generated. Once again, here there are no need for Gröbner basis computation and the
complexity of the steps described remain polynomial.

Example 8.1 illustrate our method for the case where the loop contains two conditional
statements. In the presence of nested loops, our method generates ideals for invariants for
each inner-loop and then generates a global invariant.

9 Discussion and some experimental results

The notions of Gröbner Bases and their computations, together with the ideal membership
problem are central to most recent approaches to program verification and static analysis
[SSM04b, BBGL00, RCK07a, SYH96, CXYZ07, Kov08, KJ06, Cou05, MOS02, RCK07b,
SA08, PC08]. In order to better understand the difficulties they raise, we first need some
details on Gröbner basis and the ideal membership problem.

Consider a multivariate polynomial, Q =
∑

i1,..,in
ai1,..,inx1

i1 ...xn
in , where the coeffi-

cients ai1,...,in are in a field K. How do we know if it is in an ideal I of K[X1, ..., Xn]?
This is known as the Ideal membership problem. To handle it we can use a Gröbner basis
G = {g1, ..., gs} for I. There are algorithms that compute such bases as long as we know a
finite generating bases of I [Buc96, Fau99]. Then, we can compute the normal form of Q
for I using the basis G. Denote the normal form by NFG(Q). We note that the use of a
Gröbner basis guarantees the confluence and termination of those reductions. In general, we
have NFG(Q) =

∑
i1,..,in

f(a)i1,..,inx1
i1 ...xn

in , where f(a)i1,..,in is a combinations of the co-
efficients ai1,..,in . Then the statement (Q ∈ I) is equivalent to the assertion (NFG(Q) = 0),
that is, all the coefficients f(a)i1,...,in are null.

Returning to the mentioned approaches for program verification and static analysis, the
loop instructions are considered in order to form varieties and to build associated algebraic
assertions and the ideal I Then, these techniques compute a Gröbner basis G for I. Next,
they postulate a template polynomial Q, i.e., a polynomial with unknown coefficients, as a
candidate invariant. As we have seen just above, Q is an invariant if it belongs to the ideal
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I or, in other words, if (NFG(Q) = 0). So, the next step of these techniques, is to obtain
the reduction NFG(Q). An important obstacle faced here is that all known algorithms for
computing Gröbner basis and for the constructing the normal form reduction NFG(Q) are
of doubly exponential time complexity. Having the normal form NFG(Q), they generate the
set of candidate invariant constraints in the form of the system of equations (NFG(Q) = 0),
and attempt to solve it directly. Moreover, we have shown (see Section 4.3) that as soon as
the loop contains a non-linear instruction, the constraints considered in their final step is a
non-linear equation systems.

In terms of performance and efficiency, we succeeded in reducing the non-linear loop in-
variant generation problem to a linear algebraic problem, i.e. the computation of eigenspaces
of specific morphisms. Our techniques have few computational steps: we compute first
some specific matrices and we then compute their nullspaces. Each step performed by our
techniques remains of polynomial complexity. Further, our approaches do not generate
an invariant at a time. Instead we generate an ideal of invariants which is an enormous
(infinite) structure. We also handle fractional systems and our algorithm incorporates a
strategy to guess degree bounds which allow for the automatic generation of ideals of non-
trivial invariants. Moreover, as one of the main results, we provide very general sufficient
conditions allowing for the existence and computation of invariant ideals. Note that these
conditions could be directly used by any invariant generation method.

We clearly see that each main step of these approaches incurs in a doubly exponential
number of elementary computations. Further, there are no conditions over the degree of
their candidate invariants that would guarantee the non-triviality of the resulting invariant,
when it can be computed. Moreover, as we have shown (see Section 4.3) that as soon as
the loop contains a non-linear instruction, the candidate invariant constraints results in a
non-linear system of equation, which makes its resolution all but unfeasible.

We have coded a prototype system, called Ideal Inv Gen, that implements the algorithms
described by our techniques. The third column in Table 1(a) summarizes the type of linear
algebraic problems associated with each kind of consecution approximation, listed in the
second column, and with the semantic of the program instructions, appearing in the first
column. The last column in Table 1(a) gives some existential results which, we note, can
also be used by other constraint-based approach or reachability analysis methods.

