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Abstract

This paper introduces the computation of an expression for the time at which the
length of a queue fed by several multifractal flows reaches its maximum. Expressions
for the equivalent bandwidth of an aggregate of multifractal flows is also presented.
Moreover, it is shown that modelling based on monofractal process rather than based
on multifractal processes leads to overprovisioning of resources.

1 Introduction

Since the seminal work of Leland et al [5], several studies have shown that network traffic
presents scale invariance, or “scaling”, which is the absence of any specific time scale at
which the “burstiness” of a traffic stream can be characterized. Instead, it is necessary to
describe the traffic across different time scales. Self-similar or (mono) fractal processes have
been used for modeling network traffic since then.

Scaling of fractal traffic is defined by a single constant value: the Hurst parameter,
H. One of the most popular fractal processes for traffic modeling is the Fractal Brownian
Motion process (fBm) due to its parsimonious representation of the modeled traffic. fBm
is an accurate model when: i) the traffic results from the aggregation of several sources
streams with low activity compared to the link bandwidth, ii) the impact of flow control is
not relevant and iii) the time scale of interest is within the scaling region. The multifractal
Brownian motion (mBm) is the multifractal generalization of the fractal Brownian motion.
mBm has the nice property that at small time scales (locally) its realization can be described
by an fBm.

Both Internet Protocol (IP) and Variable Bit Rate (VBR) video traffic present non-
trivial scaling structure at small scales in addition to long memory [10] [2]. At small scale,
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traffic is highly variable, more complex and follows less definitive scaling laws. For these
traffics the marginal distribution of counts is non-Gaussian, calling for a representation
beyond second-order statistics. Moreover, the scaling exponent of the variance on time
scale shorter than a typical (cut-off) one is smaller than an asymptotic exponent.

If on one hand, at the network core long term correlations are more important than the
variability at small scales due to traffic aggregation (additive property) [1]. On the other
hand, at the network edge variability at small time scale (multiplicative property) plays
a major role [4]. These patterns can be modelled by multifractal processes which capture
both long memory and high variability at small scales.

In networks employing statistical multiplexing, traffic streams are merged at the mul-
tiplexers and transferred to the outgoing link. Solving queueing systems with statistical
multiplexing under (multi/mono) fractal input is of paramount importance for admission
control. Nonetheless, this is not a trivial task. Large Deviation theory can be employed
to overcome such difficulty. However, solutions based on this theory imply in making non-
realistic assumption about the buffer size.

An envelope process is an upper bound for the accumulated amount of work (traffic)
arrived from a process up to a certain time. Envelope processes are parsimonious repre-
sentations of stochastic processes and allow simple solutions of queueing systems fed by
(mono/multi) fractal processes which do not incorporate any unrealistic assumption about
the buffer size.

In [6], an envelope for multifractal traffic modeling was introduced. This envelope
process was extensively validated using both synthetic and real network traces. The envelope
process is an upper bound for the accumulated amount of traffic arrived up to a certain
time from a multifractal Brownian motion process (mBm) [9]. It has been shown that
although mBm is a steady state Gaussian process, the envelope process is a tight bound for
the amount of traffic arrived in Internet streams.

The major contribution of this paper is a method to compute the time instant at which
a queue fed by several multifractal flows reaches its maximum. This computation can be
used to calculate the loss probability as well as to determine the equivalent bandwidth of an
aggregation of several multifractal flows. Such computation can be employed in admission
control policies at the ingress of network domains, such as DiffServ domains. Moreover, the
expressions derived here can be used in measurement based frameworks.

This paper is organized as follows. In Section 2, the definition of the multifractal
Brownian motion is given, and in Section 3 an envelope process based on mBm is presented.
In Section 4, the method to compute the time scale at which overflow occurs in queueing
system fed by a single stream is shown whereas in Section 5 the generalization of the method
for multiple streams is introduced. In Section 6, numerical examples are provided. Finally,
in Section 7 conclusions are drawn.

