
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

The Web Within: leveraging Web standards

and graph analysis to enable application-level

integration of institutional data

L. Gomes-Jr A. Santanchè

Technical Report - IC-13-01 - Relatório Técnico

January - 2013 - Janeiro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

The Web Within: leveraging Web standards and graph

analysis to enable application-level integration of institutional

data

Luiz Gomes-Jr∗ André Santanchè†

Abstract

The expansion of the Web and of our capacity of producing and storing information
have had a profound impact on the way we organize, manipulate and share data. We
have seen an increased specialization of database back-ends and data models to respond
to modern application needs: text indexing engines organize unstructured data, stan-
dards and models were created to support the Semantic Web, BigData requirements
stimulated an explosion of data representation and manipulation models. This complex
and heterogeneous environment demands unified strategies that enable data integration
and, especially, cross-application, expressive querying.

Here we present a new approach for the integration of structured and unstructured
data within organizations. In our framework, diverse data models are integrated in a
unifying graph. A novel query model allows the combination of concepts from Informa-
tion Retrieval and Database Management Systems into a declarative query language.
This query language enables flexible correlation queries over the unified data that can
be used to support a wide range of applications.

We show how Web technologies such as RDF can be leveraged to integrate institu-
tional data. In our approach, the SPARQL query language is extended to enable the
new query model. We also present examples of application of the model in several ar-
eas, such as CMSs, recommendation systems, social networks, etc. Experimental results
demonstrate the viability of our approach in real scenarios.

1 Introduction

Digital data availability has grown to unprecedented levels and surpassed our capacity of
storage and analysis. This new scenario has a profound impact on the way we organize
and manipulate data. We have seen an increased specialization of database back-ends and
data models to respond to modern application needs: text indexing engines organize data

∗Instituto de Computa cão, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Work partially
financed by the Microsoft Research FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project
and PRONEX-FAPESP), INCT in Web Science (CNPq 557.128/2009-9) and CAPES

†Instituto de Computa cão, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Work partially
financed by the Microsoft Research FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project
and PRONEX-FAPESP), INCT in Web Science (CNPq 557.128/2009-9) and CAPES

1

2 Gomes-Jr, Santanchè

on the Web, standards and models were created to support the Semantic Web, BigData re-
quirements stimulated an explosion of data representation and manipulation models labeled
under the NoSQL umbrella. This complex and heterogeneous environment demands unified
strategies that enable data integration and, more importantly, cross-application, expressive
querying.

Although data integration has been an active research topic for many decades, most
proposals depart from environments that do not take into account the modern diversity
of technological infrastructures. Federated databases, for example, usually adopt the rela-
tional model to integrate data sources, with limited capabilities when dealing with semi or
unstructured data. Similarly, in typical OLAP implementations, the benefits of integration
are restricted by the adopted query model: data analysts may able to answer complex ques-
tions, but there is no direct benefit to other applications inside the institution. For example,
Web developers cannot leverage the potential of the integration in their implementations
of recommendation systems because they typically work on very different query models.
Similar issues also appear in other contexts, such as the Semantic Web, which brings great
benefits for data integration but querying capabilities do not match the diversity of Web
applications.

A level of integration that covers a wide range of data models and, more importantly,
data query models would not only allow applications to incorporate more relevant infor-
mation, but would also allow more expressive queries that combine elements from different
querying paradigms. For example, consider the following queries:

• retrieve documents related to the keyword query “US elections” and the topic poli-
tics, written by democrat journalists, ranked by relevance to the keyword query and
reputation of the author;

• retrieve employees relevant to a given project ranked by their reputation among peers;

• retrieve profiles of people over 30 years old, ranked by similarity of hobbies on their
profiles to hobbies on my own;

• retrieve products not yet purchased by the client Bob that are relevant to him.

These queries cover a broad range of data models (e.g. unstructured documents, re-
lational, graph) and applications (CMSs, social networks, recommendation systems). The
queries also combine concepts from diverse query models, such as relational predicates, key-
words, ranking, and metrics of relevance and reputation. These and similar queries show
up in many situations in typical institutions, both for internal, administrative purposes
or for Web applications developed for external use. The solutions in current infrastruc-
tures typically demand a substantial amount of resources and engineering to design ad-hoc
subsystems.

To provide a richer approach for querying, enabling the correlation of data from diverse
sources and applying components from diverse query paradigms, the integration must be
tackled in the levels of data access integration, data model integration, and especially query
model integration. To tackle the integration of data models, we employ an RDF graph that

The Web Within 3

interconnects data from diverse sources and models. The flexibility of graph models allows
easy mapping from otherwise incompatible models (e.g. unstructured text and structured
databases).

As for query model integration, we aim at bridging conceptual and cognitive gaps be-
tween query models and applications. We acknowledge the importance of the Information
Retrieval (IR) and Databases (DB) fields – which dominate data-driven applications in cur-
rent settings – to propose a new query model that unifies concepts from both areas. To
enable our query model over this unifying graph, we reinterpret querying concepts from IR
into graph analysis tasks. We implement this model in a new query language called in* (in
star), which is an extension grammar for existing languages such as SPARQL.

This paper is organized as follows: Section 2 describes the requirements for data access
and model integration in our framework. Section 3 details our integrated query model.
Section 4 discusses usage scenarios. Section 5 presents experimental results. Section 6
contextualizes related work in respect to our proposal. Finally, Section 7 concludes the
paper.

