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Abstract

Finite element bases defined by sampling points were usedl®hiinen in 2008 for the
efficient computation of global illumination in virtual stes. The bases provide smooth ap-
proximations for the radiosity and spontaneous emissioictfans, leading to a discrete ver-
sion of Kajiya's rendering equation. Unlike methods that based on surface subdivision,
Lehtinen’s method can cope with arbitrarily complex geamsst In this paper we present an
experimental validation of Lehtinen’s meshless methoddaygaring its results with an inde-
pendent numerical solution of the rendering equation ompls three-dimensional scene. We
also compare Lehtinen’s special finite-element basis withdther similar bases that are often
used for meshless data interpolation, namely a radial basisa Gaussian mother function, and
Shepard’s inverse-square-distance weighted interpolafi he results confirm the superiority
of Lehtinen’s basis and clarify why the other two bases ptewnferior-looking results.

1 Introduction

Realistic rendering usually requires modeling the indiitomination, due to light that interacts
two or more times with the scene’s surface [1, 2]. For moshasgthe total light flow (including
direct and indirect lighting) is adequately described by tbndering equatiorproposed by Jim
Kajiya in 1986 [3].

Radiosity[2] is a general method for realistic rendering that usegedirlement modeling to
solve the rendering equation with Lambertian scenes. kftiimulation, the surface of the scene
is divided into a large number clurface elementsThe light flow in the scene is found by solving
a large system of linear equatiofs — R)\ = ¢, where the vector gives the spontaneous light
emission and\ gives the total emission (spontaneous plus scattered)cbfeament.

Traditionally, the surface elements were the cells of agohal mesh approximating the scene’s
surface. A major source of difficulty in this approach is teenplexity and variety of scene models,
which called for rather complicated meshing algorithmsr &we thing, computational cost often
mandated the use of a mesh whose cells are much larger thansteme objects. Another source
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of difficulty was the need to smooth out the inherent discanty of the radiosity between adjacent
cells.

In 2007, Jaako Lehtinen proposed an alternative approabkreasthe surface patches are re-
placed by “fuzzy” finite elements, defined by a collection afrpling points on the surface [4, 5].
Lehtinen’smeshless radiositgpproach does not require an approximating mesh, but oalgbii-
ity to find a point of the surface along a given ray. Therefarean cope with arbitrarily complex
geometries, and can be used for almost any scene that candezed by ray tracing. Moreover,
the representation is inherently smooth and providesyfgiolod results even with relatively coarse
approximations.

Lehtinen’s model for the radiosity function is a modifietlial basisapproximation [6], using
a Gaussian-like kernel multiplied by a term that dependshersurface normal, and then adjusted
to have the partition-of-unit property. Given the many aximnations that are embedded in the
method, its quantitative accuracy is not easy to analyzeth€umore, there seems to be no pub-
lished comparison of Lehtinen’s basis with other finiteredst bases that have often been used for
meshless data interpolation.

In this paper we provide an experimental validation of Lieéit’'s method by comparing its result
on a simple scene with an independent numerical solutioheoféndering equation. We also com-
pare Lehtinen’s basis with two other scattered-data inlatipn methods, namely a radial basis [6]
with Gaussian mother function, and Shepard’s inversexd@st-squared interpolation formula [7].
For these two, we use a normal-sensitive distance fundtiandaptures Lehtinen’s directional fac-
tor in a more systematic manner. The results validate Lehtnapproach and provide insight on
what qualities of a finite-element basis are most importantddiosity computations.

2 The rendering equation
Kajiya’'s rendering equation can be written as

L=E+RL (1)
where:

e L(x,u) is the (unknown}otal radiance functionthe total light power emitted or scattered by
the scene near the surface pairgllong directions near the unit vector

e F(x,u) is thespontaneous emittance functjahe light power emitted by the scene near
and alongu;

e R is thelight transfer operatoythat expresses how light is scattered by the scene.

Informally, theradianceL(x, u) is the apparent intensity of the light emitted by the surfaearz,

as seen by an observer in the directiont is the value that should be encoded in the corresponding
pixel of a synthetic image of the scene, rendered assumétgtlile observer is in the directian
from x. The emittanceF(z,u) is the part of L(x,u) that is due to light generated, rather than
scattered, by the surfacetit is therefore nonzero only on light sources that are patthe scene,
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such as lamps; or parts that scatter light from sourcesrmeadtév the scene, such as a sunlit floor or
wall.

