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Genome Rearrangement Phylogeny using the

Single-Cut-or-Join operation

Pedro Cipriano Feijão∗ João Meidanis†

Abstract

The problem of parsimonious phylogeny reconstruction using genome rearrangement
is called Multiple Genome Rearrangement Problem. There are two usual approaches:
the small phylogeny problem, where a tree is given and we want to find the ancestral
nodes that minimize total branch length of the tree; and the big phylogeny problem,
finding the tree and ancestral nodes with minimum total branch length. In this paper
we show that, under the Single-Cut-or-Join metric, the small phylogeny problem is
solvable in polynomial time while the big phylogeny problem is NP-hard.

1 Introduction

For many years the field of phylogenetic reconstruction has been dominated by techniques
based on alignments of sequences of one or more orthologous genes and proteins. Due
to recent progress in genome sequencing, more data for phylogenetic reconstruction based
on rearrangement distances between genomes is becoming available at a very fast rate.
However, this phylogenetic reconstruction is a very challenging task. For the most simple
distance measures (the breakpoint distance and the reversal distance), the problem is NP-
hard even if one considers only three genomes.

Most of the research in parsimonious phylogenetic reconstruction based on rearrange-
ment distances is based on the multiple genome rearrangement problem (MGRP), search-
ing phylogenetic tree describing the most “plausible” rearrangement scenario for multiple
genomes [11, 16]. Formally, given n genomes, find a tree T with the n genomes as leaf nodes
and assign ancestral genomes to internal nodes of T such that the tree is optimal, i.e., the
sum of rearrangement distances over all edges of the tree is minimal. This problem is also
called the big phylogeny problem (BPP). If the tree is given, one needs to find only the in-
ternal nodes, and it becomes an instance of the small phylogeny problem (SPP). The special
case for only three genomes is known as the genome median problem (GMP): given three
genomes, find a fourth genome (to label the internal node connecting the three leaves) that
minimizes the sum of its distances to the three given genomes. Even this smaller version is
NP-hard for most rearrangement distances [19].
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2 Feijão and Meidanis

The first approach to solving the MGRP was proposed by Blanchette et al. [6] and
was called breakpoint phylogeny, where they studied the SPP under the breakpoint distance
(BP). They developed an iterative algorithm to solve the SPP where one iterates over each
internal node of the given tree, solving a GMP on this node until convergence to a local
minimum is achieved. This approach is used by most algorithms to solve the SPP to this
day. On a follow-up paper, Sankoff and Blanchette developed a method for the BPP called
BPAnalysis [15]. This method performs an extensive search over all possible tree topologies
and solves the SPP on each one. Since the number of topologies is exponential on the
number of genomes, this method was restricted to very small instances.

Later, Moret et al. developed an faster alternate method called GRAPPA [14], based
on BPAnalysis, that improved the speed in several orders of magnitude. Also, with the
availability of a linear algorithm for inversion distance [2], the breakpoint distance was
replaced by the inversion distance [13]. Also, using the Disk-Covering method [12], their
method was scaled to solve the BPP up to thousands of genomes [17].

Another approach to the MGRP using reversal was presented by Bourque and Pevzner
in their program called MGR [7]. The main difference with GRAPPA is that the GMP is
not solved exactly, but an faster heuristic is applied.

Since the MGR under the reversal distance can have multiple solutions, Bernt et al. [5]
presented a software tool called amGRP which further significantly improves upon GRAPPA
and MGR by storing not only a single optimal median, but a set of optimal medians after
solving the GMP at each internal node.

Recently, other rearrangement distances were used to solve the MGRP. Adam and
Sankoff developed an heuristic to the GMP for the Double Cut and Join (DCJ) distance [20]
and used it in their algorithm for the SPP [1], using the iterative method of solving the
GMP for each internal node until convergence is achieved. Bader et al. [3] presented an
heuristic for the MGRP using weighted reversals and transpositions using different weight
ratios.

In this article we study the MGRP problem under the Single-Cut-or-Join (SCJ) dis-
tance [8]. We will show that the SPP is polynomial, the first polynomial algorithm known
for the SPP, and prove that the BPP is NP-hard. In Section 2 we introduce the genome
formulation and basic definitions used throughout the paper. In Section 3 we solve the
SPP polynomially and in Section 4 show that the BPP is NP-hard under the SCJ dis-
tance. Finally, in Section 5, we present our concluding remarks and directions for future
investigations.

