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An Exact Algorithm for an Art Gallery Problem

Marcelo C. Couto Pedro J. de Rezende∗ Cid C. de Souza†

Abstract

We consider an Art Gallery problem (agp) which aims to minimize the number of
vertex guards required to monitor an art gallery whose boundary is an n-vertex simple
polygon. In this paper, we compile and extend our research on exact approaches for
solving the agp. In prior works [1, 2], we proposed and tested an exact algorithm for the
case of orthogonal polygons. In that algorithm, a discretization that approximates the
polygon is used to formulate an instance of the Set Cover Problem which is subsequently
solved to optimality. Either the set of guards that characterizes this solution solves the
original instance of the agp, and the algorithm halts, or the discretization is refined
and a new iteration begins. This procedure always converges to an optimal solution
of the agp and, moreover, the number of iterations executed highly depends on the
way we discretize the polygon. Notwithstanding that the best known theoretical bound
for convergence is Θ(n3) iterations, our experiments show that an optimal solution
is always found within a small number of them, even for random polygons of many
hundreds of vertices. Herein, we broaden the family of polygon classes to which the
algorithm is applied by including non orthogonal polygons. Furthermore, we propose
new discretization strategies leading to additional trade-off analysis of preprocessing vs.
processing times and achieving, in the case of the novel Convex Vertices strategy, the
most efficient overall performance so far. We report on experiments with both simple
and orthogonal polygons of up to 2500 vertices showing that, in all cases, no more than
15 minutes are needed to reach an exact solution, on a standard desktop computer.
Ultimately, we more than doubled the size of the largest instances solved to optimality
compared to our previous experiments, which were already five times larger than those
previously reported in the literature.
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1 Introduction

According to Honsberger [3], in 1973, Victor Klee posed to Vasek Chvátal the question of
determining the minimum number of watchmen sufficient to guard an art gallery shaped as
an n-wall simple polygon. Chvátal’s proof [4] that !n/3" guards are occasionally necessary
and always sufficient for that purpose was the first result in what has become a whole new
field of study. Witnessing to the broad spectrum of literature that has appeared since, we
have O’Rourke’s classical book [5], Shermer’s and Urrutia’s surveys [6, 7] and a multitude
of journal papers cited within these. More recently, Ghosh’s book [8], which presents a vast
set of topics on visibility problems spun from related questions, cites over three hundred
references, mostly from the last fifteen years.

Among the earliest and most important results, one finds Lee and Lin’s NP-completeness
proof of a related minimization problem [9] that remained open for more than ten years.
Namely, given a planar simple polygon P , determine a placement of a minimum number of
stationary guards that cover P .

Many variants of this problem have been considered in the literature. The formulation
we study here restricts the placement of guards to vertices of the polygon that represents
the outer boundary of a given art gallery. Throughout this paper, we will refer to this
particular formulation as the Art Gallery Problem (agp). Furthermore, we consider general
simple polygons as well as the subclass of simple orthogonal polygons, which are particularly
relevant due to most real life buildings and galleries being orthogonally shaped [7].

One of the earliest major result concerning the latter problem, due to Kahn et al. [10],
states that !n/4" guards are occasionally necessary and always sufficient to cover an orthog-
onal polygon with n vertices. Later, Schuchardt and Hecker proved that minimizing the
number of guards in this variation is also NP-hard [11], settling a question that remained
open for almost a decade [12].

Several placement algorithms have been proposed in the past, such as Edelsbrunner
et al. [13] and Sack and Toussaint [12], which deal with the problem of efficiently placing
exactly !n/4" guards covering a given orthogonal gallery.

On the other hand, in a recently revised manuscript, based on [14], Ghosh presents an
O(n4) time approximation algorithm for simple polygons yielding solutions within a log n
factor of the optimal. Further approximation results include Eidenbenz [15] who designed
algorithms for several variations of terrain guarding problems and Amit et al. [16] who
analyze heuristics with experimental evidence of good performance in covered area as well
as in the number of guards.

Another approach tackled by Erdem and Sclaroff [17] and Tomás et al. in [18] consists
of modeling the problem as a discrete combinatorial problem and then solving the corre-
sponding optimization problem. The former discretizes the interior of the polygon with a
fixed grid, yielding an approximation algorithm and the latter gives empirical analysis of an
exact method of successive approximations based on dominance of visibility regions.

Finally, in [1], we presented an exact algorithm to optimally solve the orthogonal agp.
In this algorithm, we iteratively discretize and model the problem as a classical Set Cover
problem (scp) citewolsey-book. Besides demonstrating the feasibility of this approach, we
showed that, in practice, the number of iterations required to solve instances of up to 200
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vertices was very small and that the resulting algorithm turned out to be quite efficient.
Though the number of iterations executed by the exact algorithm we proposed in [1]

and improved in [2] was shown to be polynomially bounded, its practical performance is
far better depending on how the polygon is discretized. This becomes evident when we
notice that in each iteration an instance of scp, an NP-hard problem, has to be solved to
optimality, in our case, by an Integer Programming solver.

In this paper, we build upon all our previous studies and conduct a thorough experi-
mental investigation concerning the trade-off between the number and nature of discretizing
methods and the number of iterations and we analyze the practical viability of each ap-
proach. Moreover, while our previous works [1, 2] dealt only with orthogonal polygons, here
we show that the same approach works well for general simple polygons. Besides dealing
with new classes of polygons, two new and superior discretization strategies are introduced
in this paper and are compared to the previously studied ones. All of our test data are
available in [19] and include multiple instances for each size of the vertex set, for various
classes of polygons with up to 2500 vertices.