2 Data model integration

The level of integration that we aim at requires solutions to three main issues: (i) unified
data access, so that queries have access to all data, (ii) unified data model, so that queries
can reference data from diverse formats; and (iii) unified query model, so that applications
can have a single interface for interaction with data. Our framework focuses on issues more
related to (iii), but we also discuss the other aspects in this section.

2.1 The local unified graph

Data integration brings many benefits to institutions. Correlating data produced by di-
verse groups in distinct contexts allows the development of more capable applications and
better data analysis. Although several researches and products were developed to address
integration issues, we argue that revisiting this problem through the perspective of the new
developments in applications and standards of the Web would allow for a better response
to modern challenges. One aspect of this reassessment regards taking advantage of the new
developments for data integration in the context of the Semantic Web.

The Semantic Web initiative has advertised the benefits of treating the Web as an inte-
grated Giant Global Graph (GGG) [4]. Similar benefits could be achieved by institutions
by integrating all their data in a Large Local Graph (LLG). A LLG lacks the diversity
and magnitude of the GGG, but it allows higher levels of control over data and local pro-
cessing power, enabling better semantic integration among distinct data sources and more
expressive querying. Another advantage of creating LLGs is that it facilitates transference
of information to and from the GGG.

The framework proposed here assumes an underlying LLG. Although our solutions have
interesting applications also in the context of the Semantic Web, we require levels of in-
tegration and processing power that are not available for the GGG in the present. We,

4 Gomes-Jr, Santanchè

therefore, focus on institutional data but expect that in the future technological advances
would allow similar interactions in a broader context.

A LLG is meant to integrate a broad range of data from an institution. Aggregation of
external data from the GGG would also be important in many scenarios. Integrating data
across domains and models is important to allow rich correlation queries between diverse
data elements. The graph model is suiting for this scenario. Its simplicity and flexibility
allows the representation of most of the popular data models [3, 5]. Figure 1 shows a
graph containing data derived from documents and relational databases (more details on
the mapping in Section 2.3).

Here we employ the RDF(S) model for the LLG for several reasons: it is a stable
and popular model, it implements a flexible graph model, classes facilitate the mapping of
other models (e.g. object, relational), integration with other standards (e.g. URI, XML),
standardized query language (SPARQL), simplified data sharing, etc.

It is important to emphasize that the strategy to create the unified graph is environment-
specific. Although we provide general guidelines on how data should be represented as nodes
and edges, our framework assumes the data are converted and interlinked in a coherent
graph. What we want to show in this paper, and our main contribution, is that popular
query models can also be translated into graph concepts, employing graph analysis in query
processing. To take full advantage of the model, users should be aware of the semantics
of the elements composing the graph. In that regard, our strategy is similar to an OLAP
environment, in which the query model assumes data are integrated in a multidimensional
schema – according to whichever strategy is adequate for the specific environment.

2.2 Data access integration

Integration of data access is a complex issue that requires considerable planning and en-
gineering. A typical solution has to balance data redundancy with freshness. Redundant,
localized repositories have better reading performance and allow for more complex data
transformation workflows, while distributed federated databases allow access of up-to-date
data and facilitate writes. The ultimate decision on which approach or combination of tech-
nologies is more adequate depends on the data and queries the institution plan to integrate.

In our RDF model of the LLG, we adopt the quadruple interpretation, in order to
allow the specification of distinct graphs (a graph provenance URI complements the triple).
In this setting, an institution could create separate graphs based on departments or data
domains. The main challenges in creating these graphs are similar to the ones faced by any
data integration strategy, covering aspects of syntactic and semantic integration.

Semantic integration between graphs (i.e. record linkage and deduplication) must em-
ploy traditional techniques of data cleaning. The difference is that here the result of these
processes is the creation of sameAs properties between elements of the graphs, as typically
done in Semantic Web applications. An important distinction regarding our query model
(Section 3) is that edge traversals through sameAs properties must be cost-free.

The Web Within 5

Figure 1: Data elements represented as a unified graph

2.3 Data model integration

There are several alternatives for mapping a given data model into graphs. Although our
framework works independently of the strategy adopted, we provide guidelines on basic
transformations of typical models. Here we focus on text documents and the relational
model. The mapping for other models, such as semi-structured or NoSQL variations, can
be derived by similar approaches.

There are several alternatives for mapping a relational scheme to an RDF graph [3, 5].
There is even a W3C working group1 to define standards for these mapping languages.
Here, to simplify the discussion, we assume that (i) table descriptions become RDF classes,
(ii) rows become instances of their respective tables, with their primary keys as identifiers,
(iii) columns become properties of the instances, with values corresponding to literals and
foreign keys becoming explicit links to other instances.

Graph representation of documents for IR purposes is also possible. An inverted index
(in the bag of words model) can be readily mapped into a graph that connects terms and
documents. More modern schemes to index documents such as topic models [7] and explicit
semantic analysis [19] also fit nicely into this strategy, bringing the benefits of reduced
dimensionality (i.e. avoiding creating an unnecessarily large graph containing entire postings
list), less semantic ambiguity, and more cognitive appeal.

In our framework, a keyword query is also represented as a (temporary) node in the
graph. The same indexing strategy used for the stored documents is applied to generate
the relationships of the query node (Figure 1). This graph representation of keyword queries
allows them to be expressed alongside structured predicates in the queries (Section 3.4).

