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Clique-colouring of some circulant graphs∗

C. N. Campos† S. Dantas‡ C. P. de Mello§

Abstract

A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal
clique of size at least two is monochromatic. The clique-hypergraph, H(G), of a graph
G has V (G) as its set of vertices and the maximal cliques of G as its hyperedges. A
vertex-colouring of H(G) is a clique-colouring of G. Determining the clique-chromatic
number, the least number of colours for which a graph G admits a clique-colouring, is
known to be NP -hard. By determining some structural properties of powers of cycles,
we establish that the clique-chromatic number of these graphs is equal to two, except
for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs,
we show that their clique-chromatic number is at most four, and determine the cases
when it is equal to two. Similar bounds for the chromatic number of these graphs are
also obtained.

1 Introduction

A hypergraph H is a pair (V, E) where V is a finite set of vertices and E is a family of non-
empty subsets of V called hyperedges. A k-colouring of H is a mapping φ : V → {1, 2, . . . , k}
such that for each S ∈ E , with |S| ≥ 2, there exist u, v ∈ S with φ(u) 6= φ(v), that is, there
is no monochromatic hyperedge of size at least two. The chromatic number χ(H) of H is
the smallest k for which H admits a k-colouring.

Let G be an undirected simple graph with vertex set V (G) and edge set E(G). A clique
is a set of pairwise adjacent vertices of G. The clique number of a graph G, ω(G), is the
greatest integer k for which there exists a clique Q with |Q| = k. A maximal clique of G is
a clique not properly contained in any other clique.

Given a graph G, we define the clique-hypergraph H(G) of G as the hypergraph whose
vertices are the vertices of G, and whose hyperedges are the maximal cliques of G. A
k-colouring of H(G) is also called a k-clique-colouring of G, and the chromatic number
χ(H(G)) of H(G) is the clique-chromatic number of G. If χ(H(G)) = k, then G is k-clique-
chromatic. Note that if ω(G) = 2, then H(G) = G, which implies χ(H(G)) = χ(G).

The clique-hypergraph colouring problem was posed by Duffus et al. [11]. Kratochv́ıl and
Tuza [14] have proved that determining the bicolourability of clique-hypergraphs of perfect

∗Partially supported by CNPq, FAPESP and FAPERJ
†Institute of Computing, University of Campinas
‡Institute of Mathematics, Fluminense Federal University
§Institute of Computing, University of Campinas
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2 Campos, Dantas e de Mello

graphs is NP -hard, but solvable in polynomial time for planar graphs. Additionally, the
chromatic number of triangle-free graphs is known to be unbounded [21], and so is their
clique-chromatic number. On the other hand, Bacsó et al. [1] proved that almost all perfect
graphs are 3-clique-colourable. Other works considering the clique-hypergraph colouring
problem in classes of graphs can be found in the literature [10, 12].

We study the clique-hypergraph colouring problem on circulant graphs, that are graphs
whose adjacency matrix is circulant. This class of graphs has several applications in com-
binatorics and linear algebra, having been extensively studied over the years [5, 9, 20, 22,
23, 24, 25]. There are different characterizations of these graphs. For instance, circulant
graphs are a particular case of Cayley graphs. We postpone the definition used in this work
to the following section.

Determining the clique number and the chromatic number of circulant graphs in general
is an NP -hard problem [9]. Here, we study two subclasses of circulant graphs. The first
class considered is powers of cycles. The choice of this class was motivated by significant
works that have been done in powers of certain classes of graphs [4, 6, 7] and, in particular,
in powers of cycles [2, 3, 15, 17, 18, 26, 28].

Recently, powers of cycles were studied in the context of the Hadwiger’s and Hajós’ con-
jectures, which are classical and related conjectures. In 2005, Thomassen [27] showed that
certain powers of cycles are counter-examples to the Hajós Conjecture. However, in 2007, Li
and Liu [16] showed that powers of cycles satisfy the Hadwiger’s Conjecture. Additionally,
powers of cycles have important connections to the analysis of perfect graphs [8].

In this work we prove that the clique-chromatic number of powers of cycles is equal to
two, except for cycle graphs Cn, n odd and n ≥ 5, that needs three colours. The second
class considered is odd-seq circulant graphs. For this class, we show that its clique-chromatic
number is at most four, and determine the cases when it is equal to two. Also, we verify
similar bounds for the chromatic number of these graphs.

2 Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). For each v ∈ V (G),
N(v) denotes the set of vertices which are adjacent to v and N [v] = N(v) ∪ {v}. Also,
N [v] = V (G) \ N [v].

