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Edge-Coloring of Split Graphs

Sheila Morais de Almeida∗ Célia Picinin de Mello∗ Aurora Morgana †

Abstract

The Classification Problem is the problem of deciding whether a simple graph has
chromatic index equals to ∆ or ∆+1, where ∆ is the maximum degree of the graph. It
is known that to decide if a graph has chromatic index equals to ∆ is NP-complete. A
split graph is a graph whose vertex set admits a partition into a stable set and a clique.
The chromatic indexes for some subsets of split graphs, such as split graphs with odd
maximum degree and split-indifference graphs, are known. However, for the general
class, the problem remains unsolved. In this paper we exhibit a new subset of split
graphs with even maximum degree that have chromatic index equal to ∆. Moreover,
we present polynomial time algorithms to perform an edge-coloring and to recognize
these graphs.

1 Introduction

A k-edge-coloring of a graph G is an assignment of one of k colors to each edge of G such that
there are no two edges with the same color incident to a common vertex. In the discussion
below, a “coloring” of a graph always means an edge-coloring, while a “k-coloring” is a
coloring that uses only k colors. The chromatic index of G, χ′(G), is the minimum k such
that G has a k-coloring. By definition, χ′(G) ≥ ∆(G), where ∆(G) is the maximum degree
of G. In 1964, Vizing [17] showed that for any simple graph G, χ′(G) ≤ ∆(G) + 1. It was
the origin of the Classification Problem, that consists of deciding whether a given graph
G has χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1. In the first case, we say that G is Class 1,
otherwise, we say that G is Class 2. Despite the powerful restriction imposed by Vizing,
it is very hard to compute the chromatic index in general. In fact, it is NP-complete to
decide if a graph is Class 1 whereas Class 2 recognition is co-NP-complete [11]. In 1991,
Cai and Ellis [1] proved that this holds also when the problem is restricted to some classes
of graphs such as perfect graphs. However, the classification problem is entirely solved for a
few known set of graphs that includes the complete graphs, bipartite graphs [13], complete
multipartite graphs [12], and graphs with universal vertices [15].

Efforts have been made to give partial solutions. Considering the class of doubly chordal
graphs, a superclass of interval graphs, we know the solution of the classification problem
for doubly chordal graphs with odd maximum degree [4]. In the class of split graphs, the

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP. This research
was partially supported by CNPq (140709/2008-8, 300934/2006-8, and 482521/2007-4.)

†Department of Mathematics, University of Rome ”La Sapienza”, Italy
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2 Almeida, de Mello and Morgana

classification problem is solved for split-indifference graphs [14], complete split graphs, and
split graphs with odd maximum degree [2].

In this work, we focus our attention on the class of split graphs. A split graph is a graph
whose vertex set admits a partition into a stable set and a clique. This paper presents a new
result about the classification problem for split graphs as a contribution in the direction of
solving the entire problem for this class.

In Section 2 we give some definitions and preliminary results. In Section 3, we discuss
the classification problem of split graphs and present the solution of this problem for a
subset of these graphs. We also prove that this subset can be recognized in polynomial
time. Finally, Section 4 presents some conclusions about our work.

2 Definitions and necessary background

In this paper, G denotes a simple, finite, undirected and connected graph; V (G) and E(G)
are the vertex and edge sets of G. Write n = |V (G)| and m = |E(G)|. The degree of a
vertex v in a graph G is denoted by dG(v). The maximum degree of G, denoted ∆(G), is the
maximum vertex degree in G. A ∆(G)-vertex is a vertex of a graph G with degree ∆(G).
A universal vertex is a vertex with degree n− 1. Let v be a vertex of G. The set of vertices
which are adjacent to v in G is denoted by N(v), and N [v] = {v} ∪ N(v). The set N [v]
is called neighborhood of v. A clique is a set of pairwise adjacent vertices of a graph. A
maximal clique is a clique that is not properly contained in any other clique. A stable set is
a set of pairwise non-adjacent vertices. A subgraph of G is a graph H with V (H) ⊆ V (G)
and E(H) ⊆ E(G). For X ⊆ V (G), denote by G[X] the subgraph induced by X, that is,
V (G[X]) = X and E(G[X]) consists of those edges of E(G) having both ends in X. Let
D ⊆ E(G). The subgraph induced by D is the subgraph H with E(H) = D and V (H) is
the set of vertices v having at least one edge of D incident to v. The notation G\D denotes
the subgraph of G with V (G \ D) = V (G) and E(G \ D) = E(G) \ D. We denote by Kn a
complete graph with n vertices.

