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Abstract. We present the first automatic verification methods that automatically generate
invariants which are assertions expressed by multivariate formal power series. We also discuss
their convergence analysis over hybrid systems that exhibit highly non linear models. As far
as we know, this is the first approach that can deal with this type of systems or that can
automatically generate this type of invariants. We show that the preconditions for discrete
transitions, the Lie-derivatives for continuous evolution and the newly introduced relaxed con-
secution requirements can be viewed as morphisms and thus can be suitably represented by
matrices. By doing so, we reduce the invariant generation problem to linear algebraic matrix
systems, from which one can provide very effective methods for solving the original problem.
Such methods have much lower time complexities than other approaches based on Grobner ba-
sis computations, quantifier eliminations, cylindrical algebraic decompositions, directly solving
non-linear systems or abstract operators, or even the more recent constraint-based approaches.
We illustrate the efficiency of our computational methods by dealing with highly non linear
and complex hybrid systems.

1 Introduction

An invariant at a location of a system is an assertion that holds true for every reachable
state associated to this location. Hybrid systems [1, 2] exhibit both discrete and continuous
behaviors, as one often finds when modeling digital system embedded in analog environ-
ments. Moreover, most safety-critical systems, e.g. aircraft, automobiles, chemicals plants
and biological systems, operate semantically as non-linear hybrid systems and can only
be adequately modeled by means of non-linear arithmetic over the real numbers involv-
ing multivariate polynomial, fractional or transcendental functions. In this work, we use
hybrid automata as a computational model for such hybrid systems. A hybrid automaton
describes the interaction between discrete transitions and continuous dynamics, the latter
being governed by local differential equations.

The analysis of hybrid systems has been one of the main challenges for the formal
verification community for over a decade. Known verification approaches are based on in-
ductive invariant generation methods [3, 4], combined with the reduction of safety-critical
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properties to invariant properties [5, 6]. More recent approaches have been constraint-
based [7, 8, 9, 10, 11]. In these cases, a candidate invariant with fixed degree and unknown
parametric coefficients, i.e., a template form, is proposed as the target invariant to be gen-
erated. The conditions for invariance are then encoded, resulting in constraints over the
unknown coefficients, and whose solutions yield the desired invariants. One of the main
advantage of such constraint-based approaches is that they do not dependent on widening
operators that could lead to a too coarse abstraction when used together with fixed-point
based techniques and, further, they are goal-oriented. But, on the other hand, they still
require the computation of Grobner Bases [12], first-order quantifier elimination [13, 14]
or abstraction operators, and known algorithms for those problems are, at least, of double
exponential time complexity.

Despite tremendous progress over the past years [7, 15, 16, 8, 10, 17, 11, 18, 19, 20], the
problem of invariant generation for hybrid systems remains very challenging for non-linear
discrete systems, as well as for non-linear differential systems with non abstracted local
and initial conditions. SAT Modulo Theory decision procedures could eventually be used
to solve linear and decidable systems, but it is known that it is not adequate for treating
non-linear theories. In fact, in the latter context it faces an intractable, undecidable problem
[21, 22, 23].

Here, we present new methods for the automatic generation of invariants in the form
of assertions where continuous functions are expressed by multivariate formal power series.
These methods can then be applied to systems that exhibit continuous evolution modes
described by multivariate polynomials or fractional differential rules. As far as we know,
there are no methods that could deal with this type of systems or that could automatically
generate this type of invariants. Also, these methods give rise to more efficient algorithms,
with much lower complexity in space and time. The contribution is significant as it proposes
the first automatic verification methods capable of generating such precise provable invari-
ants, while dealing with highly non linear models present today in many critical hybrid
embedded systems.

We develop the new methods by first extending our previous work on non-linear non-
trivial invariant generation for discrete programs with nested loops and conditional state-
ments that describe multivariate polynomial or fractional systems [24, 25, 26]. Then, we
extend and generalize our previous work on non-linear invariant generation for hybrid sys-
tems [27, 28, 29, 30].

We can summarize our contributions as follows:

– As far as it is our knowledge we present the first methods which generates Formal
Power Series Invariant for hybrid systems with highly non linear models. We reach a
new level of precision that could be used for static analysis, reachability analysis, and
safety verification of hybrid systems. We do not need to start with candidate invariants
that generate intractable solving problems. Instead, we show that the preconditions for
discrete transitions and the Lie-derivatives for continuous evolution can be viewed as
morphisms and suitably represented by matrices. In this way, we reduce the invariant
generation problem to linear algebraic matrix manipulations. We present an in-depth
analysis of these automatically computed matrices and provide automated resolution
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techniques and convergence analysis in order to reach precise provable multivariate for-
mal power series invariants.

– We provide a computational method of lower complexity than the previous approaches
that depend on Grobner basis computations, quantifier eliminations, cylindrical alge-
braic decompositions, direct resolution of algebraic systems or abstract operators.

– We bring in some new insights and necessary and sufficient conditions that allow for
nice existence and completeness proofs of formal power series invariants. Our existence
results and our methods could be reused to reduce the complexity of other fixed-point
computations or constraint based approaches, i.e., to reduce the number of Grobner
basis computations and quantifier eliminations.

– We handle highly non-linear hybrid systems, extended with parameters and variables
that are functions of time, that exhibit multivariate fractional or polynomial differential
rules and discrete transitions relations.

– We introduce a more general approximation of consecution, for assertions expressed by
multivariate formal power series.