The new experimental results significantly surpass those we reported in [1, 2]. This is
due to the exploration of alternative discretization strategies, which allow us to address
difficult instances as well as to handle a substantial increase in polygon size compared to
earlier results, while still attaining low execution times.

In the next section, we describe the process of modeling the agp as an scp and the
basic ideas necessary for the description of the algorithm which appears in Section 3, along
with its proof of correctness and complexity. Section 4 is devoted to the description of
the alternative strategies to discretize the input polygon. Next, in Section 5 we give an
account of the set up of the testing environment and present the different classes of instances
used. Complying with the recommendations of Johnson [20], McGeoch and Moret [21],
Sanders [22] and Moret [23], we show in Section 5.2 an extensive experimental analysis of
the algorithm considering multiple discretization strategies, and include an evaluation of
various comparative measurements. Concluding remarks are drawn in the last section.

2 Modeling

In an instance of the agp, we are given a simple polygon that bounds an art gallery and we
are asked to determine the minimum number and an optimal placement of vertex guards
in order to keep the whole gallery under surveillance. Vertex guards are assumed to have a
range of vision of 360◦.

The approach used by the algorithm described in Section 3 transforms the continuous
agp into a discrete problem which, in turn, can easily be modeled as an instance of the
scp. In fact, for the last two decades, this has been the only known technique for develop-
ing efficient approximation algorithms for the art gallery problem. Before we present our
algorithm and establish its correctness, let us review some basic definitions.

An n-wall art gallery can be viewed as a planar region whose boundary consists of a
simple polygon (without holes) P . The set of vertices of P is denoted V and a vertex v ∈ V
is called a reflex vertex if the internal angle at v is greater then 180◦. Whenever no confusion
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arises, a point in P will mean a point either in the interior or on the boundary of P .
Any point y in P is said to be visible from any other point x in P if and only if the

closed segment joining x and y does not intersect the exterior of P . The set Vis(v) of all
points in P visible from a vertex v ∈ V is called the visibility region of v. It is easy to
see that Vis(v) is always a star shaped polygon. A boundary description of Vis(v) can be
computed in linear time by an algorithm proposed by Lee [24] and extended by Joe and
Simpson [25, 26].

A set of points S is a guard set for P if for every point p ∈ P there exists a point s ∈ S
such that p is visible from s. Hence, a vertex guard set G is any subset of vertices such that⋃

g∈G Vis(g) = P . In other words, a vertex guard set for P gives the positions of stationary
guards who can oversee an entire art gallery of boundary P . Thus, the agp amounts to
finding the smallest subset G ⊂ V that is a vertex guard set for P .

The reader who is familiar with the set cover problem (scp) [27] must already have
perceived that the problem of finding the smallest vertex guard set for P can be regarded
as a specific scp. Namely, we wish to find a smallest cardinality set of star-shaped polygons
(visibility regions of the vertices of P ) whose union cover P . Notice that, strictly speaking,
this is a continuous scp since there are infinitely many points in the interior of P to be
covered. However, one can discretize the problem by generating a finite number of repre-
sentative points in P so that the formulation becomes manageable. We shall see below how
this approach will lead us to a viable solution of the original problem.

We now describe how the solutions to successively refined discrete instances are guaran-
teed to converge to an optimal solution to the continuous problem. To this end, consider an
arbitrary discretization of P into a finite set of points D(P ). We will denote by I(P,D(P ))
an instance of the discretized Art Gallery problem generated in this fashion. An IP formu-
lation of the corresponding scp instance is shown below.

z = min
∑

j∈V

xj

s.t.
∑

j∈V

aijxj ≥ 1, for all pi ∈ D(P ) (1)

xj ∈ {0, 1}, for all j ∈ V

where the binary variable xj is set to 1 if and only if vertex j of P is chosen to be in the
guard set. Moreover, given a point pi in D(P ) and a vertex j of P , aij is a binary value
which is 1 if and only if pi ∈ Vis(j).

Given a feasible solution x to the IP above, let Z(x) = {j ∈ V | xj = 1}. Constraint (1)
states that each point pi ∈ D(P ) is visible from at least one selected guard position in the
solution and the objective function minimizes the cardinality z of Z(x). Clearly, as the set
D(P ) is finite, it may happen that Z(x) does not form a vertex guard set for P . In this case,
we must pick a new point inside each uncovered region and include these points in D(P ). A
new scp instance is then created and the corresponding IP is solved, leading to an iterative
procedure. At the end of Section 3.2 we establish the convergence of this process.

The actual number of iterations that are required depends on how many uncovered
regions might be successively generated. As the cost of each iteration is related to the number
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of constraints in (1), an interesting trade-off naturally sprouts and leads one to attempt
multiple choices of discretization schemes. On the other hand, any method of cleverly
choosing the initial points of the discretization will have a corresponding cost in preprocessing
time, opening another intriguing time exchange consideration. These questions are precisely
what we address in Section 4 where we consider several possible discretization schemes which
lead to the various performance analysis discussed in Section 5.