The following lemmas are used in our discussion about the coloring of split graphs. The
results of lemmas 1, 2, and 5 have been known for a long time and can be found in [7, 13].

Lemma 1 The complete graph Kn is Class 1 if, and only if, n is even.

Lemma 2 [13] Every bipartite graph is Class 1.

A graph G is overfull (O) when n is odd and ∆(G)
⌊

n
2

⌋

< m [10]. A graph G is
subgraph-overfull (SO) when it has an overfull subgraph H with ∆(H) = ∆(G) [10]. If the
overfull subgraph H is a subgraph induced by the neighborhood of a ∆(G)-vertex, then G

is neighborhood-overfull (NO) [4]. These classes are related as follows: O ⊂ SO ⊂ Class 2
and NO ⊂ SO ⊂ Class 2 and O and NO are incomparable.

Lemma 3 [15] Let G be a graph which contains a universal vertex. Then G is Class 1 if,
and only if, G is not overfull.
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A k-coloring partitions the set of edges of G into k color classes. An equitable k-coloring
of a graph G is a k-coloring of G such that the sizes of any two color classes differ by at
most one.

We say that a vertex v misses a color c (or that a color c misses a vertex v) when there
is no edge with color c incident to v. Otherwise, we say that the color c appears in v. For
equitable colorings the following lemmas hold.

Lemma 4 [15] Let G be a graph. If G has a k-coloring, then there exists an equitable
k-coloring of G.

Lemma 5 Let n be an odd integer. If Kn is colored with n colors, then each one of these
n colors misses exactly one vertex and each vertex misses exactly one color.

Lemma 6 Let n be an even integer. Then Kn has an equitable n-coloring such that each
vertex misses one color, each one of n

2 colors misses two vertices, and each one of the other
n
2 colors appears in every vertex of Kn.

Proof. Consider a graph Kn with even n. Since Kn has maximum degree n − 1, by
Vizing [17], Kn has an n-coloring. Since each vertex has degree equal to n− 1, each vertex

misses exactly one color. By Lemma 4, Kn has an equitable n-coloring. Since Kn has n(n−1)
2

edges, an equitable n-coloring of Kn corresponds to n
2 classes of color with size

⌊

n−1
2

⌋

= n
2−1

each, and n
2 classes of color with size

⌈

n−1
2

⌉

= n
2 each. By definition of coloring, each color

class determines a matching of Kn. Since there are n vertices, each one of n
2 color classes

with size n
2 − 1 covers n − 2 vertices, so each one of these colors misses two vertices of Kn.

Each one of n
2 color classes with size n

2 covers n vertices of Kn and, therefore, each one of
these colors appears in every vertex of Kn.

Lemma 7 Let n be an even integer and G = Kn \ F , where F is a subset of E(Kn) with
|F | = k. Then G has an equitable (n − 1)-coloring, such that there are k′ = min{k, n − 1}
colors missing at least two vertices of G.

Proof. Let F be a subset of E(Kn) with |F | = k and G = Kn \ F . Since n is even, Kn

has an (n − 1)-coloring. Then G also has an (n − 1)-coloring. So, by Lemma 4, G has

an equitable (n − 1)-coloring. Since |E(G)| = n(n−1)
2 − k, each color class of an equitable

(n − 1)-coloring either has size n
2 −

⌊

k
n−1

⌋

, or it has size n
2 −

⌈

k
n−1

⌉

.

If k ≥ n−1, each one of the n−1 classes of color has size at most n
2 −1 and it corresponds

to a color that misses at least two vertices. Otherwise, if k < n − 1, there are k classes of
color with size n

2 − 1 and n− 1− k classes of color with size n
2 . In this case, each one of the

k classes of color with size n
2 − 1 corresponds to a color that misses two vertices of G.

Lemma 8 Let n be an odd integer and G = Kn \ F , where F is a subset of E(Kn) with

|F | = k, k ≥ n−1
2 . Then G has an equitable (n−1)-coloring. Moreover, if n−1

2 ≤ k ≤ 3(n−1)
2

each one of k− n−1
2 colors misses exactly three vertices of G, and each one of the remaining

3(n−1)
2 − k colors misses exactly one vertex of G. If k ≥ 3(n−1)

2 , every color misses at least
three vertices of G.
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Proof. The graph G described above has an equitable (n − 1)-coloring. In fact, if G has
maximum degree less than n − 1, by Vizing [17] and by the definition of coloring, G has
an (n − 1)-coloring and, by Lemma 4, G has an equitable (n− 1)-coloring. If G has degree
n − 1, then G has a universal vertex. Since, by hypothesis, |E(G)| = |F | = k ≥ n−1

2 , then
G is not overfull. So, by Lemma 3, G has an (n − 1)-coloring and, by Lemma 4, G has an
equitable (n − 1)-coloring.