2 Genome Formulation and Definitions

We will use a standard genome formulation [4, 18]. A gene is an oriented sequence of DNA
that starts with a tail and ends with a head, called the extremities of the gene. The tail
of a gene a is denoted by at, and its head by ah. Given a set of genes G, the extremity set
is E = {at : a ∈ G} ∪ {ah : a ∈ G}. An adjacency is an unordered pair of two extremities
that represents the linkage between two consecutive genes in a certain orientation on a
chromosome, for instance ahbt. An extremity that is not adjacent to any other extremity is
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Figure 1: Graph Gπ representing a genome with two linear chromosomes. Black directed
edges represent genes, while grey edges link consecutive extremities.

called a telomere. A genome is represented by a set of adjacencies where the tail and head of
each gene appear at most once. Telomeres will be omitted in our representation, since they
are uniquely determined by the set of adjacencies and the extremity set E . Two adjacencies
are conflicting when they share a common extremity. Two conflicting adjacencies cannot
belong to the same genome.

The graph representation of a genome π is a graph Gπ whose vertices are the extremities
of π and there is a grey edge connecting the extremities x and y when xy is an adjacency
of π or a directed black edge if x and y are head and tail of the same gene. A connected
component in Gπ is a chromosome of π, and it is linear if it is a path, and circular if it is
a cycle. A circular genome is a genome whose chromosomes are all circular, and a linear
genome is a genome whose chromosomes are all linear. A string representation of a genome
π, denoted by πS , is a set of strings corresponding to the genes of π in the order they appear
on each chromosome, with a bar over the gene if it is read from head to tail and no bar
otherwise. Notice that the string representation is not unique: each chromosome can be
replaced by its reverse complement.

For instance, given the set G = {a, b, c, d, e, f}, and the genome π = {ahbh, btch, dhfh,
ftet}, the graph Gπ is given in Figure 1. Notice that telomeres at, ct, dt, and eh are omitted
from the set representation without any ambiguity. A string representation of this genome
is πS =

(
a b c , d f e

)
.

Since each genome is a set of adjacencies, standard set operations such as union, intersec-
tion and set difference can be applied to two (or more) genomes. In the case of intersection
and set difference, the result is a set of adjacencies contained in at least one of the genomes,
and therefore it is also a genome. On the other hand, the set resulting from a union opera-
tion might not represent a genome since the same extremity could be present in more than
one adjacency. We will use these operations throughout this paper in our algorithms, and
whenever union is used, we will prove that the resulting set represents a valid genome. Set
difference between sets A and B will be denoted by A−B.

A Single-Cut-or-Join (SCJ) is a rearrangement operation defined by Feijão and Meida-
nis [8] that either breaks an adjacency in two telomeres (namely, its extremities) — a cut —
or pairs two telomeres into an adjacency — the reverse operation, called join. The distance
bewteen two genomes π and σ is easily calculated with the equation [8]:

d(π, σ) = |π − σ|+ |σ − π| = |π|+ |σ| − 2|π ∩ σ| (1)

3 Small Phylogeny Problem under SCJ

Given a group of n genomes π1, . . . , πn defined on the same set of genes G and given a
tree T , where each leaf of T corresponds to a genome, the small phylogeny problem (SPP)
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consists in finding ancestral genomes µ1, . . . , µm corresponding to the m internal nodes of
T such that the total branch length of T (the sum of the weight of each edge, defined as
the distance between the genomes of its vertices) is minimized. Formally, we want to find

M = min
µ1,...,µm

∑
e∈E(T )

d
(
v1(e), v2(e)

)
(2)

where E(T ) is the set of edges of T and v1(e), v2(e) are the vertices adjacent to edge e.
The usual way to solve this problem is the approach proposed by Blanchette et al. [6],

where one iterates over each internal node of T , solving a genome median problem (GMP)
— finding the genome that minimizes the sum of the distances to its three neighbours —
until convergence to a local minimum is achieved. This approach has been used with some
rearrangement distances, such as BP [6, 7], reversal [13] and SCJ [1] distances. One difficulty
of using this approach is that the GMP is NP-hard on most rearrangement distances, except
for the SCJ distance [8] and the BP distance on some specific cases [19]. Since the GMP is
easy under the SCJ distance, we could use the same approach, but we will show the stronger
result that the SPP has a polynomial solution under the SCJ distance, the first polynomial
result for this problem under any proposed rearrangement distance.