3 Description of the algorithm and proof of correctness

The algorithm is divided into two phases: a Preprocessing Phase, where the initial dis-
cretization described in Section 1 is constructed and the Integer Programming problem is
set up, and a Solution Phase in which the algorithm iterates as described above, solving scp
instances for the current discretization, until no regions remain uncovered.

As mentioned earlier, a solution set Z(x) to the discretized formulation in Section 2 may
not always constitute a guard set for P since there might be regions inside P that are not
visible from any guard in Z(x).

To formalize our subsequent reasoning, we start with the following definition.

Definition 1 Let I(P,D(P )) be an instance of the discretized Art Gallery problem with
polygon P as the gallery boundary and D(P ) a discretization of P . A solution Z(x) of this
instance is called viable if Z(x) is a guard set for P , i.e.,

⋃

g∈Z(x)

Vis(g) = P.

Any exact method for the original agp which solves its discretized version must address
the fact that a solution to I(P,D(P )) might not necessarily be viable. As we will see, our
algorithm overcomes this difficulty and always produces a viable solution by successively
refining the given discretization whenever it detects that the present solution is not viable.
Furthermore, the following theorem establishes that a solution obtained through this itera-
tive process is also minimal.

Theorem 1 Let Z be a solution of an instance I(P,D(P )) of the discretized Art Gallery
problem. If Z is viable then Z is optimal.

Proof. From the fact that Z is a solution of the minimization problem I(P,D(P )), it follows
that Z is optimal as a vertex guard cover for the set D(P ) of points which discretize the
polygon P , i.e., z = |Z| is minimum among the cardinalities of all vertex guard covers of
D(P ).

Now, let Z∗ be an optimal vertex guard set for P and let z∗ = |Z∗|. Since Z∗ is also a
vertex guard cover for D(P ), we must have z∗ ≥ z. On the other hand, since Z∗ is viable,
it follows that z ≥ z∗. !

Theorem 1 establishes that when the algorithm finds a solution for the discretized for-
mulation which is viable, that solution is also a minimal vertex guard cover for P , i.e., it is
a guard set for P .
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We are now able to describe in detail the algorithm we first proposed in [1]. In the
Preprocessing Phase, three procedures are executed: the first one computes the visibility
polygons for the points in V , the second one computes the initial discretization D(P ) and
the third one builds the corresponding IP model. In the Solution Phase, the discretized
problem is successively solved and refined until a viable (and optimal) solution is found.

3.1 Preprocessing Phase

The main steps of the preprocessing phase are summarized in Algorithm 3.1.
In order to assemble the formulation outlined in Section 2, we start by building an

initial discretization D(P ) of the polygon (step 1). In Section 4 we describe alternative
discretization strategies and their impact on the efficiency of this algorithm.

Once a discretization is built, we compute which of its points are located inside the visi-
bility region of each vertex in V , and, then, include these restrictions in the scp formulation.

Algorithm 3.1 Preprocessing Phase
1: D(P ) ← chosen initial discretization of P ;
2: for each j ∈ V do
3: Compute Vis(j);
4: for each discretization point pi ∈ D(P ) do
5: aij ← Boolean(pi ∈ Vis(j));
6: end for
7: end for

The total complexity of step 3 is O(n2) [25] and, assuming that m = |D(P )|, the full
complexity of step 5 is O(nm log n) since point location of each of the m points of D(P )
in a star-shaped visibility n-polygon can be accomplished in O(log n) time. Hence, the
overall complexity of the preprocessing phase is dominated by that of step 5 whenever
m ∈ Ω(n/ log n), and by that of step 3, otherwise.

The result of the preprocessing phase is an Integer Programming (IP) formulation for
the Set Cover problem which, once solved, generates a solution Z that, while not necessarily
constituting a guard set for P , will always cover all the points in D(P ).

3.2 Solution Phase

In the second phase of the algorithm, starting from the IP formulation generated in the
preprocessing phase, we solve the discretized instance followed by an iterative refinement of
the discretization until the solution becomes viable. This refinement is attained by generat-
ing one more point in the discretization for each uncovered region (e.g., its centroid) and by
adding the corresponding constraints to the current scp. These additional points enhance
the formulation and lead to a solution closer to a viable one. Algorithm 3.2 outlines the
steps executed in the solution phase.

It remains to be argued that Algorithm 3.2 halts, as it will then follow from Theorem 1
that the algorithm is exact and the solution given is indeed a guard set for P . In order to
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Algorithm 3.2 Solution Phase
1: repeat
2: Z ← solution of I(P,D(P ));
3: for each uncovered region R do
4: c ← centroid of R;
5: D(P ) ← D(P ) ∪ {c};
6: Add a new row, r, to the set of constraints (1) corresponding to point c:∑

j∈V arjxj ≥ 1 where arj ← Boolean(c ∈ Vis(j)), ∀j ∈ V ;
7: end for
8: until Z is viable

determine the worst case for the number of iterations executed by the algorithm, we proceed
as follows.

Consider the set of all visibility regions of the vertices in V , whose union, obviously,
covers P . The edges of these visibility regions induce an arrangement of line segments
within P whose faces we call atomic visibility polygons, or AVPs (see Figure 1). It follows
from the definition of the AVPs that if the centroid of (or, for that matter, any point in the
interior of) an atomic visibility polygon V is visible from a vertex guard, the entire area of
V must also be.

Figure 1: Visibility arrangement and AVPs.

