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The total chromatic number of some families of snarks
∗

C. N. Campos† S. Dantas‡ C. P. de Mello†

Abstract

The total chromatic number χ
T
(G) is the least number of colours needed to colour

the vertices and edges of a graph G, such that no incident or adjacent elements (vertices
or edges) receive the same colour. It is known that the problem of determining the total
chromatic number is NP-hard and it remains NP-hard even for cubic bipartite graphs.
Snarks are simple connected bridgeless cubic graphs which are not 3-edge colourable.
In this paper, we show that the total chromatic number is 4 for three infinite families
of snarks, namely, the Flower Snarks, the Goldberg Snarks and the Twisted Goldberg
Snarks. This result reinforces the conjecture that all snarks are type 1. Moreover, we
give recursive procedures to construct 4-total colourings in each case.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). An element of G is a
vertex or an edge of G. A subset of V (G)∪E(G) is independent if its elements are pairwise
nonadjacent and nonincident. If S ⊆ E(G), then V (S) is the set of the ends of the edges of
S. The graph induced by S, G[S], is the graph whose vertex set is V (S) and edge set is S.
As usual, we denote by d(v) the degree of v ∈ V (G) and by ∆(G) the maximum degree of
G.

Let S = E(G) and let C be a set of colours. An edge colouring of G is a mapping
φ : S → C such that, for each adjacent elements x, y ∈ S, we have φ(x) 6= φ(y). It is well
known that the mininum number of colours needed to colour the edges of a simple graph
G is either ∆(G), or ∆(G) + 1 [1]. We say that G is class 1 in the first case and class 2 in
the second case.

Let S = V (G) ∪ E(G). A total colouring of G is a mapping φ : S → C such that, for
each adjacent or incident elements x, y ∈ S, we have φ(x) 6= φ(y). If |C| = k, then mapping
φ is called a k-total colouring. Let π be an assignment of colours to a set S ⊆ V (G)∪E(G).
Let x ∈ S; we say that c occurs in x if either π(x) = c, or there exists y ∈ S adjacent to, or
incident with, x such that π(y) = c. If there exist x, y ∈ S which are adjacent or incident
and such that π(x) = π(y), we say that π has a conflict.

The total chromatic number of G, χ
T
(G), is the least integer k for which G admits

a k-total colouring. Clearly, χ
T
(G) ≥ ∆(G) + 1. Sánchez-Arroyo [2] has shown that

∗Partially supported by CNPq, FAPESP and FAPERJ
†Institute of Computing, University of Campinas.
‡Institute of Mathematics, Fluminense Federal University.
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2 Campos, Dantas e de Mello

deciding whether χ
T
(G) = ∆(G) + 1 is NP -complete. McDiarmid and Sánchez-Arroyo [3]

have shown that even the problem of determining the total chromatic number of k-regular
bipartite graphs is NP -hard, for each fixed k ≥ 3. The Total Colouring Conjecture (TCC),
posed independently by Behzad [4] and Vizing [1], states that every simple graph G has
χ

T
(G) ≤ ∆(G) + 2. If χ

T
(G) = ∆(G) + 1, then G is a type 1 graph; if χ

T
(G) = ∆(G) + 2,

then G is a type 2 graph.
Although the names type 1 and type 2 were inspired by their counterparts for edge-

colourings, the two concepts are independent, as illustrated by the following classes of
graphs.

• Class 1/Type 1 : Km,n, m = n;
Cn, n even and n ≡ 0 (mod 3);

• Class 1/Type 2 : Km,n, m 6= n;
Cn, n even, n ≡ 1, 2 (mod 3);
Kn, n even;

• Class 2/Type 1 : Cn, n odd and n ≡ 0 (mod 3);
Kn, n odd;

• Class 2/Type 2 : Cn, n odd and n ≡ 1, 2 (mod 3).

Considering the importance of cubic graphs for Graph Theory, we restricted our at-
tention to them. Initially, we remark that the TCC was verified for cubic graphs [5, 6].
Moreover, we know classes of cubic graphs which are class 1/type 1 and which are class
1/type 2: near ladders, which are bipartite graphs with k vertices in each part of the bipar-
tition are type 1, when k is even, and type 2, when k is odd [7]. Therefore, we turned our
attention to cubic graphs that are class 2.

Snarks are simple connected bridgeless cubic graphs whose edges cannot be coloured
with three colours. The study of these graphs began in 1880, when Tait proved that the
four-colour theorem is equivalent to the statement that every cubic map is 3-edge-colourable.
This equivalence justifies the historic importance of snarks and the search for planar cubic
graphs whose edges cannot be coloured with three colours. The Petersen graph was the
first discovered snark and it remained the only known snark until 1946, when the Blanuša
Snarks were found [8]. The next snark was discovered by Blanche Descartes (pseudonymous
of Tutte et al.) [9]. In 1975, Isaacs found two infinite sets of snarks [10], including the Flower
Snarks. In 1981, Goldberg found an additional class of snarks [11]. The name snarks was
given by Martin Gardner [12] in 1976, inspired on the “The Hunting of the Snark”, by Lewis
Carroll.

