S INSTITUTO DE COMPUTACAO
=N UNIVERSIDADE ESTADUAL DE CAMPINAS

On an Abstract Theory of Computational
Models and the Converse of Rice’s Theorem

Igor Carboni Oliveira Arnaldo Vieira Moura
Walter Carniells

Technical Report - 1C-09-34 - Relatério Técnico

September - 2009 - Setembro

The contents of this report are the sole responsibility of the authors.
O contetdo do presente relatério é de Ginica responsabilidade dos autores.

On an Abstract Theory of Computational Models and
the Converse of Rice’s Theorem

Igor Carboni Oliveira* Arnaldo Vieira Moura® Walter Carnielli*

Abstract

In this paper we put forward an abstract definition of computational model and
provide a negative answer to a conjecture involving the converse of Rice’s theorem.
In particular, any reasonable formal system in which the notion of computation is in-
volved should satisfy our general definition of computational model. Furthermore, in
order to give a natural counter-example to our conjecture we present a new interpre-
tation to a result of Bernardi [1] involving undecidability in sufficiently strong formal
theories. Finally, we raise the question if an abstract theory of computational models
can lead to new problems and interesting results in theoretical computer science.

1 Introduction

H. G. Rice [5] proved that any property defined over the set of languages accepted
by Turing machines is either trivial or undecidable. Although this fascinating result was
published more than half a century ago, in this paper we ask for the first time the following
question: Does the converse of Rice’s Theorem hold? In other words, what is the relation
between undecidability and expressiveness in computation?

Before formally introducing this question, we present a simple generalization of the
undecidability of the halting problem. This basic result will lead us to a conjecture that is
a generalization of the classical Rice’s Theorem. Then, we show the conjecture to be false
by presenting a counter-example to it. The ideas therein proved essential to formulate the
converse of Rice’s theorem.

After this initial discussion, we present a natural statement for the converse of Rice’s
Theorem. In addition, we briefly discuss how the Chomsky Hierarchy [7] provides intu-
itive arguments that may lead to the belief in the validity of this result. As a somewhat
surprising and counter-intuitive result we then prove that the converse of Rice’s Theorem
does not hold.

Although our initial concern was about the validity of this last conjecture, the solution
presented here is perhaps more interesting than the original problem. The problem, as
stated, is a technical question from computability theory. However, we found that it was

*Institute of Computing, University of Campinas. Research supported by FAPESP grant 08/07040-0.
"Institute of Computing, University of Campinas. Research supported by FAPESP grant 02/07473-7.
*Institute of Philosophy and Human Sciences, University of Campinas.

more profitable to search for a counter-example if the problem was investigated from a
more conceptual viewpoint.

Accordingly, we introduce an abstract definition of computational model. In partic-
ular, any formal system in which the notion of computation is involved shall satisfy our
general definition of computational model. We formulate a second conjecture in this new
conceptual framework, and its solution is used to construct a counter-example to our orig-
inal problem. This new conjecture, intuitively, asks for the following question: if every
property of a computational model is undecidable, does it have too much power?

To solve this last problem, we provide a new interpretation to a result of Bernardi [1]
that involves undecidability in Peano Arithmetic. The same result also holds for Robin-
son Arithmetic (Q)). Due to its similarity with Rice’s original result, we state it as Rice’s
Theorem for (). This result is the fundamental step leading to a solution of the original
problem.

Finally, we discuss how the abstract definition of computational model used in the
proof of the conjecture can be used to prove interesting results about a wide range of tra-
ditional computational models. In particular, we exhibit a natural class of computational
models that cannot solve their own halting problem. This leads us to raise the possibility
for the development of an abstract theory of computational models.

2 The Converse of Rice’s Theorem

In this section we state the main conjecture involving the converse of Rice’s Theorem.
We will adopt the following conventions.