Figure 1 shows a simplified example to illustrate all these elements represented as a
unified graph. News articles about products are mapped into entities according to a given
IR indexing/annotation technique (e.g. topic modeling, named entity recognition, etc). A
keyword query is likewise mapped into these entities. Relational data from tables (Project,
Employee) are also mapped into nodes in the graph and also connected to the entities. In
the remaining of the paper we stop distinguishing between structured and unstructured

1http://www.w3.org/2001/sw/rdb2rdf/

6 Gomes-Jr, Santanchè

data, assuming the data models are integrated in the unifying graph.

3 Query model integration

Data access and model integration brings many benefits to institutions, providing a unified
path for interaction with data. This interaction is, however, usually constrained by the
data model and the query language employed for the integration. For example, in a typical
OLAP setting, data are integrated in a data warehouse, but no direct benefit is gained by
applications such as institutional search engines. The problem is that there is a conceptual
gap between the interaction language in the integration infrastructure (OLAP) and the
languages used by the applications (keyword queries, SQL, etc.).

Here we adopt a top down analysis to specify a query language that can be employed in
a broader range of applications. We start from the analysis of the main query models used
by application and then select the strongest characteristics of the models as components of
our integrated language. The goal is to specify a language that can express concepts from
diverse interaction models in a unified and intuitive way.

3.1 Information Retrieval and Databases

The two main groups of models for data driven applications today are those associated
with Information Retrieval and Database Systems. It is natural that these two areas at-
tained such distinction over the last decades. They together cover a broad range of the
data structuring spectrum – from unstructured data in documents to structured data in
relations. Typical applications in IR include search engines, recommendation systems, so-
cial networks etc. Applications taking advantage of DBMSs are ubiquitous, being through
traditional relational databases or the more recent models for document databases, XML
and semistructured databases, graph databases and the NoSQL movement. To specify a
query language that could be used in such a diverse scenario it is important to identify the
main characteristics of these areas.

Keyword queries and ranking are important concepts from IR, as other integration
approaches have identified [26, 8, 2]. Significant research efforts have been dedicated to
enable efficient ranking and keyword queries in a wider range of data model (e.g. relational,
XML). Although central piece of an integrated approach, we think that efficient ranking
and keywords are far from being everything that IR can offer in terms of data manipulation
strategies.

The IR field has been very successful in offering simple but efficient means for users
to input their information needs and to get sensible results back. User interaction in a IR
system typically starts with keyword queries and ends with ranked results. However, the key
to the success of such systems and what makes a search engine or a recommendation system
a market leader is the profound ways in which the systems correlate the underlying data.
The complex algorithms that make it all possible are hidden behind the query interface.
An integration approach should enable this type of complex correlation queries in a unified
manner across diverse data models and tasks.

The Web Within 7

IR metrics like relevance and reputation are recurrent to many applications, and there
is no reason why such concepts should be restricted to document retrieval. The same
cognitive interpretation of these metrics would hold for typically relational data (e.g. the
reputation of managers or the relevance of employees to a given product). This type of
expressive querying should also cross the boundaries between unstructured and structured
data, allowing an integrated analysis (e.g. what is the employee most relevant to a given
news article). Other examples of this type of integrated querying are widespread across
applications, as we intend to portray here.

The interaction with typical DB systems is also remarkably powerful. Declarative queries
empowers users to express their information needs precisely, and the results are returned in
a predictable format. The processing in-between is just as important: declarative queries
enable the system to transparently optimize data access and computation strategies. There-
fore, declarative querying should also be a key element in an integration framework.

Here we propose a new query model that takes all the discussed characteristics into
account: providing a declarative query language that can express concepts form traditional
IR and Database systems, and compose results (optionally) as ranked lists. The challenge
is to enable all these features over the unified graph model (LLG) presented.

Declarative querying and traditional database concepts like selections, projections and
aggregations are already provided by RDF query languages such as SPARQL. The remaining
issues are related to enabling IR-like ranking metrics that now have to be reinterpreted in
an RDF graph setting.

3.2 Graph representation of IR ranking metrics

The IR ranking metrics addressed in this paper are: relevance, reputation, influence, simi-
larity, and context. As far as we know, this is the first time that these metrics are considered
and defined under the same conceptual framework. Although these metrics are often associ-
ated with IR, they express cognitive processes or patterns that we use to assess correlation
of entities in the real world, and which are the basis of many data-driven applications. The
selection of the specific metrics aims at covering a wide range of applications while also
being simple to use and understand.

The translation of the ranking metrics to the unified graph strategy is a challenging
task. Here we adopt a Spreading Activation (SA) [9] model for our novel interpretation of
the IR metrics.

The Spreading Activation model

Spreading Activation methods were developed to infer relationships among nodes in asso-
ciative networks. The mechanism is based on traversing the network from a initial set of
nodes, activating new nodes until certain stop conditions are reached. By controlling several
aspects related to this activation flow, it is possible to infer and quantify the relationships
of the initial nodes to the reached ones.

The SA model used here is defined by the parameters G, N , I, O, a, t, d, c, and l
described, alongside other definitions, in Table 1. A SA process starts with the N nodes

8 Gomes-Jr, Santanchè

initially activated with potential a. Output potentials for each node are calculated by
the function O. The output potential is spread through all edges whose labels are in l.
The potential for the reached nodes is calculated by function I. For the next iteration, the
potential is spread, restarting the process, as long as the current potential for reached nodes
is higher than t and the number of iterations is lower than c.

IR metrics according to the SA model

In the SA model, to assess the rank of the relationship of nodes according to a metric, an
activation potential is placed at the target elements defined in the query. The potential is
spread across the topology of the graph, losing or gaining strength based on the IR metric,
length of the path, or properties of the traversed elements. The metric-specific definitions
of the SA processes are presented below.

