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Abstract

In this paper, a novel envelope process for multifractal traffic modeling is introduced.
The envelope process is an upper bound for the amount of work arrived in a multifractal
Brownian motion process. The time scale of interest of a queueing system fed by a
multifractal stream is computed. Simulation experiments using both real and synthetic
data show that the proposed model is accurate.

1 Introduction

Since the seminal work of Leland et al [5], several studies have shown that network traffic
presents scale invariance, or “scaling”, which is the absence of any specific time scale at
which the “burstiness” of a traffic stream can be characterized. Instead, it is necessary to
describe the traffic across different time scales. Self-similar or (mono) fractal processes have
been used for modeling network traffic since then.

Scaling of fractal traffic is defined by a single constant value: the Hurst parameter,
H. One of the most popular fractal processes for traffic modeling is the Fractal Brownian
Motion process (fBm) due to its parsimonious representation of the modeled traffic. fBm
is an accurate model when: i) the traffic results from the aggregation of several sources
streams with low activity compared to the link bandwidth, ii) the impact of flow control is
not relevant and iii) the time scale of interest is within the scaling region. The multifractal
Brownian motion (mBm) is the multifractal generalization of the fractal Brownian motion.
mBm is a Gaussian process which is able to capture the high variability existing at small
time scales. It has the nice property that at small time scales (locally) its realization can
be described by an fBm.
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partially sponsored by FAPESP (grant 00/09772-6) and by CNPq (grant 305076/2203-5).
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2 Melo and Fonseca

Both Internet Protocol (IP) and Variable Bit Rate (VBR) video traffic present non-
trivial scaling structure at small scales in addition to long memory [2]. At small scale, traffic
is highly variable, more complex and follows less definitive scaling laws. For these traffics the
marginal distribution of counts is clearly non-Gaussian, calling for a representation beyond
second-order statistics. Moreover, the scaling exponent of the variance on time scale shorter
than a typical (cut-off) one is smaller than an asymptotic exponent.

If on one hand, at the network core long term correlations due to traffic aggregation
(additive property) are more important than the variability at small scales [1]. On the other
hand, at the network edge the variability at small time scale (multiplicative property) [4]
plays a major role. These patterns can be modeled by multifractal processes which capture
both long memory and high variability at small scales.

Some studies have claimed that the multiscaling nature of IP traffic is highly influenced
by the Transmission Control Protocol (TCP) congestion control mechanism rather than
solely by network-related variability, such as the diversity of link capacity in the Inter-
net [4]. Nonetheless, the multiplicative origin of IP traffic remains to be fully explained.
Understanding the interaction between TCP congestion control and IP multiscaling is un-
doubtfully relevant for predictive purpose. However, this work is concerned with open loop
aspects of IP traffic for network dimensioning.

Solving queueing systems with (multi/mono) fractal input is not a trivial task. Large
Deviation theory can be employed to overcome such difficulty. However, it implies in making
non-realistic assumption about the buffer size. Envelope processes are upper bounds to the
accumulated amount of work (traffic) arrived from a process up to a certain time. Envelope
processes are parsimonious representations of stochastic processes and allow simple solutions
for queueing systems fed by (mono/multi) fractal processes which do not incorporate any
assumption about the buffer size.

The major contribution of this paper is a novel envelope process for modeling multiscal-
ing traffic. The envelope process is an upper bound for the accumulated amount of traffic
arrived up to a certain time from a multifractal Brownian motion process (mBm) [8]. It is
shown that although mBm is a steady state Gaussian process, the envelope process is a tight
bound to the amount of traffic arrived from real network streams. One of the advantages
of this envelope process is the parsimonious representation of traffic, which allows a simple
solution for queueing systems fed by multifractal streams. Moreover, an expression for the
time at which a finite queueing system overflows is computed. Such expression can be used
in admission control policies.

2 The Multifractional Brownian Motion Process

Multifractal processes exhibits highly irregular patterns as a function of time. Local Holder
exponents describes the local regularity of the sample path of a process. It is a measure of
scaling and can be regarded as a generalization of the Hurst parameter [1].