The emittance and radiance functions usually depend on #velength band (color channel).
However, in most applications one can render each chandepandently. Therefore, in this paper
we consider the rendering of single color channel, that i) assentially monochromatic light.

The transfer operatoR models the transport of light between the points of the segkhow
that light interacts with the scene’s objects. Its effechararbitrary functionZ (z, ) is

(RZ)(x,u) = /S2 plz,v,u)Z(xTv,—v)H (x,v) dv 2

(see figure 1), where:
e S?is the set of all directions (i.e. the unit sphere);
e zlw is the first point of the scene’s surface along the ray thailea in the directionu.

e p(z,v,u) is thebi-directional radiance distribution functio(BRDF), that gives the fraction
of the incident light at the point, coming from the directiorv, that is re-emitted along
directions neat;

e H(z,v) is thelight spread factorfor the pointz and directionv, that depends on the angle
between the normal(z) of the surface at: and the light source direction

Figure 1. Parameters of the rendering equation,
integrated over the direction

The factorH (z, v) accounts for the fact that light coming from directiomgets spread over a larger
or smaller portion of the scene surface at pgindepending on the angle betweeand the surface
normaln(z) atz:

H(xz,v) =n(z) v (3)
Note that the visibility between the points of the surfacemslicitly taken into account by thé
operation. Note also that this model allows translucernfases, if they are visible from both sides.

By integrating over the scene’s surface, instead over mdktibns, we get an alternative formulation
of the light transfer operatoR:
(RZ)(w,u) =
4
[ oaa—.0) 20,2~V (@.)Gla ) dy “

where
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e V(z,y) is thevisibility factor, defined as 1 if light scattered or emitted at pairgan illumi-
nate pointy, and 0 if that light is blocked by some other part of the scenetly betweenx
andy;

e G(x,y) is thegeometric factor defined as+(z,y) = H(z,x—y)K(z,y) where H is the
light spread factor (3), that accounts for the local indiiora of the light reaching: from the
direction ofy, and K is theapparent size factor

K@7F?3Mw%%ﬂ)

5
Ar |z —y)? ©)

accounts for the apparent size (solid angle) of the areaezitdyy as seen from.

For an opaque Lambertian diffuse surface, the function v, u) is 25(x) if v andu are pointing
out the object, and 0 otherwise; wheter) is thescattering coefficiendr albedo(“intrinsic color”)
of the surface at the point See figure 2.

Figure 2. Parameters of the rendering equation,
integrated over the surface point

The rendering equation, as described above, is still onlg@proximation to reality. It fails ac-
count for several physical phenomena, like diffractioteliference, polarization, and fluorescence.
Fortunately, these phenomena are of little importance énntodeling of everyday ambients and
objects.

2.1 Solving the rendering equation

In image synthesis, all elements of this equation are knowe the radiance functioh. For-
mally, the solution of the rendering equation/is= (Z — R)~' E, whereZ is the identity operator
and~! denotes operator inversion. In favorable circumstand¢esiendering operatof(Z — R) ™!
can be computed by Neumann'’s formula

Z-R)'"=T+R+R*+R*+--) (6)

Each termR* accounts for light that interactedtimes with the surface of the scene before being
observed.

3 Finite element radiosity

We use the termsiteto mean a paip = (p, p) of a pointp and a unit vectop. We will denote byl"
the set of all sites, that i®3 x S.
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From now on we consider the emittance and radiance funcéisiieing functions of pairs site-
direction(p, v) instead of point-directioniz, v). We are only interested in the valuesfp, v) and
L(p,v) for the subsetS of all sitesp that belong to the scene, namely wheres a point on the
scene’s surface andis the corresponding unit normal vector. However, this folation makes it
possible to use a representation for the functions thatisgandent of the geometry of the surface.

For Lambertian radiosity, the emittance and radiance fanstare independent of the direction
v, SO we can consider them as functions of the sitédone.

A finite elements a function¢ defined on the scene’s surface sites, suchdia} is nonzero
only for a relatively small and compact set of sites (fupportof ¢). A finite element basifor
radiosity is a collectior) = {1, ¢, ...¢», } Of finite elements. A real-valued function of the surface
sites, such ag or E, can be approximated by a linear combinati®of basis elements

B(p) = Z Bidi(p) )
i=1

wherefy, s, . . . B, are real coefficients. For this purpose, the supports of #séskelements must
cover the whole surface of the scene, and the functigmaust be linearly independent.