2 The Multifractional Brownian Motion Process

Multifractal processes exhibits highly irregular patterns as a function of time. Local Holder
exponents describes the local regularity of the sample path of a process. It is a measure of
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scaling and can be regarded as a generalization of the Hurst parameter [1].
The local Holder regularity is related to scaling at small time scales since it expresses

the regularity of the sample path of a process by comparing it to a power-law function [1].
The exponent of this power law, H(t), is called Holder exponent and depends both on time
and on the sample path. The Holder exponent is the largest value of H(t), 0 ≤ H(t) ≤ 1,
such that

|X(t+ γ)−X(t)| ≤ k|γ|H(t) for γ → 0 (1)

where X(.) is a process which exhibits scaling.
For monofractal processes the Holder function (Holder exponent) is a constant value and

is called Hurst parameter whereas for multifractal processes the Holder function changes
randomly with time. Let H(.) : (0,∞) → (0, 1) be a Holder function. The multifractional
Brownian motion is a continuous Gaussian process with non-stationary increments defined
on (0,∞) as:

WH(t) =
1

Γ(H(t) + 1/2)

{
∫ 0

−∞
[(t− s)H(t)−1/2− (2)

(−s)H(t)−1/2]dB(s) +

∫ t

0
(t− s)H(t)−1/2dB(s)

}

where B(s) is the Brownian motion.
The multifractal brownian motion process is a generalization of the fractal brownian

motion process and exhibits the property that locally it is asymptotically self-similar (lass),
i.e.

lim
ρ→0+

{

W (t+ ρu)−W (t)

ρH(t)

}

u∈R+

= {BH(t)(u)}u∈R+ (3)

where W (.) is an mBm and BH(t)(u) is an fBm process with Hurst parameter H, given by
H(t).

3 An Envelope Process for the Multifractal Brownian Mo-

tion Process

To solve a queueing system fed by an input process, it is necessary to know both the
amount of work arrived to the system as well as the service rate. Envelope processes are
upper bounds for the amount of arrivals, and allow less complex solutions than the ones
that consider the accumulated work arrived by an exact process. Envelope processes can be
either deterministic or probabilistic. In deterministic envelopes, the amount of work arrived
never surpasses the envelope value whereas in probabilistic envelopes it may surpass with
a certain pre-defined probability. Probabilistic envelope processes are tighter bounds than
deterministic envelopes since deterministic envelope are always an upper bound and do not
accept any violation of the envelope value. Dimensioning based on deterministic envelope
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processes may lead to waste of resources, since the provision of resource needs to take into
account the maximum amount of work arrived at any time. When probabilistic envelopes
are used, there is no need to consider spikes of work up to a certain amount defined by the
probability of violation. However, loss of packets may occur.

An upper bound for the accumulated amount of work arrived can be computed as the
mean amount of work plus an upper bound for the accumulated increments. An upper
bound for mBm increments can be computed by using the upper bounds for the local fBm
increments, since in the neighborhood of time t, an mBm can be approximated by an fBm
with Hurst parameter H(t). It is known that [7]:

ZH(t) ≤ κHtH−1 (4)

where ZH(t) is the fBm increments at time instant t.

As the size of local infinitesimal neighborhood of t goes to zero, the envelope process,
Â(t), of an mBm with mean ā, standard deviation σ and Holder function H(.) can be
expressed as :

Â(t) =

∫ t

0
ā+ κσH(x)xH(x)−1dx (5)

which is called mBm envelope process.

This envelope reduces to the fBm envelope previously derived in [7] when H(.) is a
constant value, i.e.,

Â(t) = at+ κσtH (6)

Extensive simulation experiments using both synthetic traffic and real network traffic
were conducted in order to assess the accuracy of the proposed envelope in [6]. It was shown
that the mBm envelope process is an accurate model for the multifractal stream whereas
the monofractal envelope overestimates the amount of traffic arrived. Thus, dimensioning
networks with multifractal streams based on monofractal models leads to overprovisioning
of resources.

4 Time Scale of Interest of a Queue Fed by a Single Stream

In this section, the time at which a queue reaches its maximum occupancy in a probabilistic
sense is derived. The queue size at this time provides a simple delay bound. Consider a
continuous-time queueing system, with deterministic service given by C. The cumulative ar-
rival process is represented by A(t) (for A(0) = 0). Let Â(t), a continuous and differentiable
function, be the probabilistic envelope process of A(t), such that P (A(t) > Â(t)) ≤ ǫ.

During a busy period, which starts at time 0, the number of cells in the system at time
t is given by q(t). Thus, q(t) = A(t)− ct ≥ 0.

By defining q̂(t) as

q̂(t) = Â(t)− Ct ≥ 0, (7)
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we can see that P (q(t) > q̂(t)) = P (A(t) > Â(t)) ≤ ǫ.