If k = n−1
2 , then G has (n−1)(n−1)

2 edges. In this case, an equitable (n − 1)-coloring
corresponds to n − 1 color classes with size n−1

2 . Each one of these color classes represents
a color used on n−1

2 edges of a matching of G. So, there are n − 1 disjoint matchings and
each one of them covers n − 1 vertices. Therefore, each color misses one vertex.

If n−1
2 < k ≤ 3(n−1)

2 , then an equitable (n − 1)-coloring of G corresponds to k − n−1
2

color classes with size n−1
2 − 1 = n−3

2 and n− 1− (k − n−1
2 ) = 3(n−1)

2 − k color classes with
size n−1

2 . Therefore, each one of k − n−1
2 colors misses exactly three vertices and each one

of the other 3(n−1)
2 − k colors misses exactly one vertex.

Note that when k = 3(n−1)
2 , every color misses exactly three vertices. Therefore, if

k >
3(n−1)

2 , every color of an equitable (n − 1)-coloring of G misses at least three vertices
of G.

3 Coloring some split graphs with even maximum degree

Some classes have the chromatic index of the odd maximum degree graphs determined. This
is the case of known classes of graphs such as interval graphs, dually chordal graphs [5],
and split graphs [2]. Much less is known about the chromatic index when graphs with
even maximum degree are considered. In this section, we consider a split graph with even
maximum degree. As a consequence of the work of Chen et.al. [2], the Class 2 split graphs
have even maximum degree. We exhibit a new subclass of these graphs that is Class 1 and
we present polynomial time algorithms to perform an edge-coloring and to recognize this
subclass.

Let G be a split graph with ∆(G) even. Let {Q,S} be a partition of V (G), where Q is
a clique and S is a stable set. From now on, we consider Q as a maximal clique. Note that,
in this case, each ∆(G)-vertex belongs to Q.

Now we give a sketch of our approach to obtain a ∆(G)-edge-coloring for a split graph G

satisfying the conditions of Theorem 9. We partition this split graph G into two subgraphs
such that each one can be colored with ∆

2 colors. To do this, we find a special vertex v with
maximum degree and we partition V (G) into N [v] and P = V (G) \N [v]. Note that P ⊂ S.
Then, we choose a set R with ∆

2 vertices of Q containing every vertex that is adjacent to
some vertex of P . The subgraph of G induced by the edges with a vertex in R and another
in V (G)\R is a bipartite graph with maximum degree at most ∆

2 +1. The remaining edges
induce a subgraph H with maximum degree ∆

2 . We choose a set F of edges of the bipartite
graph that are incident to distinct vertices with degree ∆

2 + 1 in this bipartite graph. We
color the edges of E(H)∪F with ∆

2 colors. The bipartite graph without the edges of F has
degree at most ∆

2 and we use ∆
2 new colors obtaining a ∆-coloring of G.
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Theorem 9 Let G be a split graph with even maximum degree and partition {Q,S}. The
graph G is Class 1 if there exists a ∆(G)-vertex v such that N [v] admits a partition {L,R}
where:

1. R ⊂ Q,

2. |R| = ∆(G)
2 ,

3. the vertices in L are not adjacent to vertices in V (G) \ (L ∪ R),

4. G[L] has k edges, k ≥ ∆(G)
4 , and

5. R has at most k′ vertices with degree ∆(G), where k′ = min{k,
∆(G)

2 }.

Proof. Let G be a split graph with partition {Q,S} and ∆ = ∆(G) even. Suppose that
there exists a ∆-vertex v of G as described above. Let P = V (G) \ {L ∪ R}. (See Fig. 1.)
Since, by hypothesis, |R| = ∆

2 , then |L| = ∆
2 + 1. Hence, the maximum degree of G[L] is at

most ∆
2 . We consider two cases: ∆

2 is odd and ∆
2 is even.

R

L

P

Figure 1: A split graph G and the subsets L, R and P of V (G).