Definition 1. [Preliminary Definitions]. Fix a finite alphabet ¥ and let T = {(M) | M is
a Turing machine} be the set of strings from ¥* representing Turing Machines under a standard
encoding. If M is a Turing machine, then L(M) is the set of strings accepted by M. If M C T isa
set of strings representing Turing Machines, then L(M) = {L | L = L(M) for some (M) € M},
i.e., the set of languages accepted by machines represented in M. A property P C S, over a set S,
is trivial if P = () or P = S. We define RE to be the set of recursively enumerable languages over
Y. If Sis a set, then P(S) denotes set of subsets of S. If g : A — B is a function, then the image of
g is the set Im(g) = {g(a) |a € A}. If T is a set of first-order sentences, then Th(T') denotes the
set of strings from X* representing the theorems provable from T in first-order logic. The symbol X
represents the empty string. If w is a string then |w| is the size of w.

The next lemma is a simple generalization of the undecidability of the halting problem.

Lemma 1. [The Halting Problem for M is Undecidable]. Let M C T be a decidable set
satisfying L(M) = RE. Then Hyq = {(M) | (M) € M and (M) € L(M)} is undecidable.

Proof. This lemma follows from a similar result presented in section 3. O

Based on the previous lemma, our initial intuition was that the same path that leads to
Rice’s Theorem could be used to prove the following general result.

Conjecture 1. [Generalization of Rice’s Theorem]. Let M C T be a decidable set satisfying
L(M) = RE and P be a non-trivial property over RE. Then the language LY, = {(M) | (M) €
Mand L(M) € P} is undecidable.

Note that the original Rice’s Theorem is the particular case in which M = 7. The
additional ingredient presented in these statements is that we are not trying to decide a
property for the set of all Turing machines; we consider only a decidable set of machines
that is as powerful as the whole set of Turing machines. Although lemma 1 holds, we will
present later a simple counter-example to this conjecture.

Now consider the following possibility raised by the Chomsky Hierarchy [7]. Each
level of this hierarchy corresponds to a particular class of grammars. Furthermore, there
is a set of languages associated to each particular level. Since there is a constructive corre-
spondence between type 0 grammars and Turing machines, it is impossible to decide any
non-trivial property of languages if we are at the highest level of the hierarchy. However,
it is possible to decide non-trivial properties of languages for the lower levels of the hierar-
chy. For instance, given a context-sensitive grammar, it is possible to decide if it produces
a fixed string w. If we take one step further, we can investigate this phenomenon for any
decidable set of grammars in addition to the original levels of the hierarchy. Motivated by
the constructive equivalence between grammars and Turing machines (i.e., the function
that converts grammars into Turing machines, and vice-versa, is computable), we started
investigating the following problem.

Conjecture 2. [Converse of Rice’s Theorem]. Let M C T be a decidable set of Turing Machines
satisfying:

i) L(M) is infinite;
ii) For every non-trivial property P of L(M), the language L%, = {(M) | (M) € M and
L(M) € P} is undecidable.

Then L(M) = RE.

The first condition is a basic property of the levels within Chomsky Hierarchy. It also
rules out the possibility for trivial counter-examples.

In the next section we provide a negative answer to both conjectures. In order to solve
the second problem we introduce a new approach based on an abstract definition of com-
putational model. This will enable us to present a natural counter-example to conjecture
2.

3 Abstract Computational Models

The notion of computation is an ubiquitous phenomenon in mathematics and science
in general. Although it might not be explicit defined in some cases, it is possible to identify
several structures in which this notion can be made precise. In this section we present a
wider view of computation and give a general definition that may be useful to study the
expressiveness of several formal systems and mathematical structures.

Definition 2. [Abstract Computational Model]. Let I C ¥* (instances of the computational
model) and | : I — P(X*) (language association function). Then C = (I,1) is an abstract compu-
tational model if C satisfies the following axioms:

i) “Finite Representation Axiom”
Lis a decidable set.

ii) “Algorithmic Behavior Axiom”
There exists a computable function f : I — T such that, for every i € I, if f(i) = (M) then
1(i) = L(M).

For succinctness, we will use the terms abstract computational model and computational model
interchangeably.

The first axiom states that the instances of the computational model are finite objects
and that there is an algorithm that decides whether a given string represents an instance
of the computational model or not. Intuitively, it expresses that each instance has a finite
number of instructions and that such instructions are well defined. The second item forces
the computational model to have an algorithmic aspect, i.e., its language association func-
tion is not arbitrary. In addition, this axiom puts a limitation on the power of the abstract
computational model: it is only able to recognize recursively enumerable languages. Note
that the language association function may be based on any acceptance criterion; it is only
required that axiom ii) holds.