As the visibility region of any vertex can have at most O(n) edges, the induced arrange-
ment is generated from O(n2) line segments and has a total complexity of no more than
O(n4) faces (or AVPs).

Note that in step 3, any uncovered region (witness to the fact that Z is not viable) is
necessarily a simple polygon formed by the union of neighboring AVPs. Therefore, an upper
bound on the maximum number of iterations effected by the algorithm is O(n4) and this
establishes the convergence.

Moreover, it can be derived from a result by Bose et al. [28] that Θ(n3) is a tight bound
on the number of AVPs, improving the above worst case result. However, in practice, this
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is still hugely over estimated and should be regarded solely as proof of convergence of the
iterative method.

4 Discretization strategies

As presented in the previous section, the convergence of the algorithm follows from an
upper bound on the number of uncovered regions. Yet, as each iteration solves an instance
of an NP-hard problem (the set cover problem, scp), the chosen discretization strategy
must ideally be light enough to set up instances of scp that can quickly be solved while
minimizing the number of iterations required to attain an optimal solution.

Thus, there is a tradeoff between speed and precision that must be taken into account
when designing a good discretization strategy. While the use of sophisticated geometric
properties to build more efficient discretizations may reduce the number of iterations done
by the algorithm, the corresponding cost in preprocessing might outweigh its benefits.

The following sections go into details on several alternatives for the discretization of the
polygon and discusses the theoretical advantages and possible drawbacks of each one.

4.1 Single vertex

The simplest strategy one might consider is to start a discretization with a single vertex of
the polygon P . At first glance, the Single Vertex strategy may seem weak since a single point
in P conveys no geometric information and the solution of the discretized agp associated to
this simple discretization is expected to leave several uncovered regions, leading to a number
of iterations of the algorithm.

However, the size of the scp instances that the Single Vertex strategy generates is very
small and they come without preprocessing cost. Therefore, it is still worth determining
whether this strategy pays off.

4.2 All vertices

A reasonable approach to try to reduce the number of iterations from the Single Vertex
strategy is to start with a larger discretization whose points are adequately distributed over
P . However, to maintain the benefits of the previous strategy, the number of points in such
discretization should be kept small and easy to compute. The All Vertices strategy is an
attempt to reach this goal. We consider the still sparse case where the starting discretization
contains all the vertices of the polygon (see Figure 2).

One can see that this strategy explores the fact that the vertices of the polygon should
capture enough geometric information to prevent uncovered regions near the convex vertices
from emerging.

Furthermore, experiments show that the All Vertices strategy generates smaller uncov-
ered regions than the Single Vertex strategy and, in this case, more meaningful constraints
get added, leading to better solutions in each iteration.
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Figure 2: Example of the initial discretization used in the All Vertices strategy.

Figure 3: Example of the initial discretization used in the Convex Vertices strategy.

4.3 Convex vertices

Convex vertices are clearly more useful discretization points than reflex vertices since these
are more easily guarded than those. Therefore, if any vertices might be redundant in gath-
ering visibility information, it is natural to assume that the reflex ones are the most super-
fluous.

These observations lead us to consider the Convex Vertices strategy which starts with a
discretization of P composed solely by the convex vertices (see Figure 3). In doing this, we
further reduce discretization size, while still capturing much of the combinatorial visibility
relationships at the price of a negligible increase in preprocessing cost.

While one might expect that this reduction could increase the number of iterations, we
detected no such consequence. Besides, this strategy preserves the same nice features of the
two previous alternatives, namely, an inexpensive preprocessing phase and scp instances
with a low number of constraints in each iteration.
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Figure 4: A sizeable gallery and its visibility arrangement showing all AVPs.

4.4 AVPs

The strategies seen so far seek to keep the number of constraints in the initial scp instance
small, while trying to reduce the number of iterations. However, it is possible to devise a
strategy that can lower the number of iterations to one.

To this end, one has to identify a set of regions that, when covered, guarantee that the
whole gallery is guarded. Furthermore, these regions must have the property that, once one
of its points is visible from a vertex-guard, the entire region is watched by that guard. Once
these regions are discerned, a discretization can be built by picking one point in each of
them.

As shown in the previous section, the atomic visibility polygons (AVPs) of P fulfill both
properties stated in the above paragraph. Therefore, the initial discretization containing
the centroids of all AVPs leads to an scp instance that, once solved, produces an optimal
vertex-guard set for P . However, as there can be O(n3) AVPs, the number of constraints in
the scp model might also be O(n3).

Although this proves that we could solve the problem in a single iteration of the algo-
rithm, building a discretization with the centroids of all AVPs of a complex gallery could
result in a huge scp instance (see Figure 4). Nonetheless, as shown next, not all AVPs need
to be represented in the set of constraints in order to guarantee a single iteration, which
makes the all AVPs discretization pointless.

Shadow AVPs.
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Figure 5: Example of the initial discretization used in the Shadow AVPs strategy.

As seen before, solving an scp instance with the centroids of all AVPs is very costly.
However, we can significantly reduced the number of discretized points and still guarantee
that the algorithm finds the minimum number of guards necessary to cover P after the first
iteration. In order to do so, we introduce the notion of a shadow AVP.

Initially we say that a line segment is a visibility edge for P if there exists a vertex v ∈ P
such that this segment is an edge of Vis(v). Moreover, a visibility edge e originated from
vertex v is said to be proper for v if and only if e is not contained in any edges of P .