Case 1:
∆
2 is odd

The graph G[L] is isomorphic to a subgraph of K∆

2
+1 and, by hypothesis, G[L] has

k ≥ ∆
4 edges. By Lemma 7, G[L] has an equitable ∆

2 -coloring where each color ci misses at
least two vertices in L, 1 ≤ i ≤ k′ = min{k, ∆

2 }.
Let R = {v1, v2, . . . , v∆

2

}, and let J = {v1, v2, . . . v|J |} be the subset of vertices of R that

are adjacent to every vertex of L. The vertices in J are adjacent to ∆
2 − 1 vertices of R

and ∆
2 + 1 vertices of L, therefore these vertices have degree ∆. By hypothesis, there are

at most k′ ∆-vertices in R, so |J | ≤ k′. The graph G[R] is isomorphic to K∆

2

and ∆
2 is

odd, hence, by lemmas 1 and 5, G[R] can be colored with ∆
2 colors such that each color

misses exactly one vertex and each vertex misses one color. By the symmetry of G[R], we
can perform the coloring of G[R] such that the color missed by vertex vi is ci, 1 ≤ i ≤ ∆

2 .
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Since |J | ≤ k′ and the vertices in J are adjacent to every vertex of L, each vertex vi in J is
adjacent to a vertex u of L that misses the color ci. Assign the color ci to the edge {vi, u}.
For each vertex v in R\J which is adjacent to ∆

2 + 1 vertices of L ∪ P , there is a vertex
w in P such that w is adjacent to v. So, assign the color c, missed by v in the coloring of
G[R], to the edge {v,w}. This process can be repeated for every ∆-vertex in R\J because
the color missed by each vertex in R is distinct from the other ones.

By hypothesis, the vertices in L are not adjacent to vertices of P . Thus, each vertex of
L is adjacent to at most ∆

2 vertices of R. Moreover, each vertex of R is adjacent to at most
∆
2 +1 vertices of L∪P . Note that, when the vertex of R is adjacent to exactly ∆

2 +1 vertices
of L∪P , one of the edges incident to it is already colored. Hence the graph induced by the
uncolored edges of G is a bipartite graph with partition {L∪P,R} and its maximum degree
is at most ∆

2 . Therefore, by Lemma 2, we can color this subgraph with ∆
2 new colors.

Case 2:
∆
2 is even

In this case, G[L] is isomorphic to a subgraph of K∆

2
+1. By condition (4), the size of

E(G[L]) is equal to k, k ≥ ∆
4 . So, by Lemma 8, G[L] has an equitable ∆

2 -coloring such that
each one of p = min{k− ∆

4 , ∆
2 } colors misses at least three vertices in L and each one of the

other ∆
2 − p colors misses at least one vertex in L. Note that p ∈ [0, ∆

2 ], p = k − ∆
4 when

∆
4 ≤ k ≤ 3∆

4 , and p = ∆
2 when k ≥ 3∆

4 . Let c1, . . . , cp be the colors missed by at least three
vertices in L.

The graph G[R] is isomorphic to K∆

2

and ∆
2 is even. So, by Lemma 6, G[R] has an

equitable ∆
2 -coloring such that each one of ∆

4 colors misses two vertices, each one of the
other ∆

4 colors does not miss any vertex in R, and each vertex in R misses exactly one color.
We order the vertices of R such that the first vertices are those ∆-vertices adjacent to every
vertex of L, next the ∆-vertices adjacent to at least one vertex of P = V (G)\{L∪R}, and,
finally, the remaining vertices of R.

The symmetry of G[R] allows us to choose which vertex in R misses a specific color in
the ∆

2 -coloring of G[R]. Let p′ = min{p, ∆
4 }. Since p ∈ [0, ∆

2 ], then p′ ∈ [0, ∆
4 ] and p′ ≤ p.

Let X = {v1, . . . , v2p′} be the set of the first 2p′ vertices of R. We perform the ∆
2 -coloring

of G[R] forcing each pair of vertices of X, v2i−1 and v2i, to miss the color ci. Note that p′

denotes the number of colors that miss at least three vertices in L and two vertices in R.
Note also that when k = ∆

4 , the set X is empty.

Remember that p = min{k − ∆
4 , ∆

2 } is the number of colors that miss at least three
vertices of L; p′ = min{p, ∆

4 } is the number of colors that miss two vertices of R and at
least three vertices of L; and k′ = min{k, ∆

2 } is the maximum number of ∆-vertices of R.

If k ≥ ∆
2 , then p ∈

[

∆
4 , ∆

2

]

, p′ = ∆
4 , |X| = 2p′ = ∆

2 and, therefore, X = R.

If ∆
4 ≤ k < ∆

2 , then p = k − ∆
4 , p′ = p, k′ = k. In this case, X is a proper subset of R.

