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Generating Test Suites for Timed Systems

with Context Variables

Adilson Luiz Bonifácio∗ Arnaldo Vieira Moura�
Abstract

Model-based testing has been widely used for testing critical and reactive systems.
Some aspects of reactive systems are treated by extended models that captures the
notion of data flow on the system as well as its interactions with the environment.
Other aspects are captured by conventional timed models that allow for the continuous
evolution of time variables. Devising formal methods to automatically generate test
suites for systems that comprise both these has remained a challenge. In this work
we use a new Timed Input/Output Context Automata (TIOCA) as a formal model
for timed systems with context variables. We propose and prove the correctness of
a new strategy to discretize TIOCA models, thus obtaining related grid automata.
Grid automata allow us to automatically generate test cases based on test purposes,
the latter being special TIOCA that specifically model those system properties to be
tested. We also discuss how to extract test suites from the synchronous product of a
TIOCA and an associated test purpose. Further, we show how to use test suites in order
to automatically verify whether given implementations conform to the specification and,
also, reflect the desired properties.

1 Introduction

The process of verifying and testing complex computational systems have been intensively
investigated. Model-based testing has been one of the most promising techniques among
those used to automatically generate test case suites for complex systems [22, 5, 17, 21]. In
these formalisms, system requirements and functionalities are specified using mathematical
models. Several such formalisms have been developed to automatically construct test case
suites for pure timed systems with no context variables, as well as for systems were only
context variables are present but no timing is considered. An approach to deal with both
these aspects in the same model has remained a challenge.

In this work we treat complex systems that must obey time requirements, as well as must
also satisfy data flow restrictions, the latter being specified by expressions involving context
variables. In these cases, both the aspects of continuous time evolution and context variable

∗Computing Institute, University of Campinas, adilson@ic.unicamp.br, Supported by CNPq grant
141978/2008-2�Computing Institute, University of Campinas, arnaldo@ic.unicamp.br, Supported by CNPq grant
472504/2007-0
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2 Bonifácio, and Moura

updates must be resolved within the same model. Traditionally, Timed Input/Output
Automata (TIOA) have been used to express continuous time evolution [15, 13, 3]. A TIOA
is a variant of the classical timed automata model [2, 1, 4]. In order to also capture data
flow effects, we extend the TIOA model by introducing context variables. The new formal
specification, in the form of Timed Input/Output Context Automata (TIOCA), allows for
both continuous time evolution [8, 6] and data flow transformations [18, 23, 14, 19].

In order to extract test suites from these models we propose a new discretization mech-
anism using the notion of grid automata [7, 8]. We show how grid automata can be au-
tomatically obtained from the original TIOCA models. The discretization technique was
inspired by ideas proposed in [3]. But, whereas in that work only time evolution was treated,
now we address also context transformations. Notably, the proposed discretization allows
for a much wider range of choices for the granularities of interest. Furthermore, the new
formalism also makes precise the notion of timing and context boundaries. With that, it
is then possible to precisely establish the relationship between the original system behavior
and the corresponding grid automaton, when the former moves away from the established
boundaries. More specifically, we show that TIOCA homomorphically simulate their corre-
sponding grid automata, and vice-versa. This forms the basis that allows for the automatic
test case generation for such systems. We also note that this new discretization method
deviates from the traditional approach discussed in the open literature, which uses classical
clock regions [2, 16].

In order to specify which system properties will be subjected to testing we use the notion
of test purpose models [20, 12]. Given a specification and a test purpose model, their joint
behavior is captured by their synchronous product. Given the product we can apply the
discretization method to it, thus obtaining a corresponding grid automaton. Next, we
can automatically extract test sequences from the resulting grid automaton using a simple
traversal algorithm. Having extracted test sequences, we can easily obtain test cases that
can be applied to implementation candidates. The implementation responds with output
values sent back to the external environment. The latter are then combined with the
original test cases, thus resulting in complete runs from which test conformance verdicts
can be finally obtained [22].

We organize this work as follows. In Section 2, we define the notion of bounded values
and bounded functions, and explore their basic properties. In Section 3, we define the new
TIOCA model and some other important concepts. Section 4 presents the new discretization
method. First we expose some basic concepts addressing context variables in Subsection 4.1,
and then the grid construction and its properties are presented in Subsections 4.2 and 4.3.
Section 5 discusses the process of generating test suites test purposes and synchronous
products. It also shows how to apply test cases to obtain test verdicts. In Section 6 we
briefly survey some related works. Finally, some concluding remarks appear in Section 7,
together with some directions for future work.
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2 Bounds and adjusted values

In this section, we define the notion of bounded values and bounded functions. The latter
will be used to limit the excursions of timed automata up to a pre-defined boundary. We also
introduce the notion of a set of variables and the corresponding set of rational conditions
that can be derived from them. Such conditions will be used to specify both guards along
transitions as well as state invariants. In order to keep the number of states of a timed model
under control, we will use the notion of discretized automata. Although discretization is
introduced in a later section, it will depend on the notion of adjusted values, which is also
defined in this section. Finally, we also group in this section several properties involving
conditions and bounded values that will be need in subsequent sections.

2.1 Fractional and integer parts

In what follows, the set of rationals, non-negative rationals and positive rationals will be
denoted by Q, Q≥ and Q>, respectively. Also, given t ∈ Q≥, we will denote the integral
and fractional parts of t by ⌊t⌋ and ⌈t⌉, respectively. Hence, t = ⌊t⌋+ ⌈t⌉ always holds.

We note the following simple facts that will be useful later.

Fact 1 Let x, y ∈ Q≥. If x ≥ y then ⌊x⌋ ≥ ⌊y⌋.

Proof Assume ⌊x⌋ < ⌊y⌋. Then ⌊x⌋ ≤ ⌊y⌋ − 1. So x < ⌊x⌋ + 1 ≤ ⌊y⌋ − 1 + 1 = ⌊y⌋ ≤ k.
Hence, x < y, contradicting the hypothesis.

Fact 2 Let x, y ∈ Q≥ and let k a positive integer. If x = y + k then ⌈x⌉ = ⌈y⌉ and
⌊x⌋ = ⌊y⌋+ k.

Proof We have that x = y+k = (k+⌊y⌋)+⌈y⌉. Since k+⌊y⌋ is an integer and 0 ≤ ⌈y⌉ < 1,
we have ⌊x⌋ = k + ⌊y⌋ and ⌈x⌉ = ⌈y⌉.

Fact 3 Let x, y, z ∈ Q≥. If x = y+z then ⌈x⌉ =
⌈
⌈y⌉+⌈z⌉

⌉
and ⌊x⌋ = ⌊y⌋+⌊z⌋+

⌊
⌈y⌉+⌈z⌉

⌋
.

Proof We have x = (⌊y⌋+ ⌊z⌋) + ⌈y⌉+ ⌈z⌉ = (⌊y⌋+ ⌊z⌋+
⌊
⌈y⌉+ ⌈z⌉

⌋
) +

⌈
⌈y⌉+ ⌈z⌉

⌉
. But

⌊y⌋+⌊z⌋+
⌊
⌈y⌉+⌈z⌉

⌋
is an integer and 0 ≤

⌈
⌈y⌉+⌈z⌉

⌉
< 1. Then ⌊x⌋ = ⌊y⌋+⌊z⌋+

⌊
⌈y⌉+⌈z⌉

⌋

and ⌈x⌉ =
⌈
⌈y⌉+ ⌈z⌉

⌉
.

Fact 4 Let x, y, z ∈ Q≥. If ⌈x⌉ = ⌈y⌉ then ⌈x+ z⌉ = ⌈y + z⌉.

Proof We have ⌈x + z⌉ =
⌈
⌈x⌉ + ⌈z⌉

⌉
, using Fact 3. Now, using the hypothesis we get⌈

⌈x⌉+ ⌈z⌉
⌉

=
⌈
⌈y⌉+ ⌈z⌉

⌉
. But

⌈
⌈y⌉+ ⌈z⌉

⌉
= ⌈y + z⌉, using Fact 3 again.
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2.2 Conditions and interpretations

Let C be a finite set of symbols, also called variables. A variable interpretation, or simply an
interpretation, over C is a partial function from C into Q≥. A total variable interpretation,
or just a total interpretation, over C is a variable interpretation over C whose domain1 is
C.

Definition 5 Let C be a set of variables. The set of all variable interpretations over C will
be denoted by [C y Q≥]. We denote the set of all total variable interpretations over C by
[C → Q≥].

Clearly, [C y Q≥] ⊆ [C → Q≥]. When the intended set C is clear from the context, we
may write simply interpretation, instead of variable interpretation over C.

Given a set of variables, we can form the set of all conditions over such variables.

Definition 6 Let C be a set of variables. The set of all variable conditions, ΦC , is com-
prised by all expressions δ that can be finitely generated using the rules

δ := true | c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a variable and τ ∈ Q≥.

We will take the usual liberties when writing variable conditions, e.g., we may write c ≥ τ
for τ ≤ v, or c < τ instead of ¬(τ ≤ c), or τ1 ≤ c ≤ τ2 for (τ1 ≤ c) ∧ (c ≤ τ2).

Satisfiability is treated in the usual way.

Definition 7 Let δ ∈ ΦC and let ν ∈ [C y Q≥] be such that all variables occurring in δ
are in dom(ν). Then we say that ν satisfies δ, denoted by ν � δ, if δ evaluates to true when
every variable c is replaced by ν(c) in δ and the value of the resulting propositional logic
sentence is computed in the usual manner.

Note that when dom(ν) = ∅ we get ΦC = {true}, and so ν � true always holds, for all
interpretations ν ∈ [C y Q≥].

We now define the operation of displacing an interpretation.

Definition 8 Let ν ∈ [C y Q≥] be an interpretation for C and let τ ∈ Q≥. The interpre-
tation ν + τ is defined as

(ν + τ)(c) =

{
ν(c) + τ if c ∈ dom(ν)

undefined otherwise.

That is, ν + τ is given by just adding τ to all mappings under ν. Another important
operation is interpretation overruling.

1dom(f) will denote the domain of a function f .
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Definition 9 Let ν, µ ∈ [C y Q≥]. We define the interpretation ν ⊕ µ thus

(ν ⊕ µ)(c) =






µ(c) if c ∈ dom(µ)

ν(v) if c ∈ (dom(ν)− dom(µ))

undefined if c 6∈ (dom(ν) ∪ dom(µ)),

for all c ∈ C.

That is, ν ⊕ µ assigns values first according to µ and, baring that, then it assigns values
according to ν, if at all possible. Note that when ν or µ is total, then so is ν ⊕ µ.

2.3 Bounded values and functions

Next, we turn to the notion of bounded values and bounded interpretations.

Definition 10 Let L ∈ Q≥ be a bound. Let x ∈ Q≥ be a value, let A be a set and let
α ∈ [A y Q≥] be a function. We define

1. The L-bounded x value, denoted xL, is given by: (i) x, if x ≤ L; or (ii) ⌊L⌋ + ⌈x⌉,
otherwise.

2. The L-bounded α function, denoted αL, is obtained by letting αL(a) = (α(a))L, for all
a ∈ A.

Note that we could have specified a different bound Lc for each variable c. In order to keep
the notation uncluttered, however, we will consider a single bound L for all variables. It
should be a simple matter to generalize any of the following results to the case when some
variable bounds may be distinct.

Next, a few simple facts that will be used later.

Fact 11 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then ⌈xL⌉ = ⌈x⌉ and xL ≤ x.

Proof The equality is immediate from Definition 10. Now, if x ≤ L, then xL = x and
so xL ≤ x. When x > L, then xL = ⌊L⌋ + ⌈x⌉. From Fact 1, we get ⌊x⌋ ≥ ⌊L⌋. Then,
xL ≤ ⌊x⌋+ ⌈x⌉ = x, and we are done.

Fact 12 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. If x < ⌊L⌋+ 1 then xL = x.

Proof If x ≤ L then we know that xL = x. If x > L then we have ⌊x⌋ ≥ ⌊L⌋, using Fact 1.
From the hypothesis we get ⌊x⌋ < ⌊L⌋+ 1, and so ⌊x⌋ ≤ ⌊L⌋. Then, ⌊x⌋ = ⌊L⌋ and we get
xL = ⌊L⌋+ ⌈x⌉ = ⌊x⌋+ ⌈x⌉ = x, as desired.

Fact 13 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then xL < ⌊L⌋+ 1.

Proof If x < ⌊L⌋ + 1 then xL = x, using Fact 12. So, xL < ⌊L⌋ + 1. If x ≥ ⌊L⌋ + 1 then
x > L, and we get xL = ⌊L⌋+ ⌈x⌉. Then, xL < ⌊L⌋+ 1, since ⌈x⌉ < 1.
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Fact 14 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then (xL)L = xL.

Proof From Fact 13, we know that xL < ⌊L⌋+ 1. Now, using Fact 12 we get (xL)L = xL.

The next three propositions state that the L-bound of a sum of terms is the same as
the L-bound of the sum of the L-bounds of the individual terms.

Proposition 15 Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Then (x+ y)L = (x+ yL)L.

Proof There are two cases.

Case 1: y < ⌊L⌋+ 1. Then, by Fact 12, y = yL and we are done.

Case 2: y ≥ ⌊L⌋+ 1. Then, yL = ⌊L⌋+ ⌈y⌉.

Also, x+ y ≥ ⌊L⌋+ 1 and so (x+ y)L = ⌊L⌋+ ⌈x+ y⌉. There are two subcases.

Case 2A: x+ yL < ⌊L⌋+ 1. Then, by Fact 12, (x+ yL)L = x+ yL = x+ ⌊L⌋+ ⌈y⌉.

But x+ yL < ⌊L⌋+ 1 and so x+ ⌊L⌋+ ⌈y⌉ < ⌊L⌋+ 1, and we have x+ ⌈y⌉ < 1.
Then x = ⌈x⌉ and we get ⌈x⌉ + ⌈y⌉ < 1, and so ⌈⌈x⌉ + ⌈y⌉⌉ = ⌈x⌉+ ⌈y⌉. Using
Fact 3 we get ⌈x + y⌉ = ⌈x⌉ + ⌈y⌉ = x+ ⌈y⌉. This gives (x + y)L = (x + yL)L,
as desired.