In 2003, Cavicchioli et al. [13] showed, using computers, that every snark of order less
than 30 is type 1, without presenting a colouring for them. In that work the authors posed
the problem of finding (if any) a snark which is type 2 and has the smallest number of
vertices.

In this work, we consider that problem and prove that all graphs in three infinite families
of snarks, the Flower Snarks, the Goldberg Snarks, and the Twisted Goldberg Snarks, are
type 1. We also give recursive procedures to construct 4-total colourings in each case.
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2 Main results

In this section we determine the total chromatic number of Flower Snarks, Goldberg Snarks
and Twisted Goldberg Snarks. Graphs in these families share a common property: they
can be built from a suitable glueing of some special graphs which we call basic blocks.

2.1 Flower Snarks

Let F3, F5, . . . , F2i+1, i ≥ 1, be the members of the family of Flower Snarks, where Fi

has 4i vertices. For this family we define the basic block Bi as the graph with vertex set
V (Bi) = {ui, vi, xi, yi} and edge set E(Bi) = {uivi, xivi, yivi}. We define the set of link
edges as Eij = {uiuj, xixj, yiyj}, and the link graph Li, i odd and i ≥ 5, as the union of
Bi−1, Bi, and the graph induced by E(i−1)i. Figure 1(a) shows L5.

The first Flower Snark, F3, is defined as the union of B1, B2, B3, and the graph induced
by E23 ∪ E31 ∪ {u1u2, x1y2, y1x2}; depicted in Figure 1(b). For each i odd and i ≥ 5, Fi

is obtained from graphs Fi−2 and Li as follows: V (Fi) = V (Fi−2) ∪ V (Li), and E(Fi) =
(E(Fi−2)\E

out
i−2)∪E(Li)∪Ein

i , where Eout
i−2 = E(i−2)1, and Ein

i = E(i−2)(i−1)∪Ei1. Figure 1(c)
shows F5, constructed from graphs F3 and L5. The next result, Theorem 1, states that
Flower Snarks are type 1 graphs.

v4 v5

u4 u5

x4

x5y4

y5

(a) Link graph L5

v1

v2

v3

u1

u2

u3

x1

x2

x3 y1

y2

y3

(b) Graph F3.

v1

v2

v3

v4 v5

u1

u2

u3

u4u5 x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

(c) Graph F5

Figure 1: Graph F5 constructed from graphs F3 and L5.

Theorem 1. Each Flower Snark Fi, i odd and i ≥ 3, is a type 1 graph.

Proof. We prove that each Fi admits a 4-total colouring such that all edges of Eout
i have the

same colour 1. The proof is by induction and based on the recursive procedure described
above. Figure 2(a) shows π3, a 4-total colouring of graph F3. Note that the edges of Eout

3 ,
which are in bold, have the same colour 1. Figure 2(b) shows π, a fixed 4-total colouring of
Li, where π(ui−1) = 3 and π(ui) = 4.

Graph Fi is recursively constructed from Fi−2 and Li. By induction hypothesis, Fi−2

admits a 4-total colouring πi−2 such that the Eout
i−2 edges have the same colour 1. We obtain

πi as follows. Assign colour 1 to the edges of Ein
i (recall that Ein

i is an independent set of
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Figure 2: The 4-total colouring π3 and π for graphs F3 and Li, respectively.

edges). Assign to each element of (V (Fi)∪E(Fi)) \Ein
i the colour of its equivalent element

in Fi−2 or Li.

Now, we show that πi is a 4-total colouring for Fi. First, note that the total colouring
of subgraph Fi[V (Fi) ∩ V (Fi−2)] is a 4-total colouring because πi−2 is a 4-total colouring
for Fi−2. The same applies to the total colouring of Fi[V (Fi) ∩ V (Li)], obtained from π.
Moreover, V (Ein

i ) = V (Eout
i )∪ (V (Li)\{vi−1, vi}), therefore colour 1 does not occur in any

vertex of V (Ein
i ).

We complete the proof showing that the ends of edges in Ein
i have distinct colours. Since

colouring π is fixed, we know the colours of vertices V (Ein
i ) ∩ V (Li). We also know the

colours of u1, x1, y1, because they are in F3. It remains to determine the colours of vertices
ui−2, xi−2 and yi−2. First, note that these vertices belong to Fi−2. If i = 5, these vertices
are u3, x3 and y3, that belong to F3; and for i ≥ 7, these vertices belong to Li−2, with fixed
colouring π. Therefore, we conclude that: πi(ui−2) = 4 and πi(ui−1) = 3; πi(xi−2) ∈ {2, 3}
and πi(xi−1) = 4; πi(yi−2) ∈ {3, 4} and πi(yi−1) = 2; πi(ui) = 4 and πi(u1) = 3; πi(xi) = 2
and πi(x1) = 4; πi(yi) = 3 and πi(y1) = 2; this ends the proof.