Then, there are ∆
2 − 2p′ = 2(∆

2 − k) vertices in R \ X.

By construction, each one of the colors c1, . . . , cp′ misses two vertices of X (if |X| 6= ∅)
and p′ < ∆

4 . Moreover, by Lemma 6, there are ∆
4 colors that miss two vertices of R and

each vertex of R has to miss one color. Then each color of the set α = {cp′+1, . . . , c∆

4

} has

to miss two vertices in R \X. Let Y be the set of ∆-vertices in R \X. The cardinality of Y

is at most |α|. In fact, by condition (5), the number of vertices that are not ∆-vertices in
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R is at least ∆
2 − k. Hence, there are at most ∆

2 − k = |α| vertices with degree ∆ in R \X.
So, we force each vertex of Y to miss a distinct color of α in the coloring of G[R].

Figure 2 shows the set R and the subsets X and Y with the color missed by each vertex
of X ∪ Y . Now, for each ∆-vertex of R, we use the color missed by this vertex to color one
edge of G incident to it. By the ordering of the vertices of R, the ∆-vertices that are in R

belong to X ∪ Y .

R

X Y

v1 v2 v2p'+2v2p'+1v2p'v2p'-1v3

c1 cp'+2cp'+1cp'cp'c2

∆v  /2

c1
... ... ...

Figure 2: The set R and the subsets X and Y with the color missed by each vertex of X∪Y .

If X is nonempty, then there are p′ pairs of vertices, v2i−1 and v2i, that miss the color
ci, 1 ≤ i ≤ p′. Let v be a ∆-vertex in X. Thus, v is adjacent to ∆

2 + 1 vertices of L ∪ P .
Since |L| = ∆

2 + 1, then for each vertex of L which is not adjacent to v, there is a vertex in
P which is adjacent to v. Remember that there are at least three vertices in L that miss
the color ci, 1 ≤ i ≤ p′. Considering that every color misses every vertex of P , thus for
each vertex of L which misses the color ci and is not adjacent to v, there is a vertex in P

that is adjacent to v and misses the color ci. Therefore, each ∆-vertex v of R is adjacent
to at least three vertices of L ∪ P which miss the same color missed by v. Hence, for a
pair of ∆-vertices of X, v2i−1 and v2i, which miss a color ci, it is possible to choose two
distinct vertices, x1 and x2, belonging to L∪ P which miss the color ci and such that x1 is
adjacent to v2i−1 and x2 is adjacent to v2i, 1 ≤ i ≤ p′. Now, we color the edges {x1, v2i−1}
and {x2, v2i} with the color ci, 1 ≤ i ≤ p′. Remember that the vertices of R are ordered
such that the ∆-vertices belonging to R are the first vertices of R. So, when the number
of ∆-vertices of R is odd and less than |X|, we have a pair v2i−1 and v2i such that v2i−1 is
a ∆-vertex and v2i is not a ∆-vertex. In this case, the vertex v2i−1 is adjacent to at least
three vertices of L ∪ P that miss the color ci and we can choose any one of them (let w be
this vertex) to color the edge {v2i−1, w} with the color ci.

If Y is nonempty, we can color one edge incident to each vertex that is in Y in the
following way. For each vertex v in Y adjacent to all vertices of L, there is a vertex u in L

that miss the same color missed by v. Then, we assign the color missed by v to the edge
{v, u}. For each vertex v in Y adjacent to some vertex w of P , we assign the color missed
by v to the edge {v,w}. (Remember that the colors missed by the vertices of Y are pairwise
distinct.)

Note that there are no ∆-vertices in R \ (X ∪ Y ), so these vertices have at most ∆
2

uncolored incident edges.
Now, each ∆-vertex in R has at most ∆

2 uncolored incident edges. By hypothesis, the
vertices in L are not adjacent to vertices of P . Moreover, each vertex of L ∪ P is adjacent
to at most ∆

2 vertices of R. Thus, there are at most ∆
2 uncolored edges incident to each

vertex of G. The graph induced by the uncolored edges of G is a bipartite graph with a
partition {L∪P,R} and maximum degree ∆

2 . So, by Lemma 2, we can color this subgraph
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with ∆
2 new colors.

Therefore, by cases 1 and 2, we conclude that G is Class 1.

Given a split graph G and a partition {L,R} of N [v] where v is a ∆-vertex of G, the
∆-edge-coloring described in Theorem 9 is of polynomial time complexity. Moreover, if
there exists a partition {L,R} of N [v] satisfying the conditions presented in Theorem 9, it
also can be found in polynomial time. Now we show how to construct this partition if it
exists.