Let d1, . . . , dk be a (nonempty) sequence of positive integers satisfying d1 < · · · < dk ≤
⌊n/2⌋ for some integer n ≥ 2. A circulant graph Cn(d1, . . . , dk) is a simple graph with
V (G) = {v0, . . . , vn−1} and E(G) = Ed1 ∪ · · · ∪ Edk , with {vi, vj} ∈ Edl if, and only if,
dl = min{(j − i) mod n, (i − j) mod n}. If e ∈ Edl , then edge e has reach dl. Moreover, if
the reach of e is even (odd), then e is called an even (odd) edge. We take (v0, . . . , vn−1) to
be a cyclic order on the vertex set of G and always perform arithmetic modulo n on vertex
indexes. Let vi ∈ V (G), vj ∈ V (G), with 0 ≤ i < j ≤ n − 1. We define Inf (vi, vj) = j − i
and Sup(vi, vj) = n − j + i.

A circulant graph G = Cn(d1, . . . , dk) is an odd (even)-seq circulant graph when each di,
1 ≤ i ≤ k, is odd (even).

A circulant graph G = Cn(d1, . . . , dk) is a power of cycle when d1 = 1, di = di−1 + 1,
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dk < ⌊n/2⌋, and it is denoted Ck
n. Let u, v be two vertices of G. We denote d(u, v) as the

length of the shortest path joining u and v in the subgraph G[E1] ∼= Cn. Let Q be a clique
of Ck

n. If every vertex vi ∈ Q has even (odd) index, then Q is an even (odd) clique. A
maximal even (odd) clique is an even (odd) clique not properly contained in any other even
(odd) clique.

A structural property of circulant graphs [19] is stated next.

Lemma 1. Let G = Cn(d1, . . . , dk), di ≤ ⌊n/2⌋. Then, for each di, the induced subgraph
Cn(di) is comprised by gcd(n, di) connected components, each one being a cycle of length
n/ gcd(n, di),

3 Powers of cycles

In this section, we show that the clique-chromatic number of Ck
n is equal to two, except for

odd cycles with n ≥ 5. Note that cycles graphs Cn, i.e., powers of cycles with k = 1, have
χ(H(Cn)) = 3 if n is odd and n ≥ 5; and χ(H(Cn)) = 2 otherwise.

We start with a useful property:

Property 2. Let G be a graph and Q be a maximal clique of G. Let u and v be two
adjacent vertices of G such that u ∈ Q and v 6∈ Q. Then, there exists w ∈ Q such that
w ∈ N [v] ∩ N(u).

Proof. It follows from the fact that such a vertex w prevents vertex v from being included
in Q because it is not adjacent to v.

We say that vertex v in Property 2 is forbidden by w and that every vertex w ∈ Q that
belongs to N [v] ∩ N(u) forbids vertex v to belong to clique Q.

The next three lemmas determine structural properties of powers of cycles concerning the
existence of maximal even (odd) cliques in these graphs. These lemmas play an important
role in the proof of Theorem 9, that determines the clique chromatic number of powers of
cycles.

Lemma 3. Let G = Ck
n, k ≥ 2, n odd, be a power of cycle. If Q is a maximal clique in G

that includes vertices v0 and vn−1, then Q includes at least one vertex of odd index.

Proof. Let G = Ck
n, k ≥ 2, n odd, such that V (G) = {v0, . . . , vn−1}. Let Q be a maximal

clique of G such that vn−1, v0 ∈ Q.

If k = 2, then either Q = {vn−1, v0, v1}, or Q = {vn−2, vn−1, v0}, and both contain a
vertex of odd index. If k > 2 and at least one of v1, vn−2 belongs to Q, then the result
follows. So, we can assume that k > 2, v1 6∈ Q, and vn−2 6∈ Q.

Since v1 6∈ Q but v0 ∈ Q and v0 and v1 are adjacent, then, by Property 2, we conclude
that there exists vj ∈ Q such that vj ∈ N [v1]∩N(v0). By the definition of powers of cycles,
N [v1] ∩N(v0) = {vn−k}. Therefore, vn−k ∈ Q (note that vn−k ∈ N(vn−1)). Symmetrically,
since vn−2 6∈ Q but vn−1 ∈ Q, there exists vj ∈ Q such that vj ∈ N [vn−2] ∩ N(vn−1). We
conclude that N [vn−2] ∩ N(vn−1) = {vk−1} and that vk−1 ∈ Q.



4 Campos, Dantas e de Mello

We have just concluded that vn−k and vk−1 are both in Q. If k is even, then k − 1
and n − k are both odd and we are done. Therefore, we assume that k is odd. Since vn−k

and vk−1 are both in Q, edge {vk−1, vn−k} ∈ E(G). Let d be the reach of this edge. Thus,
d = n − k − (k − 1) = n − 2k + 1. Since d ≤ k, we have that k > n/3.

Consider now vertex vk−2. If vk−2 ∈ Q, then the result follows. Thus, we assume that
vk−2 6∈ Q. We know that vk−1 ∈ Q. Additionally, N [vk−2] ∩ N(vk−1) = {v2k−1}. By
Property 2, we have that v2k−1 ∈ Q, concluding the proof.

Lemma 4. Let G = Ck
n, k ≥ 2, n odd, be a power of cycle. Then, there does not exist a

maximal even (odd) clique in G.

Proof. Suppose G has a maximal even or odd clique Q. We consider four cases.