We would like to make a philosophical observation at this point. Observe that axiom
ii) implies that the abstract computational model can be simulated by a Turing machine.
In particular, any instruction or operation of the computational model can be performed
from a combination of the very simple rules of the Turing machine. Therefore, this new
definition gives a very appealing way of reasserting the Church-Turing thesis.

It is straightforward to verify that many traditional computational models are also ab-
stract computational models in the sense of definition 2. Among them, finite-state ma-
chines, pushdown automata, boolean circuits and Turing machines. Actually, it is clear
that this definition encompasses most of (if not all) the formal system in which the notion
of computation can be defined.

In addition, we may look at the expressiveness of certain structures that are not di-
rectly related to computation. For instance, we could have I representing the set of finite
groups (described by their multiplication table) and let [be the function that associates to
each particular group the set of sequences of elements whose multiplication results in the
respective unit element.

Definition 3. [Expressiveness of Computational Models]. A computational model C; =
(Ih,11) is stronger than a computational model Co = (I2,l2) if Im(l2) C Im(ly), that is, Cy is
not able to represent more languages than Cy.

Lemma 2. [Theories as Computational Models]. Let I = {(1) | ¢ is a first-order sentence }
and 1(()) = Th({¢}). Then C = (I,1) is a computational model.

Proof. First, I is a decidable set since it is easy to verify if a given string w is a first-order
formula: the algorithm just apply the recursive definition of well-formed formulae. Sec-
ond, given a sentence 1 it is possible to construct a Turing machine)M (that may not halt
on some inputs) such that L(M) = Th({1}). M generates all valid proofs and accepts a
formula ¢ if and only if it eventually finds a proof of ¢ from the usual first-order axioms
and 1. The construction can easily be made algorithmic. Hence, there exists a computable
function f : I — T satisfying the conditions of definition 2 and therefore C is a computa-
tional model. O

The next lemma proves the following expected result: if a computational model is as
powerful as the Turing Machine model, then its Halting Problem cannot be decided by
Turing Machines. Note that it is a generalization of lemma 1.

Lemma 3. [The Halting Problem for C is Undecidable]. Let C = (I,l) be a computational
model such that Im(l) = RE. Then Hc = {i | i € I and i € l(i)} is undecidable.

Proof. Consider the language H/, = {i | i € I and ¢ ¢ [(i)}. Since I is decidable, it follows
that H/, reduces to He. It suffices to prove that H/, is undecidable. Suppose that there exists
a Turing machine M such that L(M) = H/,. Since Im(l) = RE, there exists ¢ € I such that
I(i) = H/.. Then we have the following contradiction:

i€ Hp iff
ielandi ¢ (i) iff
i ¢ 1) iff

It follows that H/, is undecidable. O

Next we state similar versions of the conjectures of the previous section, now using the
formalism of abstract computational models. Although the first problem does not depend
on these new ideas, we use this new conceptual framework to solve the second problem.

Definition 4. Let C = (I,1) be a computational model. C is said to be Rice undecidable if Im(l)
is infinite and, for every non-trivial property P over Im(l), the language L = {i | i € I and
(i) € P} is undecidable.

Conjecture 3. [Generalization of Rice’s Theorem - Conceptual Version]. Let C = (I,1) be a
computational model such that Im(l) = RE. Then C is Rice undecidable.

Proposition 1. [Conjecture 3 does not hold]. There exists a computational model C = (I,1)
satisfying Im(l) = RE that is not Rice undecidable.

Proof. Let I be the set of strings representing Turing machines that halt on the empty word
A within at most k steps (k is an integer constant) and [: I — P(X*) be the usual language
association function of Turing machines. Then C = (I,) is clearly a computational model
(f is the identity function). In addition, Im(l) = RE, since for every language L € RE
there is a Turing machine M recognizing L that halts on input X in at most k steps (M

ignores its algorithm and promptly takes the right decision on input A). Now consider a
property P over Im(l) where [(i) € P iff A € [(i). Clearly, P is nontrivial over Im(l). By
the construction of I, we can easily decide if A € [(i). Hence, the language L2 = {i |i € I
and A € [(7)} is decidable. O

From the proof of the previous proposition it is immediate that conjecture 1 is not valid
as well. This counter-example is somewhat artificial; it exists because the definition of
computational model is too general. We discuss this issue in a subsequent section.