Case 2B: x+ yL ≥ ⌊L⌋+ 1. Then (x+ yL)L = ⌊L⌋+ ⌈x+ yL⌉.

But, by Fact 2, ⌈x+ yL⌉ = ⌈x+ ⌊L⌋ + ⌈y⌉⌉ = ⌈x+ ⌈y⌉⌉. And, by Fact 2 again,
⌈x+y⌉ = ⌈x+⌊y⌋+⌈y⌉⌉ = ⌈x+⌈y⌉⌉. Then (x+yL)L = ⌊L⌋+⌈x+y⌉ = (x+y)L,
as desired.

Proposition 16 Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Then (x+ y)L = (xL + yL)L.

Proof From Proposition 15 we get (x + y)L = (x + yL)L. From Proposition 15 again,
we get (x + yL)L = (yL + x)L = ((yL + xL)L)L = ((xL + yL)L)L. Now, from Fact 14,
((xL + yL)L)L = (xL + yL)L. Then, (x+ y)L = (xL + yL)L.

Proposition 17 Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Let x′ = x or x′ = xL and let
y′ = y or y′ = yL. Then (x+ y)L = (x′ + y′)L.

Proof If x′ = x and y′ = y we are done. If x′ = x and y′ = yL use Proposition 15.
Similarly, if x′ = xL and y′ = y. Finally, if x′ = xL and y′ = yL, use Proposition 16.

We can now extend these results for larger sums.

Proposition 18 Let L ∈ Q≥ be a bound and let xi ∈ Q≥ be values, for i = 1, . . . , n, with
n ≥ 1. Let yi = xi or yi = (xi)L, for i = 1, . . . , n. Then

( n∑

i=1

xi
)
L

=
( n∑

i=1

yi
)
L
.
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Proof We denote (xi)L by xiL and proceed inductively on n.
When n = 1, if y1 = x1 we are done, and when y1 = x1

L we use Fact 14.
Now, assume the result holds for some n ≥ 1. Using Proposition 17, we get

( n+1∑

i=1

xi
)
L

=
(
(
n∑

i=1

xi) + xn+1
)
L

=
(
(
n∑

i=1

xi)L + yn+1
)
L
.

Using the induction hypothesis and proposition 17, we get

( n+1∑

i=1

xi
)
L

=
(
(

n∑

i=1

yi)L + yn+1
)
L

=
(
(

n∑

i=1

yi) + yn+1
)
L

=
( n+1∑

i=1

yi
)
L
,

as desired.

Proposition 19 Let L ∈ Q≥ be a bound. Let W = {w1, . . . , wn} be a set, with n ≥ 1. Also
let ki ≥ 0 be integer constants, i = 1, . . . , n. Take α ∈ [W → Q≥]. Then

[ n∑

i=1

kiα(wi)
]

L
=

[ n∑

i=1

kiαL(wi)
]

L
.

Proof Using Proposition 18 we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiα(wi)

)
L

]

L
.

Now,
[
kiα(wi)

]

L
=

[∑ki

j=1 α(wi)
]

L
.

Hence, using Proposition 18 again, we obtain
[
kiα(wi)

]

L
=

[∑ki

j=1(α(wi))L

]

L
=

[
kiαL(wi)

]

L
.

Putting it together, we have
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiαL(wi)

)
L

]

L
.

Finally, using Proposition 18 once more, we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1 kiαL(wi)

]

L
,

as desired.

The next two propositions examine the result of L-bounding displaced and overruled
interpretations.

Proposition 20 Let C be a set of variables and let ν ∈ [C → Q≥] be a variable interpre-
tation, η ∈ Q≥, and let L be a positive integer. Then (ν + η)L = (νL + η)L.

Proof It suffices to show that (ν + η)L(c) = (νL + η)L(c), for all c ∈ C. We know that, by
definition, (ν + η)L(c) =

[
(ν + η)(c)

]
L

=
[
ν(c) + η

]
L
. Using Proposition 18, we now obtain[

ν(c) + η
]
L

=
[
(ν(c))L + η

]
L
. Using the definitions again,

[
(ν(c))L + η

]
L

=
[
νL(c) + η

]
L

=
(νL + η)L(c), and the result follows.

Proposition 21 Let C be a set of variables and let ν ∈ [C → Q≥] and θ ∈ [C y Q≥] be
variable interpretations, and let L be a positive integer. Then (ν ⊕ θ)L = (νL ⊕ θ)L.
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Proof It suffices to show that (ν ⊕ θ)L(c) = (νL ⊕ θ)L(c), for all c ∈ C. If c 6∈ dom(θ), we
have (ν⊕ θ)L(c) = νL(c) and (νL⊕ θ)L(c) = (νL)L(c) = νL(c), using Fact 14. If c ∈ dom(θ),
we have (ν ⊕ θ)L(c) = θL(c) and (νL ⊕ θ)L(c) = θL(c), completing the proof.

Function addition is taken in its usual meaning. Hence, if α1, α2 ∈ [C → Q≥], then
α1 +α2 ∈ [C → Q≥] is the function given by (α1 +α2)(c) = α1(c)+α2(c) for all c ∈ C. The
next lemma says that the satisfiability of variable conditions is oblivious to L-bounding any
operand in function addition expressions.

Lemma 22 Let C be a set of variables and let αi, βi ∈ [C → Q≥], i = 1, 2, be variable
interpretations. Assume that βi = αi or βi = (αi)L for all i ∈ {1, 2}. Further, let I ∈ ΦC

be a variable condition and let L be a positive integer greater than all constants occurring
in I. Then α1 + α2 � I iff β1 + β2 � I.

Proof If I is true we are done. Assume now that I is not true.
From Fact 1 we know that βi(c) ≤ αi(c), for all c ∈ C and all i ∈ {1, 2}.
We treat first the four simple cases when I is (c ≤ τ), (c ≥ τ), ¬(c ≤ τ) or ¬(c ≥ τ).

Case 1: I is (c ≤ τ), for some c ∈ C and some τ ∈ Q≥.

If α1 + α2 � I then (α1 + α2)(c) = α1(c) + α2(c) ≤ τ . Then β1(c) + β2(c) ≤ τ and so
β1 + β2 � I.

For the converse, assume β1(c) + β2(c) ≤ τ . From the hypothesis, β1(c) + β2(c) ≤ L.

If α1(c) > L then either (i) β1(c) = α1(c) > L, or (ii) β1(c) = (αi(c))L = ⌊L⌋ +
⌈α1(c)⌉ = L+⌈α1(c)⌉, since L is an integer. In any case, we contradict β1(c)+β2(c) ≤
L.

Similarly, we cannot have α2(c) > L. Hence, αi(c) ≤ L and we get βi(c) = αi(c),
for i = 1, 2. Then, since β1(c) + β2(c) ≤ τ , we also get α1(c) + α2(c) ≤ τ , and so
α1 + α2 � I.

Case 2: I is (c ≥ τ), for some c ∈ C and some τ ∈ Q≥.

First, let β1 + β2 � I. Then β1(c) + β2(c) ≥ τ and so α1(c) + α2(c) ≥ τ , since
αi(c) ≥ βi(c), i = 1, 2. Then, α1 + α2 � I.

For the converse, assume α1(c) + α2(c) ≥ τ . If α1(c) ≥ L + 1, then β1(c) = ⌊L⌋ +
⌈α1(c)⌉ = L + ⌈α1(c)⌉, since L is an integer. Thus, β1(c) ≥ τ , since L > τ from the
hypothesis. Hence β1(c) + β2(c) ≥ τ and so β1 + β2 � I.

Similarly, when α2(c) ≥ L+ 1 the result also holds.

Now let αi(c) < L+ 1 = ⌊L⌋+ 1 for i = 1, 2. From Fact 12, we get βi(c) = αi(c) and
so β1(c) + β2(c) ≥ τ , and again β1 + β2 � I.

Case 3: I is ¬(c ≤ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2 �

(c > τ). We proceed as in Case 2.

Case 4: I is ¬(c ≥ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2 �

(c < τ). We proceed as in Case 1.
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Let n ≥ 0 be the number of propositional connectives occurring in I. We proceed by
induction on n.

Basis: n = 0. The result holds by Cases 1 and 2.

Induction step: assume the result holds for all I with at most n propositional connectives,
where n ≥ 0. Now, take some I ∈ ΦC with n+ 1 propositional connectives. We have
two cases:

Case I-1: I is δ1 ∧ δ2.

Since δi has at most n propositional connectives, i = 1, 2, from the induction
hypothesis we get α1 + α2 � δi iff β1 + β2 � δi, for i = 1, 2. Then, clearly,
α1 + α2 � I iff β1 + β2 � I.

Case I-2: I is ¬δ.

Then δ has n ≥ 0 propositional connectives. When n = 0, δ is (c ≤ τ) or (c ≥ τ),
and the result follows by Cases 3 and 4, respectively.

Assume now that n ≥ 1. We have two sub-cases:

I-2A: δ is ¬δ1 and δ1 has n−1 propositional connectives. Then ¬δ is equivalent
to ¬¬δ1, that is, I is equivalent to δ1. We can use the induction hypothesis
and conclude that α1 + α2 � I iff β1 + β2 � I.

I-2B: δ is (δ1 ∧ δ2), that is, I is equivalent to (¬δ1) ∨ (¬δ2). Note that δ has n
propositional connectives. Then δi has at most (n − 1) propositional con-
nectives, that is, ¬δi has at most n propositional connectives, for i = 1, 2.
Using the induction hypothesis we get α1 + α2 � ¬δi iff β1 + β2 � ¬δi.
Thus, α1 + α2 � (¬δ1) ∨ (¬δ2) iff α1 + α2 � ¬δi for some i ∈ {1, 2} iff
β1 + β2 � ¬δi for some i ∈ {1, 2} iff β1 + β2 � (¬δ1) ∨ (¬δ2), completing
the proof.

A similar results holds when overruling.

Lemma 23 Let C be a set of variables and let ν ∈ [C → Q≥] and θ ∈ [C y Q≥] be variable
interpretations and let I ∈ ΦC be a variable condition. If ν ⊕ θ � I then νL ⊕ θ � I, when
L is a positive integer greater than all constants occurring in I.

Proof When I is true we are done. Now, assume that I is not true.

Now we treat the four cases when I is (c ≤ τ), (c ≥ τ), ¬(c ≤ τ) or ¬(c ≥ τ), where
c ∈ C and τ ∈ Q≥. If c 6∈ dom(θ), we get (ν ⊕ θ)(c) = ν(c) and so ν � I. From Lemma 22,
we get νL � I. Since (νL ⊕ θ)(c) = νL(c) we conclude that νL ⊕ θ � I. If c ∈ dom(θ), we
get (ν ⊕ θ)(c) = θ(c) = (νL ⊕ θ)(c). Then, νL ⊕ θ � I.

Now, we proceed by induction on the number n ≥ 0 of propositional connectives occur-
ring in I.

Basis: n = 0. The result follows by the first two cases discussed above.
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Induction step: assume the result holds for all I with at most n propositional connectives,
where n ≥ 0.

Now, take some I ∈ ΦC with n+ 1 propositional connectives. We have two cases:

Case I-1: I is δ1 ∧ δ2.

We have ν ⊕ θ � δi, i = 1, 2. But δi has n− 1 propositional connectives, and the
induction hypothesis gives νL ⊕ θ � δi, for i = 1, 2. Hence, νL ⊕ θ � I.

Case I-2: I is ¬δ.

Then δ has n ≥ 0 propositional connectives. When n = 0, δ is (c ≤ τ) or (c ≥ τ),
and the result holds by third and forth cases discussed above.

Assume now that n ≥ 1. We have two sub-cases:

I-2A: δ is ¬δ1 and δ1 has n− 1 propositional connectives. Then ¬δ is equivalent
to ¬¬δ1, that is, to δ1. Then, from the original hypothesis, ν ⊕ θ � δ1. By
the induction hypothesis, νL⊕θ � δ1, that is νL⊕θ � ¬¬δ1. Then νL⊕θ � I.

I-2B: δ is (δ1 ∧ δ2), that is I is equivalent to (¬δ1) ∨ (¬δ2). Hence, ν ⊕ θ � ¬δ1,
or ν ⊕ θ � ¬δ2. Note that δ has n propositional connectives. Then δi
has at most (n − 1) propositional connectives, that is, ¬δi has at most n
propositional connectives, for i = 1, 2. Using the induction hypothesis, we
have νL⊕ θ � ¬δ1 or νL⊕ θ � ¬δ2. So, νL⊕ θ � ¬(δ1 ∧ δ2), that is νL⊕ θ � I.

2.4 Adjusted values

In order to discretize a timed model, we will need to choose a proper time granularity.
Then, in the discrete model, any event will take place at instants that are integer multiples
of the granularity, or at adjusted time values, as such time instants will be called.

In this section, we treat the notion of adjusted values and list some of its properties.

Definition 24 Let g ∈ Q≥. Then

1. A value ℓ ∈ Q≥ is g-adjusted iff ℓ is an integer multiple of g.

2. Let C be a set of variables. A variable condition δ ∈ ΦC is g-adjusted iff all constants
occurring in δ are g-adjusted values.

3. Let C be a set of variables. A variable interpretation ν ∈ [C y Q≥] is g-adjusted iff
ν(c) is a g-adjusted value, for all c ∈ dom(ν).

When the value g can be inferred from the context, we may write adjusted instead of
g-adjusted.

Two simple facts about adjusted values follow.

Proposition 25 Let g = 1/k, with k a positive integer, and let ℓ ∈ Q≥. Then ℓ is a
g-adjusted value iff both ⌊ℓ⌋ and ⌈ℓ⌉ are g-adjusted values.
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Proof Assume that ⌊ℓ⌋ = mg and ⌈ℓ⌉ = ng, wherem and n are non-negative integers. Then
ℓ = (m+ n)g and so ℓ is also a g-adjusted value. Conversely, assume that ℓ = mg for some
non-negative integer m. Then mg = (⌊ℓ⌋g)/g+⌈ℓ⌉ and so ⌈ℓ⌉ = (m−⌊ℓ⌋/g)g = (m−k⌊ℓ⌋)g.
Since (m− k⌊ℓ⌋) is an integer, ⌈ℓ⌉ is also g-adjusted. Also, clearly, ⌊ℓ⌋ = ℓ− ⌈ℓ⌉ and so ⌊ℓ⌋
is g-adjusted since ℓ and ⌈ℓ⌉ are g-adjusted.