Case 1. There exists vi ∈ Q, i ∈ (0, k − 1].

By hypothesis, vi ∈ Q and Q is even or odd and thus vi+1 6∈ Q, vi−1 6∈ Q.

Considering that vi+1 6∈ Q, then, by Property 2, we conclude that there exists vj ∈
N [vi+1]∩N(vi) such that vj ∈ Q. Therefore, vi−k ∈ Q (note that N [vi+1]∩N(vi) = {vi−k}).
By the hypothesis of this case, i − k < 0, which implies that i − k ≡ n + i − k (mod n).
Similarly, if vi−1 6∈ Q, then there exists vj ∈ Q, such that vj ∈ N [vi−1] ∩ N(vi). Since
N [vi−1] ∩ N(vi) = {vi+k}, we have that vi+k ∈ Q. We conclude that if vi ∈ Q, then
vn+i−k ∈ Q and vi+k ∈ Q.

If Q is even, then i is even since vi ∈ Q. If k is even, then n + i − k is odd. On the
other hand, if k is odd, then i + k is odd. Therefore, in both cases, we have a contradiction
to the fact that vn+i−k ∈ Q and vi+k ∈ Q. Analogously, when Q is odd, we conclude that
either n + i − k or k + i is even, and again we have a contradiction.

Case 2. There exists vi ∈ Q, i ∈ [n − k + 1, n − 1).

This case is reduced to Case 1 by relabelling v0 as vn−1, v1 as vn−2, . . . , vn−2 as v1, and
vn−1 as v0.

Case 3. There exists vi ∈ Q, i ∈ {0, n − 1}.

In this case Q is even. If both v0 ∈ Q and vn−1 ∈ Q, then, by Lemma 3, there exists
vj ∈ Q such that j is odd, a contradiction. Thus, we assume that exactly one of v0, vn−1

belongs to Q.

Consider first that v0 ∈ Q and vn−1 6∈ Q. Since Q is even, v1 6∈ Q. Note that N [vn−1]∩
N(v0) = {vk} and N [v1] ∩ N(v0) = {vn−k}. By Property 2, we conclude that vk ∈ Q
and vn−k ∈ Q. If k is odd, then vk has odd index, a contradiction because Q is even.
On the other hand, if k is even, then vn−k has odd index because n is also odd. Again a
contradiction.

Now, assume that v0 6∈ Q and vn−1 ∈ Q. This case is analogous to the previous one. In
order to see that, just relabel the vertices of G as it was done for Case 2.

Case 4. For all vi ∈ Q, n − k ≤ i ≤ k.
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Suppose that k ≥ n
3 . In this case, {vk, vn−k} ∈ E(G) because n − k − k = n − 2k ≤

n − 2n
3 = n

3 ≤ k. Thus, {vk, . . . , vn−k} is a clique. Since Q ⊆ {vk, . . . , vn−k} is even or odd,
we conclude that Q is not a maximal clique, a contradiction.

Now, we consider k < n
3 . Let vi ∈ Q such that i is minimum. Since vi ∈ Q, vertex

vi+1 6∈ Q. By Property 2, there exists vj ∈ Q such that vj ∈ N [vi+1] ∩ N(vi). We conclude
that vj = vi−k, which means that vi−k ∈ Q. However, i > i − k ≥ 0, contradicting the
minimality of i.

Lemma 5. Let G = Ck
n, k ≥ 2, n even, be a power of cycle. Graph G has a maximal even

(odd) clique if, and only if, k is even and k = n
(

i
2i+1

)

, for some integer i ≥ 1.

Proof. Let G = Ck
n, k ≥ 2, n even. Let Q be an even or odd clique of G. By the symmetry

of powers of cycles, we consider only even cliques. Adjust notation so that v0 ∈ Q.
First we show that k ≥ n/3. Considering that Q is an even clique, v1 6∈ Q and vn−1 6∈ Q.

Since v0 ∈ Q, then vk ∈ Q and vn−k ∈ Q, by Property 2. Also, since Q is a clique, vertices
vk and vn−k are adjacent. Therefore, (n− k)− k ≤ k and we have k ≥ n/3 as stated before.

Note that, if k = n/3, then Q = {v0, vk, vn−k} is a maximal clique since the vertices of
set [v1, vk−1] are forbidden by vn−k, the vertices of set [vk+1, vn−k−1] are forbidden by v0,

and the vertices of set [vn−k+1, vn−1] are forbidden by vk. Also, k = n
(

i
2i+1

)

with i = 1

and k is even.
Now, we assume that k > n/3. We prove the assertion of Lemma 5 by showing the

correctness of the algorithm BC(G,Q), defined below. This algorithm receives G and Q =
{v0, vk, vn−k} as input and returns a set of vertices Q that is: either (i) empty when G does
not have a nonempty maximal even clique Q, or (ii) a maximal even clique of G.

Algorithm 1 BC(G,Q)

Input: Graph G and set Q := {v0, vk, vn−k}.
Output: Set Q, a maximal even clique of G.