In Section 2 we introduce algebraic hybrid systems and inductive assertions. In Section
3 we introduce our notations and representations for multivariate formal series and differ-
ential systems rules. In Section 4 we present new forms of approximating consecution with
multivariate formal power series. In Section 5 we reduce the problem to triangular linear
algebraic matrix systems. In Section 6 we provide necessary and sufficient conditions for
existence proofs, and we show how to automatically compute invariants. In Section 7 we
present convergence analysis. Before presenting our conclusions in Section 9, we illustrate
the efficiency of our methods in Section 8 by generating invariants for some Volterra sys-
tems. The latter being well-known for their intractability when taken in their complete form
by other state-of-the-art formal methods and static analysis approaches.

2 Algebraic Hybrid Systems and Inductive Assertions

LetK[X1, .., Xn] be the ring of multivariate polynomials over the set of variables {X1, .., Xn}.
An ideal is any set I ⊆ K[X1, .., Xn] which contains the null polynomial and is closed under
addition and under multiplication by any element in K[X1, .., Xn]. Let E ⊆ K[X1, .., Xn] be
a set of polynomials, the ideal generated by E is the set of finite sums (E) = {

∑k
i=1 PiQi | Pi ∈

K[X1, . . . , Xn], Qi ∈ E, k ≥ 1}. A set of polynomials E is said to be a basis of an ideal I if
I = (E). By the Hilbert basis theorem, we know that all ideals have a finite basis. Also, in
the following we will write Ḟ for dF

dt and we will use the standard notation ∂F
∂xj

for partial
derivatives.

We use the notion of a hybrid automaton as the computational models for hybrid sys-
tems.

Definition 1 A hybrid system is a tuple 〈V, Vt, L, T , C,D, l0, Θ〉, where V = {X1, .., Xn}
is a set of variables, Vt = {X1(t), .., Xn(t)} where Xi(t) is a function of t, L is a set of
locations and l0 is the initial location. A transition τ ∈ T is given by 〈lpre, lpost, ρτ 〉, where
lpre and lpost name the pre- and post- locations of τ , and the transition relation ρτ is a first-
order assertion over V ∪ Vt ∪ V ′ ∪ V ′t , where V and Vt correspond to current state variables
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and functions, while V ′ and V ′t correspond to the next state variables and functions. Also,
Θ is the initial condition, given as a first-order assertion over V ∪ Vt, and C associates
each location l ∈ L to a local condition C(l) denoting an assertion over V ∪ Vt. Finally, D
associates each location l ∈ L to a differential rule D(l) corresponding to an assertion over
V ∪ {dXi/dt|Xi ∈ Vt}.

A state is any pair from L× R|V |. ut

Example 1. The dynamic system of a bouncing ball ([31]) is modeled by the following hybrid
automaton:

C(l) =
˘
y ≥ 0

D(l) =

8<:
ẏ = v
v̇ = −10
ε̇ = 1

τ = 〈l, l, ρτ =

24 ε > 0 ∧ y = 0
v′ = −v/2

y′ = y ∧ ε′ = 0

35〉

V = {y, v, ε}, Θ = (v = 16 ∧ y = ε = 0), l0 = l, L = {l0} and T = {τ}. ut

The time evolution of variables and functions during an interval must satisfy the local
conditions and must obey the local differential rules.

Definition 2 A run of a hybrid automaton is an infinite sequence 〈l0, κ0〉
µ0−→ · · · µi−1−−−→

〈li, κi〉
µi−→ · · · of states where l0 is the initial location and we require κ0 |= Θ. For any

two consecutive states 〈li, κi〉 and 〈li+1, κi+1〉 in such a run, the condition µi describes a
discrete consecution if there exists a transition 〈q, p, ρi〉 ∈ T such that q = li, p = li+1 and
〈κi, κi+1〉 |= ρi where the primed state variables refer to κi+1. Otherwise, µi is a continuous
consecution condition and we must have q ∈ L, ε ∈ R and a differentiable function φ :
[0, ε]→ R|V ∪Vt| such that the following three conditions hold:

1. li = li+1 = q,
2. φ(0) = κi, φ(ε) = κi+1 and
3. During the time interval [0, ε], φ satisfies the local condition C(q) and the local differential

rule D(q), i.e. for all t ∈ [0, ε] we must have φ(t) |= C(q) and 〈φ(t), dφ(t)/dt〉 |= D(q).

A state 〈`, κ〉 is reachable if there is a run and some i ≥ 0 such that 〈`, κ〉 = 〈`i, κi〉. ut

Example 2. Return to Example 1 and consider a possible run: 〈l, κ0〉
µ0−→ 〈l, κ1〉

µ1−→ 〈l, κ2〉,
where κ0 = (0, 16, 0). Note that in a valuation (a, b, c) ∈ R3, a is the value of the variable
y, b is the value of v and c is the value of ε. Clearly, κ0 |= Θ, as required.

Now take κ1 = (0,−16, ε), where ε = 16
5 , and consider φ : [0, ε] → R|Vt| such that

φ(t) = (y(t), v(t), ε(t)) = (−5t2 + 16t,−10t+ 16, t). Then φ(0) = (0, 16, 0) = κ0 and φ(ε) =
(y(ε), v(ε), ε(ε)) = κ1. Further, for all t ∈ [0, ε] we get φ(t) |= C(q) because y(t) is clearly
non-negative for t ∈ [0, ε]. Also, for all t ∈ [0, ε] we have 〈φ(t), dφ(t)/dt〉 |= D(q) because
dφ(t)/dt = (dy(t)/dt, dv(t)/dt, dε(t)/dt) = (v,−10, 1). So, by construction, µ0 illustrates a
possible continuous consecution.

