
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

A Generalization of the Time and Space

Hierarchy Theorems

Igor Carboni Oliveira Arnaldo Vieira Moura

Technical Report - IC-09-33 - Relatório Técnico

September - 2009 - Setembro

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.

A Generalization of the Time and Space
Hierarchy Theorems

Igor Carboni Oliveira∗ Arnaldo Vieira Moura†

Abstract

In this paper we introduce a new class of complexity measures and prove a general
hierarchy theorem in computational complexity. In addition, we derive as a particular
case of our result the traditional time and space hierarchy theorems.

1 Introduction

In their seminal paper, Hartmanis and Stearns [3] proved that if given more time one
can solve more problems. For example, there are problems that can be solved in polyno-
mial time but not in time O(n3). As it was subsequently showed in [2], a similar hierarchy
result also holds if we consider space instead of time.

The main argument used to prove such hierarchy theorems is a combination of simula-
tion and diagonalization. In these proofs, a machine simulates other machines with smaller
time bounds and then negates their answers, ruling out the possibility that its language is
decided by one of the simulated machines.

Since their pioneering work, the same basic idea was successfully applied to prove
several other hierarchy results, and these theorems remain one of the mainstays of com-
putational complexity theory. Therefore, a better understanding of the classical hierarchy
theorems is of fundamental importance.

In this paper we show that the traditional time and space hierarchy theorems are in-
serted in a wider context. We prove that they are, in fact, particular cases of a general
hierarchy theorem that holds for any reasonable combination of time and space. Further-
more, this is the first time that such an unified treatment is presented in the literature.

2 The Space-Time Complexity

In order to avoid inessential technicalities, the Turing machines discussed here are one-
tape deterministic machines with a {0, 1} binary tape alphabet. In addition, since we will

∗Institute of Computing, University of Campinas. Research supported by FAPESP grant 08/07040-0.
†Institute of Computing, University of Campinas. Research supported by CNPq grant 304363/2008-1, and

by FAPESP grant 07/56052-8.

1

2

not consider sublinear space, it will not be necessary to consider separated input, output
and work tapes [5]. We will use the standard big-O and small-o notations, as in [1, 5].
Further, N will denote the set of natural numbers.

We start with the usual definitions of time and space complexities.

Definition 1. Let A be a Turing machine. The exact time complexity of A is the function tA :
{0, 1}? → N such that when started with x on its input tape A halts after exactly tA(x) steps. The
time complexity of A is the function TA : N → N such that TA(n) = maxx∈{0,1}n{tA(x)}.

Definition 2. Let A be a Turing machine. The exact space complexity of A is the function
sA : {0, 1}? → N such that when started with x on its input tape A scans exactly sA(x) dis-
tinct tape cells. The space complexity of A is the function SA : N → N such that SA(n) =
maxx∈{0,1}n{sA(x)}.

Next, we define a general complexity measure based on the usual time and space com-
plexities, which we call f -complexity.

Definition 3. Let A be a Turing machine and let f : N ×N → N be an arbitrary function. Now,
consider the associated function f-tsA : {0, 1}? → N given by letting f-tsA(x) = f(tA(x), sA(x)).
Then the f -complexity of A is the function f-TSA : N → N where f-TSA(n) = maxx∈{0,1}n{f-
tsA(x)}.

Function f should be interpreted as a new complexity measure, the f -complexity,
which is based on the time and space complexities of the Turing machine. Obviously,
if f is one of the binary projection functions, then f corresponds to the usual time and
space complexity measures.

Definition 4. A language L is decidable with f -complexity O(g(n)) if there exists a Turing ma-
chine A deciding L such that f-TSA is O(g(n)).

The next result shows that, for any f -complexity measure, there are arbitrarily difficult
problems. The notation 〈M〉 represents a binary string that codifies Turing machine M , as
suggested in [5].

Definition 5. Let f : N ×N → N and g : N → N be arbitrary functions. Define the language:

Lf,g = { 〈M〉 |Machine M accepts 〈M〉 and f-tsM (〈M〉) ≤ g(|〈M〉|) }. (1)

Theorem 1. Lf,g is not decidable with f -complexity less than g(n), i.e., there is no Turing machine
with f -complexity o(g(n)) that decides Lf,g.

Proof. For the sake of contradiction, suppose that a Turing machine A decides Lf,g and
f-TSA(n) is o(g(n)). Consider the Turing machine B build from A by swapping accepting
and rejecting states of A. Then B accepts w if and only if A rejects w, for all w ∈ {0, 1}?.