1. x := 0; y := 0;
2. if x = y then i := x(n − 2k) + (n − 2k);

2.1 j := n − x(n − 2k) − (n − 2k);
2.2 x := x + 1;

3. else i := k − y(n − 2k) − (n − 2k);
3.1 j := n − k + y(n − 2k) + (n − 2k);
3.2 y := y + 1;

4. Q := Q ∪ {vi, vj};
5. if x(n − 2k) + (n − 2k) > k − y(n − 2k) then return Q := ∅;
6. else if x(n − 2k) + (n − 2k) = k − y(n − 2k) then return Q;

6.1 else Go to line 2.

First, we show that BC(G,Q) stops. By hypothesis, k > n/3. Therefore, n − 2k < k.
In the beginning of the first iteration, x(n − 2k) = 0 and k − y(n − 2k) = k. Therefore,
x(n−2k)+(n−2k) < k−y(n−2k) and the stop conditions of lines 5 and 6 are not reached.
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In each iteration, (k−y(n−2k))−x(n−2k) is decreased by n−2k, either because x(n−2k)
is increased by n − 2k, or because k − y(n − 2k) is decreased by the same amount. Since
the decrement is an integer, we conclude that after some iterations, at least one of the two
stop conditions is reached.

The variables x and y are control variables of the algorithm. It is not difficult to see
that in each iteration either x = y, or x = y + 1. Moreover, in each pair of consecutive
iterations, both step 2 and step 3 are executed, that is, these steps are executed alternately.

Next, we prove two important invariants of algorithm BC(G,Q).

Property 6. In each iteration, before the execution of line 5

Q = {v0, vn−2k, . . . , vx(n−2k), vk−y(n−2k), . . . , vk,

vn−k, . . . , vn−k+y(n−2k), vn−x(n−2k), . . . , v2k}.

Proof. We prove this invariant by induction. In the beginning of the first iteration, x = y =
0 and the test condition of line 2 is true. Therefore, after line 4, Q = {v0, vn−2k, vk, vn−k, v2k}.
Moreover, x = 1 and y = 0. Hence, the invariant holds.

Consider now set Q just before line 5, in some iteration. Let Q′, x′ and y′ denote the
set Q and the control variables in the beginning of this iteration, that is, just before line 2.
By induction hypothesis,

Q′ = {v0, vn−2k, . . . , vx′(n−2k), vk−y′(n−2k), . . . , vk,

vn−k, . . . , vn−k+y′(n−2k), vn−x′(n−2k), . . . , v2k}.

We consider two cases depending on the result of the test condition in line 2. If x′ = y′,
then the test condition of line 2 is true. Therefore, Q = Q′∪{v(x′+1)(n−2k), vn−(x′+1)(n−2k)}.
Moreover, x = x′ +1 and y = y′. We conclude that the invariant holds. On the other hand,
if x′ = y′ + 1, then step 3 was executed and Q = Q′ ∪ {vk−(y′+1)(n−2k), vn−k+(y′+1)(n−2k)}.
Since x = x′ and y = y′ + 1, we conclude that the invariant holds again.

Figure 1 depicts the vertices of Q.

v0

vn−2k

vx(n−2k)

vk−y(n−2k)

vk−(n−2k)

vkvn−k

vn−k+(n−2k)

vn−k+y(n−2k)

vn−x(n−2k)

v2k

Figure 1: Sketch of the vertices of Q.
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Property 7. Let u,w be a pair of vertices included in Q in some iteration. Then, each of
vertices u,w forbids a vertex of odd index from being included in Q.

Proof. Consider algorithm BC(G,Q) just before line 5, in some iteration. As we have just
proved, set Q is defined by Property 6. We have two cases to analyse depending on the
result of the test condition of line 2.

If the test condition of line 2 is true, then step 2 was executed, u = vx(n−2k) and
w = vn−x(n−2k). We consider vertices vk−y(n−2k) ∈ Q and one of its adjacent vertices of odd
index, vk−y(n−2k)−1. We also consider vn−k+y(n−2k) ∈ Q and one of its adjacent vertices of
odd index, vn−k+y(n−2k)+1. By the definition of powers of cycles,

N(vk−y(n−2k)) = {vn−y(n−2k), . . . , vk−y(n−2k)−1} ∪
{vk−y(n−2k)+1, . . . , v2k−y(n−2k)},

N [vk−y(n−2k)−1] = V (G) \ N [vk−y(n−2k)−1],

where N [vk−y(n−2k)−1] = {vn−y(n−2k)−1, . . . , vk−y(n−2k)−2} ∪ {vk−y(n−2k)−1} ∪
{vk−y(n−2k), . . . , v2k−y(n−2k)−1}. On the other hand,

N(vn−k+y(n−2k)) = {v(y+1)(n−2k), . . . , vn−k+y(n−2k)−1} ∪
{vn−k+y(n−2k)+1, . . . , vn+y(n−2k)},

N [vn−k+y(n−2k)+1] = V (G) \ N [vn−k+y(n−2k)+1],

where N [vn−k+y(n−2k)+1] = {v(y+1)(n−2k)+1, . . . , vn−k+y(n−2k)} ∪ {vn−k+y(n−2k)+1} ∪
{vn−k+y(n−2k)+2, . . . , vn+y(n−2k)+1}. Therefore,

N [vk−y(n−2k)−1] ∩ N(vk−y(n−2k)) = {v2k−y(n−2k)},
N [vn−k+y(n−2k)+1] ∩ N(vn−k+y(n−2k)) = {v(y+1)(n−2k)}.