Now, since 〈(0,−16, ε), (0, 8, 0)〉 |= ρτ , if we let κ2 = (0, 8, 0), then we can see that µ2 is
a discrete consecution. ut
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Definition 3 Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an invariant at
l ∈ L if κ |= ϕ whenever 〈l, κ〉 is a reachable state of W . ut

An invariant at l holds on all states that reach location l. Next, we need the notion of
inductive assertions.

Definition 4 Let W be a hybrid system and let D be an assertion domain. An assertion
map for W is a map γ : L → D. We say that γ is inductive if and only if the Initiation
and Consecution conditions hold:

1. Initiation: Θ |= γ(l0),
2. Discrete Consecution: for all 〈li, lj , ρτ 〉 ∈ T we have γ(li) ∧ ρτ |= γ(lj)′,
3. Continuous Consecution for all l ∈ L, and two consecutive reachable states 〈l, κi〉

and 〈l, κi+1〉 in a possible run of W such that κi+1 is obtained from κi according to the
local differential rule D(l), if κi |= γ(l) then κi+1 |= γ(l). ut

In other words, an inductive assertion holds in the initial state and at every possible
state reachable by a combination of discrete transitions and continuous flow.

Example 3. Consider the hybrid system of Example 1. It is easy to verify that the assertion
y = v × ε + 5 × ε2 is a provable, inductive invariant. To do so, we just need to compute
its derivative to see that the assertion holds during the continuous evolution. By direct
observation of the transition relations, we can see that the assertion holds during discrete
transitions too. ut

3 Multivariate Formal Power Series and Differential Systems

Let W be a hybrid system, and let γ(l) be an inductive assertion, as in Definition 4. Recall
that an inductive assertion holds at the initial state and at every other possible states in a
run. So, if γ(l) ≡ (f(x1, .., xn) = 0) where f is a smooth function then C(l)∧ (f(x1, .., xn) =
0) |= (d(f(x1, .., xn)/dt = 0). Hence, if γ is an inductive assertion map then γ(l) is an
invariant at l for W .

Let us describe the continuous evolution rules by a polynomial differential system S of
the form:

S =


ẋ1(t) = P1(x1(t), ..., xn(t))
ẋ2(t) = P2(x1(t), ..., xn(t))
...
ẋn(t) = Pn(x1(t), ..., xn(t)).

(1)

By a formal power series, we mean the following:

Definition 5 A formal power series in the indeterminates x1, . . . , xn is an expression of
the following type:∑

(i1,..,1n)∈Nn fi1,...,inx
i1 ...xin, where the coefficients fi1,...,in belong to R. ut

Whenever i = (i1, ..., in) ∈ Nn, we denote the sum i1 + · · ·+ in by |i|.
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Definition 6 We say that an order < is a lexicographical total ordering in Nn if for any two
elements i = (i1, ..., in) ∈ Nn and j = (j1, ..., jn) ∈ Nn we have that (j1, ..., jn) < (i1, ..., in)
holds if and only if one of the following condition holds:

– |j| < |i|, or
– |j| = |i|, and the first non zero component of i− j is positive. ut

Hence, the monomials xi11 ...x
in
n with |i| = k, where i = (i1, ..., in), form an ordered basis

for the vector space of homogeneous polynomials of total degree k. This means that any
homogeneous polynomial of total degree k can be written in the following ordered form:∑

|i|=k

fi1,...,inx
i1
1 . . . x

in
n .

As a consequence, as a formal power series F (x1, .., xn) is the direct sum of its homoge-
neous components, and it can be written in the following ordered form:

F (x1, .., xn) =
∑

k ≥ 1
∑
|i|=k

fi1,...,inx
i1
1 . . . x

in
n .

We will use the following useful notation from [32]: the coefficients of homogeneous
polynomials of degree k will be denote by

Fk =


fk,0,0,...,0
fk−1,1,0,...,0

fk−1,0,1,...,0
...

f0,0,0,...,k


and a monomial of degree k will be denoted by the following vector:

Xk =


x1
k

x1
k−1x2

x1
k−1x3

...
xn

k

 .

where the coordinates are ordered with the lexicographical total ordering as in Definition 6.
With this notation, the formal power series F (x1, .., xn) can be written as∑

k≥1

Fk ·Xk = F1 ·X1 + ...+ Fk ·Xk + ...,

where Fk ·Xk denotes the scalar product 〈Fk, Xk〉.
The polynomial Pi(x1, . . . , xn) can thus be written in the form:

Pi(x1, . . . , xn) = P i1 ·X1 + ...+ P im ·Xm,
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where m is the maximal degree among all the polynomials Pi, and P ij is the coefficient
vector of Pi. Denote by x(t) the vector (x1(t), ..., xn(t))T . Then system S can be written as

ẋ = A1 ·X1(t) + ...+Am ·Xm(t),

where

Aj =

P
1
j
...
Pnj

 .
In particular, A1 is the n× n matrix which is actually equal to the Jacobian matrix of

the polynomial system given by the Pi’s at zero.

4 New continuous consecution conditions

Now we show how to encode differential continuous consecution conditions. Let S be a
polynomial differential system as described by Eq. (1).

Definition 7 A function F from Rn to R is said to be a λ-invariant for system S if, for
any solution x(t) = (x1(t), ..., xn(t)) of S, we have

d/dtF (x1(t), ..., xn(t)) = λF (x1(t), ..., xn(t)). (2)

ut

Eq. (2) encodes the fact that the numerical value of the Lie derivative of F is given by λ
times its numerical value throughout out the time interval [0, ε]. Without loss of generality
we will assume that λ is a constant. It is worth noticing, however, that our methods will
also work when λ is a multivariate fractional or multivariate polynomial, as we proposed
for the case of multivariate polynomial invariants generation.