Def. 1. relevance(n,m) = v(SA({n})m),

with O(n) =
I(n) ∗ d
|out(n)|

Relevance between two nodes is a measure that encompasses correlation and specificity.
Correlation is proportional to the number of paths linking the two nodes and inversely
proportional to the length of the paths. Specificity favors paths with less ramifications. It
is easy to observe that traditional tf*idf weighting over data as in Figure 1 is an instance
of this definition (for trivial paths of length one).

Def. 2. reputation(n,N) = v(SA(N)n)
Reputation of a node measures how effective it is as a hub for information flow. Here the

nodes of interest are activated at the beginning and the ranking scheme favors nodes that are
revisited in the sequence of the SA process. This is a simple but convenient interpretations
in scenarios where the reputation cannot be pre-calculated due to high update rates or
variability in the types of relationships used for the queries.

Def. 3. influence(n) = |(SA({n}))|
Influence is a specialization of reputation where the only concern is the number of nodes

reached from the origin. The topology of the graph – in/outdegree or cycles – do not
influence the metric.

Def. 4. similarity(m,n) =
|p(SA({n})) ∩ p(SA({m}))|
|p(SA({n})) ∪ p(SA({m}))|

Similarity measures the ratio of common relationships (same edge label linking common
nodes) between two nodes.

Def. 5. context(m,n) =
|SA({n}) ∩ SA({m})|
|SA({n}) ∪ SA({m})|

Context is a specialization of similarity where edge labels do not matter.

3.3 Semantics of ranking metrics in queries

Having the ranking metrics interpreted as graph analysis tasks, there is now the need of
integrating these metrics in a declarative language. As opposed to creating an entirely new
query language, we decided to leverage existing languages by defining an extension language
that can be integrated into other languages. To that extent, we first define the semantics
of the intended integration.

The Web Within 9

In our model, the proposed ranking metrics are intended to be used with graph query
languages that offer: (i) means to reference individual nodes in the graph, (ii) selection of
match variables, and (iii) query results as a set of tuples (or a graph representation of).
These are basic components of SPARQL and other graph query languages. A ranking metric
can refer to:

• a single match variable (set of vertices), e.g.“rank papers from WWW 2012 according
to first author reputation”, where first author is the match variable in question (e.g.
“SELECT ?firstAuthor ...” in SPARQL);

• a given vertex2 and a match variable, e.g. “rank papers according to relevance of
their first author (match variable) to the topic data integration (vertex)”;

• two match variables, e.g.“rank papers according to relevance of the first author to the
topic in the first keyword of the paper”.

Conceptually, the ranking metrics are applied to query results, generating a ranking
value for each returned tuple. In practice, to speed up query processing, results would be
approximate and the rank would be generated for some of the nodes based on access pattern
heuristics.

3.4 Extending Declarative Queries

A convenient way to integrate the ranking metrics into existing query languages is to add
a “RANK BY” clause. The clause should enable an arbitrary combination of metrics that
expresses the global raking condition defined by the user. We encode the clause in the
extension query language that we denominated in* (or in star). in* can then be used to
extend other languages, for example, extended SPARQL becomes inSPARQL. This strategy
is a good fit for graph languages with SQL-inspired syntaxes, such as SPARQL and Cypher3.
A similar strategy could be developed to other types of languages.

Note that the extension causes query semantics and result interpretation to change,
therefore, any extended language would be more adequately described as new language
based on the syntax of the original language. This suggests another meaning for an acronym
like inSPARQL: recursively, “inSPARQL is Not SPARQL”.

Figure 2 shows a simplified BNF grammar of the proposed extension. A ranking can be
specified as mix of (labeled) weighted ranking metrics (line 3). Weights capture the relative
importance of each labeled metric. Ranking metrics are unary or binary. Unary ranking
metrics are applied to a single match variable (lines 5 and 6). Binary ranking metrics can
be applied to a match variable and a named vertex or between two match variables.

The language allows for modifiers (lines 11 to 14) to be applied to the ranking definitions.
FOLLOW specifies valid edges for the algorithm to traverse. DEPTH defines the maximum
length for the traversal paths. DIRECTION sets the direction of traversal as outbound,
inbound or both (default) edges.

2as defined previously, a keyword query would also be a node in the graph
3http://docs.neo4j.org/

10 Gomes-Jr, Santanchè

Figure 2: Simplified BNF grammar for the proposed extension (terminators omitted)

4 Usage scenarios

In this section elaborate on usage scenarios for the framework, from architectural aspects
to applications.

4.1 GIRDB

We have so far discussed our framework in general terms, with little focus on implementa-
tion or architectural aspects. The proposed query model implies new requirements for user
interaction, query processing and data management. We concentrate these new require-
ments in a database system architecture that we denominated GIRDB (Graph Information
Retrieval Database system).

A GIRDB (Graph Information Retrieval Database system) is a system for which (i)
there is a unified query mechanism with a single declarative query language that seamlessly
expresses information needs that mix typical concepts from DB and IR areas; and (ii) the
underlying data are transparently modeled as an integrated graph. The architecture of such
system and data managements aspects are discussed in another paper [10].

4.2 Applications

The combination of the IR-inspired metrics in a declarative querying setting enables a high
level of flexibility and expressiveness for the applications to explore. In the next paragraph
we show and discuss some examples of queries that can be used for practical applications.