By Property 2, we conclude that v(y+1)(n−2k) ∈ Q, v2k−y(n−2k) ∈ Q. Considering that
x = y+1, then v(y+1)(n−2k) = vx(n−2k) = u and v2k−y(n−2k) = vn−x(n−2k) = w. We conclude
that the property holds in this case.

If the test condition of line 2 is false, then step 3 was executed and u = vk−y(n−2k)

and w = vn−k+y(n−2k). Using the same reasoning of the previous case, we conclude that

N [vx(n−2k)+1] ∩ N(vx(n−2k)) = {w}, N [vn−x(n−2k)−1] ∩ N(vn−x(n−2k)) = {u}, and again
u ∈ Q and w ∈ Q.

Now, we analyse two cases: (i) BC(G,Q) stops with a nonempty Q, showing in this case
that Q is a maximal even clique; (ii) BC(G,Q) stops with an empty Q, showing in this case
that there is no nonempty maximal even clique.

Case 1. BC(G,Q) stops with a nonempty Q.

Algorithm BC(G,Q) stopped because the condition of line 6 is true and thus set Q is
nonempty. By Property 6,

Q = {v0, vn−2k, . . . , vx(n−2k), vk−y(n−2k), . . . , vk,

vn−k, . . . , vn−k+y(n−2k), vn−x(n−2k), . . . , v2k}.
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Additionally, the stop condition of BC(G,Q) is x(n−2k)+(n−2k) = k−y(n−2k). Hence,

k − y(n − 2k) = x(n − 2k) + (n − 2k),
k − (y − 1)(n − 2k) = (x + 2)(n − 2k),

. . .
k − (y − y)(n − 2k) = (x + y + 1)(n − 2k),
k = (x + y + 1)(n − 2k).

Therefore, vertices v0, . . . , vx(n−2k), vk−y(n−2k), . . . , vk can be rewritten as
v0, vn−2k, . . . , vx(n−2k), v(x+1)(n−2k), . . . , v(x+y+1)(n−2k), respectively. Still using
k = (x+y+1)(n−2k), vertices vn−k, . . . , vn−k+y(n−2k) can be written as v(x+y+2)(n−2k), . . . ,
v(x+2y+2)(n−2k). Since x(n−2k)+(n−2k) = k−y(n−2k), we have n−x(n−2k) = n−k+y(n−
2k) + (n− 2k). Thus, the remaining vertices in Q satisfy: vn−x(n−2k) = v(x+2y+3)(n−2k);. . . ;
v2k = v(2x+2y+2)(n−2k). Let i = x + y + 1; we conclude that

Q = {v0, vn−2k, . . . , vi(n−2k), v(i+1)(n−2k), . . . , v2i(n−2k)}.

Also, |Q| = 1 + (x + y + 1) + (x + y + 1) = 2i + 1.
Now, we show that Q is a clique. By the definition of powers of cycles we know that

N(v0) = {vn−k, . . . , vn−1}∪{v1, . . . , vk}. Therefore, v0 is adjacent to every vertex of Q\{v0}.
Consider the vertices of Q in increasing order of their indexes and u, v two consecutive
vertices in this cyclic order. Then d(u, v) = n − 2k. This implies that any relabelling
vj → v(j+α(n−2k)) mod n, α ≥ 0, is an automorphism in G[Q]. We conclude that all vertices
of Q are pairwise adjacent. Moreover, all vertices of Q are even; thus, Q is an even clique.

In the following, we show that Q is a maximal clique. By definition, N [v0] = {vk+1, . . . ,
vn−k−1}. Therefore, none of these vertices can be included in Q while preserving the clique
property. By the symmetry of the vertices in Q, we conclude that none of the vertices in
V (G) \ Q can be included in Q. Therefore, Q is maximal.

Finally, to conclude this case we observe that

k = (x + y + 1)(n − 2k) = i(n − 2k) ⇒ k = n

(

i

2i + 1

)

.

Moreover, n even and k = n
(

i
2i+1

)

imply that k is even.

Case 2. BC(G,Q) stops with an empty Q.

In this case, BC(G,Q) stops because the condition of line 5 is true. That is, x(n− 2k)+
(n − 2k) > k − y(n − 2k).