Now, we want to establish sufficient conditions over system S for it to admit λ-invariants
which are formal power series. Note that a formal power series F (x) = F1·X1+...+Fk·Xk+...
is a λ-invariant if the following conditions holds:

n∑
i=0

∂F (x)
∂xj

Pi(x) = λF (x). (3)

Using our notation, we obtain:

n∑
i=0

∂(F1 ·X1 + ...+ Fk ·Xk + ...)
∂xj

(P i1 ·X1 + ...+ P im ·Xm)

= λ(F1 ·X1 + ...+ Fk ·Xk + ...). (4)
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5 Reduction to linear algebra

Starting from Eq. (4), we get

n∑
i=0

∂(F1 ·X1 + ...+ Fk ·Xk + ...)
∂xj

(P i1 ·X1 + ...+ P im ·Xm)

−λ(F1 ·X1 + ...+ Fk ·Xk + ...) = 0.

By directly expanding the left side and collecting terms corresponding to increasing
degrees, we have:

(1) :
∑n

j=1
∂(F1X1)
∂xj

P j1X
1 − λF1X

1 = 0

(2) :
∑n

j=1[∂(F1X1)
∂xj

P j2X
2 + ∂(F2X2))

∂xj
P j1X

1]− λF2X
2 = 0

(3) :
∑n

j=1[∂(F1X1)
∂xj

P j3X
3 + ∂(F2X2))

∂xj
P j2X

2 + ∂(F1X1))
∂xj

P j3X
3]− λF3X

3 = 0

...
...

(m) :
∑n

j=1[∂(F1X1)
∂xj

P jmXm + ∂(F2X2))
∂xj

P jm−1X
m−1+

+ · · ·+ ∂(FmXm))
∂xj

P j1X
1]− λFmXm = 0

(m+ 1) :
∑n

j=1[∂(F2X2)
∂xj

P jmXm + ∂(F3X3))
∂xj

P jm−1X
m−1+

+ · · ·+ ∂(Fm+1Xm)+1)
∂xj

P j1X
1]− λFm+1X

m+1 = 0

...
...

The equation corresponding to degree k is:∑n
j=1[∂(Fk−min(k,m)+1X

k−min(k,m)+1)

∂xj
P jmXm + ∂(Fk−min(k,m)+2X

k−min(k,m)+1)

∂xj
P jm−1X

m−1+

+ · · ·+ ∂(FkX
k)

∂xj
P j1X

1]− λFkXk = 0

Now, consider the linear morphism Dp−k,p from Rp−k[x1, . . . , xn] to Rp[x1, . . . , xn], given
by

Dp−k,p :
{

Rp−k[x1, . . . , xn]→ Rp[x1, . . . , xn]
P (X = x1, . . . , xn) 7→

∑
j=1,...,n(∂jP (X))P jk+1.X

k+1

which can be represented by the matrixMp−k,p, in the ordered canonical basis ofRp−k[x1, . . . , xn]
and Rp[x1, . . . , xn], respectively. Its l-th column is the decomposition of the polynomial∑

j=1,...,n

(∂jP (X))P jk+1.X
k+1,



9

where P (X) is the l-th monomial in the ordered basis{
xp1, x

p−1
1 x2, x

p−1
1 x3, . . . , x

p
n

}
.

Then we can reduce the infinite equation systems, described just above, to the following
linear algebraic system: 

(M1,1 − λI2)F1 = 0
M1,2F1 + (M2,2 − λI2)F2 = 0
M1,3F1 +M2,3F2 + (M3,3 − λI4)F3 = 0
...
Mk−min(k,m)+1,kFk−min(k,m)+1

+Mk−min(k,m)+2,kFk−min(k,m)+2

+ · · ·+ (Mk,k − λIk+1)Fk = 0
...

(5)

By definition of the linear morphisms Dp−k,p, we can precisely and symbolically compute
all the matrices Mm,n. By so doing, we obtain matrices similar to those that appeared in
the determinant analysis of integrability of differential systems in [32]. We will, thus, use
our following characterization.

Lemma 1 Assume that matrix A = M1,1 is trigonal, i.e.

A =


λ1

? λ2

? ?
. . .

? ? ? λn−1

? ? ? ? λn

 .

Then Mp,p is also trigonal with diagonal terms i1λ1 + · · ·+ inλn, where i1 + · · ·+ in = p. ut

Proof. In this case,
P j1 .X

1 = λjxj + aj,j+1xj+1 + · · ·+ aj,nxn.

Now consider the monomial basis P (X) = xi11 . . . x
in
n , where i1 + · · ·+ in = p. One has

Dp,p(X) = i1x
i1−1
1 . . . xinn (λ1x1 + a1,2x2 + · · ·+ a1,nxn)

+i2xi11 x
i2−1
2 . . . xinn (λ2x2 + a2,3x3 + · · ·+ a2,nxn)

+ · · ·+ inx
i1
1 . . . x

in−1
n (λnxn)

= (i1λ1 + · · ·+ inλn)xi11 . . . x
in
n +Ω,

where Ω indicates a sum of monomials that come after xi11 . . . x
in
n in the ordered basis of

Rp[x1, . . . , xn], that is, they are higher terms.
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Then, the matrixMp,p corresponding toDp,p, in the canonical ordered basis ofRp[x1, . . . , xn],
is: 

pλ1

? (p− 1)λ1 + λ2

? ?
. . .