An upper bound for the maximum delay in a FIFO queue can be giving by

q̂max = max(q̂(t)) t ≥ 0 (8)

Therefore,

P (q(t) > q̂max) ≤ P (q(t) > q̂(t)) ≤ ǫ (9)

P (q(t) > q̂max) ≈ ǫ. (10)

The queue length at time t, q(t), will only exceed the maximum queue length q̂max with
probability ǫ. In other words, only when the arrival process exceeds the envelope process,
will the maximum number of cells in the system exceed the estimated value. Intuitively,
by bounding the behavior of the arrival process, it is possible to transform the problem
of obtaining a probabilistic bound for the stochastic system defined by q(t) = A(t) − Ct,
into an easier problem of finding the maximum of a deterministic system, described by
q̂(t) = Â(t)−Ct.

Inserting the mBm envelope process into Equation (7) gives:

q̂(t) = Â(t)− Ct

=

∫ t

0
ā+ κσH(x)xH(x)−1dx− Ct (11)

In order to compute q̂max it is necessary to find t⋆ such that

dq̂(t)

dt
= 0 (12)

or equivalently,

dÂ(t)

dt
= C (13)

The time-scale of interest, t⋆, is the time at which the queue size reaches its peak, called
the Maximum Time-Scale (MaxTS) and t⋆ defines the point in time at which the unfinished
work in the queue achieves its maximum in a probabilistic sense. Hence, t⋆ can be computed
from Equation (13) as:

t⋆ =

[

κσH(t⋆)

(C − ā)

]

1
1−H(t⋆)

(14)

Substituting t⋆ back into Equation (11) , it can be concluded that:
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q̂max = Â(t⋆)− Ct⋆ (15)

=

∫ t⋆

0
κσH(x)xH(x)−1dx− (C − ā)

H(t⋆)
1−H(t⋆)

(κσH(t⋆))
1

H(t⋆)−1

5 Time Scale of Interest of a Queue Fed by Several Multi-

fractal Flows

In this section, MaxTS computed in the previous section is used to derive expressions for
predicting the equivalent bandwidth and buffer requirements for an aggregate of multifrac-
tal flows. Essentially, a method for computing the bandwidth necessary to support the
requirements of buffer overflows is proposed, as well as for determining the maximum prob-
abilistic delay for an aggregate of heterogeneous flows. The problem in this section can be
stated as follows:

Given a set of flows with mean āi, standard deviation σ2
i and Holder exponents given

by Hi(t), what is the link capacity needed so that the maximum queue size will be bounded
by q̂Nmax with probability ǫ?

To answer this question the expression of the envelope process resulting from the ag-
gregation of several flows is needed. To compute the amount of traffic aggregate the local
asymptotically self-similar (lass) property is used. In [8] it was proved that the aggregate
of N fBm processes with mean āi and variance σ2

i is an fBm process with mean ā and
σ2, given by the

∑N
i=1 āi and by

∑N
i=1 σ

2
i , respectively. Thus, locally the mBm process

can be represented by an fBm resulting from the aggregation of fBm processes. Similarly,
the mBm envelope process can be locally approximated by an fBm envelope process which
results from the aggregation of the N fBm envelope processes.

Assume N independent flows defined by the following parameters: mean āi, variance
σ2
i and Holder exponents Hi(t). Let the aggregate process be denoted by W (.), and the

envelope process of each source given by Âi(t). The aggregate envelope process ÂN () for
the cumulative work of W (.) in the interval [0, t] is given by:

ÂN (t) =
N
∑

i=1

Âi(t)

ÂN (t) =

∫ t

0

N
∑

i=1

āi + κ

(

N
∑

i=1

σ2
iHi(x)x

2Hi(x)−1

)

(

N
∑

i=1

σ2
i x

2Hi(x)

)− 1
2

dx (16)
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where Âi(t) is the envelope process for the ith flow.
Replacing Â(t) in Equation (7) by the aggregate envelope process ÂN (t), gives the

following:

κ

(

N
∑

i=1

σ2
iHi(t)t

2Hi(t)−1

)(

N
∑

i=1

σ2
i t

2Hi(t)

)− 1
2

= C −
N
∑

i=1

āi (17)

Equation (17) can be solved numerically to find the maximum time scale of a queue fed
by several streams, t⋆⋆, which is then inserted in Equation (11) to compute q̂Nmax. Moreover,
combining Equations (13) and (16) results in the following:

κ

∫ t

0

(

N
∑

i=1

σ2
iHi(x)x

2Hi(x)−1

)(

N
∑

i=1

σ2
i x

2Hi(x)

)− 1
2

dx−

κ

(

N
∑

i=1

σ2
iHi(t)t

2Hi(t)

)(

N
∑

i=1

σ2
i t

2Hi(t)

)− 1
2

− q̂Nmax = 0

(18)