We have also used it to obtain some experimental results that attest to the effectiveness
and scope of our methods. In Table 1(b) we list some of these experimental results. We
can see that our methods efficiently handle a large number of non-linear examples treated
elsewhere in the literature. The experiments 5, 6 and 7 are from [SSM04b] and are basically
linear systems. Moreover, the constraint-based invariant generation approach would be
construct only a single linear inductive invariant. Section 4.3 gives more details on the
constraint-based standard approaches limits. In contrast, by using our methods, we were
able to generate vectorial spaces of non-trivial non-linear invariants in a polynomial number
of computational steps, using mostly a constant scaling approximation. Experiments 1—4
and 5—19, listed in Table 1(b), involve non-linear systems most of which can be shown to
be beyond the limits of other recent approaches. Those results show the strength of our
approach for generating non-linear invariants for non-linear systems.

As a more applied motivation, our techniques can be made to bear on new domains
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Table 1: Examples and Experimental Results

(a) Linear algebraic problems and consecution approximations

Prog. Loop Aprox.Consec. Lin. Algeb. Prob. Existence Cond.
Affine/lin. inst. Lambda Scaling Eigenspaces Ker(MD) ≥ 2

for any init. cond.,
and Ker(MD) 6= ∅
otherwise.

Algebraic/poly. inst. Polynomial Scaling Nullspaces Ker(MD − LT ) ≥ 2
for any init. cond.,
and Ker(MD − LT ) 6= ∅
otherwise.

Fractional inst. Fractional Scaling Nullspaces Ker(MΠ − LT ) ≥ 2
for any init. cond.,
and Ker(MΠ − LT ) 6= ∅
otherwise.

(b) Experimental results: Basis of invariant ideals obtained automatically by our prototype
Ideal Inv Gen

Non-Linear Loop Prog. Scaling CPU/s
1 - From [RMM08b] Example 2. Lambda 0.04

2 - From [RMM08b] Example 3. Lambda 0.08

3 - From [RMM08a] Example 1. Lambda 0.04

4 - From [RMM10] Example 5. Polynomial. 0.70

5 - From [SSM04b] Example 1, Section (5). Lambda 0.05

6 - From [SSM04b] Example 2, Section (5). Lambda 0.18

7 - From [SSM04b] Example 3, Section (5). Polynomial 0.31

8 - From [RMM10] Example 6. Fractional 0.90

9 - From [RMM08b] Example 6. Fractional 0.90

10 - From [RMM08b] Example 4. Polynomial 0.70

11 - From [RMM08b] Example 5. Polynomial 1.65

12 - From [RMM08a] Example 2. Lambda 0.04

13 - From [RMM08a] Example 5. Polynomial 1.84

14 - From [RM11a] Example 2. Lambda 0.04

15 - From [RM11b] Example 4. Lambda 0.03

16 - From [RM11a] Example 6. Lambda 0.08

17 - From [RM11b] Example 9. Polynomial 1.23

18 - From [RM11a] Example 10. Polynomial 1.17

19 - From [RM11b] Example 11. Fractional 1.21
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that require the computation of complex invariants. Along these lines, some recent work
on security [RM11c, RM09, RM11b, RM11a], showed how such invariants play a central
role in static analysis of malwares, e.g., viruses, and how they can be used to build new
invariant-based intrusion detection system. Invariants generated over malware codes are
strong semantic aware signatures that can be used to analyse and identify intrusions caused
by malicious such code. These new approaches could form intrusion detection systems
where an alarm is a proof of abnormal behavior caused by the violation of a pre-computed
invariant induced by the intrusion. These binary codes give rise to non-linear arithmetic
and the methods described here allow, as we have shown, for the generations of complex
and precise invariants. And the more the complex the invariant is, the harder it will be to
morph the corresponding signatures in an automatic way.

10 Conclusions

Our primary goal and motivation were to provide invariant generation methods for static
analysis and that could serve as a basis for automatic program verification.