Proposition 26 Let g = 1/k, with k a positive integer, and let L ∈ Q≥ be a g-adjusted
value. Also, let C be a set of variables and let ν ∈ [C y Q≥] be a g-adjusted variable
interpretation. Then νL is also a g-adjusted interpretation.

Proof Let c ∈ C. From Definition 10, we get νL(c) = ν(c) or νL(c) = ⌊L⌋+ ⌈ν(c)⌉. From
Proposition 25, we know that ⌊L⌋ and ⌈ν(c)⌉ are g-adjusted. So, clearly, νL(c) is g-adjusted
for all c ∈ C, and the result follows.

Another simple fact states that displacing g-adjusted interpretations, or overruling a
g-adjusted interpretation, always results in a new interpretation that is also g-adjusted.

Proposition 27 Let C be a set of variables, let ν, η ∈ [C y Q≥] be two g-adjusted
interpretations, and let ℓ be a g-adjusted value. Then ν + ℓ and ν ⊕ η are also g-adjusted
interpretations.

Proof Assume that ν(c) ∈ dom(ν). Then, (ν + ℓ)(c) = ν(c) + ℓ, which is, clearly, a
g-adjusted value. Thus, by Definition 24, ν + ℓ is also g-adjusted.

Now, when c ∈ dom(ν⊕ η) there are two cases. If η(c) ∈ dom(η), then (ν⊕ η)(c) = η(c)
is g-adjusted. When c ∈ (dom(ν) − dom(η)) then (ν ⊕ η)(c) = ν(c) is also g-adjusted.
Clearly, ν ⊕ η is a g-adjusted clock interpretation.

Next, we show that any set of L-bounded interpretations is finite, provided that L is
properly adjusted.

Lemma 28 Let C be a set of variables, and let g = 1/k with k a positive integer. Let
R ⊆ [C y Q≥] be a set of g-adjusted interpretations, and let L ∈ Q≥ be a g-adjusted value.
Consider the L-bounded set RL = {νL | ν ∈ R}. Then |RL| ≤ (k⌊L⌋+ k)|C|.

Proof Consider some νL ∈ RL and some c ∈ C. Let t = νL(c). By Proposition 26, t is
always g-adjusted. Moreover, t < ⌊L⌋+1, by Fact 13. But ⌊L⌋ = ng, for some non-negative
integer n, and so ⌊L⌋+1 = ng+(1/g)g = (n+k)g. Hence, t can have at most n+k distinct
g-adjusted values (counting from zero).

We conclude that any clock c ∈ C can be mapped to at most n+ k distinct g-adjusted
values, by νL bounded interpretations. Therefore, there are at most (n + k)|C| distinct νL
interpretations. Since n = ⌊L⌋/g = k⌊L⌋, the result follows.

Had we used a distinct g-adjusted bound Lc for each variable c, the lemma would yield
the bound |RL| ≤

∏
c∈C

(k⌊Lc⌋+ k).
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3 TIOA with context variables

In this section we extend the TIOA model, now introducing both the notion of context
variables and the notion of input and output parameters [18], thereby obtaining a Timed
I/O Context Automata (TIOCA). Context variables play the role of common variables in
ordinary programming. They can enter into expressions and can be assigned to. Input
parameters will be used to read in values passed down by the environment. Similarly,
output parameters can have their values computed and passed back to the environment.

3.1 An example

A TIOA that captures the behavior of a simple multimedia system is presented in [7]. The
protocol operates by receiving image frames followed by their respective sound tracks, the
latter being supposed to arrive within two time units after the preceding image frame. After
the arrival of a sound track, the protocol must send an acknowledgment in no more than
three time units after the reception of the image frame and no more than two time units
after receiving the sound track. A reset message moves the system back to the initial state,
so that it can await for the next image frame. Such a message must be issued no more than
three time units after the image frame arrives and no more than two time units after the
corresponding sound track arrives. When the input sound track does not follow the image
frame within two time units, the system times out, issues an error message and goes back
to the initial state.

We extended the multimedia protocol to capture the same behavior, but now allowing
for output parameters and context variables, as depicted in Figure 1. The extended model

s0, Inv0 s1, Inv1 s2, Inv2 s3, Inv3
img, (c1 < 2)

{c1, c2}, w := w + 1

snd, (c1 < 2)

{c1}, v := v + 1

ack[w, v]

(c1 < 2 ∧ c2 < 3)

rst, {c1, c2}

err, (c1 = 2 ∨ c2 = 3)

{c1, c2}

err, (c1 = 2)

{c1, c2}

err, (c1 = 2), {c1, c2}

Figure 1: A TIOCA model for a multimedia protocol.

has four states, namely s0, s1, s2 and s3. The set of clocks is C = {c1, c2}, and the state
invariants are shown in Table 1. The set of input actions is X = {img, snd, rst}, and the
set of output actions is Y = {err, ack}. Recall that Σ = X ∪Y is the set of action symbols.
The intended meaning for the input symbols img and snd is the arrival of an image frame
and of a sound track, respectively. The output symbol err signals an error, and the output
symbol ack sends an acknowledgement signal back to the environment.



Timed Context Test Case Generation 13

Inv0 c1 ≤ 2 Inv1 c1 ≤ 2

Inv2 c1 ≤ 2 ∧ c2 ≤ 3 Inv3 c1 ≤ 2 ∧ c2 ≤ 3

Table 1: State invariants

There are seven transitions, indicated by the arrows in the diagram. At each transition,
we first indicate the corresponding action symbol. The action symbol may be followed by
a list of guards, given within parentheses. The form of the guards pertinent to each type of
transition will be detailed shortly. When there are no guards, the list is simply omitted. In
the example, at the transition from s1 to s2 there is a clock guard in the form (c1 < 2). At
the transition from s3 to s0 there are no guards. Next, after the list of guards, the set of
clocks to be reset is given between braces. All resets move the corresponding clocks back to
zero, with the other clocks remaining unchanged. If there are no clocks to reset, the clock
reset list is omitted. In the example, at the transition from s1 to s2, only clock c1 is reset
to zero. There are no clock resets in the transition from s2 to s3. The last item at each
transition indicates the corresponding context variable transformation. In the example, the
set of context variables is V = {w, v}. As we can see from the diagram, at the transition
from s0 to s1, the context variable transformation is the expression w := w + 1. The
intended meaning of such an expression, besides the assignment, is that the other context
variable, v, remains unchanged when this transition is taken. When all context variable
transformations are omitted, as in the transition from s2 to s0, it should be understood
that all variables remain unchanged when that transition is taken.

In this simple example, there are no input parameters. There are four transitions asso-
ciated with some output action symbol in Y = {err, ack}. The transitions associated with
err send no values back to the environment. In the transition on ack, from s2 to s3, the
notation ack[w, v] indicates that the current values of the variables w and v are passed back
to the environment. In the sequel, we give more details about the use of input parameters
and values passed back to the environment when output transitions are taken.

3.2 The extended TIOA

In this section we present a precise definition of the new extended TIOA model.

Consider a TIOA as defined in [3]. In addition, we will need a finite set R of input
parameters, or parameters for short. Each input action symbol will have a particular set of
parameters associated to it. We denote by Rx ⊆ R the set of parameters associated with
input action symbol x, for all x ∈ X. Each parameter will have a value from Q≥ associated
to it. From Definition 5 we obtain the sets of valuations over Rx, namely [Rx y Q≥] and
[Rx → Q≥]. From Definitions 6 and 7, respectively, get the set of Rx conditions, Φx, and
the notion of a valuation ρ ∈ [Rx y Q≥] satisfying a condition, δ ∈ Φx, written ρ � δ.
Returning to the example at Section 3.1, we have X = {img, snd, rst}, Y = {err, ack} and
R = ∅.

Proceeding, we will also need a set V of context variables, all of which take values in
Q≥. Again, from Definitions 5, 6 and 7 we obtain the sets of context variable valuations
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[V y Q≥] and [V → Q≥], together with the set of context variable conditions ΦV and
the notion of satisfiability λ � δ, for a context variable valuation λ and a context variable
condition δ. In the example, the set of context variables is V = {w, v}.

Upon taking a discrete transition on an input action symbol x, the new model can also
redefine the context variable values according to an expression involving the input parameter
values associated to x and the current values of the context variables. In order to capture
this effect, we associate with each discrete transition on an input action symbol x a map
that takes a pair (ρ, λ), where ρ ∈ [Rx → Q≥] and λ ∈ [V → Q≥], and returns another
context variable valuation in [V → Q≥]. We collect the set of all such mappings thus

Fx =
{
κ |κ : [Rx → Q≥]× [V → Q≥]→ [V → Q≥]

}
.

In the example, since there are no input parameters associated to img, we get Rimg = ∅.
Since V = {w, v}, we obtain

Fimg =
{
κ |κ : {∅} × [{w, v} → Q≥]→ [{w, v} → Q≥]

}
.

Similarly, Fsnd = Frst = Fimg.
Putting it all together, we say that a discrete transition over an input action symbol

x moves the machine from a state s to a state r, provided that certain guard conditions
over clocks, input parameters and context variables are satisfied. Besides, upon moving
from state s to state r, the machine can reset some clock values and redefine some context
variable values. The new clock values are constants specified directly in the transition. The
new context variable values are computed from the input parameter values and from the
current values of the context variables. We can express these conditions by saying that a
discrete transition over an input action symbol x is a member of the set

S × {x} ×ΦC × Φx × ΦV × [C y Q≥]× Fx × S.

As an illustration, take the transition from s0 to s1, over the input action symbol img in
Figure 1. The clock guard is (c1 < 2) and the input action symbol guard is true, which is
not listed. The context variable guard is also not listed and so it is also taken as true. The
set {c1, c2} says that both clocks are reset to zero when the transition is taken. Finally, the
new value of the context variable w is defined by the expression w := w+1. More precisely,
an appropriate mapping κ ∈ Fimg for this transition has the form

κ : {∅} ×
[
{w, v} → Q≥

]
→

[
{w, v} → Q≥

]
,

where κ(∅, λ) is such that κ(∅, λ)(w) = λ(w) + 1 and κ(∅, λ)(v) = λ(v).
We have an analogous situation with discrete transitions over output action symbols.

The only difference is that, now, some context variables have their values returned back to
the environment. In general, if the current context variable valuation is λ, the machine will
output a partial valuation given by ξ(λ), where ξ is a mapping specified in the transition.
For that, we need a set of such mappings, thus

HP
y =

{
ξ | ξ ∈ [V → Q≥]→ [V y Q≥]

}
,
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where y is the output symbol. In the example, the transition from s2 to s3 specifies the
output action symbol as ack[w, v] indicating that the values of the context variables w and
v will be returned unmodified to the environment. In this case, the output mapping ξ would
be just the identity, that is, ξ(λ) = λ, for all λ ∈ [V → Q≥]. In another transition, from
s1 to s0, the output action symbol is written just as err, and we do not pass values to the
environment. In this case, ξ(λ) = ∅, for all λ ∈ [V → Q≥]. Also, when an output transition
is taken, the values of the context variables may be modified, given their current values.
We model this by specifying a mapping χ that takes a total context variable valuation and
returns another total context variable valuation. That is, we specify a mapping from the
set

HT
y =

{
χ |χ ∈ [V → Q≥]→ [V → Q≥]

}
,

where y is the output symbol. In the example, all output transitions do not modify the values
of any context variable. So, in this case, we always have χ(λ) = λ, for all λ ∈ [V → Q≥], at
all output transitions.

Putting it all together, we say that on a discrete transition over an output action symbol
y the machine moves from a state s to a state r, provided that certain clock and context
variable conditions are satisfied. Upon taking the transition, clocks may be reset, context
variable values are returned and may have their values adjusted. The clock reset values
are constants specified directly at the transition. The values to be returned and the new
context variable values are specified by choosing specific transformation mappings. That
is, a discrete transition over an output action symbol y is a member of

S × {y} × ΦC ×ΦV × [C y Q≥]×HP
y ×H

T
y × S.

We can now define the new timed I/O automaton.

Definition 29 A Timed Input/Output Context Automaton (TIOCA) is given by a tuple
(S, s0,Σ, C, ν0, Inv,R, V, λ0, TX , TY ), where S, s0 ∈ S, Σ = X ∪ Y , C, ν0 ∈ [C → Q≥],
and Inv are as given in the TIOA definition [3, 15]. The set of parameters is R, the set of
context variables is V and λ0 ∈ [V → Q≥] is the initial context variable valuation, where
λ0(v) = 0 for all v ∈ V . The set of transitions over input actions satisfies

TX ⊆
⋃

x∈X

(S × {x} × ΦC × Φx × ΦV × [C y Q≥]× Fx × S),

where Fx is the set of context update function associated to x, given by

Fx = {κ |κ : [Rx → Q≥]× [V → Q≥]→ [V → Q≥]},

and Rx ⊆ R is the set of input parameters associated to x. Finally, the set of transitions
over output action symbols satisfies

TY ⊆
⋃

y∈Y

(S × {y} × ΦC × ΦV × [C y Q≥]×HP
y ×H

T
y × S),

where

HP
y = {ξ | ξ ∈ [V → Q≥]→ [V y Q≥]} and HT

y =
{
χ |χ ∈ [V → Q≥]→ [V → Q≥]

}
,

for all y ∈ Y .
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A transition in TX is a tuple (s, x, δ1, δ2, δ3, θ, κ, r) saying that the machine can move
from state s to state r over the input symbol x provided that the guards δ1, δ2, and δ3,
over clock variables, input parameters and context variables, respectively, are all enabled.
Further, upon moving to state r, the mapping θ ∈ [C y Q≥] indicates which clocks are
reset and to which values. Finally, κ ∈ Fx denotes the context variable update function,
mapping input parameters valuations and context variable valuations into new context
variable valuations. In the same vein, a transition in TY is a tuple (s, y, δ1, δ2, θ, ξ, χ, r)
specifying that the machine can move from state s to state r over the output action symbol
y, provided that the guards δ1 and δ2, over clock variables and context variables, respectively,
are enabled. Further, upon moving to state r the mapping θ ∈ [C y Q≥] gives which clocks
are reset and to which values. Lastly, ξ ∈ HP

y gives a partial function specifying values to

be passed to the environment, and χ ∈ HT
y returns the new values of the context variables,

in the form of a total function.

