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The total chromatic number of some families of snarks*

C. N. Campos' S. Dantas? C. P. de Mellof

Abstract

The total chromatic number x.,.(G) is the least number of colours needed to colour
the vertices and edges of a graph G, such that no incident or adjacent elements (vertices
or edges) receive the same colour. It is known that the problem of determining the total
chromatic number is NP-hard and it remains NP-hard even for cubic bipartite graphs.
Snarks are simple connected bridgeless cubic graphs which are not 3-edge colourable.
In this paper, we show that the total chromatic number is 4 for three infinite families
of snarks, namely, the Flower Snarks, the Goldberg Snarks and the Twisted Goldberg
Snarks. This result reinforces the conjecture that all snarks are type 1. Moreover, we
give recursive procedures to construct 4-total colourings in each case.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). An element of G is a
vertex or an edge of G. A subset of V(G)U E(G) is independent if its elements are pairwise
nonadjacent and nonincident. If S C E(G), then V (S) is the set of the ends of the edges of
S. The graph induced by S, G[S], is the graph whose vertex set is V(S) and edge set is S.
As usual, we denote by d(v) the degree of v € V(G) and by A(G) the maximum degree of
G.

Let S = E(G) and let C be a set of colours. An edge colouring of G is a mapping
¢ : S — C such that, for each adjacent elements x,y € S, we have ¢(x) # ¢(y). It is well
known that the mininum number of colours needed to colour the edges of a simple graph
G is either A(G), or A(G) + 1 [1]. We say that G is class 1 in the first case and class 2 in
the second case.

Let S = V(G) U E(G). A total colouring of G is a mapping ¢ : S — C such that, for
each adjacent or incident elements z,y € S, we have ¢(z) # ¢(y). If |C| = k, then mapping
¢ is called a k-total colouring. Let m be an assignment of colours to a set S C V(G)U E(G).
Let = € S; we say that ¢ occurs in z if either w(x) = ¢, or there exists y € S adjacent to, or
incident with, x such that mw(y) = ¢. If there exist x,y € S which are adjacent or incident
and such that 7(z) = 7(y), we say that 7 has a conflict.

The total chromatic number of G, x,(G), is the least integer k for which G admits
a k-total colouring. Clearly, x,(G) > A(G) + 1. Sanchez-Arroyo [2] has shown that
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deciding whether x,(G) = A(G) + 1 is NP-complete. McDiarmid and Sanchez-Arroyo [3]
have shown that even the problem of determining the total chromatic number of k-regular
bipartite graphs is N P-hard, for each fixed k > 3. The Total Colouring Conjecture (TCC),
posed independently by Behzad [4] and Vizing [1], states that every simple graph G has
X, (G) < A(G) + 2. If x,.(G) = A(G) + 1, then G is a type 1 graph; if x,.(G) = A(G) + 2,
then G is a type 2 graph.

Although the names type 1 and type 2 were inspired by their counterparts for edge-
colourings, the two concepts are independent, as illustrated by the following classes of
graphs.

e Class 1/Type 1: Ky r, m =n;
Cp, n even and n =0 (mod 3);

o Class 1/Type 2: Ky, m # n;
Chp, neven, n =1,2 (mod 3);
K,, n even;

e Class 2/Type 1: Cy, n odd and n =0 (mod 3);
K, n odd,;

e Class 2/Type 2: Cy, n odd and n =1,2 (mod 3).

Considering the importance of cubic graphs for Graph Theory, we restricted our at-
tention to them. Initially, we remark that the TCC was verified for cubic graphs [5, 6].
Moreover, we know classes of cubic graphs which are class 1/type 1 and which are class
1/type 2: near ladders, which are bipartite graphs with k vertices in each part of the bipar-
tition are type 1, when k is even, and type 2, when k is odd [7]. Therefore, we turned our
attention to cubic graphs that are class 2.

Snarks are simple connected bridgeless cubic graphs whose edges cannot be coloured
with three colours. The study of these graphs began in 1880, when Tait proved that the
four-colour theorem is equivalent to the statement that every cubic map is 3-edge-colourable.
This equivalence justifies the historic importance of snarks and the search for planar cubic
graphs whose edges cannot be coloured with three colours. The Petersen graph was the
first discovered snark and it remained the only known snark until 1946, when the Blanusa
Snarks were found [8]. The next snark was discovered by Blanche Descartes (pseudonymous
of Tutte et al.) [9]. In 1975, Isaacs found two infinite sets of snarks [10], including the Flower
Snarks. In 1981, Goldberg found an additional class of snarks [11]. The name snarks was
given by Martin Gardner [12] in 1976, inspired on the “The Hunting of the Snark”, by Lewis
Carroll.

In 2003, Cavicchioli et al. [13] showed, using computers, that every snark of order less
than 30 is type 1, without presenting a colouring for them. In that work the authors posed
the problem of finding (if any) a snark which is type 2 and has the smallest number of
vertices.