We have shown that the preconditions for discrete transitions can be viewed as mor-
phisms over a vector space of bounded degree polynomials. These morphisms, in turn,
could be suitably represented by matrices. By doing so, we succeeded in reducing the non-
linear loop invariant generation problem to linear algebraic problems, more precisely, to the
computation of eigenspaces of these morphisms. We also treated fractional systems and
our algorithms incorporate a strategy to guess degree bounds for candidate invariants, thus
allowing for the automatic generation of non-trivial invariants.

These techniques gave rise to algorithms of much lower time complexity than other
modern approaches that incur in computations which are of a doubly exponential time
complexity. By contrast, our techniques induce algorithms of polynomial time complexity.

Further, our approach does not generate an single invariant at a time. Instead, we
generate non-linear invariant ideals, which are infinite structures giving rise to a number of
non-trivial invariants. As another important main result, we provided very general sufficient
conditions that can guarantee the existence such invariant ideals.

We also noted that our techniques could be combined with other formal verification
methods and their associated tools. As a case in point, we composed our techniques with
formal methods that treat logics with uninterpreted functions [GT06], such as logics that
handle function calls and operating system calls.
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[PC08] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. In Computer-Aided Verification, CAV 2008,
Princeton, USA, Proceedings, LNCS. Springer, 2008.

[PJ04] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier
certificates, 2004.
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APPENDIX

Here we give more technical details concerning the facts stated in the text. For the ease of
reference, we also include original statements.
Theorem 4.1 Consider a transition system corresponding to a loop τ as described in Eq.
(4). A polynomial Q in R[X1, .., Xn] is a λ-scale invariant for constant-scale consecution
with parametric constant λ ∈ R for τ if and only if Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) =
λQ(X1, .., Xn).

Proof. If Q(X ′1, .., X
′
n)−λQ(X1, .., Xn) belongs to the ideal I generated by the family (X ′1−

L1, . . . , X
′
n−Ln), then there exists a family (A1, . . . , An) of polynomials in R[X ′1, .., X

′
n, X1, .., Xn]

such that

Q(X ′1, .., X
′
n)− λQ(X1, .., Xn) = (X ′1 − L1)A1 + · · ·+ (X ′n − Ln)An.

Letting X ′i = Li, we obtain Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn).
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Conversely suppose Q(L1(X1, . . . , Xn), .., Ln(X1, . . . , Xn)) = λQ(X1, . . . , Xn). Then as
Q(X ′1, .., X

′
n) is equal toQ(L1, .., Ln) modulo the ideal I, we getQ(X ′1, .., X

′
n) = λQ(X1, . . . , Xn)

modulo I.

Theorem 4.2 A polynomial Q of Rr[X1, .., Xn] is λ-invariant for constant-scale consecution
if and only if there exists an eigenvalue λ of M such that Q belongs to the eigenspace
corresponding to λ.

Proof. Let Q be a polynomial in Rr[X1, .., Xn].

(Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn)) ⇔
(M (Q) = λQ) ⇔
(M (Q) = λId(Q)) ⇔

((M − λId)(Q) = 0R[X1,..,Xn]) ⇔
(Q ∈ Ker(M − λI)).

Using the definition of an invariant and theorem 4.1, we can see that Q will be a λ-scale
invariant if and only if it belong to the eigenspace correspoinding to λ.

Corollary 4.1 Let M the matrix introduce in this section, departing from its charaterisitcs
one could find several decidable classes for the problem of finding a non-trivial λ-invariant.
For instance one can list the following decidable classes:

• M is block triangular (with 4× 4 blocks or less) ,

• Eigenspace associated with eigenvalue 1 is of dimension greater than 1.

Proof. Suppose M is block triangular with blocks 4 × 4 or less, then it’s characteristic
polynomial will a product of polynomials of degree less than four, whose roots can be
calculated by Lagrange’s resolvent method [Lan02].

For the second assertion, we already know that 1 is an eigenvalue, suppose that the
corresponding eigenspace is of dimension exactly one, then the only vectors in that space
are the constant polynomials. Whereas if it is of dimension two or more, than we get
polynomials that are non trivial in the eigenspace. Looking at theorem 4.2 to come, we see
that it is particularly interesting case.