? ? ?

nX
k=1

ikλk

? ? ? ?
. . .

? ? ? ? ? λn−1 + (p− 1)λn
? ? ? ? ? ? pλn


Thus, it is also trigonal with diagonal terms i1λ1 + · · ·+ inλn, where i1 + · · ·+ in = p. ut

6 Existence proofs and invariants generation

First, let us examine necessary and sufficient existence conditions for the computation of
λ-invariants.

6.1 Existence conditions and the computation of λ-invariants

We obtain the following main results on existence of formal power series invariants for
system described as system S, in Eq. (1).

Theorem 1 Let A be the Jacobian matrix at zero of the polynomial P = (P1, ..., Pn) defin-
ing the system S, whose expression is: (∂iPj(0, ..., 0)i, j ∈ [1, n]2). Assume Pk(0, .., 0) = 0.
If A is trigonalizable with eigenvalues λ1 ≤ ... ≤ λn then there exists a formal power series
λ-invariant for S when all eigenvalues are positive, or are all negative, with λ = λ1. ut

Proof. Up to a linear change of variables, we can assume that matrix A is triangular with
diagonal terms λ1 ≤ ... ≤ λn . We know that matrix Mk,k has the form described in Lemma
1. As A is triangular, so is Mk,k, and its diagonal terms are the real numbers i1λ1+· · ·+inλn,
where i1 + · · ·+ in = k. Hence, the diagonal terms of Mk,k−λIk+1 are 0 ≤ λ2−λ... ≤ λn−λ
when k = 1. Also, it has a nonzero kernel, and so we can chose a nonzero F1, such that
(M1,1 − λI2)F1 = 0.

For k ≥ 2 and i1 + · · ·+ in = k, the diagonal terms i1λ1 + · · ·+ inλn−λ of the triangular
matrix Mk,k−λIk+1 are greater than i1λ1+· · ·+inλn−λ = kλ−λ > λ > 0. So, Mk,k−λIk+1

is invertible.
Hence we can choose:

– F2 = −(M2,2 − λI3)−1M1,2F1, and then
– F3 = −(M3,3 − λI4)−1(M1,3F1 +M2,3F2), and recursively,
– Fk = −(Mk,k − λIk+1)−1(Mk−min(k,m)+1,kFk−min(k,m)+1 + · · ·+Mk−1,kFk−1).

This gives (F1, F2, . . . ) as a nonzero solution of the system, and the corresponding formal
power series

∑
i FiX

i is a formal λ-invariant. ut
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In the proof of the preceding important theorem, we also provide the methods for the res-
olution of the triangular matrix system. Clearly, we are then able to generates nonzero formal
power series

∑
i FiX

i which are λ-invariants associated to the nonzero solution (F1, F2, . . . ).
We note that we used Maple to compute the matrix products to obtain Fk in its symbolic
form.

Remark 1. The trigonizable matrices of Mn(R) form a dense open subset of total measure
of Mn(R).

Next, we treat inductive invariants.

6.2 Inductive invariants for any initial conditions

We have the following basic result.

Theorem 2 Let A be the Jacobian matrix at zero of the polynomial P = (P1, ..., Pn) defin-
ing a system S, as in Eq. (1), and whose expression is (∂iPj(0, ..., 0), i, j ∈ [1, n]2). Assume,
further, that Pk(0, .., 0) = 0.
Suppose that A is trigonalizable with eigenvalues λ1 ≤ ... ≤ λn. We will also denote λ1 by
λ and will assume also that the eigenspace associated with λ is of dimension at least 2.
Then the (proof of the) preceding theorem asserts the existence of at least 2 independent
λ-invariants F1 and F2. If there is an open subset U of Rn, over which F1 and F2 define
two normally convergent power series, then for any initial value (x1,0, . . . , xn,0), the power
series

F2(x1,0, . . . , x
n
0 )F1 − F1(x1

0, . . . , x
n
0 )F2

defines an inductive invariant on U for the solution of S with initial conditions x1(0) =
x1,0, . . . , xn(0) = xn,0. ut

Proof. We know that F1 and F2 are convergent for a solution (x1(t), . . . , xn(t)) with initial
values (x1,0, . . . , xn,0) in U . Hence, it must stay in U for small t. Moreover, since F1 and F2

are independent,
F = F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

is a nonzero λ-invariant which vanishes at (x1,0, . . . , xn,0). As the power series converges
normally on U , so does any of their derivatives. Thus,

Ḟ (x1(t), . . . , xn(t)) =
∑n

i=1 ∂iF (x1(t), . . . , xn(t))ẋi(t)
= λF (x1(t), . . . , xn(t))

because of the λ-invariant property. Hence, F (x1(t), . . . , xn(t)) must be equal to t 7→ keλt

for some constant k. But now, as F (x1,0, . . . , xn,0) equals zero, this implies that k is zero,
and so is F (x1(t), . . . , xn(t)) for any t such that (x1(t), . . . , xn(t)) is in U . ut

All the invariant generation methods presented so far, automatically generate basis for
non trivial multivariate formal power series invariants for each differential rule associated to
locations in the hybrid automaton. In previous works [27, 28, 29, 30], we have shown that
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the preconditions for discrete transitions can be viewed as morphisms over a vector space
of degree bounded by polynomials which can, thus, be suitably represented by matrices.
For the discrete transitions consecution conditions we only used one morphism per circuit
or loop in the transition relations. We also introduced more general forms of approximat-
ing discrete transition consecution, called fraction and polynomial consecutions. The new
relaxed consecution requirements are also encoded as morphisms represented by matrices
with terms that are linear in the unknown coefficients used to approximate the consecution
conditions. See [27, 28, 29, 30] for more details on how we put it all together, i.e. how we
integrate all type of invariants and initial conditions in order to generates a global one.