Notice that since an AVP is a face in the arrangement generated by the visibility edges,
the edges of an AVP are either portions of edges of P or portions of proper visibility edges
of vertices of P .

We say that an AVP S is a shadow AVP if there exists a subset U of vertices of V such
that S is not visible from any vertex in U and the only proper visibility edges that spawn
S emanate from vertices in U .

The Shadow AVPs discretization strategy consists of taking the centroids of every shadow
AVP (see Figure 5).

We now establish the fundamental relation between the optimal solutions of the dis-
cretized agp with the Shadow AVPs strategy and those of the original agp.

Theorem 2 Let I(P,D(P )) be an instance of the discretized Art Gallery problem for poly-
gon P where D(P ) is the set of centroids of the shadow AVPs of P . Then, G is a vertex-guard
set for D(P ) if and only if G is a vertex-guard set for P .

Proof. The necessity part is trivial since D(P ) ⊂ P , therefore, we focus on the proof of
sufficiency.

Suppose G ⊂ V is a vertex-guard set for D(P ), but not for P . Thus, there exist regions
of P that are not covered by any of the vertices of G. Let R be a maximal connected region
not covered by G. Note that R is the union of (disjoint) AVPs.

To prove that at least one of those AVPs is of type shadow, notice that the entire region
R is not seen by any vertex in G whose proper visibility edges spawn R. If R is an AVP,
it is by definition a shadow AVP. Otherwise, there is a vertex vi ∈ V which has a proper
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Figure 6: A sizeable gallery and the discretization points used in the Shadow AVPs strategy.

visibility edge evi that intersects and partitions R in two other regions. One of these regions
matches the side of evi visible from vi while the opposite one does not. Hence, through an
inductive argument, by successively partitioning R, at least one shadow AVP is bound to
be contained in R and therefore uncovered.

This contradicts the hypothesis since G is a guard set for D(P ) which is comprised of
the centroids of all shadow AVPs. !

From Theorem 2, it is clear that with the Shadow AVPs strategy the algorithm converges
in one iteration. Also, when we restrict ourselves to shadow AVPs, the size of the discretiza-
tion decreases considerably when compared to the AVP strategy. Even for complex galleries
(contrast Figures 4 and 6), this reduction may be large enough to render the algorithm
practical.

Although the Shadow AVPs strategy requires only a single iteration of the algorithm to
find an optimal solution, we will see later that the time spent in the preprocessing phase
may become the bottleneck of the algorithm. This issue is investigated in Section 5.2.

4.5 Other Strategies

For completeness, it should be mentioned that other strategies have been considered in our
prior works, such as those based on the regular [1] and on the induced [2] grid discretizations.
Experiments have shown that none of them are competitive with the strategies discussed in
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Figure 7: Sample polygons with 100 vertices: Random Orthogonal, Random Simple, Ran-
dom von Koch and Complete von Koch.

this section, which are far more efficient.

5 Computational Experiments

We now discuss the experimental investigations that we carried out to evaluate the algorithm
proposed in Section 3. In particular, we analyze the behavior of the algorithm with respect
to the various discretization strategies discussed in the previous section.

All our programs were coded in C++ and compiled with GNU g++ 4.2, on top of CGAL
3.2.1 [29]. The visibility algorithm from [25] was implemented and Xpress v18.10.04 [30]
was used to compute the IP models corresponding to the scp instances.

As for hardware, we used a desktop PC featuring a Pentium IV at 3.4 GHz and 3 GB
of RAM running GNU/Linux 2.6.24. We observe that no other processes were allowed to
execute in the machine during our tests. Besides, for each instance, the algorithm stopped
either because an optimal solution was found or because the program ran out of memory.

5.1 Instances

To be considered a realistic method to solve the agp, an algorithm must be able to handle
a large variety of instances with distinctive characteristics. Thus, to test the robustness of
our algorithm, we devised four classes of instances (see Figure 7). Each of them captures
peculiar geometric properties that either appear in actual art galleries or represent extreme
situations needed to exercise some of the algorithm’s characteristics. The set of all instances
used in the experiments reported here, plus several others, are downloadable at [19].

In the first two classes of instances, the art gallery is represented as an orthogonal or as
a simple polygon, respectively. The former are thought to be good representatives of many
actual art gallery buildings. The last two classes correspond to polygons assembled from
a closed version of the von Koch fractal curve (see [31]). Instances generated in this way
tend to have small protuberances on the boundary of the polygon which create tiny areas
that are visible only by a small number of vertices. These instances are supposedly harder
to solve than similarly sized instances of the two first classes. As an example, consider the
two instances in Figure 8. Both polygons have 100 vertices, but the visibility arrangement
of the Random Orthogonal instance has 2216 edges and 1085 AVPs (with only 99 Shadow
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Figure 8: Instances of Random Orthogonal and Random von Koch polygons with the same
size but distinct complexities.

Figure 9: Levels of von Koch polygons.