Search engines/CMSs: Figure 3a shows a possible implementation for a document
retrieval query using topic modeling. The keyword query is expressed by the function

The Web Within 11

KWQUERY and the relevance is assessed as if the query was a node in the graph. The query
also takes into account the reputation of the authors and the relevance of documents to the
topic :Politics (assessed based on the connections between the query node and documents
that are created by a Topic Modeling algorithm such as LDA).

Other aspects of a GIRDB not discussed in this paper would be interesting matches
to implement novel CMS architectures like in Ngomo et al. [20]. Our metrics would also
allow query answering based on the context of the user or a context defined by the user,
implementing a query model such as the one proposed by [21]. Graph-based term weighting
[6] could also be simulated in our query model.

Recommendation systems: Figure 3b shows a product recommendation query that
finds products that the client Bob (with uri :bob) has not purchased. The query traverses
Bob’s friendship network to find products purchased by his friends that might be relevant
to him. The spreading activation interpretation of this query evaluation also implies that
products purchased by Bob, even though they do not appear in the results, will be traversed
on the way to customers that have co-purchased these products, which in turn will activate
other products from these customers.

Social Networks: Figure 3c shows a query that could be used for friend suggestion
on a social network application. It ranks the top 5 persons over a given age based on the
similarity of hobbies and movie preferences of user Alice.

Collaborative filtering: Figure 3d shows a query that filters posts from pages that
friends of user Carol follow. The posts are ranked based on their influence in the network.

Decision support: Figure 3e shows a query that can be used to prospect for employees
that would be good candidates to replace a manager (Charlie) in his post. The query favors
employees strongly related to a (presumably important) product (yPhone) and also those
that have professional contexts similar to the current manager.

Other applications: Similar queries could be used in several other scenarios, especially
the ones with richly interconnected data and that require complex analysis of the correla-
tions. Some examples are Semantic Web inference applications, were assessing correlations
between classes and candidate instances can be complex [1]. The scientific domain is another
interesting application field. For example, in a database with food network relationships, a
query could identify relevant species or areas for conservation efforts.

5 Experiments

Here we show results for experiments in the proposed query model. We focus on reports for
the relevance metric, which we consider a good representative of the model because of its (i)
applicability in many areas, (ii) cognitive appeal, and (iii) challenges for query processing.
The experiments are meant to show the impacts of parameter tuning of the SA model in
the execution time and accuracy.

The database used in the experiments is the Linked Movie Data Base (LinkedMDB)
[12], which we think is a good representative for the type of unified graph we aim at. The
database integrates data from several sources (FreeBase, OMDB, DBpedia, Geonames, etc).
The process used to semantically integrate the distinct sources is similar to what is done in

12 Gomes-Jr, Santanchè

Figure 3: Examples of extended SPARQL queries (namespaces have been omitted)

Figure 4: Baseline query for the experiments

a typical Data Warehouse and precisely what we envision to be the workflow for the usage
scenarios of our framework. The database contains 233,103 entities and 3,579,616 triples.
The database represents the bulk of the relevant production in a real and important area
of human activity, demonstrating that our framework can be applied to real scenarios.

The query used in the experiments is shown in Figure 4. The query combines graph
pattern matching and structured filtering (equivalent to selection in relational algebra)
predicates and our new RANK BY clause. The query returns actors that acted in films
directed by Woody Allen in the 90‘s. The results are ranked by relevance of the actors to
Woody Allen (director). This query should be interpreted as raking actors according to how
linked to the director their careers are – a common pattern throughout Allen’s idiosyncratic
production.

Although it would make sense in a real scenario, we do not restrict which properties
(edges) are traversed in query processing (i.e. using the FOLLOW modifier in the query).
Doing so would reduce execution time and perhaps make result interpretation more straight-
forward, but we think the unrestricted query better probes the robustness of our model.

5.1 Baseline

As the baseline for the performance and accuracy experiments, we executed the query in
Figure 4 with parameters [t=0.1, d=0.9, c=3, a=100]. These are conservative parameters
that showed good results in our analysis. Parameter c, which has the biggest impact in
performance predictability, was set at 3 because this is the length of the path for most

The Web Within 13

Figure 5: Correlation and normalized execution time for variation of parameters d, t, and
c (in respect to the baseline)

important relationships between actors and directors (performances are linked to films by
an intermediate :performance resource, and directors are directly linked to films). The next
section shows how varying the parameters affect performance.

The top-10 and bottom-10 ranked performers are shown in Table 2. The analysis of the
results reaffirms that the graph interpretation of relevance proposed here is indeed strongly
correlated to the typical interpretation of relevance in IR applications. The top ranked
actor is Woody Allen himself4. Allen is well known for interpreting roles in his films, and
he rarely performs in films from other directors. Mia Farrow, the second highest rank, has
her career strongly linked to the director5, acting in 13 of Allen’s films, out of her total of
39 films registered in the database.

Less known actors also appear in the top-10 list. Hazelle Goodman, for example, have
only one performance recorded in the database, which would make her career highly linked
to Woody Allen6. The database does not have complete castings for the movies, especially
for small roles, which should not affect ranking for most practical applications.

Low ranking actors are usually actors that participated in many films but few of them
were directed by Woody Allen. This is the case for Robin Williams and Sean Penn, for
example, which perform in only one of Allen’s films. The interpretation is that low ranked
performers would by no standards have their careers linked to Woody Allen, despite having
been cast in their movies.