Next, we want to specify successive moves of a TIOCA. For that, we need the notions
of parameterized inputs and outputs.

Definition 30 Let M be a TIOCA and let Υ ⊆ Σ. We collect in ΥM the set of all
parameterized actions of M over Υ, that is,

ΥM =
{
(x, ρ) |x ∈ X ∩Υ, ρ ∈ [Rx → Q≥]

}⋂{
(y, ρ) | y ∈ Y ∩Υ, ρ ∈ [V → Q≥]

}
.

In particular, ΨX and ΨY are the sets of parameterized inputs and outputs, respectively,
of M .

A configuration for a TIOCA M is a triple (s, ν, λ), where s ∈ S is a state, ν ∈ [C →
Q≥] is a clock interpretation and λ ∈ [V → Q≥] is a context variable valuation. The
initial configuration is (s0, ν0, λ0), where s0 is the initial state of M , ν0 is the initial clock
interpretation of M and λ0 is the initial context variable valuation of M . As before, let
ΓM ⊆ S × [C → Q≥]× [V → Q≥] be the set of all configurations of M .

We can now define the semantics of a TIOCA.

Definition 31 Let M be a TIOCA and let γi = (si, νi, λi) ∈ ΓM , i = 1, 2, be two configu-
rations of M .

1. Let τ ∈ Q≥ be a time delay. Then there exists a continuous move from γ1 to γ2 over τ ,
denoted by γ1 →τ

γ2, if and only if : (i) s1 = s2; (ii) ν2 = ν1 + τ ; (iii) ν1 + η � Inv(s1)

for all η, 0 < η ≤ τ ; and (iv) λ2 = λ1. When τ is positive, we have a non-trivial
continuous move.

2. Let (x, ρ) ∈ XM be a parameterized input. Then there exists a discrete move from γ1

to γ2 over (x, ρ), if and only if there exists a transition (s1, x, δ1, δ2, δ3, θ, κ, s2) ∈ TX
such that: (i) ν1 � δ1, ρ � δ2 and λ1 � δ3; (ii) ν2 = ν1⊕ θ and ν2 � Inv(s2); and (iii)

λ2 = κ(ρ, λ1). We denote such a discrete move by γ1
(x,ρ)
→ γ2.
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3. Let (y, µ) ∈ YM be a parameterized output. Then there exists a discrete move from γ1

to γ2 over (y, µ), if and only if there exists a transition (s1, y, δ1, δ2, θ, ξ, χ, s2) ∈ TY
such that: (i) ν1 � δ1 and λ1 � δ2; (ii) ν2 = ν1 ⊕ θ and ν2 � Inv(s2); and (iii)

µ = ξ(λ1) and λ2 = χ(λ1). We denote such a discrete move by γ1
(y,µ)
→ γ2.

As usual, some of the decorations over and under the relation symbol −→ may be dropped
if they are clear from the context.

By concatenating parameterized actions and time delays we obtain parameterized words.

Definition 32 Let M be a TIOCA and let Υ ⊆ Σ. A parameterized timed I/O sequence,
or simply parameterized timed word, for M over Υ is any sequence ψ = 〈σ1, σ2, . . . , σn〉,
where n ≥ 0 and each σi is either in ΥM or is a time delay in Q≥.

The set of all parameterized timed words for M for Υ will be denoted by ΨΥ,M , with
decorations omitted as appropriate. In particular, ΨX and ΨY denote, respectively, the
set of all parameterized input and parameterized output sequences for M . The empty
parameterized timed word will be denoted by ε. The concatenation of parameterized timed
words follows the standard definition for concatenation of timed words.

The movements of a TIOCA can now be specified.

Definition 33 Let M be a TIOCA. The movement relation of M , ⊢M , is a binary relation
over ΨM × ΓM such that (〈σ〉 · ψ, γ1) ⊢M (ψ, γ2), with σ ∈ (XM ∪ YM ∪Q≥) and ψ ∈ ΨM ,

if and only if either (i) σ ∈ Q≥ and γ1 →σ
γ2; or (ii) σ ∈ (XM ∪ YM ) with γ1

σ
→ γ2.

The k-th power of ⊢M will be indicated by
k

⊢M , k ≥ 0, and its reflexive transitive

closure by
⋆

⊢M . Further, when (ψ, γ) ⊢M (ε, ϕ) we also write γ
ψ


M ϕ, or γ 
M ϕ when the

particular parameterized timed sequence ψ is not relevant. When γ
ψ


M ϕ we say that we
have a run starting at γ and ending at ϕ over ψ. Moreover, if γ is the initial configuration of
the TIOCA, then we have an execution ending at ϕ. A configuration γ is reachable if there
is an execution ending at γ. Also, a state s is reachable if there is a reachable configuration
(s, ν, λ), for some clock interpretation ν and some context variable valuation λ.

4 TIOCA discretization

The same strategy used to discretize TIOA can be followed in order to obtain TIOCA
discretizations. Clearly, variable values will have to be discretized too.

4.1 Context variable valuations

In order to discretize the context variable valuations and input action parameter valuations
we impose an upper bound on their values.

We will represent by K ∈ Q≥ the limiting boundary for context variable values. Recall
Definition 10. Let λ ∈ [V y Q≥]. We will also refer to λK as the context variable valuation
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λ bounded by K, or as a K-bounded context variable valuation. Note that we could have
specified different K bounds for each context variable. However, in the sequel we will
assume the same bound K for all context variable values in order to keep the notation
under control. It is not hard to generalize the upcoming results when a possibly distinct
parameter Kv is specified for each context variable v. Similarly, for each ρ ∈ [Rx y Q≥],
with x ∈ X, the corresponding K-bounded parameter valuation will be denoted by ρK .

We will assume that the mappings in HP
y and in HT

y are of a special linear form that
we now make precise.

Definition 34 Let V be a set of variables and let ξ be a mapping from [V → Q≥] into
[V y Q≥]. We say that ξ is fully linear iff for all v ∈ V there is an integer constant b, and
a set of integer constants {aw |w ∈ V } such that, for all λ ∈ [V → Q≥] we have

ξ(λ)(v) =
[ ∑

w∈V

awλ(w)
]

+ b,

whenever v is in the domain of ξ(λ).

In a similar way, we will require that all mappings κ ∈ Fx satisfy a bi-linearity condition.

Definition 35 Let V be a set of variables and R a set of parameters. Let κ be a mapping
from [R → Q≥] × [V → Q≥] into [V y Q≥]. We say that κ is fully bi-linear iff there
are fully linear mappings ξ1, from [V → Q≥] into [V y Q≥], and ξ2, from [R → Q≥] into
[V y Q≥], such that κ(ρ, λ) = ξ1(λ) + ξ2(ρ), for all ρ ∈ [R → Q≥] and all λ ∈ [V → Q≥].

Next we present some facts that will support proofs of the relationship between a TIOCA
and the corresponding grid automaton.

Fact 36 Let V be a set of variables and let K be a positive integer. Let ξ be a fully linear
mapping from [V → Q≥] into [V y Q≥]. Then ξK(λ) = ξK(λK), for all λ ∈ [V → Q≥].

Proof It suffices to show that ξK(λ)(v) = ξK(λK)(v), for all v in the domain of ξ(λ).
Since ξ is fully linear, Definition 34 gives integer constants b and aw, for all w ∈ V , such

that

ξK(λ)(v) = (ξ(λ)(v))K =

[
∑

w∈V

awλ(w) + b

]

K

=

[[ ∑

w∈V

awλ(w)
]

K
+ b

]

K

,

where we used Proposition 18. Now, using Proposition 19, we get
[

∑

w∈V

awλ(w)

]

K

=

[
∑

w∈V

awλK(w)

]

K

.

Then using Proposition 18 again, we have

ξK(λ)(v) =

[[ ∑

w∈V

awλK(w)
]

K
+ b

]

K

=

[
∑

w∈V

awλK(w) + b

]

K

= (ξ(λK)(v))K = ξK(λK)(v),

as desired.
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A similar result holds for bi-linear mappings.

Fact 37 Let V be a set of variables, R a set of parameters and K a positive integer.
Let κ be a fully bi-linear mapping from [R → Q≥] × [V → Q≥] into [V y Q≥]. Then
κK(ρ, λ) = κK(ρK , λK), for all ρ ∈ [R→ Q≥] and all λ ∈ [V → Q≥].

Proof Because κ is bi-linear, Definition 35 gives two mappings, namely, ξ from [V → Q≥]
into [V y Q≥], and χ from [R→ Q≥] into [V y Q≥], such that κ(ρ, λ) = ξ(λ) + χ(ρ).

Take ρ ∈ [R → Q≥] and λ ∈ [V → Q≥]. It suffices to show that κK(ρ, λ)(v) =
κK(ρK , λK)(v), for all v in the domain of κK(ρ, λ).

Let v be in the domain of κ(ρ, λ). Then κ(ρ, λ)(v) = ξ(λ)(v) + χ(ρ)(v). And, using
Proposition 18, we have

κK(ρ, λ)(v) =
[
κ(ρ, λ)(v)

]
K

=
[
χ(ρ)(v) + ξ(λ)(v)

]
K

=
[[
χ(ρ)(v)

]
K

+
[
ξ(λ)(v)

]
K

]

K
.

Now, using Fact 36, we may write
[
ξ(λ)(v)

]
K

= ξK(λ)(v) = ξK(λK)(v). By the same reason-

ing,
[
χ(ρ)(v)

]
K

= χK(ρ)(v) = χK(ρK)(v). Then, κK(ρ, λ)(v) =
[
χK(ρK)(v)+ξK(λK)(v)

]
K

and, using Proposition 18 again,

κK(ρ, λ)(v) =
[
χ(ρK)(v) + ξ(λK)(v)

]
K

=
[
κ(ρK , λK)(v)

]
K

= κK(ρK , λK)(v),

as desired. .

For the sake of shortening statements, we stipulate that the following assumption is in
order from now on.

Assumption 38 Let M be a TIOCA. All mappings in Fx are fully bi-linear mappings, for
all x ∈ X. Also, all mappings in HP

y ∪H
T
y are fully linear mappings, for all y ∈ Y .

4.2 Grid automata and TIOCA

Before we can discuss the discretization process over TIOCA, we need to establish a grid
unit for context variable values. Recall Definition 24.

Assumption 39 From now on , we will assume a clock grid value in the form g = 1/k and
a context variable grid value in the form h = 1/ℓ, with k and ℓ positive integers. Further,
we will assume that L, K ∈ Q≥ are the clock value boundary and the context variable value
boundary, respectively.

From Proposition 26, it follows immediately that λK is h-adjusted when λ is h-adjusted.
By a reasoning entirely analogous to the proof of Lemma 28, we get that (ℓ⌊K⌋+ ℓ)|V |

is an upper bound on the size of any set of K-bounded context variable interpretations.
Note that, had we used distinct h-adjusted bounds Kv for each context variable v, then∏
v∈V

(ℓ⌊Kv⌋+ ℓ) would be a proper upper bound. Similar results can be also derived for any

set of input parameter valuations.
Now, we can say when a TIOCA is adjusted. We simply require that all constants

occurring in the definition of the TIOCA be properly adjusted.
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Definition 40 Let g = 1/k and h = 1/ℓ, with k and ℓ positive integers. A TIOCA M
is [g, h]-adjusted iff for all input transitions (s, x, δ1, δ2, δ3, θ, κ, r) ∈ TX and all output
transitions (s, y, δ1, δ3, θ, ξ, χ, r) ∈ TY we have that δ1 is a g-adjusted clock condition, δ2 is
a h-adjusted input parameter condition, δ3 is a h-adjusted context variable condition and θ
is a g-adjusted clock interpretation. Moreover, for all states s ∈ S, we require that Inv(s)
be a g-adjusted clock condition.

The next simple fact states that applying context update function over h-adjusted pa-
rameter valuation and h-adjusted context variable valuation, always results in a new context
variable valuation that is also h-adjusted.

Proposition 41 Let M be a [g, h]-adjusted TIOCA. Then,

1. ξ(λ) is also a h-adjusted valuation, for any ξ ∈ HP
y ∪H

T
y , λ ∈ [V → Q≥] and y ∈ Y .

2. κ(ρ, λ) is also a h-adjusted valuation, for any κ ∈ Fx, ρ ∈ [Rx → Q≥], λ ∈ [V → Q≥],
x ∈ X.

Proof Consider the first statement. Take λ ∈ [V → Q≥] and v ∈ V , such that v is in the
domain of ξ(λ). It suffices to show that ξ(λ)(v) is h-adjusted. By Assumption 38, we know
that ξ is fully linear and so, by Definition 34, we can write ξ(λ)(v) =

[∑
w∈V awλ(w)

]
+ b,

where aw and b are integer constants. Since λ is h-adjusted and aw is an integer, we get
that each term awλ(w) is also h-adjusted. Then, clearly, the sum

∑
w∈V awλ(w) is also h-

adjusted. Finally, since b is an integer, and so is also h-adjusted, the final sum is h-adjusted
too.

Now consider the second statement. Take ρ ∈ [Rx → Q≥], for some x ∈ X, and
λ ∈ [V → Q≥]. It suffices to show that κ(ρ, λ)(v) is h-adjusted, for all v is in the domain of
κ(ρ, λ). Again, by Assumption 38 we know that κ is fully bi-linear. Then, from Definition 35
we get two fully linear mappings, ξ and χ, such that κ(ρ, λ)(v) = ξ(ρ)(v) + χ(λ)(v). By
the reasoning just given above, we get that ξ(ρ)(v) and χ(λ)(v) are both h-adjusted. Then,
clearly, κ(ρ, λ)(v) is also h-adjusted.

A parameterized timed word is adjusted if all its time instants and all its parameter
values are properly adjusted.