7 Diagonal dominant trigonalisable degree 2 systems of 2 variables

In this section we show how our method applies to the general system:{
ẋ(t) = ax(t) + by(t) + a1,1x

2(t) + a1,2x(t)y(t) + a2,2y
2(t)

ẏ(t) = cy(t) + b1,1x
2(t) + b1,2x(t)y(t) + b2,2y

2(t)

where a, b, c, a1,1, a1,2, a2,2, b1,1, b1,2, b2,2 are parameters in V and x, y are in Vt.

The Jacobian matrix at zero of the polynomials defining the system is
(
a
b c

)
. Hence,

from Theorem 1, we already know that we can find a formal power F series which is a
a-invariant. Looking more closely at the coefficients of such a series we will show that it
must converge in some appropriate neighborhood of 0. Moreover, as the multiplicity of a as
an eigenvalue is 2, we will be able to apply Theorem 2.

7.1 The matrices Mp−k,p

Using our notation, the coefficient vectors Pi are zero, for all i ≥ 2. ThenMp−k,p is the matrix
whose l-th column is the vector corresponding to the decomposition of the polynomial

∂1[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−k]P 2
k+1X

k+1

in the ordered canonical basis of Rp[x, y]. Here, the polynomial (0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−k

is the l-th monomial of the canonical basis of Rp−k[x, y].
Therefore, the matrices Mp−k,p are zero unless k = 0 or k = 1. When k = 0, the general

form of Mp,p is given in Section 5 and, in our particular case, it is
pa
p.b (p− 1)a+ c

(p− 1)b (p− 2)a+ 2c

. . .
. . .

2b a+ (p− 1)c
b pc

 .



13

Note that p+ 1 is actually the dimension of Rp[x, y].
Matrix Mp−1,p is rectangular with p+ 1 rows, and p columns. Here, the l-th monomial

in the basis of Rp−1[x, y] is xp−l−1yl. Also, the polynomial P 1
2X

2 is a1,1x
2 + a1,2xy+ a2,2y

2

and the polynomial P 2
2X

2 is b1,1x2 + b1,2xy + b2,2y
2. Hence, matrix Mp−1,p can be written

as: 
(p− 1)a1,1 b1,1
(p− 1)a1,2 (p− 2)a1,1 + b1,2 2b1,1
(p− 1)a2,2 (p− 2)a1,2 + b2,2 (p− 3)a1,1 + 2b1,2 3b1,1

. . .
. . .

. . .
. . .

3a2,2 2a1,2 + (p− 3)b1,2 a1,1 + (p− 2)b1,2 (p− 1)b1,1
2a2,2 a1,2 + (p− 2)b2,2 (p− 1)b1,2

a2,2 (p− 1)b2,2

.

7.2 Resolution of the infinite triangular system

Since we are looking for λ-scale invariants, we already know that we can choose λ =
min(a, c). Then, the system to solve is given by

(M1,1 − λI2)F1 = 0
M1,2F1 + (M2,2 − λI3)F2 = 0
M2,3F2 + (M3,3 − λI4)F3 = 0
...
Mk−1,kFk−1 + (Mk,k − λIk+1)Fk = 0
...

It can be written as: 

(M1,1 − λI2)F1 = 0
F2 = −(M2,2 − λI3)−1M1,2F1

F3 = −(M3,3 − λI4)−1M2,3F2
...
Fk = −(Mk,k − λIk+1)−1Mk−1,kFk−1
...

So, one can choose thus

– any F1, and then
– Fk as (−1)k+1Uk(F1), where Uk is the matrix with k + 1 rows and 2 columns given by

the product

[(Mk,k − λIk+1)−1Mk−1,k] · [(Mk−1,k−1 − λIk)−1Mk−2,k−1]

. . . [(M2,2 − λI3)−1M2,3] · [(M2,2 − λI3)−1M1,2].
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Mk,k − λIk+1 is
ka− λ
k.b (k − 1)a+ c− λ

(k − 1)b (k − 2)a+ 2c− λ
. . .

. . .

2b a+ (k − 1)c− λ
b kc− λ

 ,

which can be decomposed as the product

DT =


d1

d2

d3

. . .

dk
dk+1




1
t2 1
t3 1

. . .
. . .

tk 1
tk+1 1

 ,

where di = (k + 1− i)a+ (i− 1)c and tj = (k + 2− j)b/dj .

So, matrix (Mk,k − λIk+1)−1 is equal to T−1D−1, where D−1 has the obvious form and
T−1 is 

1
−t2 1
t2t3 −t3 1
−t2t3t4 t3t4 −t4 1

? ? ? ? ?

(−1)kt2 . . . tk+1 (−1)k−1t3 . . . tk+1 . . . tktk+1 −tk+1 1

 .

7.3 Convergence of the λ-invariant

We want to show that if λ > 2b, the coefficients of the Fi vectors decrease quickly enough so
that the invariant F converges in a neighborhood of zero. But first, we recall basic properties
of norms in finite dimension real vector spaces, as well as the associated matrix norms.