5.2 Parameter tuning

The parameters in our SA model ultimately determine how far the activation process would
go in its exploration of the graph. This has consequences in terms of performance and com-
pleteness of query execution. Relaxed values for the parameters, which would allow bigger
portions of the graph to be included in the query, have expensive computational require-

4LinkedMDB uses distinct descriptors for the actor and the director, implying that they are separate
entities

5note that non-professional interactions are absent from the database
6she is credited in IMBD as the first person of Black origin to have a major role in a Woody Allen film

14 Gomes-Jr, Santanchè

ments, but render more contextualized ranking that might include non-obvious aspects of
the correlation of the elements in the query. The best balance between performance and
completeness is application-specific. Here we want to demonstrate how parameter tuning
affect these aspects.

Decay factor (d): Figure 5 (left) shows the values for normalized execution time and
correlation for decay factors varying from 0.9 to 0.02. To assess correlation between the
produced ranks and the baseline, we used the Kendall tau rank correlation coefficient [16].
The graph shows how both execution time and correlation drops as we use more aggressive
values for d. Lower values for d mean faster degrading of the activation potential, which
implies more effective pruning of the expanding activated network.

Activation threshold (t): Figure 5 (middle) shows the values for normalized execution
time and correlation for decay factors varying from 0.1 to 4. As with the decay factor,
correlations falls at rates proportional to performance gains. Appropriate values might be
set according to query-specific tolerance for inaccuracies and performance requirements.

Depth (c): c is the parameter whose impact in performance is most predictable, since it
directly limits the growth of the diameter of the activated network. Figure 5 (right) shows
how execution time increases sharply as c grows. The correlation between the ranking,
however, stays stable: correlation between c=3 and c=4 is 0.99, and values higher than
that show total correlation and convergence of scoring. Therefore, the results show that
close to optimum scoring can be achieved with low values of c.

The graph shows that the sharp increase in execution time is slowed down by the self-
containing characteristic of the SA algorithm. More aggressive parameter tuning would of
course increase this effect. For example, setting t=1 reduces execution time to less than
one third for c=6.

5.3 Discussion

The experiments indicate that our approach is practical in terms of performance, a major
concern with the type of graph analysis involved. Execution times for the metric in the
baseline query took under 3 seconds. We think this would already be an interesting achieve-
ment for the non-trivial query, database, and computations we are dealing with, but there
is room for radical improvements.

We ran the experiments in a desktop machine that was querying a remote database
server. This means that, in practice, we were issuing one remote procedure call (RPC) per
step of the computation, which made network communication the bottleneck as processors
and memory for the server and client were underused. As mentioned before, the goal is to
have the computation of the metrics integrated inside the query processor.

Moreover, to simplify implementation and facilitate incremental design of our query
processor, we are employing a tall stack of APIs7 that can be reduced for further performance
gains.

The LinkedMDB data has many hub nodes (nodes with high degree), notably the nodes
representing classes (e.g. class actor has 50603 instances) which could affect the performance

7our implementation stack includes the graph traversal language Gremlin, the Blueprints and OpenRDF
frameworks, and the Virtuoso triple store

The Web Within 15

of the algorithm. We implemented an artificial mechanism to filter out these nodes, but
tests showed that filtering out hubs had little performance impact (approximately 8%) and
no influence in the rankings (average difference of score is 2.71 ∗ 10−5). This shows how the
SA model does well in degrading the activation potential of the hubs, avoiding computations
that would contribute little to the final score.

Appropriate tuning of the parameters is related to diverse properties of the traversed
graph. The most important variables are (i) the expected average path length between
the source and the destination nodes, and the (ii) expected branching factor in the paths.
These variables can be calculated or estimated by the query processor to allow automatic
tuning of parameters. We are working on defining the important statistics to maintain and
on designing heuristics for this automation.

6 Related work

We now discuss related work on data integration in various levels: from data access in-
tegration, through syntactic/semantic integration, and up to application or query model
integration. Integration at any level is highly dependent on the lower levels.

6.1 Data access integration

The first level of integration must provide a unique access point for the data. This can
be accomplished by basically two approaches: centralizing the data or connecting the data
sources in an infrastructure that simulates a centralized repository. Centralized integration
of institutional data is typically related to the deployment of data warehouses or data marts
[14]. Data centralization approaches have also been proposed in the context of the Semantic
Web [12], and the DBpedia project8 is a notable example of this type of approach.

The research on Federated Databases aims at providing a unified view of the data while
maintaining the autonomy of the data sources [25]. In the context of the Semantic Web,
Schwarte et al. [24] have proposed a federation layer for Linked Open Data. Schenk and
Staab [23] have proposed a mechanism for the specification of views over Linked Data,
enabling declarative federation of data sources.

Our framework is independent of the specific strategy chosen for data access integration.
The requirement is that all interaction is done as if the data was integrated in a unified
graph. Whether this integration is done through federation or physically integrating the
data is an architectural decision based on expectations of performance and requirements for
preserving the autonomy of data sources.

6.2 Data model integration

The next step towards data integration regards enabling data manipulation under a unified
model. Federated databases frequently employ the relational model (common among data
sources) for the integration. Data minig, which has application-specific requirements, favors
the multidimensional model [15].

8http://dbpedia.org/

16 Gomes-Jr, Santanchè

In the Semantic Web, the adopted unifying model is the RDF graph. The Resource
Description Framework (RDF)9 is a general-purpose language created for representing in-
formation about resources in the Web. The basic unit of information is a statement triple,
which contains a subject, a predicate, and an object. All elements in a triple are identified
by URIs (except for objects that can also be literal values). Triples can refer to each other,
forming a graph. The advantage of the RDF model comes from its simplicity, enabling the
representation of data from a wide range of domains.