Theorem 4.3 A polynomial Q in Rr[X1, .., Xn] is an inductive invariant for the affine loop
with initial values (u1, . . . , un) if and only if there is an eigenvalue λ of M such that Q is
in the intersection of the eigenspace of λ and the hyperplane Q(u1, . . . , un) = 0.

Proof. We first consider Theorem 4.2. The initiation step defines on Rr[x1, . . . , xn] a linear
form on this space, namely, Iu : P 7→ P (u1, ..., un). Hence, initial values correspond to a hy-
perplane of Rr[X1, .., Xn] given by the kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}.
If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking for a
λ-scale invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) = 0, i.e.,
we are looking for Q in ker(M − λI) ∩ {P | P (u1, . . . , un) = 0}.
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Corollary 4.2 There will be a non-null invariant polynomial for any given initial values if
and only if there exists an eigenspace of M with dimension at least 2.

Proof. We take each direction, in turn.

(⇒) If there is a λ-scale invariant for any initial value. Then the corresponding
eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1
(which is at least necessary to have λ-invariants).Taking any nonzero vector Q in the
eigenspace (i.e. a λ-invariant), Q should lie in any hyperplane of initial values,i.e.
for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0, i.e Q = 0, which is
absurd.

(⇐) Any eigenspace of M with dimension at least 2 will intersect any space (semi-
hyperplan, ...) given by any initial constraints. As any hyperplane is of codimension
one in Vr, it must have a nonzero intersection with any subspace of dimension strictly
greater than one.

This establishes the result.

Theorem 5.1 A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for polynomial-
scale consecution with parametric polynomial T ∈ R[X1, ..., Xn] for τ if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

Proof. (⇒) If Q(X ′1, .., X
′
n) − TQ(X1, .., Xn) belongs to the ideal I generated by the

family
(X ′1 − P1, . . . , X

′
n − Pn),

then there exists a family (A1, . . . , An) of polynomials in R[X ′1, .., X
′
n, X1, .., Xn] such

that

Q(X ′1, .., X
′
n)− λQ(X1, .., Xn) = (X ′1 − P1)A1 + · · ·+ (X ′n − Pn)An.

Letting X ′i = Pi, we obtain Q(P1(X1, ..., Xn), ..., Pn(X1, ..., Xn)) = TQ(X1, ..., Xn).

(⇐) Conversely supposeQ(P1(X1, . . . , Xn), .., Pn(X1, . . . , Xn)) = TQ(X1, . . . , Xn). Then
as Q(X ′1, .., X

′
n) is equal to Q(P1, .., Pn) modulo the ideal I, we get Q(X ′1, .., X

′
n) =

λQ(X1, . . . , Xn) modulo I.
This establishes the result.

Theorem 5.2 Consider M as described above. Then, there will be a T -scale discrete
invariant if and only if there exists a matrix L (corresponding to P 7→ TP ) such that M−L
has a nontrivial kernel. Further, any vector in the kernel of M − L will give a T -scale
invariant.

Proof. Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T -invariant if and
only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),
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i.e., if and only if

M (Q) = L (Q)⇔ (M −L )(Q) = 0R[X1,..,Xn].

Writing this in equivalent terms of matrices

((M − L)Q = 0)⇔ (Q ∈ Ker(M − L)),

we get the statement of the theorem.

Theorem 5.3 There is a non trivial T -scale invariant if and only if the polynomials (V1, .., Vs)
admit a common root, other than the trivial one (0, . . . , 0, 1).

Proof. From linear algebra, we know that M − L with a non trivial kernel is equiva-
lent to it having rank strictly less than the dimension v(r) of Rr[x1, . . . , xn]. This is
equivalent to the fact that each v(r) × v(r) sub-determinant of MD − LT is equal to
zero. Those determinants are polynomials with variables (t1, .., tv(d−1)), which we will
denote by V1(t1, ..., tv(d−1)), ..., Vs(t1, ..., tv(d−1)). From the form of L, this is zero when
(t1, ..., tv(d−1)) = (0, ..., 0). Hence, M − L has its last column equal to zero, giving a com-
mon root for these polynomials, corresponding to the constant invariants.