AVPs) while the one corresponding to the Random von Koch polygon has 8794 edges and
4420 AVPs (with 264 Shadow AVPs).
More details on how to generate the test polygons of each class are given below.
(1) Random Orthogonal: A Random Orthogonal instance consists of a random n-vertex
orthogonal polygon placed on an n

2 × n
2 unit square grid. The polygon is generated devoid

of collinear edges in accordance to the method described in [32].
(2) Random Simple: Each Random Simple instance amounts to a random simple polygon
generated by a special purpose procedure available in CGAL [29]. Essentially, this procedure
starts by distributing the vertices of the polygon uniformly in a given rectangle and applies
the method of elimination of self-intersections using 2-opt moves.
(3) Complete von Koch (CvK): Here, polygons are generated based on a modified version
of the von Koch curve, which is a fractal with Hausdorff dimension of 1.34. An instance is
created by starting with a square and recursively replacing each edge by five other edges as
shown in Figure 9, where ar = st = ub and sr = tu = 3

4ar.
Let us make use of Figure 9 to introduce some notation needed to describe the last class

of instances. We say that an edge of the current polygon which remains over the boundary
of the initial square is at level 0. When the replacement operation, illustrated in the figure,
is applied to an edge e at level k, the new edges that are not collinear with e are said to be
at level k + 1.
(4) Random von Koch (RvK): An instance of this last class is constructed as follows.
We start with a square and iteratively apply the replacement operation (from Figure 9) to
some edges until the number of vertices of the polygon reaches an a priori fixed limit. At
each iteration, we select an edge at random whose level is smaller than a given parameter λ
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and randomly decide whether to replace it or not.
It is important to remark that for Random von Koch class, the instances of up to 1000

vertices were generated with λ set to 4. Beyond this size, since the number of vertices nears
that of the Complete von Koch polygon of level 4 (2500), λ was set to 5. This is a likely
explanation for the discontinuity observed around 1000 vertices in certain plots shown in
Section 5.2 (see Figure 13) where results obtained by our algorithm for this class of polygons
are displayed.

The random instances were generated for the number of vertices, n, in the ranges:
[20, 100] with step size 20; (100, 1000] with step size 100 and (1000, 2500] with step size
250. Similar sizes were chosen for the RvK class. Lastly, the CvK class contains, by con-
struction, only 4 instances with 20, 100, 500 and 2500 vertices.

To endow our conclusions with statistical significance, we had to define the sample size,
i.e, the number of instances generated for each value of n for the classes Random Orthogonal,
Random Simple and RvK. To this end, we analyzed the variance of the results produced by
our algorithm while we changed the sample size s. We observed that the variance remained
practically unchanged for s ≥ 30 and, therefore, we decided to generate 30 instances for
each value of n.

Therefore, in total, our data set is composed of 1804 instances, having between 20 and
2500 vertices each. It is worth noting that our largest instances more than double the size
of the largest ones whose optimal solutions are reported in the literature.

For completeness, we mention that other classes of instances were also considered in our
prior works [1, 2], including the FAT polygons, introduced in [18]. These classes were not
included in the research presented here because they are by far less challenging than the
ones considered in the experiments reported in this paper. As an example, FAT polygons of
any size always admit an analytical optimal solution consisting of only two guards.

Next section presents an extensive experimental analysis of the algorithm considering
multiple discretization strategies.

5.2 Results

We now discuss the experimental evaluation of the various discretization strategies described
in Section 4. All values reported in this section are average results for 30 instances of each
size, or 30 runs of the same instance in the case of the CvK class, since for this class there
is a single instance of each size.

Recall that the discretization size determines the number of constraints in the scp in-
stance solved in the second step of Algorithm 3.2. We start by analyzing the relationship
between the discretization types and the time spent by the proposed algorithm. CvK poly-
gons are particularly suited to this analysis because they illustrate two extreme situations.
In strategies Single Vertex, Convex Vertices and All Vertices the initial discretizations cor-
respond to very sparse grids whose sizes increase only by a small factor throughout the
iterations. On the other hand, for Shadow AVPs a single iteration of the algorithm suffices,
at the expense of building an extremely dense grid. Table 1 summarizes these results.

Notice that Single Vertex, Convex Vertices and All Vertices strategies indeed produce
small discretizations whose sizes increase linearly in the number of vertices of P . As for
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Table 1: Results for complete von Koch polygons.

Final discretization size Total Time (in secs)
# of vertices 20 100 500 2500 20 100 500 2500
Single Vertex 9 82 326 1185 0.04 1.23 26.26 808.95

Convex Vertices 12 60 279 1403 0.04 0.84 21.09 720.99
All Vertices 20 115 552 2687 0.03 1.22 27.50 828.54

Shadow AVPs 20 244 5029 - 0.06 2.43 143.75 -

the Shadow AVPs strategy, the size of the discretization grows dramatically fast, to the
point that we were not able to solve the largest CvK instance on account of running into
memory limitations. Large grids inflate the number of constraints in the IP formulation,
considerably increasing the time necessary to optimally solve the scp instance. The Convex
Vertices strategy is the one that spends less time, followed by Single Vertex and All Vertices.
As it can be seen, the relative order among these strategies remains unchanged with respect
to the sizes of the final discretizations.

On the other hand, Figure 10 shows the number of discretized points required by each
strategy to achieve an optimal solution of the agp for Random Orthogonal, Random Simple
and Random von Koch polygons. One can see that the Shadow AVPs strategy follows the
same pattern of the CvK case for RvK instances, with the discretization size growing quickly
as the number of vertices of the polygons increases. Nevertheless, as we will see, the Shadow
AVPs approach is well-suited for random polygons. The curves corresponding to the All
Vertices strategy suggest that the set of vertices of the polygon is a good bid for the initial
discretization since few new points are added to it to achieve an optimal solution of an agp
instance in all three classes under consideration. Notice that the same observation applies
to the strategies Single Vertex and Convex Vertices. Hence, one can infer that small well-
chosen proper subsets of V might suffice to capture a relevant part of the hardness of the
problem. However, as we will soon see, strategies starting from minuscule discretizations,
the extreme case being represented by Single Vertex, may cause the algorithm to iterate too
much, increasing the computation time.