The local Holder regularity is related to scaling at small time scales since it expresses
the regularity of the sample path of a process by comparing it to a power-law function [1].
The exponent of this power law, H(t), is called Holder exponent and depends both on time
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and on the sample path. The Holder exponent is the largest value of H(.), 0 ≤ H(.) ≤ 1,
such that

|X(t+ γ)−X(t)| ≤ k|γ|H(t) for γ → 0 (1)

where X(.) is a process which exhibits scaling.
For monofractal processes the Holder function (Holder exponent) is a constant value and

is called Hurst parameter whereas for multifractal processes the Holder function changes
randomly with time. Let H(.) : (0,∞) → (0, 1) be a Holder function. The multifractional
Brownian motion is a continuous Gaussian process with non-stationary increments defined
on (0,∞) as:

WH(t) =
1

Γ(H(t) + 1/2)

{
∫ 0

−∞
[(t− s)H(t)−1/2− (2)

(−s)H(t)−1/2]dB(s) +

∫ t

0
(t− s)H(t)−1/2dB(s)

}

where B(s) is the Brownian motion.
The multifractal Brownian motion process is a generalization of the fractal Brownian

motion process and exhibits the nice property that locally it is asymptotically self-similar
(lass), i.e.

lim
ρ→0+

{

W (t+ ρu)−W (t)

ρH(t)

}

u∈R+

= {BH(t)(u)}u∈R+ (3)

where W (.) is an mBm and BH(t)(u) is an fBm process with Hurst parameter H, given by
H(t).

Evaluating the Holder exponent value is crucial for the characterization of multifractal
traffic. In [8] an estimator for the Holder exponent H(.) was introduced. This estimator
assumes that the Holder exponent is a continuous function and that its value is a constant

in the neighborhoods of a point. For N data samples of an mBm W (.), H
(

i
N−1

)

can be

estimated as [8]:

Ĥ i

N−1
=

− log(
√

π
2Sk,N(i))

log(N − 1)
1 ≤ i ≤ N − 2, (4)

where Sk,N(i) = m
N−1

∑

j∈[i−k/2,i+k/2] ‖W (j + 1)−W (j)‖ and m = N
k .

3 An Envelope Process for the Multifractal Brownian Mo-

tion Process

To solve a queueing system fed by an input process, it is necessary to know both the amount
of work arrived to the system as well as the service rate up to a certain time. Envelope
processes are upper bounds to the amount of arrivals. They can be either deterministic or
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probabilistic. In deterministic envelopes, the amount of work arrived never surpasses the
envelope value whereas in probabilistic envelopes it may surpass with a certain pre-defined
probability. Probabilistic envelope processes are tighter bounds than deterministic envelopes
since deterministic envelope are always an upper bound and do not accept any violation of
the envelope value. Consequently, dimensioning based on deterministic envelope processes
may lead to waste of bandwidth, since the provision of bandwidth needs to take into account
the maximum amount of work arrived at any time. When probabilistic envelopes are used,
there is no need to consider spikes of work up to a certain amount defined by the probability
of violation. However, loss of packets may occur.

An upper bound for the accumulated amount of work arrived can be computed as the
mean amount of work plus an upper bound to the accumulated increments. An upper
bound for mBm increments can be computed by using the upper bounds for the local fBm
increments, since in the neighborhood of time t, an mBm can be approximated by an fBm
with Hurst parameter H(t). It is known that [7]:

ZH(t) ≤ κHtH−1 (5)

where ZH(t) is the fBm increments at time instant t.

As the size of local infinitesimal neighborhood of t goes to zero, the envelope process,
Â(t), of an mBm with mean ā, standard deviation σ and Holder function H(.) can be
expressed as :

Â(t) =

∫ t

0
ā+ κσH(x)xH(x)−1dx (6)

which is called mBm envelope process.