If v, with coordinates vi, belongs to Rn, we denote by |v|∞ the value maxi=1,...,n |vi|.
Now, if A is a matrix with m rows and n columns, representing a morphism from (Rn, |.|∞)
to (Rm, |.|∞) in the canonical basis, it is well-known and easily proved that associated with
the norm |.|∞ is the matricial norm ||.|| on Mm,n(R), where

||A|| = max
i=1,...,m

(
n∑
j=1

|Ai,j |).

Moreover, using this norm, if v ∈ Rn then one has that |Av|∞ ≤ ||A||.|v|∞. This implies
that if A and B are two matrices belonging, respectively, to Mm,n(R) and Mn,p(R), then
one has that

||AB|| ≤ ||A|| · ||B||.

In particular, the norm ||Uk|| is less than or equal to the product

||Mk,k − λIk+1| · |||Mk−1,k|| . . . ||M2,2 − aI3|| · ||M1,2||.
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But, from the expressions for matrices Mk−1,k, we have that ||Mk−1,k|| ≤ f(k − 1), where
f = 4 ·max(|ai,j |, |bi′,j′ |). From the preceding paragraph again, we deduce that

||(Mk,k − λIk+1)−1|| ≤ ||D−1|| · ||T−1||.

But ||D−1|| = maxi(d−1
i ) = [(k − 1)λ]−1, because λ = min(a, c), and so

||T−1|| = max
i

(1 + ti + ti−1ti + · · ·+ t2t3 . . . ti−1ti),

but as each tj is less than (k+ 2− j)b/dj ≤ kb/[(k−1)λ] ≤ 2b/λ. Suppose now that λ > 2b.
Then

||T−1|| ≤ 1 + 2b/λ+ · · ·+ (2b/λ)k ≤ 1/(1− 2b/λ).

By letting e be the constant 1/(1− 2b/λ), we can write

||(Mk,k − λIk+1)−1|| ≤ e/(k − 1)λ.

Finally, ||Uk|| is less than (ef/λ)k−2 = rk−2. Hence, eventually we have

|Fk|∞ = |Uk(F1)|∞ ≤ ||Uk||.|F1|∞ ≤ rk−2|F1|∞.

Let t be max(|x|, |y|). Then

|F (x, y)| ≤
|F1X

1|+ |F2X
2| · · ·+ |FkXk|+ · · · ≤

2|F1|∞t+ 3|F2|∞t2 + · · ·+ (k + 1)|Fk|∞tk + . . .

The right part of the inequality is itself inferior to

1/r2|F1|∞[2(rt) + 3(rt)2 + · · ·+ (k + 1)(rt)k + . . . ],

which, from the classical theory of one variable power series, is convergent in the open disk
centered at zero and of radius 1/r.

Hence we have proved the following.

Proposition 1 Consider the system{
ẋ(t) = ax(t) + by(t) + a1,1x(t)2 + a1,2x(t)y(t) + a2,2y(t)2

ẏ(t) = cy(t) + b1,1x(t)2 + b1,2x(t)y(t) + b2,2y(t)2

with a and c positive and strictly greater than 2b. Let λ be the minimum between a and c.
Then there exists a λ-invariant, obtained as in Theorem 2, and which always converges in
a neighborhood of zero. ut
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7.4 The case of eigenspaces with dimension 2

Now, suppose that the eigenspace corresponding to λ has multiplicity 2, i.e. a = c = λ > 0
and b = 0. We know, from the previous subsection, that any λ-invariant will converge in a
ball of radius 1/r and centered at zero. Moreover, according to Theorem 2, this will actually
give an inductive invariant for the system, for any initial solutions within this ball.

More precisely, by letting F 1
1 =

(
1
0

)
and F 2

1 =
(

0
1

)
, we get a basis F 1(x, y) and F 2(x, y)

of λ-invariants that converge in the open |.|∞-disk of radius 1/r and centered at zero. Note
that the monomial of degree one in F 1’s Taylor series is x, and it is y in F 2’s Taylor series. In

other words, if we take the first coefficient of F as
(

1
0

)
, we obtain a λ-invariant F = F 1(x, y)

and, similarly, if we take the second coefficient of F as
(

0
1

)
, we obtain another λ-invariant

F = F 2(x, y) Moreover, these two invariants form a basis for invariants that converge in
the open |.|∞-disk and of radius 1/r and centered at zero.

Assume now that we are given initial values, x(0) = x0 and y(0) = y0, for solutions in
this open disk. Then, there will always exist two real numbers, λ and µ, such that

λ(x0, y0)F 1(x0, y0) + µ(x0, y0)F 2(x0, y0) = 0,

where λ(x0, y0) = F 2(x0, y0) and µ(x0, y0) = −F 1(x0, y0). Then,

λ(x0, y0)F 1 + µ(x0, y0)F 2

is an invariant for the solution corresponding to the initial condition (x0, y0). Clearly, given
(x0, y0) in the |.|∞-disk of radius 1/r and centered at zero, the invariant depends smoothly
on the initial condition.

8 Example: Volterra systems

In this section, we show how our method applies to the so called Lotka-Volterra systems
[33], which are given by: {

ẋ(t) = ax(t) + bx(t)y(t)
ẏ(t) = cy(t) + dx(t)y(t).

Also known as the predator-prey equations, these non linear differential equations are fre-
quently used to describe the dynamics of biological systems in which two species interact,
one a predator and the other its prey. Variable x, which is a function of time, gives the
number of preys, and y corresponds to the number of predators. Their derivatives, ẋ and ẏ,
model the growth of the two population as time passes. Here, a, b, c and d are parameters
modeling the interaction between predators and preys. The first equation expresses the fact
that the change in the number of preys is given by its own growth minus the rate at which
it is preyed upon. The second equation can be interpreted as the change in the number of
predators fueled by the food supply, minus natural death.
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The Jacobian matrix at zero for the polynomials defining the system is
(
a 0
0 a

)
. Hence,

from Theorem 1, we already know that we can find a formal power series F which is an
a-invariant. Looking more closely at the coefficients of such a series, we will show that it
must converge in some appropriate neighborhood of 0. Moreover, since the multiplicity of
a as an eigenvalue is 2, we will be able to apply Theorem 2 also.