Theorem 5.4 Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the transition
system with initial values (u1, .., un) if and only if there exists a matrix L 6= 0 (the one
of P 7→ TP ), corresponding to T in Re[X1, .., Xn], such that Q is in the intersection of
Ker(M−L) and the hyperplane given by the initial valuesQ(u1, . . . , un) = 0. The invariants
correspond to vectors in the intersection.

Proof. Consider Theorem 5.2. The initiation step defines on Rr[x1, . . . , xn] a linear form on
this space, namely, Iu : P 7→ P (u1, ..., un). Thus, initial values correspond to a hyperplane of
Rr[X1, .., Xn] given by the kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}. With
initial conditions (x1(0) = u1, . . . , xn(0) = un), we are looking for a T -scale differential
invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) = 0, i.e., we are
looking for Q in ker(M − L) ∩ {P | P (u1, . . . , un) = 0}.

Corollary 5.1 There are non-trivial invariant for any given initial values if and only if there
exists a matrix L such that Ker(M−L) has dimension at least 2. The basis of Ker(M−L)
being a basis for non-trivial invariants.

Proof.

(⇒) If there is a T -scale invariant for any initial value, then the corresponding eigenspace
has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at
least necessary to have T -invariants), taking any non-zero vector Q in the eigenspace
(i.e. a T -invariant), Q should lie in any hyperplane of initial values,i.e. for every
n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0, which is absurd.

(⇐) Any intersection between an eigenspace of MD − LT with dimension at least 2
will intersect any space (semi-hyperplane, ...) given by any initial constraints.
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We get the result.

Corollary 6.1 Let M − L = U ·S ·V be the singular value decomposition of matrix M − L
described just above. There will be a non trivial T -invariant for any given initial condition
if and only if the number of non-zero elements in matrix S is less than v(r) − 2, where
v(r) is the dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace
obtained from the decomposition directly gives an ideal for non-linear invariants.

Proof. The right singular vectors corresponding to vanishing singular values of M − L span
the null space of M − L. The left singular vectors corresponding to the non-zero singular
values of M − L span the range of M − L. As a consequence, the rank of M − L equals the
number of non-zero singular values which is the same as the number of non-zero elements
in the matrix S.

Theorem 7.1 A polynomial Q in R[X1, .., Xn] is a F -scale invariant for fractional discrete
scale consecution with a parametric fractional F ∈ R(X1, .., Xn) for τ if and only if

Q

(
P1

Q1
, ..,

Pn
Qn

)
= FQ.

Proof.

(⇒) If Q(X ′1, .., X
′
n) − FQ(X1, .., Xn) belongs to the fractional ideal J generated by

the family

(X ′1 − P1/Q1, . . . , X
′
n − Pn/Qn),

then there exists a family (A1, . . . , An) of fractional functions in R(X ′1, .., X
′
n, X1, .., Xn)

such that

Q(X ′1, .., X
′
n)− FQ(X1, .., Xn) = (X ′1 − P1/Q1)A1 + · · ·+ (X ′n − Pn/Qn)An.

Letting X ′i = Pi
Qi

we obtain Q( P1
Q1
, .., PnQn ) = λQ(X1, . . . , Xn).

(⇐) Conversely suppose Q( P1
Q1
, .., PnQn ) = FQ(X1, .., Xn). Then as Q(X ′1, .., X

′
n) is equal

to Q( P1
Q1
, .., PnQn ) modulo the ideal J , we get that Q(X ′1, .., X

′
n) = FQ(X1, .., Xn) mod-

ulo J .

And we have the result.

Theorem 7.2 Consider M and L as described above. Then, there exists F -scale invariants
(where F is of the form T/Πr) if and only if there exists a matrix L such that Ker(M−L) 6=
∅. In this situation, any vector in the kernel of M −L will give a F -scale discrete invariant.