Let u,w be the pair of vertices included in Q in the last iteration. By Property 7, these
vertices are needed to prevent vertices of odd index from belonging to Q. In this case,
we prove that u and w are not adjacent, which implies that u and w cannot belong to Q
simultaneously. We conclude that some vertex of odd index must eventually belong to Q.
Therefore, Q cannot be a maximal even clique.

Now, we prove that u and w are not adjacent. We have to consider two cases, depending
on the result of the test condition of line 2.
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Subcase 1. The test condition of line 2 is true.

In this case, step 2 was executed. Therefore, in line 6, x = y+1. Moreover, u = x(n−2k)
and w = n − x(n − 2k). By the definition of powers of cycles, we have that

Sup(u,w) = n − (n − x(n − 2k)) + x(n − 2k)
= 2x(n − 2k).

The algorithm stopped because the condition x(n− 2k) + (n− 2k) > k − y(n− 2k) is true.
Since x = y + 1, we conclude that 2x(n − 2k) > k.

By construction, x(n − 2k) = k − y(n − 2k) − z, for 0 < z < n − 2k. Moreover,

Inf (u,w) = n − x(n − 2k) − x(n − 2k)
= n − x(n − 2k) − (k − y(n − 2k) − z)
= n − x(n − 2k) − (k − y(n − 2k) + n − n + k − k) + z
= n − x(n − 2k) − (n − k − (y + 1)(n − 2k)) + z
= n − x(n − 2k) − (n − k − x(n − 2k)) + z
= k + z
> k.

We conclude that u and w are not adjacent.

Subcase 2. The test condition of line 2 is false.

In this case, step 3 was executed. Therefore, in line 6, x = y. Moreover, u = k−y(n−2k)
and w = n − k + y(n − 2k). The argument of this case is analogous to the previous one.

This ends the proof of Lemma 5.

As a consequence of Lemma 5, Corollary 8 determines the number of maximal even and
odd cliques of powers of cycles when n and k are even.

Corollary 8. Let G = Ck
n with n, k even. If k = n

(

i
2i+1

)

, i ≥ 1, integer, then G has n−2k
2

different maximal even cliques and n−2k
2 different maximal odd cliques.

Now we are ready to state the clique-chromatic number of a power of cycle.

Theorem 9. Let G = Ck
n, k ≥ 2, be a power of cycle. Then, χ(H(G)) = 2.

Proof. Let G = Ck
n, k ≥ 2, be a power of cycle. We consider two cases and in each case we

construct a 2-clique colouring π for G.

Case 1. n is even with k 6= n
(

i
2i+1

)

or n is odd.

In this case, we define π(vi) = i mod 2.
By lemmas 4 and 5, graph G does not have maximal even (odd) cliques. Therefore, each

maximal clique of G has at least one vertex of even index and at least one vertex of odd
index. We conclude that π does not yield monochromatic maximal cliques and the result
follows.
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Case 2. n is even and k = n
(

i
2i+1

)

.

In this case, we have that k is even and k ≥ n/3. Let π be defined as follows:

π(vi) =











0, if 0 ≤ i ≤ ⌊n/3⌋ − 1;

1, if ⌊n/3⌋ ≤ i ≤ 2⌊n/3⌋ − 1;

i mod 2, if 2⌊n/3⌋ ≤ i ≤ n − 1.

Consider first maximal cliques whose vertices have consecutive indexes (modulo n). By
the definition of powers of cycles, the size of these cliques is k + 1. By construction of
π, π(v2⌊n/3⌋−1) = 1 and π(v2⌊n/3⌋) = 0, also, π(vn−1) = 1 and π(v0) = 0. Thus, the
greatest number of consecutive vertices that receive the same colour is ⌊n/3⌋. Moreover,
⌊n/3⌋ ≤ n/3 ≤ k. Therefore, there are no monochromatic maximal cliques with consecutive
indexes.

Assume now that there exists a maximal clique Q that is monochromatic. Since Q cannot
be comprised by consecutive vertices, there exists vi ∈ Q such that 2⌊n/3⌋ ≤ i ≤ n − 1.
Moreover, since Q is maximal, there exists vj ∈ Q such that 0 ≤ j ≤ 2⌊n/3⌋ − 1.

Subcase 1. The vertices of Q received colour 0.

Since n is even, π(vn−1) = 1. Therefore, vn−1 6∈ Q. It implies that there exists vj ∈ Q
such that vn−1 and vj are not adjacent. Moreover, π(vj) = 0 since it belongs to Q.

By the definition of powers of cycles,

N(vn−1) = {vn−1−k, . . . , vn−2} ∪ {v0, . . . , vn−1+k}.

Since n−1+k > n, we have that n−1+k ≡ k−1 (mod n) Moreover, k−1 ≥ n/3−1 ≥
⌊n/3⌋ − 1. Therefore, vn−1 is adjacent to each vertex from v0 to v⌊n/3⌋−1. It implies that
j ≥ ⌊n/3⌋.