There has been a substantial amount of research in mapping other data models into
RDF [3, 5]. The W3C RDB2RDF Working Group10 is defining languages and standards
for mapping relational databases into RDF.

Besides having the data in a unified representation model, it is important to correlate
data from the diverse sources into unified concepts. In the relational world, this process is
know as record deduplication or linkage and is part of the ETL (Extraction Transformation
Loading) workflow [11]. In the Semantic Web, the usual way to represent these correlations
is the creation of sameAs relationships between entities. These relationships can be cre-
ated manually or by automated processes. Hassanzadeh and Consens [12] employ several
string matching techniques to correlate Linked Open Data from diverse sources to create
an interlinked version of a movies database.

In this proposal, we assume that the institutional data is integrated in an RDF graph.
This allows us to take advantage of other standardized technologies developed in the context
of the WWW and the Semantic Web, such as universal identification through URIs, semantic
integration through sameAs relationships, and the SPARQL query language.

6.3 Query model integration

Once data is integrated, it becomes possible to pose queries that could not be answered
before, producing more valuable information for institutions and the public. The integration
approaches, however, typically focus on integrating data under a specific query model, such
as the relational or OLAP. This usually constrains the range of data models that can be
integrate and, foremost, restricts direct querying of the integrated data from applications
that use other query models.

Recently, there has been initiatives aimed at tackling integration at the application/query
level. The research community has identified the interplay between the fields of Databases
(DB) and Information Retrieval (IR) as a means to improve data integration and query ex-
pressiveness across applications [8, 2]. The drive to integrate the areas stems from the fact
that they represent the bulk of data stored and processed across institutions. Furthermore,
either field has been very successful by their own but still faces challenges when dealing
with interactions typical to the other field.

The integration of the IR and DB areas has been an important topic in the agenda of
the research community for many years. Following the initial identification of challenges
and applications, several successful approaches were proposed and implemented [26]. Most

9http://www.w3.org/RDF/
10http://www.w3.org/2001/sw/rdb2rdf/

The Web Within 17

prominent research focuses on keyword queries over structured data and documents, top-k
ranking strategies and extraction of structured information from documents.

Keyword query research draws from the simple yet effective keyword query model to
allow integrated querying over documents and structured data. Most of the frameworks
match keywords to documents, schema and data integrated in a graph structure. The
connected matches form trees that are ranked based on variations of IR metrics such as
tf*idf and PageRank. Some of the research focus on optimizing the top-k query processing
[17] while others implement more effective variations of the ranking metrics [18].

Keyword queries over structured data are intended for tasks where the schema is un-
known to the user. The techniques are effective for data exploration, but there is no support
for more principled interactions. There are conceptual and structural mismatches among
queries, data and results that make returned matches hard to predict and interpret.

The research on Top-k queries focus on enabling efficient processing of ranked queries
on structured and semi-structured data. Ranking is based on scores derived from multiple
predicates specified in the query. The main challenge is to compute results avoiding full
computation of the expensive joins. The proposals vary on adopted query model, data
access methods, implementation strategy, and assumptions on data and scoring functions
(see [13] for a contextualized survey).

Scoring functions enable ranking based on properties of data elements. There is, how-
ever, no simple means to rank results based on the context of elements or how they are
correlated, typical requirements for IR-like applications.

Information Extraction refers to the automatic extraction from unstructured sources
of structured information such as entities, relationships between entities, and attributes
describing entities [22]. Loading the extracted facts on a DBMS allows declarative querying
over the data. This is a one-way, data-centric type of integration of DB and IR. The
integration proposed here focuses on unified querying and data models.

We argue that the mentioned approaches tend to focus on infrastructure issues related
to extremes of enabling the type interaction present in one area over the data model of the
other. In this paper we take a top-down approach to modeling the integration, questioning
what are the main and defining properties of each area, and how to offer a unified, non-modal
interaction over data and query models.

7 Conclusion

We showed how modern standards and technologies developed to solve integration issues
on the Web can be applied in a unifying framework for institutional data. Representing
the integrated data as a graph is a good strategy for data model integration. Our main
contribution is on extending this type of integration to a higher level of abstraction, tackling
integration of query models.

In our approach, the key to achieve more expressiveness at the query level is the com-
bination of IR concepts in a declarative model. Keyword queries, ranking, and especially,
effective metrics are important aspects in the integration. Our query model redefines IR
metrics that rank entities based on the topology of their correlations. To the best of our

18 Gomes-Jr, Santanchè

knowledge, this is the first time the IR metrics presented are considered and formalized un-
der the same model. Similarly, we are not aware of other ranking strategies that enable the
level of expressiveness offered by the combination of our metrics and a declarative language.
This combination allows data correlation queries that cover a wide range of applications.

As suggested by the query examples presented (Figure 3), it is possible to represent
information needs that would require a level of data analysis that is beyond current imple-
mentations of typical DB or IR systems. In fact, answering the type of queries introduced
here in a typical technological environment nowadays would require substantial engineering
for the implementation of ad-hoc solutions.

Higher levels of expressiveness, however, always imply challenges to meet performance
requirements. Our experiments demonstrate how the self-containing characteristics of the
SA model can establish boundaries for query processing. SA has so far proved adequate to
our setting, but since we adopt declarative queries, other processing models could be used.
Simpler algorithms could be envisioned for specific cases, but we feel that the flexibility
of the SA model, accommodating diverse topologies and path lengths, would be hard to
replicate in other models.