Proof. Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T/Πr-invariant if
and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T/Πr(X1, .., Xn)Q(X1, .., Xn),
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which is equivalent to

ΠrQ(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e. if and only if

(M (Q) = L (Q))⇔ ((M −L )(Q) = 0R[X1,..,Xn]

Writing this in equivalent terms of matrices:

((M − L)Q = 0)⇔ (Q ∈ Ker(M − L)),

we get the statement of the theorem.

Theorem 7.3 We have a non trivial invariant if and only if there exists a matrix L such
that the intersection of the kernel of M − L and the hyperplane given by the initial values
is not zero, the invariants corresponding to vectors in the intersection.

Proof. We first consider Theorem 7.2. The initiation step defines on Rr[x1, . . . , xn] a linear
form on this space, namely, Iu : P 7→ P (u1, ..., un). Hence, initial values correspond to a hy-
perplane of Rr[X1, .., Xn] given by the kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}.
With initial conditions (x1(0) = u1, . . . , xn(0) = un), we are looking for a strong-scale dif-
ferential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) = 0, i.e.,
we are looking for Q in ker(M − L) ∩ {P | P (u1, . . . , un) = 0}.

Corollary 7.1 We will have a non-trivial invariant for any non-trivial initial value if there
exists a matrix L such that the dimension of Ker(M − L) is at least 2.

Proof.

(⇒) If there is a non-trivial F -scale invariant for any initial value, then the correspond-
ing eigenspace has dimension at least 2. Indeed, if the space was of dimension only
1 (which is at least necessary to have F -invariants), taking any non-zero vector Q in
the eigenspace (i.e. a F -invariant), Q should lie in any hyperplane of initial values,i.e.
for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0, which is
absurd.

(⇐) Any intersection between an eigenspace of M with dimension at least 2 will in-
tersect any space (semi-hyperplane, ...) given by any initial constraints.

And we have the result.

Theorem 8.1 Let I = {I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj )

where j ∈ [1, k]. Let’s �(I1, ..., Ik) = {δ1, ..., δn1n2...nk} such that all elements δi in �(I1, ..., Ik)
are formed by the product of one element from each ideal in I. Assume that all Ijs are ideals
of invariants for a loop at location lj described by a transition τj . Now, if all lj describe
the same location/program point l, then we have several transitions looping at the same
point. So we obtain an encoding of possible execution paths of a loop containing conditional
statements. Then �(I1, ..., Ik) is an ideal of non-trivial non-linear invariants for the entire
loop located at l.
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Proof. Let f
(j)
1 , ..., f

(j)
nj ∈ K[X1, ..., Xn] such that Ij = (f

(j)
1 , ..., f

(j)
nj ), forall j in [1, k]. Let

β ∈ (�(I1, ..., Ik)), then there exists e1, ..., en1n2...nk ∈ K[X1, .., Xn] such that β = e1δ1+...+
en1n2...nkδn1n2...nk . Also, by construction of �(I1, ..., Ik) we know that: ∀r ∈ [1, ..., n1n2...nk],

δr ∈ �(I1, ..., Ik). In other words, there is (α
(r)
1 , ..., α

(r)
k ) ∈ I1 × ... × Ik such that δr =

Πk
i=0α

(r)
i . Then we have β =

∑n1n2...nk
j=1 [λjΠ

k
i=1α

(j)
i ]. Now, for allm in [1, k], if Im correspond

to a pre-computer inductive ideal of invariant associated to one of the transition τm at

the location l, then ∀j ∈ [1, n1n2..nk], α
(j)
m (X1, ..., Xn) = 0. And so ∀j ∈ [1, n1n2..nk],

Πk
i=1α

(j)
i = 0. Finally we obtain β(X1, ..., Xn) = 0 for all m in [1, n1n2..nk]. In other words,

β(X1, ..., Xn) = 0 is an algebraic assertion true at any step of the iteration of the loop
for any transition τm that could possibly taken. Then (β(X1, ..., Xn) = 0) is an inductive
invariant and we can conclude that (�(I1, ..., Ik)) is an ideal of inductive invariant.