Definition 42 Let Σ be an alphabet and R a set of parameters. A [g, h]-adjusted parame-
terized timed word over Σ and R is a parameterized timed word 〈σ1, σ2, . . . , σn〉 such that
for all i, 1 ≤ i ≤ n, if σi ∈ Q≥ then σi is a g-adjusted value, and if σi = (zi, ρi) is a
parameterized input or output, then ρi is a h-adjusted valuation.

The set of all [g, h]-adjusted parameterized timed words over Σ and R will be denoted by
Ψ[g,h],Σ,R. As before, we may drop subscripts if there is no reason for confusion.

A run over a [g, h]-adjusted timed word implies the [g, h]-reachability of the terminal
configuration.



Timed Context Test Case Generation 21

Definition 43 Let M be a [g, h]-adjusted TIOCA. Also let s ∈ S, ν ∈ [C → Q≥] and
λ ∈ [V → Q≥]. We say that the configuration (s, ν, λ) is [g, h]-reachable in M iff there is a

[g, h]-adjusted parameterized timed word ψ ∈ Ψ[g,h], such that (s0, ν0, λ0)
ψ


M (s, ν, λ).

Now we can define the grid automaton corresponding to a TIOCA.

Definition 44 Let M be a [g, h]-adjusted TIOCA and let L be g-adjusted and K be h-
adjusted values in Q≥. Then the [L,K, g, h]-TIOCA grid automaton, or simply [L,K, g, h]-
TIOCA grid, associated with M is the labelled transition system constructed by Algorithm 1.

Again, we may drop the qualifications L, K, g or h, when no confusion can arise.
The idea used in the algorithm is similar to that previously used in [3]. Except that, in

this case, we have context variables and their interpretations and, further, transitions over
input and output symbols have different behaviors.

Again, we show the result that Algorithm 1 always terminates. We also establish a
bound on the number of states in the resulting labelled transition system.

Lemma 45 Consider the procedure depicted as Algorithm 1. Then, it always halts with

|SG| ≤ |S| ×
(
k⌊L⌋+ k

)|C|
×

(
ℓ⌊K⌋+ ℓ

)|V |
.

Proof Similar to the proof in [3]. First note that, by construction, Algorithm 1 only
adds to RS elements in the form (r, η, µ), where s is a state, η is an L-bounded clock
interpretation and µ is K-bounded context variable valuation. Moreover, by Proposition 27
and Proposition 26 we know that the interpretations constructed at lines 10, 22 and 28
named η are also g-adjusted. Also, the interpretation constructed at line 13 named µ is also
h-adjusted. Hence, by Lemma 28, the number of distinct g-adjusted clock interpretations

is bounded by
(
k⌊L⌋ + k

)|C|
. By the same reasoning, the number of h-adjusted variable

valuations is at most
(
ℓ⌊K⌋ + ℓ

)|V |
. Since the number of states in M is |S|, the result

follows.

Again, had we specified a possibly different bound Lc for the value of each clock c in C and
a possibly distinct bound Kv for the value of each context variable v ∈ V , the number of
states in the grid automaton would be bounded by |S| ×

∏
c∈C

(k⌊Lc⌋+ k)×
∏
v∈V

(ℓ⌊Kv⌋+ ℓ).

And the latter can be much smaller then |S| ×
(
k⌊L⌋+ k

)|C|
×

(
ℓ⌊K⌋+ ℓ

)|V |
, if we take the

safe values L = max
c∈C
{Lc} and K = max

v∈V
{Lv}.

Now, we want to prove that a TIOCA and its corresponding grid display compatible
behaviors, provided that the common input parameterized timed word is also [g, h]-adjusted.

A grid word in Σ⋆
G induces a movement in the grid automaton in a usual way. We

must remember, however, that a grid word carry the symbol g, as well as h-adjusted input
parameter valuations (x, ρ) and h-adjusted output parameter valuations (y, λ).

Definition 46 Let MG be the grid automaton corresponding to a TIOCA M . The move-
ment relation of MG, ⊢

G
, is a binary relation over Σ⋆

G × SG given by (〈σ〉ψ, s) ⊢
G

(ψ, r) if

and only if there is a transition (s, σ, r) in MG.
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Input: L, K ∈ Q≥; k, ℓ positive integers, g = 1/k, h = 1/ℓ; [g, h]-adjusted TIOCA1

M .
Output: Grid MG = (SG, sG,ΣG, TG).2

let ΨK
z = {(z, ρK)|(z, ρ) ∈ Ψ{z}}, z ∈ Σ;3

begin4

let sG = (s, ν0, λ0); TG ← ∅; HS ← ∅; RS ← sG ;5

while RS \HS 6= ∅ do6

get a state (s, ν, λ) from RS \HS; move (s, ν, λ) from RS to HS;7

foreach (s, x, δ1, δ2, δ3, θ, κ, r) ∈ TX do8

if ν � δ1 and λ � δ3 and ν ⊕ θ � Inv(r) then9

let η = (ν ⊕ θ)L;10

foreach (x, ρ) in IKx do11

if ρ � δ2 then12

let µ = κK(ρ, λ)13

add the transition ((r, ν, λ), (x, ρ), (r, η, µ)) to TG;14

add the state (r, η, µ) to RS, if (r, η, µ) /∈ HS;15

end16

end17

end18

end19

foreach (s, y, δ1, δ2, θ, ξ, χ, r) ∈ TY do20

if ν � δ1 and λ � δ2 and ν ⊕ θ � Inv(r) then21

let η = (ν ⊕ θ)L; ρ = ξK(λ); µ = χK(λ);22

add the transition ((s, ν, λ), (y, ρ), (r, η, µ) to TG;23

add the state (r, η, µ) to RS, if (r, η, λ) /∈ HS;24

end25

end26

if ν + h � Inv(s) for all 0 < h ≤ g then27

let η = (ν + g)L;28

add the transition ((s, ν, λ), g, (s, η, λ)) to TG;29

add the state (s, η, λ) to RS, if (s, η, λ) /∈ HS;30

end31

end32

SG ← HS, ΣG ← {g} ∪
⋃
z∈Σ

IKz ;
33

return;34

end35

Algorithm 1: Grid algorithm for TIOCA.

We will use the notation
k

⊢
G

and
⋆

⊢
G

for the k-th power and for reflexive transitive

closure of ⊢
G

, respectively. Also, the simplified notation γ
ψ



G
ρ may be used instead of
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(ψ, γ)
⋆

⊢
G

(ε, ρ). Further, we may write γ 

G
ρ when the particular grid word is not relevant.

4.3 Relationship between a TIOCA and the corresponding grid

In this section we expose the relationship between the TIOCA model and its corresponding
grid. We start with a technical result that will be useful later on.

Lemma 47 Let M be a TIOCA and let MG be the corresponding grid. Take ν ∈ [C → Q≥],
λ ∈ [V → Q≥] and p ∈ S. Let (p, νL, λK) ∈ SG, and assume that ν + η � Inv(p) for all

0 < η ≤ ig, where i ≥ 0. Then (p, νL, λK)
gi



G

(p, ωL, λK) and (p, ωL, λK) ∈ SG, with

ω = ν + ig.

Proof As in the proof of grid time movement in [3]. We write it for the sake of completeness.
Define νj = ν + jg, for all j, 0 ≤ j ≤ i. It suffices to prove that2 (p, νjL, λK) ∈ SG and

(p, νL, λK)
gj



G

(p, νjL, λK), for all j, 0 ≤ j ≤ i, since νiL = (ν + ig)L = ωL.

We proceed by induction on j ≥ 0.

Basis: when j = 0 we get gj = ε. Then, trivially, (p, νL, λK)
gj



G

(p, νL, λK). Also ω =

ν + 0g = ν and so ωL = νL. Then, (p, ωL, λK) = (p, νL, λK). Thus, (p, ωL, λK) ∈ SG

and (p, νL, λK)
gj



G

(p, ωL, λK), completing the basis.

Induction step: assume the result holds for some j, 0 ≤ j < i.

The induction hypothesis gives (p, νL, λK)
gj



G

(p, νjL, λK) and (p, νjL, λK) ∈ SG. Note

that (p, νjL, λK) ∈ SG gives (p, νjL, λK) ∈ HS at line 33 of Algorithm 1. Also, pairs are

moved from RS into HS one at a time at line 7. Hence, at some iteration, (p, νjL, λK)

was chosen at line 7. We show that νjL + η � Inv(p), for all 0 < η ≤ g, so that line 27
of Algorithm 1 applies.

Let 0 < η ≤ g. We need νjL + η � Inv(p). We have 0 < jg + η ≤ (j + 1)g ≤ ig. From
the hypothesis we get ν + (jg + η) � Inv(p), that is (ν + jg) + η � Inv(p), and so
νj + η � Inv(p). Using Lemma 22 we get νjL + η � Inv(p), as desired.

Thus, Algorithm 1, lines 28 – 30, will put ((p, νjL, λK), g, (p, ρ, λK )) in TG, where

ρ = (νjL+g)L. Therefore, we get (p, νjL, λK)
g



G

(p, ρL, λK). Also, by line 30, (p, ρL, λK)

will be added to RS if it is not already in HS. In any case, when the loop at line 6
terminates, we get (p, ρL, λK) in HS and, by line 33, (p, ρL, λK) ∈ SG. Moreover,

since (p, νL, λK)
gj



G

(p, νjL, λK), we also get (p, νL, λK)
gj+1



G

(p, ρL, λK). We extend the

induction by showing that ρL = νj+1
L . Since ρL = ((νj)L + g)L, using Fact 20 we get

ρL = (νj + g)L = (ν + jg + g)L = (ν + (j + 1)g)L = (νj+1)L = νj+1
L , as desired.

2Here, νj
L denotes (νj)L.
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The following lemma states that all [g, h]-reachable configurations in a TIOCA are states
in its corresponding grid.

Lemma 48 M is a TIOCA and MG its associated grid. Let L,K be positive integers
greater than any constant occurring in M . If (s, ν, λ) ∈ S × [C → Q≥] × [V → Q≥] is
[g, h]-reachable in M then (s, νL, λK) ∈ SG.

Proof Using Definition 43, we know that (s0, ν0, λ0)
ψ


M (s, ν, λ) for some [g, h]-adjusted
parameterized timed word ψ ∈ Ψ[g,h]. We proceed by induction on the length of ψ.

If ψ = ε then s0 = s, ν0 = ν, and λ0 = λ. Algorithm 1, line 4, puts (s, ν, λ) in RS.
Now, the while loop at line 6, together with lines 7 and 7, will put (s0, ν0, λ0) in HS. Then,
by line 33, we get (s, ν, λ) ∈ SG.

Now, assume the result holds for any [g, h]-adjusted parameterized timed word ψ of
length at most n, n ≥ 0. Take ϕ ∈ Ψ[g,h] and σ ∈ Σ ∪ Q≥ with ψ = ϕ · 〈σ〉, where ϕ has
length n.

From (s0, ν0, λ0)
ψ


M (s, ν, λ) we obtain (s0, ν0, λ0)
ϕ


M (r, µ, ω) and (r, µ, ω)
〈σ〉


M (s, ν, λ)
for some r ∈ S, µ ∈ [C → Q≥] and ω ∈ [V → Q≥]. Since ψ is [g, h]-adjusted, we have that
σ and ϕ are [g, h]-adjusted. By the induction hypothesis, we get (r, µL, ωK) ∈ SG. Then,
(r, µL, ωK) ∈ HS (line 33). Clearly, from line 4 of Algorithm 1, together with the while loop
at line 6 and lines 7 and 7, we can conclude that (r, µL, ωK) will be in RS. So, at some
point, (r, µL, ωK) will be chosen at line 7.

We have three cases:

Case 1: σ = (x, ρ), for some x ∈ X and some ρ ∈ [Rx → Q≥].

Since (r, µ, ω)
〈σ〉


M (s, ν, λ) we must have in M a transition (r, x, δ1, δ2, δ3, θ, κ, s), for
some δ1 ∈ ΦC , δ2 ∈ ΦRx , δ3 ∈ ΦV , θ ∈ [C y Q≥], and κ ∈ Fx, satisfying µ � δ1,
ρ � δ2, ω � δ3, λ = κ(ρ, ω), ν = µ⊕ θ, and ν � Inv(s).

From Lemma 23 and Lemma 22, we obtain µL⊕ θ � Inv(s) and µL � δ1, respectively.
We also obtain ωK � δ3 from Lemma 22. Since (r, µL, ωK) will be chosen at line 7
of Algorithm 1, line 9 applies. Let α = (µL ⊕ θ)L, as in line 10. Since ρ ∈ [Rx →
Q≥], we get (x, ρK) ∈ IKx , and so (x, ρK) will be chosen at line 11. Now, since
ρ � δ2, Lemma 22 gives ρK � δ2, and we conclude that line 12 also applies. Let
β = κK(ρK , ωK), as in line 13. By line 15, the state (s, α, β) will be put into RS, if
it is not already in HS. In any case, by the loop at line 6, we will get (s, α, β) in HS,
and so, by line 33, we will have (s, α, β) ∈ SG. But, using Proposition 21, we have
α = (µL⊕ θ)L = (µ⊕ θ)L. Since ν = µ⊕ θ, we obtain α = νL. Also, using Fact 37 we
may write β = κK(ρK , ωK) = κK(ρ, ω). Since λ = κ(ρ, ω), we obtain β = λK , and so
(s, νL, λK) ∈ SG, as desired.

Case 2: σ = (y, ρ), for some y ∈ Y and some ρ ∈ [V → Q≥].

Since (r, µ, ω)
〈σ〉


M (s, ν, λ) we must have a transition (r, σ, δ1, δ2, θ, ξ, χ, s) in Ty, for
some δ1 ∈ ΦC , δ2 ∈ ΦV , θ ∈ [C y Q≥], ξ ∈ HP

y and χ ∈ HT
y , satisfying µ � δ1, ω � δ2,

λ = χ(ω), ρ = ξ(λ), and ν � Inv(s), where ν = µ⊕ θ.
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From Lemma 23 we obtain µL ⊕ θ � Inv(s). And from Lemma 22 we get µL � δ1
and ωK � δ2. This enables line 21. Since (r, µL, ωK) will be chosen at line 7, we let
α = (µL ⊕ θ)L as in line 22, and β = χK(λK) as in line 22. Then, line 24 inserts the
state (s, α, β) into RS, if it is not already in HS. In any case, by the loop at line 6,
we will get (s, α, β) in HS, and so by line 33 we will have (s, α, β) ∈ SG. But, using
Proposition 21, we have α = (µL ⊕ θ)L = (µ ⊕ θ)L and, since ν = µ ⊕ θ, we obtain
α = νL. Also, λK = χK(ω) = χK(ωK) = β, using Fact 36. Then, (s, νL, λK) ∈ SG, as
desired.