This envelope reduces to the fBm envelope previously derived in [7] when H(.) is a
constant value, i.e.,

Â(t) = at+ κσtH (7)

Extensive simulation experiments using both synthetic traffic and real network traffic
were conducted in order to assess the accuracy of the proposed envelope. Traces containing
real network traffic were obtained from the NLANR site (www.nlanr.net). These traces
were collected at aggregation points in high performance connection networks, such as
vBNS and Internet2 ABILENE. The sampling precision of the collection was of the order
of microseconds. Table 1 shows the characteristics of the traces used in this investigation.
Data shown in this paper correspond to the evaluation of traces MEM-1053844177 and
MEM-1054459191 at time scale of 1msec.

Multifractal analysis of the traces were pursued before its use. We used the code available
on www.emulab.ee.mu.oz.au/darryl. Multifractality is detected by analyzing the scaling
exponent αq = ς(q)+q/2 in multiscale diagrams. A non-linear behavior indicates a dynamic
ς(q) value. Figure 1 shows the multiscale analysis of traces MEM-1053844177 and MEM-
1054459191. In both figures four distinct regions can be observed. For the trace MEM-
1054459191 (Figure 1.a) the alignment of q values can be cast in the regions [0− 1], [1− 3],
[3−6] and [6−10] whereas for the trace MEM-1053844177 (Figure 1.b) the distinct regions
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Table 1: Traffic gather at vBNS and ABILENE networks
Trace Date packets aggregation point

ANL-1050127417 04/11/03 23:12 121998 Agonne NL to STARTAP

ANL-1050225668 04/13/03 2:46 105641 Agonne NL to STARTAP

MEM-1053844177 05/24/03 23:54 220904 University of Memphis

MEM-1054459191 06/01/03 2:54 266708 University of Memphis

COS-1057970154 07/12/03 0:49 1247518 Colorado State University

BWY-1058086940 07/13/03 9:19 1168143 Columbia University
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(a) Trace MEM-1054459191
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(b) Trace MEM-1053844177

Figure 1: The multiscale diagrams for the traces MEM-1054459191 and MEM-1053844177

of q values are [0− 1], [1− 5], [5− 8] and [8− 10]. The distinct patterns of αq indicates the
changing behavior of the Holder exponent and, consequently, non-trivial multifractality.

Figure 2 shows that the mBm envelope process provides a tight bound to the accu-
mulated amount of traffic arrived in real networks. The mBm envelope process was also
validated using the real network traces employed in [2] and in [10]. Similar precision to the
results presented here was verified.

To answer the question of whether real network traces could be modeled by using a
monofractal process, fBm envelope processes (Equation 7) were derived for the traces used.
The Abry-Veitch Hurst estimator [12] was employed. Table 2 shows the parameters for
the traces MEM-1053844177 and MEM-1054459191. Figure 3 show the accumulated real
traffic and both the fBm envelope process (monofractal) and the mBm envelope process
(multifractal). It can be observed in Figure 3 that the fBm envelope process deviates largely
from the real trace. This happens because monofractal envelopes take into consideration
only the global burstiness value, given by the Hurst parameter, which overestimates the
dynamic (local) burstiness present in multifractal traffic. Figure 3 shows clearly that a
monofractal model does not capture the dynamics of multifractal traffic.

The mBm generator introduced in [8] was used to generate synthetic data. Up to
106 data samples from mBm processes were generated. Different Holder exponent were
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Figure 2: The mBm envelope process evaluation for real network traffic

Table 2: The fBm Envelope Process parameters
trace mean(ā) variance σ2 H

MEM-1053844177 1000.8 3227339.6 0.85

MEM-1054459191 1788.9 8546650.0 0.94
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Figure 3: The fBm envelope process evaluation for real network traffic
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Figure 4: The mBm envelope process evaluation for synthetic traces

employed. In Figure 4, results are shown for the following Holder functions:

H(t) = 1.9 ∗ (t− 0.5) ∗ (t− 0.5) + 0.51 t ∈ (0, 1);

H(t) = 0.5 + t/2.0 t ∈ (0, 1). (8)

It can be observed that the mBm envelope process is also a tight bound to the modeled
processes regardless of the Holder exponent values. Violations of the established bound are
smaller than the pre-defined violation probability value.