Computing t⋆⋆ from Equation (18) and inserting it in Equation (13) makes it possible
to answer the fundamental question posed at the beginning of this section, i.e., what is the
equivalent bandwidth of an aggregate of multifractal traffic streams, which is given by:

Ĉ =
N
∑

i=1

āi + κt⋆⋆−1
∫ t⋆⋆

0

(

N
∑

i=1

σ2
iHi(x)x

2Hi(x)−1

)

(

N
∑

i=1

σ2
i x

2Hi(x)

)− 1
2

dx− q̂Nmax

t⋆⋆
(19)

or equivalently

q̂Nmax =

∫ t⋆⋆

0

N
∑

i=1

āi + κ

(

N
∑

i=1

σ2
iHi(x)x

2Hi(x)−1

)

(

N
∑

i=1

σ2
i x

2Hi(x)

)− 1
2

dx− Ct⋆⋆ (20)

Note that Equations (17) and (18) do not require previous knowledge of the whole stream
and can be used in a measurement-based framework. In such a framework the mean, the
variance and the Holder exponent values can be measured and inserted in Equation 19 to
estimate on-line the equivalent bandwidth of an aggregate stream.
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For the special case of multiplexing N identical sources, the envelope process, ÂN (.), is
given by:

ÂN (t) =
N
∑

i=1

Âi(t)

=

∫ t

0
Nā+N

1
2κσH(x)xH(x)−1dx (21)

In this case, Equation 17 is reduced to

κ(Nσ2H(t)t2H(t)−1)√
NσtH(t)

= N(c− ā) (22)

Using the same approach as above, it is possible to obtain t⋆⋆ and q̂Nmax:

t⋆⋆ = N
1

2(H(t⋆⋆)−1) t⋆i (23)

q̂Nmax =
√
N

∫ t⋆⋆

t⋆i

κσH(x)xH(x)−1dx+N
H(t⋆⋆)−1/2
H(t⋆⋆)−1 q̂max (24)

t⋆i =

[

κσH(t⋆)

(c− ā)

]

1
1−H(t⋆)

(25)

q̂max = Â(t⋆i )− ct⋆i (26)

where t⋆i and q̂max are derived from a queueing system fed by a single source and c = C/N .

6 Numerical Examples

In order to evaluate the accuracy of the expressions defined in Section 5, simulation experi-
ments using both synthetic and real network data were pursued. In the experiments a queue
is fed by several multifractal streams; the service rate and the buffer size were varied. In the
numerical examples presented here the service rate is 5% higher than the total mean rate.
The queue length is recorded and the maximum queue length is compared against the the
maximum queue length estimated by Equation 20. Table 1 shows the characteristics of the
synthetic traces utilized. Different combinations of the process in Table 1 were employed
to produce the aggregate traffic. Figure 1 shows the evolution of the queue length for the
aggregation of all five traces. It can be seen that the predicted maximum time scale by
Equation 17 matches exactly the one obtained via simulation. Such pattern were observed
in all experiments with synthetic traces.

Real network traffic were obtained from the NLANR site (www.nlanr.net). Traces used
in previous investigations of others were also utilized for comparison purpose [3] [11]. Table
2 shows the characteristics of the traces used. Experiments using real network traffic were
also carried out. Figure 2 shows the maximum time scale predicted by Equation 17 and by
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Table 1: the synthetic network traffic
Flow ā σ2 H(.)

1 14.22 82.09 19
10t

2 − 19
10 t+ 0.985

2 12.96 88.18 49
10t

3 − 79
10 t

2 + 33
10 t+ 0.51

3 13.03 200.93 −21
10t

4 + 11
10 t

3 − 1
10 t

2 + 8
10t+ 0.51

4 14.43 87.93 sin(t)
10 + 0.61

5 14.43 187.93 49
100t+ 0.5
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Figure 1: MaxTS for synthetic network traffic

the one obtained in the simulation using the four traces dec-pkt in Table 2. It can be seen
that the predicted value for the maximum time scale is very close to the one obtained via
simulation. Actually, the deviation is within the interval defined by the pre-defined error
margin.