In this work, we consider that problem and prove that all graphs in three infinite families
of snarks, the Flower Snarks, the Goldberg Snarks, and the Twisted Goldberg Snarks, are
type 1. We also give recursive procedures to construct 4-total colourings in each case.
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2 Main results

In this section we determine the total chromatic number of Flower Snarks, Goldberg Snarks
and Twisted Goldberg Snarks. Graphs in these families share a common property: they
can be built from a suitable glueing of some special graphs which we call basic blocks.

2.1 Flower Snarks

Let Fs, F5, ..., Fo+1, © > 1, be the members of the family of Flower Snarks, where F;
has 4i vertices. For this family we define the basic block B; as the graph with vertex set
V(B;) = {u;,vi,x;,y;} and edge set E(B;) = {u;v;, zjvi, y;v;}. We define the set of link
edges as E;; = {uu;,z;xj,v;9;}, and the link graph L;, i odd and ¢ > 5, as the union of
Bi_1, B;, and the graph induced by E(;_;);. Figure 1(a) shows Ls.

The first Flower Snark, F3, is defined as the union of By, Bs, B3, and the graph induced
by Eo3 U E31 U {ujus, x1y2, y122}; depicted in Figure 1(b). For each ¢ odd and i > 5, F;
is obtained from graphs F;_o and L; as follows: V(F;) = V(F;_2) UV (L;), and E(F;) =
(E(Fi—2)\E2“,)UE(L;)UE!™, where E", = E(;_sy;, and EI" = E(;_s);_1)UE;. Figure 1(c)
shows F5, constructed from graphs F3 and Ls. The next result, Theorem 1, states that
Flower Snarks are type 1 graphs.

s

a) Link graph Ls (b) Graph Fs.

Figure 1: Graph Fj constructed from graphs F3 and Ls.

Theorem 1. Fach Flower Snark F;, i odd and i > 3, is a type 1 graph.

Proof. We prove that each F; admits a 4-total colouring such that all edges of E* have the
same colour 1. The proof is by induction and based on the recursive procedure described
above. Figure 2(a) shows 73, a 4-total colouring of graph F3. Note that the edges of E$“,
which are in bold, have the same colour 1. Figure 2(b) shows 7, a fixed 4-total colouring of
L;, where m(u;—1) = 3 and 7(u;) = 4.

Graph Fj; is recursively constructed from F; o and L;. By induction hypothesis, F;_o
admits a 4-total colouring 7;_5 such that the £, edges have the same colour 1. We obtain

m; as follows. Assign colour 1 to the edges of E!™ (recall that E™ is an independent set of
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Figure 2: The 4-total colouring 73 and 7 for graphs F3 and L;, respectively.

edges). Assign to each element of (V (F;) U E(F;))\ E™ the colour of its equivalent element
in F;_o or L;.

Now, we show that 7; is a 4-total colouring for F;. First, note that the total colouring
of subgraph F;[V(F;) N V(F;_2)] is a 4-total colouring because m;_o is a 4-total colouring
for F;_5. The same applies to the total colouring of F;[V(F;) N V(L;)], obtained from .
Moreover, V(E™) = V(ES) U (V(L;) \ {vi—1,v;}), therefore colour 1 does not occur in any
vertex of V(E™).

We complete the proof showing that the ends of edges in Elm have distinct colours. Since
colouring 7 is fixed, we know the colours of vertices V(E!") NV (L;). We also know the
colours of uy, x1, y1, because they are in F3. It remains to determine the colours of vertices
Uj_o, Ti—o and y;_o. First, note that these vertices belong to F;_o. If i = 5, these vertices
are ug, 3 and ys, that belong to F3; and for ¢ > 7, these vertices belong to L;_o, with fixed
colouring 7. Therefore, we conclude that: m;(u;—2) = 4 and m;(u;—1) = 3; mi(zi—2) € {2,3}
and 7;(z;—1) = 4; mi(yi—2) € {3,4} and 7;(yi—1) = 2; mi(u;) = 4 and m;(uy) = 3; mi(2;) = 2
and 7;(x1) = 4; m;(y;) = 3 and m;(y1) = 2; this ends the proof. O

2.2 Goldberg and Twisted Goldberg Snarks

For the second family of snarks considered, Goldberg Snarks, the basic block B; is the graph
with vertex set V(B;) = {u;, vi, T4, yi, 2i, Wi, s;. t;} and edge set E(B;) = {w;v;, z;yi, Tizi,
Yiw;, ZiVs, Ziti, viw;, w;s;, sit;}. The set of link edges Eyj is {t;s;, yiz;, uiu;}. Figure 3(a)
shows the link graph L;, which is obtained from the basic blocks B; 1 and B;, connected
by E;—1y;-

The first Goldberg Snark, G3, is defined as the union of Bj, Bs, Bs, and the graph
induced by E1o U Ea3 U Es3q; it is depicted in Figure 3(b). For each i odd and i > 5, graph
G, is obtained from G;_9 and L; as follows: V(G;) = V(Gi—2) UV(L;); and E(G;) =
(B(Gi—2) \ E?) U E(L;) U E", where E¢% = E(i_9)1 and Emn = Ei—9)i—1) Y Ei1.