4 Time Scale of Interest

In this section the time at which a queue reaches its maximum occupancy in a probabilistic
sense is derived. The queue size at this time provides a simple delay bound. Consider a
continuous-time queueing system, with deterministic service given by C. The cumulative
arrival process is represented by AH(t)(t)(AH(t)(0) = 0). Let ÂH(t)(t), a function continuous
and differentiable, be the probabilistic envelope process of AH(t)(t), such that P (AH(t)(t) >

ÂH(t)(t)) ≤ ǫ.

During a busy period, which starts at time 0, the number of cells in the system at time
t is given by q(t). Thus, q(t) = AH(t)(t)− ct ≥ 0.

By defining q̂(t) as

q̂(t) = ÂH(t)(t)− Ct ≥ 0, (9)

we can see that P (q(t) > q̂(t)) = P (AH(t)(t) > AH(t)(t)) ≤ ǫ.

The maximum delay in a FIFO queue is given by the maximum number of cells in the
queue during the busy period. An upper bound for the maximum delay in a FIFO queue is
giving by
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q̂max = max(q̂(t)) t ≥ 0 (10)

Therefore,

P (q(t) > q̂max) ≤ P (q(t) > q̂(t)) ≤ ǫ (11)

P (q(t) > q̂max) ≈ ǫ. (12)

The queue length at time t, q(t), will only exceed the maximum queue length q̂max with
probability ǫ. In other words, only when the arrival process exceeds the envelope process,
will the maximum number of cells in the system exceed the estimated value. Intuitively,
by bounding the behavior of the arrival process, it is possible to transform the problem of
obtaining a probabilistic bound for the stochastic system defined by q(t) = AH(t)(t) − Ct,
into an easier problem of finding the maximum of a deterministic system, described by
q̂(t) = ÂH(t)(t)− Ct.

The mBm process is inserted into Equation 9 giving:

q̂(t) = ÂH(t)(t)− Ct =

∫ t

0
ā+ κσH(x)xH(x)−1dx− Ct (13)

In order to compute q̂max, it is necessary to find t⋆ such that

dq̂(t)

dt
= 0 (14)

or equivalently,

dÂ(t)

dt
= C (15)

The time-scale of interest, t⋆, is the time at which the queue size reaches its peak, called
the Maximum Time-Scale (MaxTS) and t⋆ defines the point in time when the unfinished
work in the queue achieves its maximum in a probabilistic sense. Hence, t⋆ can be computed
from Equation 15 as:

t⋆ =

[

κσH(t⋆)

(C − ā)

]

1
1−H(t⋆)

(16)

To evaluate the precision of the expression for the time scale of interest, simulation
experiments were conducted. A queue with constant service rate was fed by an mBm and
the queue length was recorded. The estimated time scale of interest was computed and
compared to the time at which the queue length reaches its maximum in the simulation
experiments. Figure 5 shows results for an mBm process with a polynomial quadratic Holder
function (Equation 8) as well as for real network trace. The computed value, MaxTS=948,
is the same found in the simulation experiment for the synthetic multifractal process (Figure
5.a). Figure 5.b shows the time scale of interest for the experiment using the trace MEM-
1053844177. It can be seen that the estimated time scale of interest (MaxTS=48847) closely



9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Q
ue

ue
 L

en
gt

h 
(in

 B
yt

es
)

Time (in milliseconds)

Queue EP Multifractal
MaxTS = 948

(a) H() a quadratic function

 0

 200000

 400000

 600000

 800000

 1e+06

 0  10000  20000  30000  40000  50000  60000  70000

Q
ue

ue
 L

en
gt

h 
(in

 B
yt

es
)

Time (in milliseconds)

Queue EP Multifractal
MaxTS = 48847

(b) Trace MEM-1053844177

Figure 5: MaxTS for both synthetic and real network traffic
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Figure 6: MaxTS estimated using monofractal EP for real network traffic

approximates the one found in the simulation experiments. Note that, such deviation is
within the know error margin established by the violation probability value.