In the SCJ model we can think of each adjacency as a character, and we have unitary
cost of including or removing an adjacency — changing a character. Using this analogy, we
can solve the SPP running Fitch’s algorithm for small parsimony [9] for every adjacency
present on at least one of the genomes considered, deciding which ancestral genomes contain
the adjacency. When each character is independent, to infer the characters present in
each ancestral genome is only a matter of running Fitch’s algorithm for each charater and
joining the results. In our case, however, the characters are not independent, as conflicting
adjacencies cannot belong simultaneously to the same genome. Nevertheless, this very
strategy generates valid ancestral genomes in polynomial time and is indeed optimal, as we
will see in Theorem 1.

Some additional definitions related to Fitch’s algorithm must be made before we proceed.
In the first part of the algorithm, every internal node is assigned a set depending on the sets
of its children, in a bottom-up way. We will call these setsbottom-up sets. Furthermore, given
an adjacency d and a rooted tree T whose leaves correspond to the genomes being analysed,
consider the result of running Fitch’s algorithm on tree T , using as binary characteristic
the presence of adjacency of d, and initializing the root with zero (absence) if its bottom-up
set is {0, 1}. We denote by B(d, n) the bottom-up set generated for node n of T in the first
(bottom-up) pass of the algorithm, and by F (d, n) the final character assignment to node
n.

Before we prove the main theorem we will need the results of two preliminary lemmas.

Lemma 1. Given two conflicting adjacencies d and e, we have the following result: for
each node v of T , if B(d, v) = {1}, then B(e, v) = {0}; and, if B(d, v) = {0, 1}, then
B(e, v) 6= {1}.

Proof. We will prove both results simultaneously by strong induction on h, the height of an
internal node v, defined as the maximum length of a path from v to any of its descendant
leaves.
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When h = 0, the node is a leaf, and both B(d, v) and B(e, v) are singletons. If
B(d, v) = {1}, the corresponding genome contains adjacency d, and therefore does not
contain adjacency e, since they are conflicting. Therefore B(e, v) = {0}. Notice that
B(d, v) 6= {0, 1} because v is a leaf. The property is therefore valid for nodes with h = 0.

For an internal node v with height k ≥ 1, assume by induction that any node with height
h < k satisfies the properties. By definition of height, both children of v have heights strictly
smaller than k, and therefore satisfy the properties. To prove the properties for v, observe
than there are two ways for B(d, v) to be {1}, shown in Figure 2. In case (a), both children
have sets {1} with respect to d. Therefore, by the induction hypothesis, both children have
sets {0} with respect to e, implying that B(e, v) = {0}. In case (b), one child has set {1}
and the other has set {0, 1} with respect to d. Then, with respect to e, one child has set
{0} and the other may have set {0} or {0, 1}, again implying that B(e, v) = {0}.

Using a similar reasoning, we see that when B(d, v) = {0, 1}, there are two possible cases,
shown on Figure 3, and in both cases B(e, v) cannot be {1}. The lemma is proved.

(a)

B(d, T )

{1}

{1} {1}

⇒

B(e, T )

{0}

{0} {0}

(b)

B(d, T )

{1}

{1} {0, 1}

⇒

B(e, T )

{0}

{0} {0} or {0, 1}

Figure 2: Possible cases for an internal node with bottom-up set {1}, where d and e are
conflicting adjacencies.

(a)

B(d, T )

{0, 1}

{0} {1}

⇒

B(e, T )

{0} or {0, 1}

any {0}

(b)

B(d, T )

{0, 1}

{0, 1} {0, 1}

⇒

B(e, T )

{0} or {0, 1}

{0} or {0, 1} {0} or {0, 1}

Figure 3: Possible cases for an internal node with bottom-up set {0, 1}, where d and e are
conflicting adjacencies.

Lemma 2. Given two conflicting adjacencies d and e, for every node v of T , if F (d, v) = 1
then F (e, v) = 0.

Proof. The proof is by contradiction. Of course the result is true when v is a leaf. Suppose
then that there are internal nodes with value 1 with respect to both d and e. Choose such a
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node with minimum depth (distance from root to node) and call it n. Since F (d, v) = 1, we
have that B(d, v) is either {1} or {0, 1}. It cannot be {1}, otherwise Lemma 1 would imply
that B(e, v) = {0}, contradicting the fact that F (e, v) = 1. Therefore, B(d, v) = {0, 1}.
The same reasoning applies exchanging d and e, implying that B(e, v) = {0, 1} as well.

Notice now that v cannot be the root of the tree, otherwise F (d, v) = F (e, v) = 0 by
the way we set up Fitch’s algorithm to decide ties at the root. Since v is not the root, its
parent node p must have F (d, p) = 1 and F (e, p) = 1, contradicting the minimality of v’s
depth, and concluding the proof.