4 General properties of finite element bases

4.1 Interpolating bases

An interpolation basiss a function basi®, ¢,....¢, with the property that)(p;) is 1if i = j, and
0 otherwise. With such a basis, fifis any combinatior , c;¢;, the value off at eacly; is justc;.
4.2 Partition-of-unity bases

We say that a basis,, ¢o, ..., ¢, is apartition of unityif and only if

¢i(z) >0 8
for all 7 and allz in the domain’, and
> ¢i(z) =1 €)
i=1
for all x € I'. Such a basis has tlsenoothingproperty, namely
Cmin 2 Z Ci(bi(w) 2 Cmax (10)
=1
wherec,in, Cmae @re the minimum and maximum among the coefficientss, . . ., ¢,.

From any basispy, ¢2, ..., ¢ With non-negative elements, one can define a basis with the
partition-of-unity propertyp;, ¢, ...¢,, by thenormalizationformula

- oi()

¢Z($) = m forall z inT. (11)
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5 Generalized radial bases

The bases we use in this paper gemeralized radial basesA basis of this kind is defined by the
following parameters:

e alist of sitesP = (p1, po, ....pn) ON the scene’s surface, teéement centroids

a list of reals(ay, as, ....ay, ), thenominal radiiof the elements;

amother function? from R to R;

adistance metrid|-, -|| between sites;

the elemenscaling and placemeribrmula; and

anormalizationmethod applied to the basis elements.

In Lehtinen’s method, the centroids are chosen randomlyhenstirface of the scene, as in
figure 3; and each nominal radiusg is such that there is a fixed numberof centroidsp; € P with
llpi, ;|| < ;. Inthis paper, we take: = 10, as used by Lehtinen.

+
P

Figure 3. A simple scene (top) and a set of el-
ement centroidgq, . . . , p, randomly chosen on
its surface (bottom). Note that invisible surfaces
are sampled too.

The scaling and placement rules defineaa elementy; for each centroid, whose valug;(p)
depends on the distande, p;||, the radiusw;, and the mother functio®. The raw elements are
usually defined so thap;(p) is maximum (or nearly so) whem = p;, and is zero (or nearly so)
if ||p,pill > «;. Finally, the normalization formula (11) may or may not bedido produce a
partition-of-unity basis, yielding the final basis elensen.
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5.1 Mother functions

A commonly chosen mother function is the Gaussian bell
G(r)=e /2 (12)

which, for the purposes of image synthesis, can be assumieel xero forr > 4. For efficiency
reasons, however, it is preferable to use a polynomial s@pproximation

23 —3r2 41 ifr<i
K(T):{ 0 if > 1 (13)

Another important alternative is tighepard’s quadratic mother function

S(r) = (14)

15t ] : -

0

3-2-10123 3-2-101 2 3 3-2-101 2 3

Figure 4. Three mother functions: Gaussian
bell (left), spline bell (middle), and quadratic
Shepard (right).

5.2 Site distance function

In typical scenes, the radiance (apparent color) of mosttpalepends strongly on the local orien-
tation of the surface. For this reason, one should take thmals into account when interpolating
the radiance, at a point, so that centroids with the same orientationpaget more weight than
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centroids that are closer fobut have different orientation. Therefore, when computhmgdistance
between two siteg andg, we use thanormal sensitive site distance

b~
=—— 15
1P, qll max{0.7 T (15)
wherep’- ¢'is the scalar product of the two normals. (This not a trueadise function (metric) for’,
because it fails the triangle inequality; however, thapemby is not necessary for interpolation.) The
difference between formula (15) and the plain Euclideatadise|p — (| is illustrated in figure 5.

Figure 5: Visualization of the Euclidean dis-
tance (left) and normal-sensitive site distance
(right) in a simple scene. The color used at each
site p of the scene’s surface i5(1 + d), where

d is the distance from the siteon the back wall
marked with X’.

6 Bases used in the tests

In our tests we used three generalized radial baSes®, and¢". The basis)® uses the Shepard
mother functionS (14), applied to the absolute site distance, with partibbwinit normalization:

U5 (p)
E?:l T/JJS' (p)

Note thatS(r) = 1/r2 is positive for allr and tends toe-co whenr approaches 0. This property
together with formula (16) ensures that Shepard’s basisvigya interpolating. See figure 6(top).