In order to emphasize that a monofractal approach is inappropriate for approximating
the behavior of multifractal traffic, the time scale of interest is computed considering a
monofractal envelope process for the trace MEM-1053844177 (Table 2). The expression for
the time scale is given by [7]:

t⋆ =

[

κσH

(C − ā)

]
1

1−H

(17)

The computed t⋆ value is 4.27 ∗ 1018 for C = 1.01 ∗ ā. It can be observed (Figure 6)
that the time scale computed using a monofractal model is far away from the one obtained
via simulation. If time scales derived by monofractal models were used for dimensioning
networks with multi-scaling traffic, resources would be greatly overestimated leading to
bandwidth waste.
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5 Related work

A. Erramilli, O. Narayan, A. Neidhardt and I Saniee [2] proposed that traffic should be
modeled by random cascades at time scales smaller than a cutoff value and be represented
by an fBm at larger scales. They show that for IP traffic, the cutoff scale is of the order of
one Round Trip Time (RTT), while for VBR video it is typically of the order of a frame
duration. Erramili et. al. showed that much more accurate results can be obtained by
using their model rather than using purely monofractal models.

Other models based on multiplicative cascade have been proposed. These models map
a given sample into a binary multiscale tree [11]. Each node in the tree corresponds to
the aggregation of the traffic mapped into its descendents. Thus, nodes at higher levels of
the tree correspond to coarser time scale whereas nodes at lower levels correspond to finer
time scales. The multipliers (weights) assigned to each descendent of a node can be set to
represent a specific marginal distribution and scaling. In the wavelet-domain independent
model (WIG) [6], multipliers are independent additive innovations and correspond to the
Haar wavelet coefficient of the process represented by the binary multiscaling tree. As the
depth of the tree goes to infinite, the marginal traffic distribution tends to a Gaussian.
In the Multifractal Wavelet Model (MWM) [10], multipliers are multiplicative innovations,
generating a log-normal marginal distribution, approximately. Both models require the
setting of 2+ log2N parameters where N is the sample size. It has been shown that MWM
captures more precisely the dynamics of real traces than WIG. The major drawback of these
models, however, are the number of parameters to be fitted. Moreover, they require the
construction of multiscaling binary tree which is not suitable for on-line characterization.
These aspects prevent the use of these models for real-time bandwidth management since
the parameters of processes resulting from the aggregation of distinct traffic streams need
to be computed on-line.

Recent investigation [13] on small time scales of Internet traffic points out that monofrac-
tal behavior is observed at these scales. It is claimed that correlations at small time scales
are caused mainly by flows with bursts of densely clustered packets and not by the acknowl-
edgement mechanism of TCP. However, in our investigations using publicly available traces
we found clear multifractal behavior at these scales(Figure 1).

6 Conclusions

Scaling analysis of IP and video traffic have pointed out the multifractal nature of the type
of traffic [2] [10]. Models based on multiscaling have been proposed in the literature [11] [10].
These models, however, need the knowledge of the whole stream beforehand. Moreover, the
number of parameters to be fitted depends on the sample size.

In this paper, a novel probabilistic envelope process for multifractal traffic modeling
was introduced. The envelope process is an upper bound to the amount of work arrived
from a multifractal Brownian motion process. Extensive simulation experiments using both
synthetic and real network traffic show that the proposed model is a tight bound to the
modeled traffic. Expressions for the time scale of interest was derived. Moreover, the
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inappropriateness of monofractal models for multifractal traffic modeling was emphasized.
Currently, a comparison between the precision of the time scale of interest derived

using the mBm envelope process and the one derived using the multifractal wavelet model
[10] is under investigation. Moreover, comparisons between the loss probability predicted
by measurement-based models [3] [9] and by the mBm envelope process are also under
investigation.
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