Case 3: σ ∈ Q≥.

Since σ is [g, h]-adjusted, we may write σ = kg, for some k ≥ 0. Then, we obtain

(r, µ, ω)
〈kg〉


M (s, ν, λ) where s = r, λ = ω and ν = µ+ kg, with µ+ η � Inv(r), for all
0 < η ≤ kg. Since we already have (r, µL, ωK) ∈ SG, Lemma 47 gives (r, νL, ωK) ∈ SG.
But λ = ω, and so (r, νL, λK) ∈ SG, completing the proof.

Now we show that all grid states correspond to reachable configurations in the corre-
sponding TIOCA.

Lemma 49 Let MG be the grid corresponding to a TIOCA M . Let L,K be positive integers
greater than any constant occurring in M . If (s, ν, λ) ∈ SG then there is a µ ∈ [C →
Q≥], ω ∈ [V → Q≥] and a [g, h]-adjusted parameterized timed word ψ ∈ Ψ[g,h] such that

(s0, ν0, λ0)
ψ


M (s, µ, ω), with µL = ν and ωK = λ.

Proof From line 33 of Algorithm 1, we know that SG is the set HS when the loop at line 6
terminates. From line 4, HS starts empty and elements are added to it one at a time and
only at lines 15, 24, and 30. Hence, it suffices to show that the result holds for all triples
(s, ν, λ) added to RS at these lines.

Let (ri, µi, ωi), i ≥ 0, be the elements added to RS, in order. Clearly, (r0, µ0, ω0) =
(s0, ν0, λ0) at line 4. Taking ψ = ε, the result is seen to hold for (r0, µ0, ω0). Note also that
ν0 = (ν0)L, since ν0(c) = 0, for all c ∈ C, and also λ0 = (λ0)K , since λ0(v) = 0, for all
v ∈ V .

Assume the result holds for (rj , µj, ωj), for all 0 ≤ j < k, for some k ≥ 1. Consider
(rk, µk, ωk). Since k ≥ 1, (rk, µk, ωk) was added to RS at line 15, or at line 24, or at line 30.
Hence, at that same iteration k some (rj , µj , ωj) with j < k was chosen at line 7, with
(rk, µk, ωk) subsequently added to RS also at iteration k. The induction hypothesis gives

some ψ ∈ Ψ[g,h] such that (s0, ν0, λ0)
ψ


M (rj , µ, ω) and µL = µj and ωK = ωj. There are
three cases.

Case 1: (rk, µk, ωk) was added to RS at line 15. Then, from line 8 we obtain a transition
(rj , x, δ1, δ2, δ3, θ, κ, rk) in TX with µj � δ1, ωj � δ3 and µj ⊕ θ � Inv(rk). From
lines 10 and 15, we get µk = (µj ⊕ θ)L. From lines 11 and 12 we get a ρ ∈ [Rx → Q≥]
with (x, ρ) ∈ Ix and ρK � δ2. Then, lines 13 and 15 give ωk = κK(ρK , ωj).
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Since µL = µj and ωK = ωj we get µL � δ1 and ωK � δ3. Together with ρK � δ2,
Lemma 22 gives µ � δ1, ρ � δ2 and ω � δ3. Moreover, from µL = µj and µj ⊕ θ �

Inv(rk) we get µL⊕ θ � Inv(rk). From Lemma 22 we may write (µL⊕ θ)L � Inv(rk),
and then using Proposition 21 we may write (µ ⊕ θ)L � Inv(rk). Using Lemma 22
again, we have µ⊕ θ � Inv(rk).

Collecting, we have (rj , x, δ1, δ2, δ3, θ, κ, rk) in TX , µ � δ1, ρ � δ2, ω � δ3 and µ⊕ θ �

Inv(rk). Then we may write (rj , µ, ω)
(x,ρ)


M (rk, µ⊕θ, κ(ρ, ω)). Therefore, composing

we get (s0, ν0, λ0)
ψ〈(x,ρ)〉


M (rk, µ⊕ θ, κ(ρ, ω)).

We complete this case by showing (µ⊕ θ)L = µk and (κ(ρ, ω))K = ωk. From Propo-
sition 21, (µ⊕ θ)L = (µL⊕ θ)L. Since µL = µj and µk = (µj ⊕ θ)L, we get (µ⊕ θ)L =
(µj ⊕ θ)L = µk, as desired. From Fact 37 (κ(ρ, ω))K = κK(ρ, ω) = κK(ρK , ωK). Since
ωK = ωj and ωk = κK(ρK , ωj), we get (κ(ρ, ω))K = ωk, as also desired.

Case 2: (rk, µk, ωk) was added to RS at line 24. Then, from lines 20 and 21, we get a
transition (rj , y, δ1, δ2, θ, ξ, χ, rk) in TY with µj � δ1, ωj � δ2 and µj ⊕ θ � Inv(rk).
From lines 22, 22 and 24, µk = (µj ⊕ θ)L, and ωk = χK(ωj).

Since µL = µj and ωK = ωj, we get µL � δ1 and ωK � δ2. Then, Lemma 22 yields
µ � δ1 and ω � δ2. Also, from µL = µj and µj ⊕ θ � Inv(rk), we get µL⊕ θ � Inv(rk).
From Lemma 22, we have (µL ⊕ θ)L � Inv(rk). From Proposition 21 we may write
(µ⊕ θ)L � Inv(rk) and so, from Lemma 22, we obtain (µ⊕ θ) � Inv(rk).

Collecting, we have (rj , y, δ1, δ2, θ, ξ, χ, rk) in TY , µ � δ1, ω � δ2, (µ ⊕ θ) � Inv(rk).

Then (rj , µ, ω)
(y,ρ)


M (rk, µ⊕ θ, χ(ω)). Therefore, (s0, ν0, λ0)
ψ〈(y,ρ)〉


M (rk, µ⊕ θ, χ(ω)).

We complete this case by showing (µ ⊕ θ)L = µk and χK(ω) = ωk. From Propo-
sition 21, (µ ⊕ θ)L = (µL ⊕ θ)L. Since µL = µj and µk = (µj ⊕ θ)L, we get
(µ ⊕ θ)L = (µj ⊕ θ)L = µk, as desired. Also, since ωK = ωj and ωk = χK(ωj),
we get ωk = χK(ωK) = χK(ω), where we used Fact 36. The argument for this case is
complete.

Case 3: (rk, µk, ωk) was added to RS at line 30. Then from line 27 we obtain µj + η �

Inv(rj), 0 < η ≤ g. Let µk = (µj + g)L, as in line 28. Then, line 30 gives ωk = ωj
and rk = rj . Since µj = µL we get µL + η � Inv(rj) and so µ + η � Inv(rj)
by Lemma 22, for all 0 < η ≤ g. Also, since ωj = ωK we get ωK = ωk. Then

(rj , µ, ω)
〈g〉


M (rj , µ + g, ω) and, since rj = rk we get (rj , µ, ω)
〈g〉


M (rk, µ + g, ω).

Therefore, (s0, ν0, λ0)
ψ·〈g〉


M (rk, µ+ g, ω).

We complete this case by showing that (µ + g)L = µk and ωK = ωk. Since µk =
(µj + g)L and µL = µj, we get µk = (µL + g)L. Using Proposition 20, we conclude
that µk = (µ + g)L. Also, since we already have ωK = ωj and ωk = ωj, we get
ωK = ωk, as desired.

The induction is extended and we are done.
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The next definition maps adjusted parameterized timed words into grid words. Recall
Definition 42.

Definition 50 Let Σ be an alphabet and let Ψ[g,h] be the set of all [g, h]-adjusted param-
eterized timed words. Define the basic mappings: (i) every g-adjusted time value ig, with
i ≥ 0, is mapped to the grid word gi ∈ Σ⋆

G; (ii) every parameterized input (x, ρ), with x ∈ X
and ρ ∈ [Rx → Q≥], is mapped to the grid word (x, ρK) ∈ ΣG; and (iii) every parameterized
output (y, λ), with y ∈ Y and λ ∈ [V → Q≥], is mapped to the grid word (y, λK) ∈ ΣG. Now
define the morphism f : Ψ[g,h] → Σ⋆

G in the natural way, by extending these basic mappings.

Next we show that a grid automaton can simulate the corresponding TIOCA over a
[g, h]-adjusted parameterized timed word.

Theorem 51 M is a TIOCA. Let L,K ∈ Q≥ be positive integers greater than all constants
occurring in M , and let MG be the grid corresponding to M . Let s, r ∈ S, let ν, ω ∈
[C → Q≥] and let λ, µ ∈ [V → Q≥] be such that (s, ν, λ) is [g, h]-reachable in M . If

(s, ν, λ)
ψ


M (r, ω, µ) then (s, νL, λK), (r, ωL, µK) ∈ SG and (s, νL, λK)
f(ψ)



G

(r, ωL, µK).

Proof Since (s, ν, λ) is [g, h]-reachable in M , we get a [g, h]-adjusted parameterized timed

word φ such that (s0, ν0, λ0)
φ


M (s, ν, λ). Then (s0, ν0, λ0)
φ·ψ


M (r, ω, µ). Since φ · ψ is
also [g, h]-adjusted, (r, ω, µ) is also [g, h]-reachable in M . Thus, by Lemma 48, we get

(s, νL, λK), (r, ωL, µK) ∈ SG. It remains to show that (s, νL, λK)
f(ψ)



G

(r, ωL, µK).

We proceed by induction on the length n ≥ 0 of ψ, noting that (s, ν, λ)
ψ


M (r, ω, µ).

Basis: when n = 0, we get ψ = ε and so s = r, ν = ω and λ = µ. Thus (s, νL, λK) =

(r, ωL, µK) and we get (s, νL, λK)
ε



G

(r, ωL, µK). Since f(ψ) = ε, the basis is complete.

Induction step: For all x ∈ X, we will denote the set of all [g, h]-adjusted parameterized
timed inputs by Ix = {(x, ρ)|ρ ∈ [Rx → Q≥]is [g, h]-adjusted}, and will denote by
IKx = {(x, ρK)|(x, ρ) ∈ Ix} the set of all K-bounded such inputs in Ix. Similarly, we
define Iy and IKy for all y ∈ Y .

Now, assume that the result holds for all [g, h]-adjusted parameterized timed words of
length at most n. Take ψ = ϕ·〈σ〉, where ϕ has length n and 〈σ〉 has length one. Then,

(s, ν, λ)
ψ


M (r, ω, µ) gives (s, ν, λ)
ϕ


M (p, α, β) and (p, α, β)
〈σ〉


M (r, ω, µ), for some
α ∈ [C → Q≥] and β ∈ [V → Q≥]. By the induction hypothesis, (p, αL, βK) ∈ SG

and (s, νL, λK)
f(ϕ)



G

(p, αL, βK). Since, by definition, f(ψ) = f(ϕ) · f(〈σ〉), it remains

to show that (p, αL, βK)
f(〈σ〉)



G

(r, ωL, µK). Note that, since ψ is [g, h]-adjusted, then

so is 〈σ〉. Then, we have three cases: when σ ∈ Ix for some x ∈ X, when σ ∈ Iy for
some y ∈ Y , and when σ ∈ Q≥.
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Case 1: σ = (x, ρ) ∈ Ix for some x ∈ X.

Since (p, α, β)
(x,ρ)


M (r, ω, µ), we must have a transition (p, x, δ1, δ2, δ3, θ, κ, r) in
TX with α � δ1, ρ � δ2, β � δ3, µ = κ(ρ, β), ω = α⊕ θ, and ω � Inv(r).

Recall that (p, αL, βK) ∈ SG. Hence, at some point, Algorithm 1 has chosen
(p, αL, βK) at line 7. Moreover, using Lemma 22, from α � δ1 and β � δ3
we get αL � δ1 and βK � δ3. From α ⊕ θ � Inv(r) and Lemma 23 we get
αL ⊕ θ � Inv(r). Then, line 9 at Algorithm 1 is enabled. Let α′ = (αL ⊕ θ)L, as
in line 10. Also, clearly, (x, ρK) ∈ IKx and, from ρ � δ2 and Lemma 22, we get
ρK � δ2, showing that line 12 is also enabled. Let β′ = κK(ρK , βK), as in line 13.
Then line 14 adds ((p, αL, βK), (x, ρK), (r, α′, β′)) to TG. Now, since σ = (x, ρ),

we get f(〈σ〉) = (x, ρK). Then, (p, αL, βK)
f(〈σ〉)



G

(r, α′, β′).

We complete this case by showing that α′ = ωL and that β′ = µK . Since
α′ = (αL ⊕ θ)L, Proposition 21 gives α′ = (α ⊕ θ)L. Then α′ = ωL since
ω = α ⊕ θ. Also, since β′ = κK(ρK , βK), Fact 37 gives β′ = κK(ρ, β). Then
β′ = µK since µ = κ(ρ, β).

Case 2: σ = (y, ρ) ∈ Iy for some y ∈ Y .

Since (p, α, β)
(y,ρ)


M (r, ω, µ), we must have a transition (p, y, δ1, δ2, θ, ξ, χ, r) in
TY , with α � δ1, β � δ2, µ = χ(β), ρ = ξ(β), ω = α⊕ θ, and ω � Inv(r).

Recall that (p, αL, βK) ∈ SG. Hence, at some point, Algorithm 1 has chosen
(p, αL, βK) at line 7. From α � δ1 and β � δ2, Lemma 22 gives αL � δ1 and
βK � δ2. From α ⊕ θ � Inv(r) and Lemma 23 we get αL ⊕ θ � Inv(r). Then
Algorithm 1, lines 22, 22 and 23, adds ((p, αL, βK), (y, ρK), (r, α′, β′)) to TG,
where α′ = (αL⊕θ)L and β′ = χK(βK). Since σ = (y, ρ), we get f(〈σ〉) = (y, ρK).