The basisp®, shown in figure??(middle), uses the Gaussian mother function (12), appbed t
the relative site distance from the centroid (site distaive&ded by the nominal radius), without
partition-of-unit normalization:

1

TR (16)
Ip, pi|?

7 () = S(llp.pill) = & (p) =

D, Pi
Ui (p) =G <Ha7”> ;o8 (p) = vf(p) (17)
The basisp" is the basis described by Lehtin@f. It uses the polynomial mother functidd (13),
but applied to the relative Euclidean distance, insteaduofhormal-sensitive site distance, with an
external factor to account for the difference in the normals

o) = 5 (Z20) o o 00 } 18)

&7}
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Hereq; is computed like our radiug;, but with Euclidean distances instead of site distance. The
raw basisy™ was then normalized by formula 11 to yield a partition-oftyrbasis ¢~ See fig-
ure 6(bottom).

—_— N W

-

O = D W

S = N W

Figure 6: One-dimensional plots of the three
test base®®, ¢C, and¢ (light lines) for four
collinear sites on a flat surface, and the corre-
sponding interpolatiory (x) to the four values
shown (solid line).

7 Discretizing the rendering equation

When the functiond., E of the rendering equation (1) are represented in terms ofit@ fiases
o1, Pa, ..., Opn, the transfer operatdR is replaced by am x n radiance transfer matrixz and the
equation becomes a linear equation system

A=c+ R\ (19)

whered = (A1, \a,..., \,) " is the column coefficient vector df in the chosen basis, and=
(€1,€2,... ,5n)T is the coefficient vector of’.
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Each element?;; of R represents the fraction of photons radiated (emitted oiteseal) by
elementp;, that are subsequently scattered by elementithout any intermediate scattering. That
is, columnk of R is the coefficient vectok that describes the appearance of the scene when element
¢ is the only source of light in the scene, without considermgtiply-scattered light. See figure 7.

Figure 7: A simple scene (top), and the ra-
dianceL of its surface due to single-scattered
photons emitted by the basis elemeptwhose
centroid is marked withX’ (bottom).

Lehtinen observed that one can estimate the matriry assuming a point light source of ap-
propriate intensityw; located at each sitg;, and computing the radianc¥; ; = L(p;) due to
single-bounce photons from that source, as in plain ragistca  The intensityw; of the point
light can be approximated by the total radiance of the elémenthat isw; = [ ¢;(p)dp where
the integral is taken over the whole surface of the scenéeltentroids are sufficiently dense, we
can assume that the scene surface peas a plane with normap;. For an un-normalized radial
basis likep®, the integral is a fixed constant time@. For a partition-of-unity basis like" and
¢°, the expected value of the integralligs whereJ is the local density of centroids per unit of
area. If the radiusy; is chosen so that it contairtsother centroids, then we can use the estimate
wj =1/6 = ﬂa?/t.

The matrixR is not very sparse in general, and the invese- R) ! is usually full. Therefore,
the coefficients)\; of the radiance functior, are usually computed iteratively, by setting «
(0,...,0) and then iterating. <— ¢ + RA until convergence. Note that this iteration is equivalent t
evaluating Neumann’s formula (6).

Figure 8 shows a test scene rendered with plain ray-traagimgvath meshless finite-element
radiosity, using 10 iterations of formula (19).
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Figure 8: Images of a test scene. From top:
the direct lighting component (represented in
the ¢ basis), and the meshless radiosity results
using the bases®, ¢, andpm.

8 Validation

In order to validate our implementation of Lehtinen’s mettemd compare its accuracy with the
three bases, we compared its results with an independaitisobf the radiance equations for a
specific scene. The latter consists of a sphere of radared a disk of radiug: with the center of
the ball on the disk’s axis, at some distaric&om its top surface. See figure 9(left). Both objects
have Lambertian finish, with uniform albedb The primary illumination in this test case is due to
a single point source with intensijy, on the vertical axis, at infinite distance above the disk.

Let p(0, ) be the point on the sphere’s surface at longitddend latitude¢; and letq(y, u)
be the point on the cylinder’s top surface at distancikom the center and azimuth. Due the
symmetry of the scene and lighting around the vertical axis,can conclude that the radiance
functionsL and E are also symmetric (independent of the azimutlasdp).
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Figure 9: The reference scene (left) and the el-
ement centroids used in the meshless radiosity
computation (right).