Figure 11 displays the number of iterations each strategy requires to reach an optimal
solution for the three classes of random polygons. The lines corresponding to the Shadow
AVPs strategy equate the constant function of value one and are included in the graphs
solely as a reference. We recall that we successfully ran our program for the RvK class for
instances of only up to 2250 vertices, due to memory limitations.

Consider now the Single Vertex strategy. For Random Orthogonal and Random Simple
polygons, any single point of P only captures strictly local information about the shape of
the polygon. Thus, by starting with a unitary discretization, several iterations should be
expected before D(P ) is dense enough to capture the shape of P . This situation is very
clearly depicted in the Single Vertex curves for Random Orthogonal and Random Simple
classes. As for the RvK instances, the visibility polygon of most vertices corresponds to
large portions of P , leading to many multiply covered areas within P . So, even when we
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Figure 10: Final discretization size by polygon type.

start with a singleton, convergence happens much faster than with the other two classes.
Now, looking at the three non constant curves within each graph, we see that the number

of iterations increases as the size of the initial discretizations decreases. In reference to the
size of the input polygon, the number of iterations remains negligible when compared to
the theoretical bound of Θ(n3) (see Section 3.2). In regard to RvK polygons, the number
of iterations grows a bit faster with the instance size but it still stays quite small. On the
other hand, the proximity of the curves for Convex Vertices and All Vertices shows that the
convex vertices alone seems to capture the shape P well enough to dispense with the reflex
vertices. Therefore, the Convex Vertices strategy iterates just slightly more than the All
Vertices strategy.

Figure 12 exhibits a box-plot chart with the number of iterations performed by the
algorithm using the Convex Vertices strategy for the RvK class. For most instance sizes,
one can see that the average and median values are very close. The difference between the
upper and lower quartiles never exceeds 5 and, in all but the largest instances, no more than
one outlier occurs. Even for the 2500-sized polygons, whose behavior seems unusual, the
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Figure 11: Number of iterations by polygon type.

total of 8 outliers out of the 30 instances is quite acceptable. This confirms the robustness
of the proposed algorithm with this strategy.

Figure 13 shows the total amount of time, including preprocessing and processing phases,
to solve instances from the three random classes of polygons. Notice that all charts are
plotted on the same scale. For a proper analysis of this chart, one has to bear in mind our
previous discussion on the number of iterations and the size of the discretizations produced
by each of the alternative strategies.

Firstly, notice that the Convex Vertices and All Vertices strategies lead to very similar
computation times. Earlier, we had seen that their iteration counts are small and very close
together. We also observed that the size of the final discretizations grows slowly (almost
linearly) with the instance size and that the one corresponding to the All Vertices strategy
is just a bit larger than the one for the Convex Vertices strategy. These similarities are due
to the fact that, in both cases, the IP solver has to compute a lighter scp instance at each
iteration of the algorithm. The algorithms emerging from these two strategies are not only
fast but also very robust. To see that, notice that the curves for All Vertices and Convex
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Figure 12: A box-plot graph showing the number of iterations for Random von Koch poly-
gons using the Convex Vertices strategy.

Vertices strategies remain absolutely similar as the instance classes vary.
On the other hand, the Single Vertex strategy behaves poorly for the Random Orthogonal

and Random Simple classes. Though it always yields the smallest discretizations on average,
the number of iterations required by this strategy grows very rapidly. Even though one might
also expect light scp instances to be optimized at each iteration, the overhead of multiple
calls to the IP solver surpasses the benefit of small instances. Only for the RvK polygons
the Single Vertex strategy becomes competitive with the Convex Vertices and All Vertices
ones which is predictable since, for these polygons, we see that the Single Vertex strategy
usually executes just 10 iterations over the average of the two other strategies.

Now, we analyze the behavior of the algorithm under the Shadow AVPs strategy. This
variant of the algorithm outperforms all the others for the Random Orthogonal and Random
Simple classes, but it becomes excessively slow for RvK instances with just a few hundred
vertices. To explain these results, we refer again to Figure 10.

In the RvK class, recall that the number of shadow AVPs grows rapidly with the instance
size. Thus, although a single scp instance is solved, the time spent in the computation of the
constraint matrix associated to that instance is enormous. Let us briefly defer the discussion
of this last issue.

In Figure 10 we have seen that, for the Random Orthogonal and Random Simple classes,
the final discretization or, similarly, the number of shadow AVPs grows almost linearly with
the instance size. Actually, it is not much larger than the size of the final discretizations
yielded by the Convex Vertices and All Vertices strategies. However, we know that a single
iteration of the algorithm is enough in this case. Therefore, the size of the unique scp
instance to be solved is not much larger than that of the one solved in the last iteration of
the All Vertices and Convex Vertices strategies.