Theorem 1. Consider a rooted tree T whose leafs correspond to genomes over the same
set of genes G. Then the sets B(v) = {d : F (d, v) = 1}, where v is an internal node v of T ,
are valid genomes and assigning B(v) to node v minimizes the total SCJ branch length of
the tree T .

Proof. From the definition of SCJ distance, we derive a distance equation where the con-
tribution of each adjacency is independent:

d(π1, π2) = |π1|+ |π1| − 2|π1 ∩ π2| =
∑
d∈D

δd(π1) + δd(π2)− 2δd(π1 ∩ π2) (3)

where D is the set of all adjacencies and δd(π) is defined as

δd(π) =

{
1, d ∈ π
0, d /∈ π

We want to minimize the total branch lenght of the tree,

M = min
µ1,...,µn

∑
e∈E(T )

d
(
v1(e), v2(e)

)
= min

µ1,...,µn

∑
e∈E(T )

∑
d∈D

δd(v1(e)) + δd(v2(e))− 2δd(v1(e) ∩ v2(e))

= min
µ1,...,µn

∑
d∈D

∑
e∈E(T )

δd(v1(e)) + δd(v2(e))− 2δd(v1(e) ∩ v2(e))

=
∑
d∈D

 min
µ1,...,µn

∑
e∈E(T )

δd(v1(e)) + δd(v2(e))− 2δd(v1(e) ∩ v2(e))



We know that given an adjacency d, the minimum

min
µ1,...,µn

∑
e∈E(T )

δd(v1(e)) + δd(v2(e))− 2δd(v1(e) ∩ v2(e))

is achieved including the adjacency d in every node v where F (d, v) = 1. Repeating this
procedure for each adjacency we build the genomes B(v), which are valid because no pair of
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conflicting adjacencies can belong to the same genome, as a result from Lemma 2. Therefore,
setting the genomes B(v) to each node v minimizes the sum of all branch lengths.

4 Big Phylogeny Problem under SCJ

The big phylogeny problem under SCJ can be stated as follows. Given genomes n genomes
π1, . . . , πn defined on the same set of genes G, find a tree T whose leafs are in one-to-
one correspondence with the genomes π1, . . . , πn, and find ancestral genomes µ1, . . . , µm
corresponding to the m internal nodes of T so that the total branch length of T (the sum
of the weight of each edge, defined as the distance between the genomes of its vertices) is
minimized.

Again, we can think of each adjacency as a character, and we have unitary cost of
including or removing an adjacency — changing a character. Using this analogy, if the
characters were independent, we would have an instance of the Steiner tree problem in
{0, 1}N , which is NP-hard [10]. In our case, the characters are not necessarily independent,
as conflicting adjacencies cannot belong simultaneously to the same genome. However, given
an instance of the Steiner problem in {0, 1}N , it is possible to code it as an SCJ problem
where the adjacencies behave as independent characters for our purposes, thus effectively
reducing this NP-hard problem to big phylogeny under SCJ. As a result, SCJ big phylogeny
turns out to be NP-hard as well.

The coding is simple. Given n {0, 1} vectors of size N , consider the set of genes G =
{g1, g2, ..., gN} and code a vector v = (v1, v2, . . . , vN ) as a genome having adjacencies:

C(v) = {gihgi+1
t : vi = 1},

where C(v) denotes the genome coding vector v, and the sum i + 1 “wraps around”, that
is, when it becomes N + 1 we assume the value is in fact 1. Notice that, besides adjacen-
cies being nonconflicting within a genome, they remain pairwise nonconflicting across all
genomes considered.

Now think about the big phylogeny under SCJ instance with these genomes. A solution
to this problem will contain only adjacencies present in at least one of the input genomes,
since any other adjacency can be safely removed throughout without increasing the total
distance. Therefore, the solution can be translated back to {0, 1}N vectors, that is, for
each genome π at an internal node there will be a vector v such that C(v) = π. This
yields a solution to the original Steiner problem, because the coding C preserves distances
(Hamming distance in the origin, SCJ distance in the destination).

5 Conclusion and Future Directions

The MGRP under the SCJ distance is a much easier problem than in any other rearrange-
ment distance. In fact, it is the only distance that the SPP has a polynomial distance.
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The next direction will be the implementation of algorithms for the MGRP and test-
ing on known datasets such as Campanulaceae Chloroplast DNA, Metazoan MtDNA and
Mammals, and also on simulated data.
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