Theorem 2. Each Goldberg Snark G;, i odd and i > 3, is a type 1 graph.
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s1 ty 52 ta s3 t3
vy vy v3
21 wi zZ w2 23 w3
xq Y1 o Y2 xr3 Y3
uy ug us
Ui uj
(a) Link graph L;. Note that blocks B;—1 (b) Graph Gs. Blocks Bi, B2, Bs appear consecutively
and B; appear consecutively in the figure in the figure.

Figure 3: Link graph L; and graph Gj.

Proof. The proof is similar to the previous one. We construct 4-total colourings 73 and 75
for G and G5, as depicted in figures 4(a) and 4(c), respectively. We also construct a 4-total
colouring 7 for L;, as shown in Figure 4(b).

2 3 4 o 3 1 2 4 3 o 4
2 3 4 4 2 4 3
2 2
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° °
2 3 2 3
1 3
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3 1

(b) A 4-total colouring = for L;. Blocks
Bi_1, B; appear consecutively in the figure.

2 3 4 1 2 3 4 o9 3 1 2 4 3 2 4 1 2 4 3
p) 1 3 3 P
L 24 s a4 34 31 ) o3
1 3 2 T 93 19 2 B ) 1 197 T %4
3 2 4 2 2 3 4 3 3 2
4 1 3 1 4 1 2 1 4
4 2 3
2 , 3 2 5 4 3 L2 3 L
4 2 3 4

(¢) A 4-total colouring 75 for G5. Blocks Bi, Bz, Bs, Ba, Bs appear consecutively in
the figure.

Figure 4: 4-total colourings for G3, L; and G5.

For each i odd and i > 7, a 4-total colouring m; for GG; is obtained from the colourings
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mi—o and m, using the recursive definition of Goldberg Snarks. To obtain m;, we assign to
each element of V(G;) U E(G;) \ E™ the colour of its equivalent element in G;_3 or L;. The
edges of E" receive the following colours:

mi(ti—2si—1) = mi(tis1) = 1
Ti(Yi—oxic1) = mi(yixr) = 1
ﬁi(ui_gui_l) = wi(uiul) = 2.

Now, we show that m; is a 4-total colouring for z;. Since m;_o and 7 are 4-total colourings
for G;_o and L;, respectively, we conclude that the restriction of m; to the elements of
subgraph G;[E(G;)\ E"] is a 4-total colouring for it. Moreover, by the construction of m;_o
and 7, edges of E!" do not join vertices with the same colour.

In order to conclude the proof we show that the colours of the edges of E™ do not
add any conflicts in ;. Considering Ef“t = {ti—251,Yyi—2%1,uj—2u1 }, we remember that
mi—a(ti—2s1) = 1, mi—o(yi—2x1) = 1, and m;_o(u;—ouq) = 2. Therefore, for graph G;[E(G;) \
E!], colour 1 does not occur in vertices t;_a, 1, ¥i—2, 21, and colour 2 does not occur in
vertices wu;_o,uy. Similarly, considering L;, we conclude that colour 1 does not occur in
vertices s;_1, T;—1, t;, y;, and colour 2 does not occur in u;_; and wu;. O

We end this section determining the total chromatic number of Twisted Goldberg
Snarks. We define the Twisted Goldberg Snarks, TG;, i odd, i > 3, from G;, by replac-
ing edges s1t; and z1y; by edges s1y; and x1t;, respectively [14].

Corollary 3. Fach Twisted Goldberg Snark T'G;, © odd and i > 3, is a type 1 graph.

Proof. Let G; be a Goldberg Snark and let 7; be the 4-total colouring defined in the proof
of Theorem 2. By construction, m;(s1t;) = m;i(z1y;). Moreover, m;(s1) = m;(z1) and m;(t;) =
mi(yi). Therefore, we define ¢;, a 4-total colouring for T'G; as follows: ¢;(q) = m;(q) if ¢ is
an element of G; and of TG; ¢;(s1y;) = mi(s1t;) and ¢;(x1t;) = mi(s1t;). O

3 Conclusion

We have shown that the total chromatic number of Flower Snarks, Goldberg Snarks, and
Twisted Goldberg Snarks is type 1. These results constitute one more piece of supporting
evidence to the conjecture that all snarks are type 1.

Finally, the technique presented here could be adapted to colour other families of graphs
that have recursive constructions; in particular, it could be adapted to other families of
snarks. The colourings obtained with this technique can be used to determine the total
chromatic number or, to settle the total colouring conjecture for a given class.
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