Hence, (p, αL, βK)
f(〈σ〉)



G

(r, α′, β′).

We complete this case by showing that α′ = ωL and that β′ = µK . Since
α′ = (αL ⊕ θ)L, Fact 21 gives α′ = (α ⊕ θ)L. Then α′ = ωL since ω = α ⊕ θ.
Also, since β′ = χK(βK), Fact36 gives β′ = χK(β) and, together with µ = χ(β),
we get β′ = µK .

case 3: σ ∈ Q≥.

Since σ is [g, h]-adjusted, let σ = ig, for some i ≥ 0. Moreover, since (p, α, β)
〈ig〉


M

(r, ω, µ), we conclude that p = r, ω = α+ig, α+η � Inv(r) for all 0 < η ≤ ig, and
µ = β. Hence, α+η � Inv(p) for 0 < η ≤ ig. Since we already have (p, αL, βK) ∈

SG, Lemma 47 gives (p, α′
L, βK) ∈ SG and (p, αL, βK)

gi



G

(p, α′
L, βK), with α′ =

α + ig. So, α′ = ω and, since we already have µ = β, we get (p, α′
L, βK) =

(r, ωL, µK). Since f(〈σ〉) = gi, we can write (p, αL, βK)
f(〈σ〉)



G

(r, ωL, µK), as

desired.

The induction is extended, completing the proof.
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The next theorem shows that a TIOCA imitates the corresponding grid automaton.

Theorem 52 MG is the grid corresponding to a TIOCA M where L,K ∈ Q≥ are posi-
tive integers greater than all constants occurring in M . Let (s, ω̂, µ̂), (r, ω, µ) ∈ SG with

(s, ω̂, µ̂)
ψ



G

(r, ω, µ), for some ψ ∈ Σ⋆
G. Then there are some α, α̂ ∈ [C → Q≥], some

β, β̂ ∈ [V → Q≥] and some ψ̂ ∈ Ψ[g,h], such that (s, α̂, β̂)
bψ


M (r, α, β), with ω̂ = α̂L,

ω = αL, µ̂ = β̂K , µ = βK and f(ψ̂ ) = ψ.

Proof We proceed by induction on the length n ≥ 0 of ψ.

Basis: when n = 0, we get ψ = ε, s = r, ω̂ = ω and µ̂ = µ. Let ψ̂ = ε. Since (s, ω̂, µ̂) ∈ SG,
Lemma 49, gives α̂ ∈ [C → Q≥], with α̂L = ω̂, and β̂ ∈ [V → Q≥], with β̂K = µ̂.

Take α = α̂ and β = β̂. Then (s, α̂, β̂)
ε


M (r, α, β), and so (s, α̂, β̂)
bψ


M (r, α, β), with
f(ψ̂) = ψ. Moreover, ω = ω̂ = α̂L = αL, and µ = µ̂ = β̂K = βK , completing the
basis.

Induction step: For all x ∈ X, we will denote the set of all [g, h]-adjusted parameterized
timed inputs by Ix = {(x, ρ)|ρ ∈ [Rx → Q≥]is [g, h]-adjusted}, and will denote by
IKx = {(x, ρK)|(x, ρ) ∈ Ix} the set of all K-bounded such inputs. Similarly, we define
Iy and IKy for all y ∈ Y .

Now, assume that the result holds for all grid words of length at most n. Take

ψ = ϕ · σ ∈ Σ⋆
G, where ϕ has length n and σ ∈ ΣG. Then, (s, ω̂, µ̂)

ψ



G

(r, ω, µ) gives

(s, ω̂, µ̂)
ϕ



G

(p, ω′, µ′) and (p, ω′, µ′)
σ



G

(r, ω, µ), with (p, ω′, µ′) ∈ SG. By the induction

hypothesis we get some α̂, α′ ∈ [C → Q≥], some β̂, β′ ∈ [V → Q≥] and some ϕ′ ∈ Ψg,h,

with (s, α̂, β̂)
ϕ′


M (p, α′, β′), α̂L = ω̂, α′
L = ω′, β̂K = µ̂, β′K = µ′ and f(ϕ′) = ϕ.

We extend the induction by showing that (p, α′, β′)
〈σ′〉


M (r, α, β), for some α ∈
[C → Q≥] some β ∈ [V → Q≥] and some parameterized word σ′, with αL = ω,

βK = µ and f(〈σ′〉) = σ. Note that then we will have (p, α̂, β̂)
ϕ′〈σ′〉


M (r, α, β), with
f(ϕ′)f(〈σ′〉) = ϕσ = ψ, as desired.

Note that, since α′
L = ω′ and β′K = µ′, we also have (p, α′

L, β
′
K)

σ



G

(r, ω, µ). There are

three cases: when σ ∈ IKx for some x ∈ X, when σ ∈ IKy for some y ∈ Y , and when
σ = g.

Case 1: σ = (x, ρ) ∈ IKx , for some x ∈ X.

Then (p, α′
L, β

′
K)

(x,ρ)



G

(r, ω, µ), and we must have in TG a transition in the form

((p, α′
L, β

′
K), (x, ρ), (r, ω, µ)). From Algorithm 1, this can only happen if such a

transition was added to TG at line 14. Hence, from lines 8 to 15, we must have
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a transition (p, x, δ1, δ2, δ3, θ, κ, r) in TX . Moreover, from line 9 we get α′
L � δ1,

β′K � δ3 and α′
L ⊕ θ � Inv(r). Also, from line 12 we get ρ � δ2. Finally, from

lines 10 and 13, we may write, respectively, ω = (α′
L ⊕ θ)L and µ = κK(ρ, β′K).

Recall that we want (p, α′, β′)
〈σ′〉


M (r, α, β), with αL = ω, βK = µ and f(〈σ′〉) =
σ. Let σ′ = (x, ρ) = σ. Since (x, ρ) ∈ IKx we know that ρ = ρ′K , for some
ρ′ ∈ [V → Q≥]. Then, by Proposition 14, we get ρK = (ρ′K)K = ρ′K = ρ. Thus,

f(〈σ′〉) = (x, ρK) = (x, ρ) = σ. It remains to show that (p, α′, β′)
(x,ρ)


M (r, α, β),
with αL = ω and βK = µ.

Since we already have α′
L � δ1 and β′K � δ3, Lemma 22 yields α′

� δ1 and β′ � δ3.
Also, from α′

L⊕θ � Inv(r) and Lemma 22, we get (α′
L⊕θ)L � Inv(r), and using

Proposition 21 we have (α′ ⊕ θ)L � Inv(r), and so α′⊕ θ � Inv(r) by Lemma 22
again. Since we know that the transition (p, x, δ1, δ2, δ3, θ, κ, r) is in TX , and

that ρ � δ2, we can write (p, α′, β′)
(x,ρ)


M (r, α′ ⊕ θ, κ(ρ, β′)). Let α = α′ ⊕ θ.
Then αL = (α′ ⊕ θ)L and, using Proposition 21, we get αL = (α′

L ⊕ θ)L = ω,
as desired. Now let β = κ(ρ, β′). Then, βK = κK(ρ, β′). By Fact 37 we get
βK = κK(ρK , β

′
K). Since we already have ρK = ρ, we get βK = κK(ρ, β′K) = µ,

concluding this case.

Case 2: σ = (y, ρ) ∈ IKy , for some y ∈ Y .

Then (p, α′
L, β

′
K)

(y,ρ)



G

(r, ω, µ), and we must have in TG a transition in the form

((p, α′
L, β

′
K), (y, ρ), (r, ω, µ)). From Algorithm 1, this can only happen if such a

transition was added to TG at line 23. Hence, from lines 20 and 21, we must have a
transition (p, y, δ1, δ2, θ, ξ, χ, r) in TY , with α′

L � δ1, β
′
K � δ2 and α′

L⊕θ � Inv(r).
Further, from lines 22 to 24, we know that ω = (α′

L ⊕ θ)L, µ = χK(β′K) and
ρ = ξK(β′K).

Recall that we want (p, α′, β′)
〈σ′〉


M (r, α, β), with αL = ω, βK = µ and f(〈σ′〉) =
σ.

Since we already have α′
L � δ1 and β′K � δ2, Lemma 22 yields α′

� δ1 and β′ � δ2.
Also, from α′

L⊕θ � Inv(r) and Lemma 22, we get (α′
L⊕θ)L � Inv(r), and using

Proposition 21 we have (α′ ⊕ θ)L � Inv(r), and so α′⊕ θ � Inv(r) by Lemma 22
again. We know that the transition (p, y, δ1, δ2, θ, ξ, χ, r) is in TY . We can then

write (p, α′, β′)
〈(y,ρ′)〉


M (r, α, β), with α = α′ ⊕ θ, β = χ(β′) and ρ′ = ξ(β′). Let
σ′ = (y, ρ′). It remains to show that f(〈σ′〉) = σ, αL = ω and βK = µ.

We have f(〈σ′〉) = f(〈(y, ρ′)〉 = (y, ρ′K). Since ρ′ = ξ(β′), using Fact 36, we
obtain ρ′K = ξK(β′) = ξK(β′K) = ρ. Then, f(〈σ′〉) = (y, ρ) = σ. Next, αL =
(α′⊕ θ)L = (α′

L⊕ θ)L = ω, using Proposition 21. Also, βK = χK(β′) = χK(β′K),
using Fact 36. We then get βK = µ, completing this case.

Case 3: σ = g.

Since (p, α′
L, β

′
L)

g



G

(r, ω, µ), we must have a transition ((p, α′
L, β

′
K), g, (r, ω, µ))
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in TG. From Algorithm 1, lines 27 – 30, we have p = r, ω = (α′
L + g)L, α′

L + η �

Inv(p) for all 0 < η ≤ g, and µ = β′K .

We need (p, α′
l, β

′
L)

〈σ′〉


M (r, α, β), with αL = ω, βK = µ and f(〈σ′〉) = σ.

We already have p = r. Fix any η, 0 < η ≤ g. From α′
L + η � Inv(p) and

Lemma 22 we get (α′
L + η)L � Inv(p). From Proposition 20 it follows that

(α′+η)L � Inv(p), and from Lemma 22 again, α′+η � Inv(p). We may conclude

that α′+η � Inv(p) for all 0 < η ≤ g. We can then write (p, α′
l, β

′
L)

〈σ′〉


M (r, α, β)
where σ′ = g, α = α′ ⊕ θ and β = β′.

Then, f(〈σ′〉) = f(〈g〉) = g = σ. Also, using Proposition 20, αL = (α′ ⊕ θ)L =
(α′

L ⊕ θ)L = ω. Finally, βK = β′K = µ, completing this case.

The induction is extended and the proof is complete.

5 Generating test cases for TIOCA

Now we show how to generate test cases by using test purposes and TIOCA. First we define
acyclic TIOCA, which can be used for modeling faults or desired properties.

Definition 53 A TIOCA is acyclic iff its subjacent directed graph, defined by taking states
as nodes and transitions as edges, is acyclic.

Test purposes are acyclic TIOCA equipped with fail and desired states.

Definition 54 A TIOCA test purpose is an acyclic TIOCA with two special sets of states:
a set F ⊆ S, of fail states, and a set D ⊆ S, of desired states, with F ∩D = ∅.

We also need the notion of synchronous product over TIOCA. We construct the syn-
chronous product algorithmically.

Definition 55 Let M1 and M2 be two TIOCA, with C1 ∩ C2 = ∅ and V1 ∩ V2 = ∅. The
synchronous product of M1 and M2 is the TIOCA constructed by Algorithm 2.

Algorithm 2 constructs the synchronous product by first pairing the initial state of both
participating TIOCA in order to create the initial state of the product TIOCA. Then, the
product transitions are constructed by an exhaustive search for new transitions and new
states. Finally, we want a state (s1, s2) to be a fail state in the product when s2 is a fail
state in the purpose model. Similarly for the desired states.

Definition 56 Let M1 be a TIOCA and M2 be a TIOCA test purpose. In the product
automaton of Definition 55, a state (s1, s2) is a desired or fail state iff s2 is a desired or
fail state, respectively, in M2.
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Input: TIOCA M1 and M2 with C1 ∩ C2 = ∅ and V1 ∩ V2 = ∅.1

Output: The synchronous product MP .2

begin3

CP ← C1 ∪C2; RP ← R1 ∪R2; VP ← V1 ∪ V2; ΣP ← Σ1 ∪Σ2;4

RS ← sP0 = (s10, s
2
0); InvP (sP0 )← Inv1(s

1
0) ∧ Inv2(s

2
0); TP ← ∅, HS ← ∅;5

while RS \HS 6= ∅ do6

choose s = (s1, s2) from RS \HS;7

move s from RS to HS;8

foreach a ∈ X do9

if (si, a, δ
1
i , δ

2
i , δ

3
i , θi, κi, si+2) ∈ T

X
i , i = 1, 2 then10

add (s3, s4) to RS; let InvP (s3, s4)← Inv1(s3) ∧ Inv2(s4);11

add ((s1, s2), a, δ
1
1 ∧ δ

1
2 , δ

2
1 ∧ δ

2
2 , δ

3
1 ∧ δ

3
2 , θ1 ⊕ θ2, κ1 ⊕ κ2, (s3, s4)) to TXP ;12

end13

if (si, a, δ
1
i , δ

2
i , δ

3
i , θi, κi, si+2) ∈ T

X
i for some si+2 ∈ S, and14

(sj , a, δ
1
j , δ

2
j , δ

3
j , θj , κj , sj+2) 6∈ T

X
j for all sj+2 ∈ S, with i 6= j, i, j ∈ {1, 2}

then

if i = 1 then (p, q) = (s3, s2) else (p, q) = (s1, s4);15

add (p, q) to RS, let InvP (p, q)← Inv1(p) ∧ Inv2(q),16

add ((s1, s2), a, δ
1
i , δ

2
i , δ

3
i , θi, κi, (p, q)) to TXP ;17

end18

end19

foreach a ∈ Y do20

if (si, a, δ
1
i , δ

2
i , θi, ξi, χ, si+2) ∈ T

Y
i , i = 1, 2 then21

add (s3, s4) to RS; let InvP (s3, s4)← Inv1(s3) ∧ Inv2(s4),22

add ((s1, s2), a, δ
1
1 ∧ δ

1
2 , δ

2
1 ∧ δ

2
2 , θ1 ⊕ θ2, ξ1 ⊕ ξ2, χ1 ⊕ χ2, (s3, s4)) to T YP ;23

end24

if (si, a, δ
1
i , δ

2
i , θi, ξi, χi, si+2) ∈ T

Y
i for some si+2 ∈ S, and25

(sj , a, δ
1
j , δ

2
j , θj, ξj , χj , sj+2) 6∈ T

Y
j for all sj+2 ∈ S, with i 6= j, i, j ∈ {1, 2},

then

if i = 1 then (p, q) = (s3, s2) else (p, q) = (s1, s4);26

add (p, q) to RS, let InvP (p, q)← Inv1(p) ∧ Inv2(q),27

add ((s1, s2), a, δ
1
i , δ

2
i , θi, ξi, χi, (p, q)) to T YP ;28

end29

end30

end31

SP ← HS;32

end33

Algorithm 2: Synchronous product for TIOCA.