Our experiments show that our processing model is adequate for practical applications,
but to match the expanding availability and complexity of data, improvements in perfor-
mance become a priority. We are exploring several strategies in that regard, from heuristics
for query optimization and parameter tuning to a hybrid graph analysis model that com-
bines SA with random walks.

We expect query-level integration to become increasingly important as our technological
landscape continues to diversify. We showed how our model can cover a broad range of
models and applications. Our experiments indicate the practicability of our approach.
Further query processing optimizations, in terms of architecture and heuristics are viable
and will improve the applicability of the framework.

References

[1] H. Alves and A. Santanchè. Abstract framework for social ontologies and folksonomized
ontologies. In SWIM. ACM, 2012.

[2] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and G. Weikum. Report
on the DB/IR panel. SIGMOD Record, 34(4):71–74, Dec. 2005.

[3] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller. Triplify: light-
weight linked data publication from relational databases. In Proceedings of the 18th
international conference on World wide web, WWW ’09, 2009.

[4] T. Berners-Lee. Giant global graph. online posting, 2007.
http://dig.csail.mit.edu/breadcrumbs/node/215.

[5] C. Bizer. D2rq - treating non-rdf databases as virtual rdf graphs. In Proceedings of the
3rd International Semantic Web Conference (ISWC2004), 2004.

The Web Within 19

[6] R. Blanco and C. Lioma. Graph-based term weighting for information retrieval. Inf.
Retr, 15(1):54–92, 2012.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3(4-5):993–1022, 2003.

[8] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR technologies:
What is the sound of one hand clapping? In CIDR, pages 1–12, 2005.

[9] F. Crestani. Application of spreading activation techniques in information retrieval.
Artif. Intell. Rev, 11(6):453–482, 1997.

[10] L. Gomes-Jr and A. Santanchè. Revisiting db/ir integration: graph-based data and
query model unification. In submitted to the International Conference on Extending
Database Technology (EDBT 2013), 2013.

[11] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2006.

[12] O. Hassanzadeh and M. Consens. Linked movie data base. In Proceedings of the 2nd
Workshop on Linked Data on the Web (LDOW2009), 2009.

[13] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys, 40(4):11:1–11:58,
Oct. 2008.

[14] C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design: Rela-
tional and Dimensional Techniques. Wiley, 2003.

[15] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of Data Ware-
houses. Springer, 2003.

[16] M. G. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.

[17] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword
proximity search. In PODS, 2006.

[18] Y. Luo, W. Wang, X. Lin, X. Zhou, J. Wang, and K. Li. SPARK2: Top-k keyword
query in relational databases. TKDE, 23(12):1763–1780, 2011.

[19] S. Markovitch and E. Gabrilovich. Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In IJCAI, 2007.

[20] A.-c. N. Ngomo, N. Heino, and M. Kaltenb. SCMS - Semantifying Content Management
Systems. In The Semantic Web - ISWC 2011, pages 189–204, 2011.

[21] M. A. Rodriguez, A. Pepe, and J. Shinavier. The Dilated Triple. In Emergent Web In-
telligence: Advanced Semantic Technologies, pages 3–16. Springer London, June 2010.

20 Gomes-Jr, Santanchè

[22] S. Sarawagi. Information extraction. Foundations and Trends in Databases, 1(3):261–
377, 2008.

[23] S. Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In WWW, 2008.

[24] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: A federation
layer for distributed query processing on linked open data. In ESWC (2), volume 6644
of Lecture Notes in Computer Science, pages 481–486. Springer, 2011.

[25] A. Sheth and J. Larson. Federated database systems for managing distributed, hetero-
geneous, and autonomous databases. ACM Computing Surveys, 22(3):183–236, 1990.

[26] G. Weikum, G. Kasneci, M. Ramanath, and F. Suchanek. Database and information-
retrieval methods for knowledge discovery. Communications of the ACM, apr 2009,
52(4):56–64, Apr. 2009.

The Web Within 21

notation description

SA(N) a set of activated nodes after the ex-
ecution of the spread activation pro-
cess defined by parameters G, N , I,
O, t, d, c, l; parameters other than
N are omitted for brevity

SA(N)n n ∈ SA(N)

G unified data graph

N or M set of initially activated nodes. n or
m represent nodes from the respec-
tive sets

I(n) function that calculates the input po-
tential of a node. I(n) =

∑
i∈in(n)

O(i)

in the general case

O(n) function that calculates the output
potential of a node. O(n) = I(n) ∗ d
in the general case

in(n) set of nodes with outbound edges
linked to n

out(n) set of nodes linked by outbound
edges from n

a, t, d, c respectively, initial activation po-
tential, firing threshold, decay fac-
tor, maximum number of iterations
(depth)

l set of labels that determine valid
nodes for traversal

v(n) final potential value for node n

p(N) set of activation paths (for each node
in N)

Table 1: Notation used in the definitions

22 Gomes-Jr, Santanchè

top 10 name bottom 10 name
1.89 Woody Allen 0.03 Stanley Tucci
0.79 Mia Farrow 0.03 William Hurt
0.59 Tony Darrow 0.03 Dom DeLuise
0.53 Julie Kavner 0.03 Kathy Bates
0.50 Brian Markinson 0.03 John Malkovich
0.40 Hazelle Goodman 0.03 Anthony LaPaglia
0.39 Diane Keaton 0.03 Sean Penn
0.29 Mayim Bialik 0.02 Uma Thurman
0.29 Ted Bessell 0.02 Donald Pleasence
0.28 Tracey Ullman 0.02 Robin Williams

Table 2: Top-10 and bottom-10 ranked results for the baseline query (total of 98 returned
actors)