Suppose that n 6≡ 2 (mod 3). Then, 2(n/3) < 2⌊n/3⌋+1. This implies that n−1−k ≤
n−1−n/3 ≤ 2n/3−1 < 2⌊n/3⌋. Therefore, π(vn−1−k) = 1 and it implies that j ≤ 2⌊n/3⌋−1.
Since we have already proved that j ≥ ⌊n/3⌋, we conclude that π(vj) = 1, a contradiction.

Assume now that n ≡ 2 (mod 3). In this case 2(n/3) < 2⌊n/3⌋ + 2, implying that
n − 1 − k ≤ n − 1 − n/3 = 2n/3 − 1 < 2⌊n/3⌋ + 1. Note that n − 1 − k 6= 2⌊n/3⌋ since
n−1−k is odd, because n and k are even and 2⌊n/3⌋ is even. Therefore, n−1−k < 2⌊n/3⌋
and again we have a contradiction as in the previous case.

Subcase 2. The vertices of Q received colour 1.

Construct G′ from G relabelling the vertices of G in the following way:

v′i = vj , where v′i ∈ V (G′), vj ∈ V (G) and j ≡ 2⌊n/3⌋ − (i + 1) (mod n).

For each v′i ∈ V (G′) obtained from vj ∈ V (G) in this formula, we have that π(v′i) = 1
if, and only if, π(vj) = 0. Hence, the result follows from the previous case.

Therefore, there are no monochromatic maximal cliques with non-consecutive indexes,
which completes the proof of Theorem 9.
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4 Odd-Seq Circulant graphs

A circulant graph Cn(d1, . . . , dk) is an odd-seq circulant graph when each di, 1 ≤ di < dk, is
odd. We analyse two cases depending on the parity of n.

Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n even. These graphs were
shown bipartite by Heuberger [13]. Therefore, ω(G) is 2 and each maximal clique in G is
maximum. We conclude that there exists a 2-clique colouring for odd-seq circulant graphs
with n even.

Consider now G = Cn(d1, . . . , dk), an odd-seq circulant graph with n odd. We analyse
some cases, according to the clique number of G. Lemma 11 establishes conditions for which
a graph G has ω(G) equal to 2 or 3. The next result is a structural property of odd-seq
circulant graphs.

Property 10. Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n odd. Then,
each cycle of size 3 has at least one vertex vi with 0 ≤ i ≤ ⌊n/2⌋, and at least one vertex vj

with ⌈n/2⌉ ≤ j ≤ n − 1.

Proof. The result follows from the fact that every edge of G is odd and n is odd.

Lemma 11. Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n odd. Then,
ω(G) = 3 if, and only if, there exist ri, rj , rl ∈ {d1, . . . , dk}, not necessarily distinct, such
that ri + rj + rl = n. Otherwise, ω(G) = 2.

Proof. Let V (G) = {v0, . . . , vn−1}. First, we prove that every clique of G has size at most
3. Suppose that Q is a clique in G and that |Q| = 4. Adjust notation so that v0 ∈ Q.
Let vi, vj , vk be the other vertices of Q. Assume that i < j < k. Because set Q is a
clique, (v0, vi, vj , vk, v0) is a cycle (not induced) in G. Since every edge of G is odd, we
conclude that i and k are odd and j is even. However, for vl adjacent to v0, if l is odd, then
l ≤ ⌊n/2⌋; otherwise l ≥ ⌈n/2⌉. Therefore, we conclude that i, k ≤ ⌊n/2⌋ and j ≥ ⌈n/2⌉, a
contradiction, since i < j < k.

Now, assume that Q = {vi, vj , vl} is a clique in G. Adjust notation so that 0 ≤ i <
j < l ≤ n − 1. By Property 10, we can assume that i ≤ ⌊n/2⌋ and l ≥ ⌈n/2⌉. Let ri, rj

and rl be the reaches of vivj , vjvl, and vlvi, respectively. Thus, ri = j − i, rj = l − j and
rl = n − l + i. Therefore, ri + rj + rl = n.

Consider now that there exist ri, rj , rl ∈ {d1, . . . , dk} such that ri + rj + rl = n. Edges
v0vri

, vri
vri+rj

and vri+rj
vri+rj+rl

belong to E(G). Since ri + rj + rl = n, we have that
vri+rj+rl

= v0. Therefore, (v0, vri
, vri+rj

, v0) is a cycle and {v0, vri
, vri+rj

} is a clique in G.

In order to conclude the proof note that we have already proved that ω(G) ≤ 3. However,
if ω(G) 6= 3, then ω(G) = 2 because E(G) 6= ∅.

As an example of Lemma 11, consider graph C15(3, 5, 7) with ω(C15(3, 5, 7)) = 3. It has
a clique with ri = rj = rl = 5 and another clique with ri = 3, rj = 5, rl = 7.

We proceed considering first odd-seq circulant graphs G with ω(G) = 3 for which every
maximal clique is also maximum. Afterwards, we assume that G has maximal cliques of
size two and establish bounds to the clique-chromatic number of G in this case. We close
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this section with Corollary 14, that extends the bounds of Theorem 13 to the chromatic
number of odd-seq circulant graphs.