The whole advantage of statistical multiplexing is the efficient use of resources achieved
by interleaving packets of different streams which allows the support of a higher number of
users when compared to circuit switching. To evaluate the benefits of using the expression
for the equivalent bandwidth of an aggregate of multifractal flows a gain measure, G(n), was
defined as the ratio between n times the equivalent bandwidth of a trace and the equivalent
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10 Melo and Fonseca

Table 2: Real trace with Traffic gather at Internet 2 ABILENE and Digital’s Intenet Access
Point

Trace Date # of packets aggregation point

ANL-1050127417 04/11/03 121998 Agonne NL to STARTAP

ANL-1050225668 04/13/03 105641 Agonne NL to STARTAP

MEM-1053844177 05/24/03 220904 University of Memphis

MEM-1054459191 06/01/03 266708 University of Memphis

COS-1057970154 07/12/03 1247518 Colorado State University

BWY-1058086940 07/13/03 1168143 Columbia University

dec-pkt-1 03/08/95 3300000 Digital IAP

dec-pkt-2 03/09/95 3900000 Digital IAP

dec-pkt-3 03/09/95 4300000 Digital IAP

dec-pkt-4 03/09/95 5700000 Digital IAP

bandwidth for the aggregate of n traces with equal statistical characteristics. G(n) is given
by:

G(n) =
nEB(1)

EB(n)

=

∫ t⋆

0 ā+ κσH(x)xH(x)−1dx−K
∫ t⋆⋆

0 ā+ n
−1
2 κσH(x)xH(x)−1dx−K ′

(27)

where EB1 is the equivalent bandwidth for a single flow and EBn is the equivalent band-
width of an aggregate of n flows. t⋆ e t⋆⋆ are the time scales given by Equation 14 and by
Equation 23, respectively. K is the buffer size at the multiplexer and K ′ = K

n .

The gain G(.) was evaluated as a function of the number of aggregated flows for different
traffic characteristics. Figure 3 shows the gain for traces with Holder exponents, H(.),
given by the quadratic and by the cubic functions defined in Table 1 for different variance
values. The mean arrival rate is ā = 125.09 and the variance for the flow called “low” is
σ2 = 290.00. For the curves named “median” and “high” the variance values are 10σ2 qand
100σ2, respectively.

It can be observed in Figure 3 that the gain increases with the variance. For instance,
for Holder exponents given by a quadratic function, the maximum gain is 1.35 for streams
with low variance whereas it is 4.0 for streams with high variance. The gain is also influ-
enced by the Holder exponent values. Actually, what is relevant is the mean value of the

Holder exponent up to the maximum time scale, i.e.,

∫ t⋆⋆

0
H(x)dx

t⋆⋆ , which can be noticed by
comparing Figures 3.a and 3.b. For the same mean and variance value, the gain is higher
for the traces with Holder exponents given by a quadratic function than for the traces with
exponents given by a cubic function. For instance, considering flows with median variance,
the maximum gain is 2.2 for the traces with exponents given by a quadratic function whereas
it is 1.45 for traces with exponents given by a cubic function.
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Figure 3: Multiplexing gain with homogeneous flows for synthetic traffic
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To answer the question of whether a monofractal approach could be used for resource
dimensioning in networks with multifractal flows, a monofractal envelope (Equation 6) was
derived for the trace with Holder exponents given by a cubic function. Figure 4 shows the
gain considering the mbm envelope process, denoted, H(.), and considering the monofractal
envelope process, H, for both high and median variance. It can be seen that the gain
obtained by using the mBm process is double the value produced by using the monofractal
envelope for median values of the variance whereas it is more than the double for high
variance values. This happens since the Hurst parameter overestimates the local behavior
of the Holder exponents which leads to overprovisioning of resources and, consequently, a
lower gain.

Evaluation of the gain was also pursued using real network traces. The evaluation with
the traces MEM-1053844177 and MEM-1054459191 (Table 2) are displayed in Figure 5. The
traffic descriptors of these traces are ā = 1014.88, σ2 = 3.2e6 and ā = 1810.98, σ2 = 8.6e6,
respectively. The gain for the trace MEM-1054459191 is higher than for the trace MEM-
1053844177. Again, this happens because the trace MEM-1054459191 has higher variance
value and higher mean H(.) value up to the maximum time scale.
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Figure 5: Multiplexing gain with homogeneous flows for real traffic

7 Conclusions

The provisioning of Quality of Service for applications in the Internet is a major challenge
yet to be overcome. Central to such provisioning is the ability to compute the ammount of
bandwidth demanded by a flow so that the QoS requirements of that flow are supported.
Moreover, it has been shown that Internet traffic presents multi-scaling characteristics which
can be accurately captured by multifractal processes.

This paper introduced expressions for the time at which the length of a queue fed by
several multifractal flows reaches its maximum. The equivalent bandwidth of an aggregate
of multifractal flows was also furnished. These expressions can be used in measurement
based admission control in DiffServ networks as well as for dimensioning LSP’s in MPLS
networks.
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