2.2 Goldberg and Twisted Goldberg Snarks

For the second family of snarks considered, Goldberg Snarks, the basic block Bi is the graph
with vertex set V (Bi) = {ui, vi, xi, yi, zi, wi, si. ti} and edge set E(Bi) = {uivi, xiyi, xizi,

yiwi, zivi, ziti, viwi, wisi, siti}. The set of link edges Eij is {tisj, yixj , uiuj}. Figure 3(a)
shows the link graph Li, which is obtained from the basic blocks Bi−1 and Bi, connected
by E(i−1)i.

The first Goldberg Snark, G3, is defined as the union of B1, B2, B3, and the graph
induced by E12 ∪ E23 ∪ E31; it is depicted in Figure 3(b). For each i odd and i ≥ 5, graph
Gi is obtained from Gi−2 and Li as follows: V (Gi) = V (Gi−2) ∪ V (Li); and E(Gi) =
(E(Gi−2) \ Eout

i ) ∪ E(Li) ∪ Ein
i , where Eout

i = E(i−2)1 and Ein
i = E(i−2)(i−1) ∪ Ei1.

Theorem 2. Each Goldberg Snark Gi, i odd and i ≥ 3, is a type 1 graph.
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si−1 ti−1

zi−1

vi−1
wi−1

xi−1 yi−1

ui−1

si ti

zi

vi
wi

xi yi

ui

(a) Link graph Li. Note that blocks Bi−1

and Bi appear consecutively in the figure

s1 t1

z1

v1
w1

x1 y1

u1

s2 t2

z2

v2
w2

x2 y2

u2

s3 t3

z3

v3
w3

x3 y3

u3

(b) Graph G3. Blocks B1, B2, B3 appear consecutively
in the figure.

Figure 3: Link graph Li and graph G3.

Proof. The proof is similar to the previous one. We construct 4-total colourings π3 and π5

for G3 and G5, as depicted in figures 4(a) and 4(c), respectively. We also construct a 4-total
colouring π for Li, as shown in Figure 4(b).
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(a) A 4-total colouring π3 for G3.
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(b) A 4-total colouring π for Li. Blocks
Bi−1, Bi appear consecutively in the figure.
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(c) A 4-total colouring π5 for G5. Blocks B1, B2, B3, B4, B5 appear consecutively in
the figure.

Figure 4: 4-total colourings for G3, Li and G5.

For each i odd and i ≥ 7, a 4-total colouring πi for Gi is obtained from the colourings
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πi−2 and π, using the recursive definition of Goldberg Snarks. To obtain πi, we assign to
each element of V (Gi)∪E(Gi) \Ein

i the colour of its equivalent element in Gi−2 or Li. The
edges of Ein

i receive the following colours:

πi(ti−2si−1) = πi(tis1) = 1;
πi(yi−2xi−1) = πi(yix1) = 1;
πi(ui−2ui−1) = πi(uiu1) = 2.

Now, we show that πi is a 4-total colouring for Gi. Since πi−2 and π are 4-total colourings
for Gi−2 and Li, respectively, we conclude that the restriction of πi to the elements of
subgraph Gi[E(Gi)\Ein

i ] is a 4-total colouring for it. Moreover, by the construction of πi−2

and π, edges of Ein
i do not join vertices with the same colour.

In order to conclude the proof we show that the colours of the edges of Ein
i do not

add any conflicts in πi. Considering Eout
i = {ti−2s1, yi−2x1, ui−2u1}, we remember that

πi−2(ti−2s1) = 1, πi−2(yi−2x1) = 1, and πi−2(ui−2u1) = 2. Therefore, for graph Gi[E(Gi) \
Ein

i ], colour 1 does not occur in vertices ti−2, s1, yi−2, x1, and colour 2 does not occur in
vertices ui−2, u1. Similarly, considering Li, we conclude that colour 1 does not occur in
vertices si−1, xi−1, ti, yi, and colour 2 does not occur in ui−1 and ui.

We end this section determining the total chromatic number of Twisted Goldberg
Snarks. We define the Twisted Goldberg Snarks, TGi, i odd, i ≥ 3, from Gi, by replac-
ing edges s1ti and x1yi by edges s1yi and x1ti, respectively [14].

Corollary 3. Each Twisted Goldberg Snark TGi, i odd and i ≥ 3, is a type 1 graph.

Proof. Let Gi be a Goldberg Snark and let πi be the 4-total colouring defined in the proof
of Theorem 2. By construction, πi(s1ti) = πi(x1yi). Moreover, πi(s1) = πi(x1) and πi(ti) =
πi(yi). Therefore, we define φi, a 4-total colouring for TGi as follows: φi(q) = πi(q) if q is
an element of Gi and of TGi; φi(s1yi) = πi(s1ti) and φi(x1ti) = πi(s1ti).

3 Conclusion

We have shown that the total chromatic number of Flower Snarks, Goldberg Snarks, and
Twisted Goldberg Snarks is type 1. These results constitute one more piece of supporting
evidence to the conjecture that all snarks are type 1.

Finally, the technique presented here could be adapted to colour other families of graphs
that have recursive constructions; in particular, it could be adapted to other families of
snarks. The colourings obtained with this technique can be used to determine the total
chromatic number or, to settle the total colouring conjecture for a given class.
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