Now add irrelevant tuples to B, obtaining a new Turing machine B′. Clearly,

L(B′) = L(B) = {0, 1}? \ L(A). (2)

3

Also, there is some n0 ∈ N such that f-TSA(n) ≤ g(n), for all n ≥ n0, since f-TSA(n)
is o(g(n)). Thus, f-tsA(x) ≤ g(n), for all x ∈ {0, 1}? with n = |x| ≥ n0. But, clearly,
f-tsA = f-tsB′ , and so

f-tsB′(〈B′〉) ≤ g(|〈B′〉|), (3)

if we add enough tuples to B in order to make |〈B′〉| ≥ n0.
Now consider the computation of machine A on input 〈B′〉:

— A accetps 〈B′〉 iff (using 1)

— B′ accepts 〈B′〉 and f-tsB′(〈B′〉) ≤ g(|〈B′〉|) iff (using 3)

— B′ accepts 〈B′〉 iff (using 2)

— A rejects 〈B′〉.

We reached a contradiction. It follows that there is no Turing machine that decides Lf,g

with f -complexity o(g(n)).

Since the function f can be any combination of time and space (f could even be an un-
computable function), the proof of Theorem 1 essentially implies that there is no universal
machine that performs better than just a straightforward simulation.

To illustrate, consider the projection f(x, y) = y. In this case, the f -complexity measure
is just the usual space complexity, and the language Lf,g can be described as the set of all
strings 〈M〉 such that M accepts the word 〈M〉 given as its input while scanning at most
g(|〈M〉|) distinct tape cells. Theorem 1 implies that there is no Turing machine that decides
Lf,g within space o(g(n)).

3 The Space-Time Hierarchy

If f is in some sense a natural complexity measure, it is possible to prove the existence
of f -complexity hierarchies. We exhibit these hierarchies by obtaining the f -complexity of
a specific Turing machine that decides Lf,g. This can be done by simulating machine M on
input 〈M〉.

Definition 6. Let f : N×N → N be a function. We say that f is a natural complexity measure
if f is a non-decreasing computable function and, for every pair of integers t and s, we have either
f(t + 1, s) > f(t, s) or f(t, s + 1) > f(t, s).

Now we state the general hierarchy result. Recall that TM and SM denote the time and
space complexities of a machine M .

Theorem 2 (Space-Time Hierarchy). Let f be a natural complexity measure and let g : N → N
be a computable function with g(n) ≥ n. Assume that machines Mf and Mg compute f and g,

4

respectively. Consider the language Lf,g as in Definition 5. Then Lf,g is decided by a Turing ma-
chine A whose f -complexity is O (f(TA(n), SA(n))), where

TA(n) ≤ c4

[
TMg(n) + g(n)

[
TMf

(c3g(n)) + SMg(n) + g(n) + SMf
(c2g(n))

]]
SA(n) ≤ c1

[
SMg(n) + g(n) + SMf

(c2g(n))
]

and ci ∈ N is a constant, 1 ≤ i ≤ 4. Moreover, Lf,g cannot be decided by any Turing machine
with f -complexity o(g(n)).

Proof. Theorem 1 implies that Lf,g is not decidable by any Turing machine with f -complexity
o(g(n)). The following Turing machine A decides Lf,g. On input 〈M〉, A computes as fol-
lows, where we let n = |〈M〉|:

1. Compute g(n).

2. Simulate one step of M on input 〈M〉, while saving the number of steps t and the
amount of space s reached so far by M .

3. Compute f(t, s). If f(t, s) > g(n), reject and halt.

4. Verify whether t > ng(n)2g(n). Reject and halt if this is the case.

5. If this is the last step of M , then A accepts and halts if M accepts, otherwise A rejects
and halts.

6. Return to step 2.

Step 4 is necessary because for some functions f , machine M may get into an infinite
loop while using only a finite amount of space, keeping the value f(t, s) constant. First we
prove that L(A) = Lf,g and then we bound the f -complexity of A.

Lemma 1. If Turing machine M halts on input 〈M〉, then 〈M〉 is not rejected by A at step 4.

Proof. Suppose that 〈M〉 is rejected by A at step 4. Since 〈M〉 was not just rejected at step
3, we know that f(t, s) ≤ g(n).

If s > g(n), then clearly t > g(n), and so f(t, s) > g(n), because f is a natural complex-
ity measure. Hence, s ≤ g(n).

Therefore there exist no more than ng(n)2g(n) possible configurations for machine M
on input 〈M〉. But rejection at step 4 requires t > ng(n)2g(n). This establishes that if A
rejects M at step 4 then M never finishes its computation on input 〈M〉, contradicting the
fact that M halts on input 〈M〉.

Continuing with the theorem, suppose that 〈M〉 ∈ Lf,g. The previous lemma implies
that 〈M〉 is not rejected by A at step 4. Since f-tsM (〈M〉) ≤ g(n) and f is non-decreasing,

5

then 〈M〉 will not be rejected by A at step 3. Therefore, the simulation will halt at step 5
and, since M accepts 〈M〉, so must A. This shows that 〈M〉 ∈ L(A).