There is perhaps an intuitive explanation for this negative result. For sufficiently pow-
erful computational models such as type 0 grammars, Turing Machines and recursive func-
tions, there is an algorithm that transforms an instance of one model into an equivalent
instance of the other model. Therefore, these computational models are all undecidable
in the sense of Rice’s theorem. However, it does not follow from the axioms of abstract
computational model that such constructive correspondence exists for arbitrary abstract
computational models.

Now we consider the conceptual version of the converse of Rice’s Theorem. Intuitively,
it expresses that if the non-trivial properties on an abstract computational model are un-
decidable, then it must be as powerful as the Turing Machine model.

Conjecture 4. [Converse of Rice’s Theorem - Conceptual Version]. Let C = (I,1) be a Rice
undecidable computational model. Then Im(l) = RE.

Proposition 2. [Conjecture 4 does not hold]. There exists a Rice undecidable computational
model C = (I,1) such that Im(l) # RE.

Proof. The proof of this result is presented in the next section. O
Now we can solve the original problem involving Turing Machines.

Theorem 1. [The Converse of Rice’s Theorem does not hold]. There is a decidable set M C T
of Turing Machines satisfying conditions i) and ii) of conjecture 2, and such that L(M) # RE.

Proof. Let C = (I,l) be the counter-example to conjecture 4 provided by proposition 2.
Let fc be the computable function associated with C given by item (ii) of Definition 2. We
construct a computable function f/ : I — 7. Function f/ computes exactly as f¢, but it also
adds enough irrelevant tuples to the description of the Turing machines thus produced.
Formally, if f¢(i) = (M), then f5(i) = (M') with L(M) = L(M’) and |z] < |[(M")].

First, it is easy to see that Im(f}) is decidable, since w € Im(f}) if and only if there
exists i € I satisfying |i| < |w| such that f/(i) = w. This last condition can be verified by
an exhaustive search. Let M = Im(().

Second, by the definition of computational model and the construction of fé, it follows
that L(M) = L(Im(f;)) = L(Im(fc)) = Im(l). Since C is Rice undecidable, then L(M) is
infinite.

Third, if the language LY, = {(M) | (M) € M and L(M) € P} is decidable for some
non-trivial property P of L(M), then the language LY = {i |i € I and I(i) € P} is also
decidable, contradicting again the fact that C is Rice undecidable.

Finally, L(M) # RE, since L(M) = Im(l) and C is a counter-example to conjecture 4.
To sum up, we have proved that M is a counter-example to conjecture 2.
O

4 Rice’s Theorem and the Theory ()

The proof of proposition 2 is based on an undecidability result regarding Robinson
Arithmetic (Q)). For completeness, we present a simplified proof for a particular case that
is sufficient for our purposes. A general development can be found in Bernardi [1].

Definition 5. [Properties on Theories]. Let T' be a first-order theory and I' be a set of sentences.
I is a property on T if the following holds for any sentences ¢ and 1):

Thoeotyp = [pel<=vyell.
A property T is trivial if it is the empty set or the set of all sentences.

Therefore, a property on a theory is just the union of equivalence classes of sentences
under the relation of provable equivalence. We will need some standard definitions from
logic.

Definition 6. [Additional Definitions]. () denotes the usual axioms of Robinson Arithmetic.
For each formula ¢, "¢ denotes the Godel number of p. A property I on a theory T is decidable
if the set {"¢™ | ¢ € T'} is decidable. O denotes the term 0. T denotes the term s(n — 1) for each
positive integer n. If T is a first-order theory, then Mod(T') denotes the set of models of T. Two
theories T and T are said to be incompatible if they have no common consistent extension. A set
A of theories is incompatible if for any two distinct theories T, T> € A, Ty and Ty are incompatible
theories.

Definition 7. [Definition of Representability]. Let S be a set of natural numbers and T be a
theory. S is representable in T if there exists a formula o with one free variable such that for any
natural number n,

T+ ¢(n) ifnels,
T+ —p(n) otherwise.