5.1 TIOCA test case generation and the grid automaton

In order to generate a grid automaton, we need to define the product of a specification and
a test purpose, when given by their respective TIOCA.
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The grid automaton is obtained from the resulting product following the methods pre-
sented in Section 4. In Figure 2 we illustrate a framework to obtain both the product and
also the grid automaton.

Specification

Test purpose Product Algorithm
Product

Grid Algorithm
Grid Automaton

Grid generation

Figure 2: The framework to generate the grid automaton.

After the grid construction, test sequences are extracted by traversing the grid. The
traversal operation starts at the initial state of the grid and searches down until it finds
fail or desired states, depending on the nature of the test. Upon finding one such state,
the corresponding test sequence is output. A recursive traversal procedure is depicted
in Algorithm 3. Clearly, the set of all test sequences is generated by a call in the form
T iocaTestGeneration(s0, ǫ), where s0 is the initial state of the grid and ǫ is the empty string.

One can then construct [g, h]-adjusted timed words from all grid words extracted from

TiocaTestGeneration(INPUT: state s of a TIOCA grid MG; OUTPUT:1

Parameterized timed test sequence PTTS;)
begin2

if s is a leaf then3

Write PTTS;4

else5

foreach neighbor, r, of s reached over a transition on σ do6

PTTS ← {σ} · PTTS;7

TiocaTestGeneration(r,PTTS);8

end9

end10

end11

Algorithm 3: The traversal algorithm for TIOCA.

the grid automaton using the mapping given at Definition 50. Note that delay transitions
in the grid represent continuous evolutions and parameterized timed inputs and outputs
represent context changes in the original specification, up to the chosen boundary.

When the test purpose models desired behaviors of a system, the verification process
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issues a “pass” verdict only when the implementation respects the specification and it
satisfies the test purpose, for all sequences in the test suite. If, on the other hand, the
testing if based on a purpose automaton with fail states, then the verification process issues
a positive verdict when the implementation satisfies the specification and also reaches a
faulty state, for any of the sequences in the test suite.

5.2 Test cases and observable behavior over TIOCA

In order to drive a TIOCA, we need to supply it with a sequence of parameterized timed
input symbols, and in order to extract the behavior of a run, we need to project a parame-
terized timed word onto a subset of parameterized timed output actions.

Definition 57 Let Σ be an alphabet and let Υ ⊆ Σ. Let ψ = 〈σ1, . . . , σn〉, n ≥ 0, be
a parameterized timed word over Σ. The projection of ψ over Υ, denoted by ψ↓Υ, is the
parameterized timed word over Υ given by the concatenation ψ↓Υ = φ1 · φ2 · . . . · φn, where

φi =

{
〈σi〉 if σi ∈ ΨΥ,

ε otherwise.

That is, the projection extracts only the parameterized actions in the subset of interest,
together with timing values.

Parameterized test cases are parameterized timed words where only input action symbols
can occur.

Definition 58 A parameterized test sequence for a TIOCA M is a parameterized timed
word over its input actions, that is, an element of ΨX .

Figure 3 illustrates a framework for extracting parameterized timed test cases.

Test case generation

Test Cases

ExtractingGrid automaton Traversal

Algorithm

Set of ψ Set of ψ↓X

Figure 3: The framework to extract test cases.

Given a parameterized test sequence ψ and given a start configuration γ, we can discover
all parameterized timed words that have ψ as a projection over XM and that produce a run
starting at γ.
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Definition 59 Let M be a TIOCA and let ψ ∈ ΨX and γ ∈ ΓM . A support for ψ and γ

is a parameterized timed word ρ ∈ ΨM such that ψ = ρ↓X and γ
ρ


 µ, for some µ ∈ ΓM .

That is, a support for an input parameterized timed word ψ and a configuration γ is a
timed word ρ that drives the TIOCA from γ to some configuration µ, and such that the
projection of ρ over the set of parameterized input action symbols XM is precisely ψ. The
set of all supports for ψ and γ will be denoted by Λψ,γ . When γ is the initial configuration
of M , we also write Λψ. Clearly, any ρ ∈ Λψ is a run of M .

We can now define observables associated with a parameterized timed test sequence and
a start configuration.

Definition 60 Let M be a TIOA and let ψ ∈ ΨX , γ ∈ ΓM . The ( observable) behavior of
M from γ over ψ is the set {ρ↓X | ρ ∈ Λψ,γ}.

We will denote by Oψ,γ the set of observable behaviors of M from γ over ψ. When γ is the
initial configuration of M we may simply write Oψ.

5.3 Applying timed test cases

An implementation behavior is investigated by performing experiments over it [22]. Such
experiments consist of applying stimuli to the implementation and observing its responses.

We obtain a set of parameterized timed test sequences by traversing the corresponding
grid automaton which, in turn, was obtained from the product between the specification and
the test purpose. Such parameterized timed test sequences are sequences of parameterized
input and output actions, as well as time delays. Parameterized timed test cases then are
extracted from the parameterized timed test sequences, by projecting such sequences on
the parameterized inputs.

A parameterized test execution is obtained by applying a parameterized timed test
case to an implementation and observing the respective responses. The output responses
of the implementation under test are then combined with the respective parameterized
timed test cases. By this process, we obtain parameterized test executions, also called
runs, which combine parameterized input actions and time delays from the parameterized
timed test cases, together with time delays and observed parameterized outputs from the
implementation.

Suppose that a parameterized test case is submitted to an implementation under test.
Then, usually, a time delay must pass before the next parameterized input action occurs, or
before the next parameterized output action is observed. Note that the time delay preceding
a parameterized output symbol is not under the control of the observer, and so we cannot
know in advance the exact instants when parameterized outputs will occur. In any case,
when collecting a test run, the time delay actually observed before a parameterized output
symbol occurrence is adjoined to the run being constructed, followed by the corresponding
parameterized output symbol. When the next action is a parameterized input action the
time delay specified on the test case is under control of the observer. In this case, this
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Testing an implementation: faulty property

Implementation Grid Automaton

Yes: f
ail f

ound

Not found

ψ↓X ψ′

Figure 4: The framework to test implementations: faulty property.

Implementation Grid Automaton

Testing an implementation: desired property

ψ↓X

Try ψ again

Yes: ψ′ is on the GridTake another ψ

No: ψ′ is not on the Grid

Yes: ∀ψ′ on the Gridψ′

Figure 5: The framework to test implementations: desired property.

time delay, followed by the parameterized input symbol, is also adjoined to the run being
collected.

Using this approach, a set of runs can be collected by applying parameterized timed
test cases over the candidate implementation. After that we apply such parameterized test
executions again to the corresponding grid automaton. We can, then, verify if runs obtained
from the implementation candidate are also runs over the corresponding grid automaton.
When a run from the implementation is also a run over the grid, we can say that both
models are in conformance, with respect to the given test case. Figures 4 and 5 illustrate
these processes.

When a faulty property is specified by the test purpose model, the product automaton
will contain special faulty states. So, the parameterized timed test cases extracted from the
grid will be sequences of parameterized input actions and time delays that lead to faulty
states. We then collect runs over the implementation using these parameterized timed test
cases. By applying such runs back to the original grid, if any of them reaches a faulty
state, we can announce a positive test verdict, that is, a fault was confirmed over the
implementation. If all collected runs, when applied to the grid, do not reach faulty states,
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then the test is deemed inconclusive.

On the other hand, when the test purpose models a desired property, we must make
sure that all runs, when applied to the grid, terminate at desired states. In this case, the
test is positive, otherwise it is inconclusive.

Note that, in this approach, we test implementations by resubmitting runs back to the
grid automaton. In a first alternative, we can assume that the grid automaton is fully
constructed, and is kept in memory. Then we are able to efficiently search down forward
for special states and, also, we can effectively submit a run to the grid. As a second
alternative, avoiding the full grid construction, we can use the grid construction algorithm
to resubmit collected runs to the grid. When dealing with fault properties, avoiding the full
grid construction can be a reasonable alternative, since we only need one conformance hit.

6 Related works

Many works have discussed formal methods to automatically generate test cases suites for
complex systems. Depending on specific characteristics of the target systems, earlier studies
discuss either techniques for timed systems or methods applicable to reactive systems with
context variables, but in both cases only one of these approaches is treated in isolation. In
this section we briefly describe some such works.

En-Nouaary and Dssouli discuss a timed test case generation method in [8]. This method
is based on TIOA specifications and test purposes. It also uses the notion of synchronous
product. However, their discretization technique is based on the classical notion of clock
regions, thus imposing a strict relationship between the number of clock variables present
in the models and the granularity that must be chosen in order to obtain the corresponding
grid automaton. Instead of constructing a grid automaton directly, the notion of a region
graph is first used to represent a possibly infinite transition system. Then, by a process of
sampling, a grid automaton is derived from the transition system. Test sequences are then
extracted from the grid automaton. But the authors do not detail how one could apply
the timed test cases that are extracted from the grid automaton. Further, a TIOA models
continuous time evolution by means of clock variables only. Context variables are not
allowed in a TIOA model, since it is not fit to capture the notion of context transformation.

Fouchal [11] proposes another test case generation method based on TIOA. Test purposes
are used as in [8] in order to capture specific system properties. In Fouchal’s proposal, region
graphs are also used, and are likewise sampled in order to obtain grid automata. Algorithms
are used in an exhaustive test generation process, but no guarantees of correctness are
offered. Dense time has but a superficial treatment, making it difficult to realize how
precise are the timed test sequences that are obtained, specially when the original models are
combined with test purposes. Further, also, the models do not deal with context variables.

In [10], Fouchal and co-workers present a test execution strategy similar to the one
discussed in this work. Although both strategies are related, our work deals properly with
dense time in order to capture timed properties, whereas in [10] a notion of timed elements
is used to imitate continuous time evolution, in a process that offers no guarantees of
accuracy about the obtained test suites. Once again, context transformations and facilities
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for returning values to the environment are not considered.

Similar approaches appeared in [9, 7, 6], none of them dealing with context transfor-
mations. All of them also use the classical notion of clock regions in order to obtain grid
automata from which test case sequences can be extracted. But the large number of clock
variables present in typical models often lead to huge grid automata, due to the exponential
number of clock regions and the need to enforce the relationship between the number of
clocks and the chosen granularity. In contrast, our approach allows for an ample range of
choices of appropriate granularity values, thus leading to more controllable grid automata
and to more manageable test suites.

Petrenko and co-workers [18] offer a different approach. In this work the aim is to
verify whether a test sequence yields the same outputs when driving the specification and
a suspicious configuration. Suspicious configurations are obtained with the aid of expertise
from system testers. Although test purposes for modeling properties also need the expertise
from system testers, in our work we can model both fail and desired system behavior,
allowing for more general testing capabilities. Further, no treatment of continuous time
evolution is provided in [18]. In our work, by contrast, we can handle timed systems with
context variables.

Jeannet and co-workers [14] use the ioSTS formalism as specification models. In this
work, an enumeration approach of data values is used in order to avoid the state space
explosion problem. But, since a discretization method is not used, it is problematic to
capture continuous time evolution in an appropriate manner in these models, thus making
it difficult to test timed properties. Moreover, the method can incur in high costs when
calculating constraints using approximations when searching for test sequences. Further,
again, the formal model and the proposed method do not deal simultaneously with timed
requirements and context transformations.

7 Concluding Remarks

Methods and techniques for automatically generating test cases for critical and reactive
systems have been proposed, many of which are based on formal methods. Among those,
some deal with continuous time evolution, others allow some form of data flow. But a single
formalism capable of treating both these issues simultaneously has not been so far formally
developed.

In this work we propose a method to automatically generate and apply test suites for
timed systems with context variables. The basic formal model here used is the Timed
Input/Output Context Automaton (TIOCA), a generalization of the earlier Timed In-
put/Output Automaton (TIOA). Then, a general way of discretizing TIOCA was discussed
and proven correct. This discretization technique avoids the classical notion of clock regions,
and allows for an ample range of granularity values that can be chosen in the discretization
process. We demonstrate that the grid automaton thus obtained was capable of homomor-
phically simulating the original timed context system, and vice-versa. This provided for the
development of automatic methods for generating test suites for systems that exhibit both
continuous time evolution as well as context transformations.
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In order to model specific system properties that are to be put under test over candidate
implementations, we use the notion of test purpose models. Together with the notion of
synchronous TIOCA product, the discretization algorithm is able to generate grid automata
that reflect both the behavior of the original timed context system, as well as properties
specified by the test purpose. By automating the extraction of test cases from this grid au-
tomaton, the desired test suites can be extracted. We provide detailed proofs of correctness
for all properties and results of interest.

For future works, we suggest a formal development of the notion of conformance testing,
perhaps using supports and observables, as stated in the text. Further, a more efficient
process of extracting test suites could be explored, namely, one that constructs the grid
automaton on-the-fly, while extracting test sequences. The grid algorithm could also be
used implicitly when testing the complete runs, after those are obtained by combining the
test cases and the observable behaviors of the implementation candidates. As another
suggestion, one could investigate how to automatically factor out common subwords from
test cases, thus obtaining shorter test suites.
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