Therefore we denote big(() the total radiance (apparent color) of the sphere ppffit (), and
by D(u) the radiance of the disk point(¢, «). It is convenient to consider the photons that have
been scattered only once as being emitted at the scattesing po that the external source can be
ignored. We will denote this “emission” component®fand D as B*({) and D*(u), respectively:

B*(¢) = fumax {0, sin}
D Sp fr<u<R (20)
(u) = 0 otherwise

From symmetry it also follows that the form factdl(q(¢, u), p(d, ¢)) can be writtenF'(u, 7, ¢) =
F(q(0,u),p(1,¢)) wherer = 6 — ¢. With these assumptions, the rendering equation can be
rewritten as two coupled integral equations

R 27
B(¢)=B*(¢) + B [ D(u) [ F(u,7,¢)udrdu

07r/2 ’ o (22)
D(u)=D*(w)+ 3 [ B(C) [ F(u,7,¢)r? cos¢drdC

—7/2 0

Note that the visibility factor o/ (q(p,u), p(8,)) is 0 only if the ball normal at the poini(0, ¢)
makes an obtuse angle with the directigip, u)—p(6, ¢); but in this case the form factdr is 0.
Therefore, we do not need to includlein these formulas.

8.1 Discretization of the reference solution

In order to discretize the equations (21), we choose layd . . ., (,, inthe interval—7 /2, 7 /2],
radii uy,...,u, in [0, R|, and azimuth differences,,..., 7 in [0, 27], all equally spaced, and
introduce the unknowns; = B((;), d; = D(u;), and the known parameteb = B*((;), dj =
D*(uj), Fisj = F(p(0,¢),q(7s,u;)) andGjs = F(q(0,u;),p(7s,¢)). Then the integrals (21)
and (??) can be approximated by sums:

n k
N R 2m
b, = bz —|—ﬁg E 1dj_k‘ El Fisj Uj (22)
j= S=
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m k
N 0 2m 9
dj = di+p— Z;bl? Z:l GisiT? cos ¢ (23)
We can write the equations (22) and (23) in the matrix form e+ R A\, where\ = (by,bo, ..., by, dy,da, . ..
e = (b5, b5, ... b5, di,dyy .., dE)T,
0 M
R= ( N 0 ) (24)
and
k 1
Nji = ﬁz Fisj M = ﬁz Gjsi (25)

s=1 s=1

Each elementV;; represents the influence of the radiance of bawd the disk on the radiance of
each point of the ring of the sphere. Similarly)/;; represents the influence of ringf the sphere
at each point of ring of the disk.

The parameters we used wdke= 40, r =5, h = 20, u = 0.9, 5 = 0.9, n = m = k = 100.
We solved the system by iterating < ¢ + RA (which converged after a few iterations). See
figure 10

0 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1

-80-60-40-20 0 20 40 60 80 0 5 10 1520 25 30 35 40

Figure 10: Reference solution, showing the ra-
dianceB((¢) on the sphere as a function of lati-
tude( (left), and radiance on the disk(u) as

a function of the radial position (right).

8.2 Comparison

The reference solution obtained as described in sectionv8slcompared with the output of the
meshless radiosity algorithm described in section 7, usiach of the three bases described in
section 6, for the set of centroids shown in figure 9(righilpsen so that their minimum separation
is 3. The results are shown in figures 11, 12, and 13. The thandhow the radiance along the
meridian with latitudef = 0 of the sphere, and along the ray with azimyth= 0 of the disk.
The thick lines are the radiances averaged over all lati#dded all azimuths, namely over each
parallel of the sphere and each circle on the disk.

Y dn)T;
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Figure 11: Meshless radiosity solution with the

basis¢®
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Further tests (not shown here) imply that the radiance caetpwith any of the three bases tends
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Figure 12: Meshless radiosity solution with the

basis¢®

to the same values as the number of elements increases.

9 Conclusions

Comparing the solutions obtained with the three bases wighréference solution, we conclude

15

that Lehtinen’s basig"™ not only produce better-looking images (section 7) but atewe accurate

radiance values (section 8). We believe that the validadtomtegy proposed in section 8 can be

used for the validation of other global illumination algams.
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Figure 13: Meshless radiosity solution with the
basisp™

Our analysis also shows that the inferior-looking resulitamed by the other two bases are not
due to systematic errors in the computed radiance valugsather to the oscillations that they
introduce in the approximation, which are magnified by thehn visual system.
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