Theorem 12. Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n odd. If every
maximal clique of G has size three, then χ(H(G)) = 2.

Proof. Let π be a colour assignment to V (G) such that each vi, 0 ≤ i ≤ ⌊n/2⌋, has π(vi) = 0;
otherwise π(vi) = 1. By Property 10, π is a 2-clique colouring for G.

Now we can assume that G has maximal cliques of size two. The next lemma establishes
bounds to the clique-chromatic number of odd-seq circulant graph in this case.

Theorem 13. Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n odd. If G has
maximal cliques of size two, then 3 ≤ χ(H(G)) ≤ 4.

Proof. We start by showing that χ(H(G)) ≤ 4. Consider the following 4-colour assignment
π to the vertices of G: π(vi) = i mod 2, if 0 ≤ i ≤ ⌊n/2⌋; and π(vi) = 2 + (i mod 2), if
⌈n/2⌉ ≤ i ≤ n − 1. The validity of π follows from the fact that vertices of same colour are
non-adjacent.

It remains to show that χ(H(G)) ≥ 3. Let Q = {u, v} be a maximal clique. By the
definition of odd-seq circulant graphs, edge uv belongs to an odd cycle C. By symmetry
of circulant graphs, uv can be any edge of C. By maximality of Q, |C| > 3. Therefore, in
order to construct a clique-colouring for this cycle at least three colours are needed.

Corollary 14. If G is an odd-seq circulant graph with n odd, then 3 ≤ χ(G) ≤ 4.

Proof. Let G = Cn(d1, . . . , dk), with n odd and each di odd.

First we prove that χ(G) ≥ 3. By Lemma 1, Cn(di) is comprised by gcd(n, di) connected
components of size n/ gcd(n, di). Since n and di are odd, gcd(n, di) is also odd. That is,
Cn(di) is comprised by some connected components that are odd cycles. Thus, χ(Cn(di)) =
3. Since Cn(di) is a subgraph of G, we conclude that χ(G) ≥ 3.

Consider the 4-colour assignment defined in the proof of Theorem 13. As we have
already noticed π is a 4-colouring to the vertices of G. Therefore, χG ≤ 4 and the result
follows.

It is important to note that the bounds obtained in Theorem 13 are tight. For instance,
G = C21(1, 5, 9) has χ(H(G)) = 4 and G = C21(1, 3, 7) has χ(H(G)) = 3.

5 Concluding remarks

In this work we considered the clique-colouring problem in two classes of graphs: powers of
cycles and odd-seq circulant graphs.

We completely determined the clique-chromatic number of powers of cycles. A power
of cycle, Ck

n, has maximal cliques that are obtained taking any k + 1 consecutive vertices.
These cliques are a natural consequence of the definition of powers of cycles. However,
there exist maximal cliques that do not have consecutive vertices. We establish structural
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properties related to its maximal cliques. Lemma 3 and Lemma 4 together prove that if
n is odd, Ck

n does not have a maximal clique comprised only by vertices of same parity.
Additionally, in Lemma 5, we characterize which powers of cycles with n even have maximal
even (odd) cliques. More precisely, we exhibit the vertices of these cliques.

Next, we consider the class of odd-seq circulant graphs. For this class, we determined
which graphs have clique-chromatic number 2. For the remaining graphs in this class, we
show that the clique-chromatic number is 3 or 4. It is important to notice that these bounds
are tight. For instance, G = C21(1, 5, 9), ω(G) = 2, and G = C21(1, 5, 7, 9), ω(G) = 3, have
clique chromatic number 4; in contrast, G = C21(1, 5), ω(G) = 2, and G = C21(1, 3, 7)
ω(G) = 3, both have clique chromatic number 3.

One approach to determine which graphs have clique-chromatic number 3 and which
have clique-chromatic number 4 could be to partition E(G) according to the size of the
maximal cliques of G. That is, let Gi be the subgraph induced by the edges that belong to
maximal cliques of size i, i ∈ {2, 3}. We know that χ(H(G2)) = χ(G2) and 3 ≤ χ(H(G2)) ≤
4; moreover χ(H(G3)) = 2. So, it is natural to ask whether it is possible to obtain a
minimum clique-colouring for G from the clique-colouring of its subgraphs G2 and G3.

Another interesting problem is to consider the clique-colouring problem of even-seq
circulant graphs. Let G = Cn(d1, . . . , dl) be an even-seq circulant graph. We know that
if n is even, then G is not connected. In particular, Cn(d1, . . . , dl) = Cn

2

(d1/2, . . . , dl/2) ∪
Cn

2

(d1/2, . . . , dl/2). This implies that if d1 = 2 and di = di−1 + 2, each Cn
2

(d1/2, . . . , dl/2)
is a power of cycle whose clique-chromatic number has just been determined. On the other
hand, if di 6= di−1 + 2 for some di, we go back to the problem of determining the clique-
chromatic number of a general circulant graph.
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