Lemma 4. [Representability of Decidable Sets]. Every decidable set of natural numbers is
representable in Q).

Proof. See e.g. Carnielli [3]. O

Lemma 5. [Diagonal Lemmal]. For any formula ¢ with one free variable, there exists a sentence
1) such that

Q¢ o o(Ty7).
Proof. See e.g. Boolos [4]. O

The following result is a special case of a theorem proved in Bernardi [1].

Theorem 2. [Undecidability involving Provable Equivalence]. Every non-trivial property on
Q is undecidable.

Proof. Suppose that I is a non-trivial decidable property on . By the non-triviality of T',
there exists sentences ¢; € I" and ¢y ¢ I'. Since I' is decidable, by lemma 4 there exists a
formula ¢ such that for any sentence),

QFe(Ty7) ifyp eI, (1)
QF —p("Y7) otherwise. (2)

Now consider the formula with a free variable z, given by

(p(2) = o) A (mp(z) — 1)

Then, by lemma 5, there exists a sentence ¢* such that
QFY" = (p("*7) — o) A (mp(Tp*T) — 4h1). (3)

When ¢* € T, we get Q - ¢* — 1y by (1) and (3). Therefore)* ¢ I" since ¢p ¢ I'and I'is a
property on Q. This implies a contradiction. The other case is similar.]

Now we are able to construct a counter-example to proposition 2.

Definition 8. [Computational Model Q]. Let Io = {(v) | ¢ is a first-order sentence in the
language of Arithmetic} and lo(()) = Th(Q U {¢}). We define Q = (Ig, o).

Since () is a finitely axiomatizable theory, it is clear from the proof of lemma 2 that Q is
a computational model.

Lemma 6. [Infinite Extensions of Theory Q1. Im(lo) is infinite.

Proof. We prove by induction that for every integer k there exists at least k consistent in-
compatible recursively axiomatizable extensions of (). Since in this proof @ will always
be extended only with a finite number of additional axioms, there is a single sentence (the
conjunction of these axioms) that gives rise to the same extension. Hence, in particular,
Im(lg) cannot be finite.

The base case (k = 1) is satisfied by (). Now assume that the result holds for some
k > 1,1i.e., there exist theories 77, ..., T}, that are consistent incompatible recursively axiom-
atizable extensions of (). Since () is an essentially undecidable theory (see e.g. Carnielli [3])
and these theories are recursively axiomatizable, they must be incomplete (otherwise they
would be decidable). In other words, there are sentences 1, ..., ¢ such that, for 1 < i < k,
T; ¥ ¢; and T; ¥ —p;. If T is a first-order theory and 1) is a sentence, then T' U {¢} is
consistent if and only if 7" ¥ —1) (see e.g. Mendelson). Furthermore, if two theories are
incompatible then two consistent extension of them are incompatible as well. Hence it
follows that 77 U {1}, Ty U{—=¢1}, .. , Tx U{er}, T U {—pr} is a set of 2k consistent
incompatible recursively axiomatizable extensions of). The induction step is complete
and the result follows. O

Lemma 7. If T and T are first-order theories, then Mod(T1) = Mod(T3) if and only if Th(T}) =
Th(T3).

Proof. See e.g. Shoenfield [2]. O

Lemma 8. If T is a first-order theory and and 1) are sentences, then T+ ¢ < 1) if and only if
Th(T U{p}) = TH(T U{9}).

Proof. By lemma 7 it is sufficient to prove the following equivalence: 7' - ¢ « % if and
only if Mod(T U {p}) = Mod(T U {¢}).

First, suppose that 7' - ¢ < 1. By the Godel Completeness Theorem, T' F ¢ <), i.e,,
if AF T (Aisamodel of T) then A F ¢ < . Let A € Mod(T U {¢}). Then A E T and
AE ¢. Since T F ¢ < 1), we have that A F ¢ and hence A € Mod(T U {¢}. Therefore
Mod(T U {p}) € Mod(T U {1}). The proof of the other inclusion is similar.