Now let 〈M〉 ∈ L(A). Then 〈M〉 is accepted at step 5, and so machine M also accepts
〈M〉. Because 〈M〉 is not rejected by A at step 3, we conclude that f-tsM (〈M〉) ≤ g(|〈M〉|).
Therefore 〈M〉 ∈ Lf,g. Thus, L(A) = Lf,g.

We now turn to the simulation done in step 2. Machine A divides its tape into 7 tracks,
organizing the resulting tracks as follows:

Track 1 will hold g(n).
Track 2 will hold ng(n)2g(n).
Track 3 will save the t counter.
Track 4 will store the s counter.
Track 5 will be used to compute f(t, s).
Track 6 will hold the code for M and its current state.
Track 7 will be the same as the tape of M .

Machine A simulates machine M and always keeps the information on the tracks close
together.

First, let us determine the space complexity SA(n) of A. The value g(n) is computed
in space SMg(n), since Mg computes g. The value ng(n)2g(n) can easily be computed and
stored in space O(g(n)). The counter s is limited by counter t which, in turn, is bounded
by the value in track 2. Therefore tracks 3 and 4 are asymptotically irrelevant. The value
f(t, s) can be computed in space SMf

(c2g(n)) because the sizes of t and s are asymptotically
bounded by g(n). The description of M in track 6 has size n, and because g(n) ≥ n this
space is also asymptotically irrelevant. Track 7 is also bounded by g(n) (as in the proof of
the lemma). Therefore SA(n) satisfies

SA(n) ≤ c1

[
SMg(n) + g(n) + SMf

(c2g(n))
]
. (4)

It remains to find an upper bound on TA(n). We know that A computes g(n) in time
TMg(n). The multiplication at step 4 can easily be carried out in time O(g(n)2). During
the simulation, A needs to compute f(t, s). We always have s ≤ t ≤ ng(n)2g(n) + 1 which
in binary has length O(g(n)). Hence f(t, s) is computed in time TMf

(c3g(n)), for some
integer constant c3. In each step of the simulation, the tracks need to be shifted and some
values must be compared. This can be done in time proportional to the size of the tracks,
i.e., c1[SMg(n) + g(n) + SMf

(c2g(n))]. Finally, no more than O(g(n)) steps are simulated.
Therefore, TA(n) satisfies

TA(n) ≤ c4

[
TMg(n) + g(n)

[
TMf

(c3g(n)) + SMg(n) + g(n) + SMf
(c2g(n))

]]
. (5)

The classical time and space hierarchy theorems can be derived as a particular case of
the general hierarchy theorem. Different formulations and proofs of these theorems can be
found in [4, 5].

6

Definition 7. A function g : N → N is called space constructible if the function that maps 1n to
the binary representation of g(n) is computable in space O(g(n)).

Corollary 1 (Space Hierarchy). Let g : N → N , with g(n) ≥ n, be a space constructible
function. Then there exists a language A that is decidable in space O(g(n)) but not in space o(g(n)).

Proof. Let f(x, y) = y. Then Theorem 2 can be applied and we have that Lf,g is decidable
within f -complexity O(SA(n)). But, again by Theorem 2, SA(n) ≤ c1[SMg(n) + g(n) +
SMf

(c2g(n))]. Because g is space constructible, we have that SMg(n) is O(g(n)), since
g(n) ≥ n. By the definition of f , we can assume that SMf

(n) is O(n). Hence, Lf,g is
decidable in space O(g(n)). By Theorem 1, Lf,g cannot be decided in space o(g(n)).

Definition 8. A function g : N → N is called time constructible if the function that maps 1n to
the binary representation of g(n) is computable in time O(g(n)).

Corollary 2 (Time Hierarchy). For any time constructible function g : N → N , with g(n) ≥ n,
there exists a language A that is decidable in time O(g(n)2) but not in time o(g(n)).

Proof. Let f(x, y) = x. Then, using Theorem 2 and the definition of f , Lf,g is decidable
in time O(TA(n)), where TA(n) satisfies (5). We also have that SMg(n) ≤ TMg(n) and
TMg(n) is O(g(n)) because g is a time constructible function. By the definition of f , we can
assume that TMf

(n) and SMf
(n) are O(n). Therefore, Lf,g is decidable in time O(g(n)2). By

Theorem 1, Lf,g is not decidable in time o(g(n)).

4 Conclusion

In this note we generalized the deterministic time and space hierarchy theorems, and
derived the traditional versions of these results as a particular case of our general theorem.
Our result shows that the hierarchy theorems are in fact inserted in a wider context. In
particular, the standard notions of time and space do not need to be considered apart or
remain restricted in order to prove the existence of complexity hierarchies.

References

[1] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[2] J. Hartmanis, P.L. Lewins II, and R.E. Stearns. Hierarchies of memory-limited compu-
tations. In Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logic Design,
pages 179–190, 1965.

[3] J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms. Trans.
Amer. Math. Soc., 117 (5):285–306, 1965.

[4] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Co., 1994.

7

[5] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1996.