8.1 The matrices Mp−k,p

The coefficient vectors Pi are zero, for i ≥ 2. So, Mp−k,p is the matrix whose l-th column is
the vector corresponding to the decomposition of the polynomial

∂1[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−k]P 2
k+1X

k+1

in the ordered canonical basis of Rp[x, y]. Hence, in the Volterra case, the matrices Mp−k,p
are zero unless k = 0 or k = 1. When k = 0, the general form of Mp,p in our particular
case is, as given in Section 5, equal to paIp+1. Note that p+ 1 is actually the dimension of
Rp[x, y]. The matrix Mp−1,p is rectangular with p+ 1 rows, and p columns. In this case, the
l-th monomial of the basis of Rp−1[x, y] is xp−l−1yl, the polynomial P 1

2X
2 is bxy and the

polynomial P 2
2X

2 is dxy.
Hence

∂1[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−1]P 1
2X

2

+∂2[(0, . . . , 0, 1︸︷︷︸
l−th place

, 0, . . . , 0)Xp−1]P 2
2X

2

reduces to b(p− l − 1)xp−l−1yl+1 + dlxp−lyl. Eventually, the matrix can be written as:

Mp−1,p =



0
(p− 1)b d

(p− 2)b 2d

. . .
. . .

2b (p− 2)d
b (p− 1)d

0


.

8.2 Resolution of the infinite triangular system

In our case, looking for λ-scale invariants, we already know that we must choose λ = a.
Then the system to solve is the following:
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

(M1,1 − aI2)F1 = 0
M1,2F1 + (M2,2 − aI2)F2 = 0
M2,3F2 + (M3,3 − aI3)F3 = 0
...
Mk−1,kFk−1 + (Mk,k − aIk)Fk = 0
...

As the matrix Mk,k is equal to kaIk+1, the system becomes:

0.F1 = 0
F2 = −a−1M1,2F1

F3 = −(2a)−1M2,3F2
...
Fk = −[(k − 1)a]−1Mk−1,kFk−1
...

This means that one can choose

– any F1, and then
– Fk as (−1)k+1a−k+1Uk(F1), where Uk is the matrix with k+1 rows and 2 columns given

by the product

[1/(k − 1)Mk−1,k] · [1/(k − 2)Mk−2,k−1] . . . [1/2M2,3]M1,2.

8.3 Convergence of the a-invariant

We are going to show that the coefficients of the Fi vectors decrease quickly enough for the
invariant F to converge in a neighborhood of zero. In particular, the norm ||Uk|| is less than
or equal to the product

1
(k − 1)!

||Mk−1,k|| . . . ||M1,2||.

From the expression of Mk−1,k, we have that ||Mk−1,k|| ≤ ck, where c = max(|b|, |d|). Hence,
we can conclude that one ||Uk|| ≤ ck!/(k − 1)! = ck. Eventually, we will have

|Fk|∞ = a−k+1|Uk(F1)|∞ ≤ a−k+1||Uk||.|F1|∞ ≤
ck

ak−1
|F1|∞.

Let t be max(|x|, |y|). Then

|F (x, y)| ≤
|F1X

1|+ |F2X
2| · · ·+ |FkXk|+ . . .

≤ 2|F1|∞t+ 3|F2|∞t2 + · · ·+ (k + 1)|Fk|∞tk + . . .

The right member of the inequality is inferior to

ac|F1|∞[2(
t

a
) + 3.2(

t

a
)2 + · · ·+ (k + 1)k(

t

a
)k + . . . ].
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From the classical theory of one variable power series, it converges in the open disk of radius

a and centered at zero. More precisely, taking F1 respectively equal to
(

1
0

)
and

(
0
1

)
, we

get a basis F 1(x, y) and F 2(x, y) for a-invariants of the system, and which converge in the
opened |.|∞-disk of radius a centered at zero. Assume now that we are given initial values
x(0) = x0 and y(0) = y0 for solutions of the system within this open disk. Then, there will
always exist two real numbers λ and µ, such that

λ(x0, y0)F 1(x0, y0) + µ(x0, y0)F 2(x0, y0) = 0,

where λ(x0, y0) = F 2(x0, y0) and µ(x0, y0) = −F 1(x0, y0). Then, the expression

λ(x0, y0)F 1 + µ(x0, y0)F 2

is an invariant for solutions corresponding to the initial condition (x0, y0). It is also clear
that, for (x0, y0) in the |.|∞-disk of radius a and center at zero, that it depends smoothly
on the initial condition.

9 Conclusions

As far as it is our knowledge, we present the first methods which generate multivariate
formal power series invariants for hybrid systems with highly non linear behavior.

We also reach a new level of precision, but still an over-approximation, for the static
analysis and verification of hybrid systems,

We generate bases for invariants that are expressed as formal power series. We also
provide convergence analysis and existence results and note that, as such, they could be
reused by other fixed-point computation methods or other constraint based approaches.

We illustrate the efficiency of our methods by generating such invariants for Volterra-
like systems. The latter are well-known for being intractable by other state-of-the-art formal
methods for invariant generation or static analysis.
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