Conversely, suppose that Mod(T U {¢}) = Mod(T U {¢}) and that T' ¥ ¢ < 1. By
the Godel Completeness Theorem T' ¥ ¢ < 1), i.e., there exists a structure A such that
AETbut AF ¢ «— 1. Assume, without loss of generality, that A4 F ¢ but A ¥ 1. Hence
A € Mod(T U{¢}) and A ¢ Mod(T U {¢}), contradicting the original assumption that
Mod(T U {p}) = Mod(T U {¢}). O

Theorem 3. ["Rice’s Theorem holds for Theory Q"]. Q is a Rice undecidable computational
model.

Proof. By definition 4 and lemma 6, it remains to prove that if P is a non-trivial property
over Im(lg), then the language LS = {i|i € Ig and lg(i) € P} is undecidable. By the
definition of Q, the language Lg is equivalent to the set I'p = {¢ | ¢ is a sentence and
Th(Q U {¢}) € P}.

First, we prove that I'p is a property on theory @ in the sense of definition 5. Suppose
that Q F ¢ < ¢ for sentences ¢ and v in the language of arithmetic. Then

¢ € I'p iff (by the definition of I p)

Th(Q U {p}) € P iff (by lemma 8)

Th(Q U {y}) € P iff (by the definition of I'p)
P € p.

Therefore I' p is a property on Q.

Finally, since P C Im(lg) and P is non-trivial, there exist sentences ¢ and 1) such that
lo({¢)) € Pand ig((v)) ¢ P,ie., Th(QU{yp}) € Pand Th(Q U {¢y}) ¢ P. Hence p € I'p
and ¢ ¢ I'p, thatis, I'p is non-trivial. By theorem 2, I' p is undecidable and the proof that
Q is a Rice undecidable computational model follows.

O

Corollary 1. [Counter-Example]. The computational model Q contradicts conjecture 4.

Proof. By theorem 3, Q is a Rice undecidable computational model. By the definition of Q,
every language in Im(lg) is infinite, since for any sentence ¢ the theory Q U {¢} proves

10

infinite theorems. Therefore, there are no finite languages in Im(lg) and so Im(lg) #
RE. 0

5 A Glimpse Beyond

In this section we discuss further ideas to be explored based on our previous definitions
and results. First, suppose that we add the following axiom to our general definition of
computational model.

Definition 9. [Closure under Language Complementation Axiom]. Let C = (I,1) be a com-
putational model. C is closed under language complementation if for every language L € Im(l), we
get X*\L € Im(l) .

From this basic additional axiom, it is possible to prove a simple yet interesting result
about a wide range of computational models.

Proposition 3. [Halting Problem for C is Undecidable in C]. Let C = (I,1) be a computational
model that is closed under language complementation. Define Hc = {i | i € I and i € l(i)}. Then
He ¢ Im(1).

Proof. Suppose that Hc is decidable in C, that is, there exists ¢ € I such that /(i) = H¢. Since
C is closed under language complementation, there exists k € I such that [(k) = X*\ He.
The following contradiction follows:

¢lork ¢ UR) iff
¢I(F).

Therefore He ¢ Im(l). O

Moreover, the problems discussed in this paper can be studied from a more general
perspective, as it is suggested by the next definition.

Definition 10. [Decidability between Computational Models]. Let C; = (I1,l;) and Co =
(I2,l2) be computational models. A language L is semidecidable in Cy if L € Im(ly). A language
L' is decidable in Cy if both L' and ¥*\ L' are semidecidable in Cy. Otherwise L' is undecidable in
C1. Cy is Rice undecidable in Cy if Lé)l is undecidable in Cy for all nontrivial property P over C;.

We could also study general properties of other restricted classes of computational
models. For instance, if the next axiom is added to the general definition of computa-
tional model, the structure Q = (Ig,lg) does not belong to the new class of computational
models.

11

Definition 11. [Halting Axiom]. Let C = (I,1) be a computational model. C satisfies the halting
axiom if there is a computable function fc in the sense of definition 2 that satisfies the following
additional requirement: if (M) € Im(fc) then M halts on all inputs.