Consider a split graph G with a maximal clique Q, a stable set S, and a ∆-vertex v.
Let P = V (G) \ N [v]. Now, we partition the set Q into four subsets as follows.

• Pl is the set of vertices of Q with degree less than ∆ and adjacent to some vertex in
P .

• P∆ is the set of vertices of Q with degree equal to ∆ and adjacent to some vertex in
P .

• Ll is the set of vertices of Q with degree less than ∆ and without neighbors in P .

• L∆ is the set of vertices of Q with degree equal to ∆ and without neighbors in P .

We consider the following ordering of the vertices of Q: first, the vertices of Ll in non-
decreasing order of degree, after the vertices of L∆, after the vertices of P∆, and then the
vertices of Pl.

Let R be the set of the last ∆
2 vertices of Q, then conditions (1) and (2) of Theorem 9

hold. Let L be the set (Q \ R) ∪ (N [v] ∩ S).

If |Pl| + |P∆| > ∆
2 , then every vertex of R is adjacent to some vertex of P and there

is at least one vertex of P∆ ∪ Pl in L. Thus, condition (3) of Theorem 9 does not hold.
Therefore, there is not a partition {L,R} for N [v].

If |Pl| + |P∆| ≤ ∆
2 , condition (3) is satisfied and we verify the number of edges in G[L]

(condition (4)). If |E(G[L])| < ∆
4 , a partition {L,R} of N [v] does not exist. In fact, the

ordering of the vertices of Q guarantees the maximum number of edges in G[L]. Note that
the vertices in R either are adjacent to vertices of P or have degree equal to or greater than
the degree of the vertices in L. If |E(G[L])| ≥ ∆

4 , condition (4) is satisfied.

Now, we verify the number of ∆-vertices in R (condition 5). If this number is greater
than the number of edges in G[L], a partition of N [v] into {L,R} does not exist. In fact,
the ordering imposed to the vertices of Q forces the maximum number of edges in G[L]. So,
we need to decrease the number of ∆-vertices in R. Then, we replace a ∆-vertex of R with
a vertex in L with degree less than ∆. If we do this, condition (5) remains unsatisfied. This
replacement decreases by at least one the number of edges in G[L] and decreases by at most
one the number of ∆-vertices in R. Note that, if the ∆-vertex chosen for the replacement
belongs to P∆, also condition (3) does not hold. Hence, there is not a partition {L,R} of
N [v].
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Therefore, if the number of ∆-vertices in R is less than or equal to the number of edges
in G[L], |Pl| + |P∆| ≤ ∆

2 , and the number of edges in G[L] is greater than or equal to ∆
4 ,

then {L,R} is a partition of N [v] that satisfies the conditions of Theorem 9.

We recall that the algorithm presented in [9] recognize a split graph in linear time and
returns also a partition {Q,S} where Q is a maximum clique. The conditions of Theorem 9
for a fixed ∆-vertex of G can be verified in polynomial time. Since there are at most |Q|
vertices with degree ∆ in G, the subclass of split graphs considered in Theorem 9 can be
recognized in polynomial time.

4 Conclusions

Split graphs is a well-studied class of graphs for which most combinatorial problems are
solved [3, 8, 14, 16]. It has been shown that every odd maximum degree split graph is
Class 1 [2] and that every subgraph-overfull split graph is in fact neighbourhood-overfull [6].
It has been conjectured that every Class 2 chordal graph is neighbourhood-overfull [6].
(Chordal graphs is a superclass of split graphs.) The validity of this conjecture for split
graphs implies that the edge-coloring problem for these graphs is in P. In Theorem 9 we
described a new subset of split graphs with even maximum degree that is Class 1, therefore,
this subclass is not neighborhood-ovefull. We also showed how to recognize this subset in
polynomial time. This result gives another positive evidence for the validity of the above
conjecture for split graphs.

The ∆-coloring presented in Theorem 9 can also be used to other subsets of split graphs.
As an example, if a split graph G with ∆ even has a set of ∆ + 1 vertices which admits a
partition {L,R} satisfying the conditions of Theorem 9, then G is Class 1. Note that this
set of ∆ + 1 vertices is not necessarily a neighborhood of a ∆-vertex of G (see Figure 3).

L

R

Figure 3: A split graph G with a subset of vertices that is not the neighborhood of a
∆-vertex, but satisfies the conditions of Theorem 9.
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