We now turn our attention to the time spent by the algorithm in each phase relative
to the discretization strategies. Recall that the preprocessing phase is composed of three
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Figure 13: Total time by polygon type.

procedures. The first one is common to all strategies and computes the visibility polygons of
each vertex. The second one computes the initial discretization and its cost is highly affected
by the choice of the strategy to be implemented. The worst case corresponds to the Shadow
AVPs strategy since it requires the computation of all AVPs and the determination of the
shadow ones along with their centroids. On the other extreme, we have the Single Vertex
and All Vertices strategies where no computation is needed for the second procedure while,
for the Convex Vertices strategy, some inexpensive calculations are required to determine
which vertices are convex. Finally, in the third procedure of the preprocessing phase one
has to build the starting IP model and the time spent in doing so depends on the size of the
discretization. This clearly benefits the Single Vertex strategy and also, though to a minor
extent, the Convex Vertices and All Vertices strategies.

Figure 14 details the computation times of Random Orthogonal and Random Simple
polygons on 2000 vertices and RvK polygons on 1000 vertices. Notice that the same scale
is used on the three charts to facilitate comparisons, this being the reason why smaller
instances in the RvK class were considered. The bars in these charts highlight the fraction
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of the total time spent on the processing and preprocessing phases and, for the latter, the
fraction consumed by the procedure that computes visibility polygons.

One can see that the time spent in the preprocessing phase is in accordance with the
discussion above, the Shadow AVPs strategy being the most time consuming for RvK poly-
gons. For the Random Orthogonal and Random Simple classes, the preprocessing time for
the Shadow AVPs strategy is about the same as those for the other two strategies and its
advantage only shows in the processing phase. The first two charts are also illustrative of
the fact that random simple polygons have more complex visibility structure than those in
the orthogonal class.

What is somehow surprising is that, although we are solving NP-hard problems in the
solution phase, in all cases the majority of the time expenditure takes place in the prepro-
cessing phase, which is entirely polynomial. The extraordinary developments of IP solvers
together with the fact the scp instances arising from the agp are among the easier ones
explains this seeming counterintuitive behavior of the algorithm. Thus, a breakthrough in
the performance of our algorithm would be attained if one could devise a discretization ob-
tainable through a very fast procedure and, at the same time, satisfying the property that
a single iterations is enough to reach the optimum of an agp instance. Comparing the sizes
of the final discretizations of the different strategies shown earlier, there seems to be room
for such improvements.

6 Conclusions and Remarks

In this paper, we compiled and extended our research on exact approaches for solving the
Art Gallery problem (agp). In prior works [1, 2], we focused on galleries represented by
orthogonal polygons and proposed an algorithm, also discussed in Section 3, based on suc-
cessive discretizations of the input polygon. Our earlier computational experiments were
constrained to instances of no more than a thousand vertices, while here, we extended the
algorithm to handle non orthogonal polygons and tested it with instances of up to 2500
vertices. Moreover, we proposed new discretization strategies since the algorithm is very
sensitive to the choice of discretizations. As a result, we introduced the Convex Vertices
strategy which presents the best performance seen so far.

We recall that the exact algorithm relies not only on the discretization of the interior
of the input polygon, but also on the modeling of this simplified discrete problem as a Set
Cover problem (scp). The resulting scp instance is solved to optimality by an IP solver and,
if uncovered regions remain, additional constraints are included and the process is repeated.
Clearly, the performance of the algorithm depends also on the number of such iterations.

While focusing on novel strategies to implement the discretization step, a thorough
experimentation was carried out to assess the trade-off between the number of iterations
and the time spent by the many variants of the algorithm that arise from the alternative
discretization methods.

Confirming the results from our earlier works, the proposed algorithm had excellent
overall performance. It also proved to be robust, in the sense that it was able to tackle
instances from a broad range of polygon classes. Moreover, the fastest variants of the
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Figure 14: Break up of the execution time into processing and preprocessing, for polygons
of the random classes.

algorithm very quickly found solutions to instances of more than 2000 vertices. This more
than doubled the size of the largest instances we had previously solved which, in turn, were
five times larger than those reported earlier in the literature.

The Convex Vertices strategy proposed in Section 4 yields sparse discretizations and, as
a consequence, small scp instances. As it can be seen in Table 2, this leads to a very fast
implementation for instances of up to 2500 vertices.

On the other hand, as we observed in [2], the apparent advantage of a discretization
which ensures an exact solution after a single iteration of the algorithm has not been verified.
In particular, this occurred with the Shadow AVPs strategy whose inefficiency was due to
the expensive preprocessing phase in which the shadow AVPs are computed. For these
computations, we employed a polynomial time algorithm implemented with powerful data
structures and efficient library packages for performing the necessary geometric operations.
And yet, we could not significantly lower the preprocessing time of the exact algorithm
under the Shadow AVPs strategy.
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Table 2: Total Time (in seconds) for the Convex Vertices strategy.
Polygons Classes

n Random Ortho Random Simple RvK CvK
100 0.74 1.38 0.76 0.84
500 18.64 32.48 20.82 21.09
2500 518.60 834.78 699.74 720.99

Contrary to what was expected, in the case of Shadow AVPs, preprocessing remained
more costly in time than the solution of the scp instance, a well-known NP-hard problem.
One could credit the extraordinary developments of IP solvers in recent years with the
success of this algorithm. The advances in this field made possible the solution of large
instances of scp in very small amounts of time.

It remains an open question whether we can find yet another discretization leading to
a single iteration of the algorithm, which is computable in time bounded by a very small
degree polynomial on the number of vertices. This is a promising topic for future research
which might be beneficial to our algorithm.
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