It is possible to give an informal comparison between these ideas and mathematical
logic. In logic, a theory is defined by a general set of axioms (common to all theories)
and some proper additional axioms. Here, we presented some general axioms that are to
be satisfied by any computational model. Also, some other computational models may
satisfy new additional axioms. Furthermore, in logic it is possible to study the models of a
particular theory. Using the notion presented here we can study specific models that satisfy
the general axioms of abstract computational models plus some other proper axioms. For
example, finite-state machines are closed under language complementation, and satisfy
the other general axioms.

Finally, in a recent paper, Kudlek [8] discusses the existence of universal machines for
traditional computational models that are weaker than Turing machines. For example: Is
there a pushdown automaton that is able to simulate any other pushdown automaton? In
particular, the author puts into discussion the existence of a general definition for univer-
sality that could encompass all the cases considered in his paper. We proceed to show that
it is possible to define universality in a very natural way using our abstract definition of
computational model.

Definition 12. [Definition of Universal Machine]. Let C = (I,l) be a computational model.
Let Iy : I x I — X* be a function defined by ly7(i,7') = {w | w € ¥* and /'w € 1(i)}. Then C
admits an universal machine if there exists u € I such that for all i’ € I, ly(u,i") = 1(i").

It is possible to define several other computational concepts that are important in the-
oretical computer science in this general setting. The following questions arise: Are there
other relevant problems and applications? Is it possible to develop an abstract theory of
computational models? In our opinion, this is an interesting possibility. For instance, from
some basic abstract axioms it is possible to develop a beautiful theory of computational
complexity (see Blum [6]).

6 Conclusion

First, this paper is primarily motivated by the following question: What is the relation
between undecidability and computational power? Rice’s original result states that the
computational power of Turing machines leads to general undecidability. We presented
here evidence that it is possible to be general undecidable without being able to compute
everything.

Second, our development shows that some technical questions become easier if ap-
proached from a more conceptual perspective. The following quote by I. N. Herstein [9] is
appropriate.

"Very often in mathematics the crucial problem is to recognize and discover what are
the relevant concepts; once this is accomplished the job may be more than half done.”

12

In our case, the introduction of a new concept shed light on new ideas and was essential
for the construction of a natural counter-example to our original problem.
Finally, in this paper we put into discussion the following issues.

i) What is a computational model?
ii) Is it possible to develop an abstract theory of computational models?

We introduced an abstract definition of computational model. It is possible to argue
that this definition is too general. However, new axioms can be added to restrict the class
of formal systems satisfying the abstract definition. This gives a partial answer to the first
question.

Lastly, we do not yet have an answer to the second question. Nevertheless, we believe
that the study of such abstract computational models may bring new concepts and provide
new insights into the traditional study of computational models in the field of theoretical
computer science.

Acknowledegment

We would like to thank Anderson de Araujo (University of Campinas) and Hirofumi
Yoshikawa (Tokyo Institute of Technology) for useful suggestions. In particular, the latter
pointed out to us the existence of a simplified counter-example to conjecture 2 that can
be obtained by diagonalization. We adopted the present counter-example to motivate the
definition of computational model and due to its conceptual relevance.

References

[1] Bernardi C. On the Relation Provable Equivalence and on Partitions in Effectively
inseparable sets. Studia Logica, 1981, 40:29-37.

[2] Shoenfield J.R. Mathematical Logic. Addison-Wesley Publishing, 1967.

[3] Epstein R., Carnielli W.A. Computability: Computable Functions, Logic and the
Foundations of Mathematics. Wadsworth/Thomson Learning, 2000.

[4] Boolos G., Jeffrey R. Computability and Logic. Cambridge University Press, 1974.

[5] Rice, H.G. Classes of Recursively Enumerable Sets and Their Decision Problems.
Trans. Amer. Math. Soc. 74, 358-366, 1953.

[6] Blum, M. A Machine-Independent Theory of the Complexity of Recursive Functions.
Journal of the ACM, 14(2):322-336, 1967.

[7] Chomsky, N. Three Models for the Description of Language. IRE Transactions on In-
formation Theory, 2:113-124, 1956.

[8] Kudlek, M. Some Considerations on Universality. arXiv:0906.3199v1 [cs.CC], 2009.
[9] Herstein, I. N. Topics in Algebra, second edition. John Wiley & Sons, 1975.

13

