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Abstract

Finite element bases defined by sampling points were used by J. Lehtinen in 2008 for the
efficient computation of global illumination in virtual scenes. The bases provide smooth ap-
proximations for the radiosity and spontaneous emission functions, leading to a discrete ver-
sion of Kajiya’s rendering equation. Unlike methods that are based on surface subdivision,
Lehtinen’s method can cope with arbitrarily complex geometries. In this paper we present an
experimental validation of Lehtinen’s meshless method by comparing its results with an inde-
pendent numerical solution of the rendering equation on a simple three-dimensional scene. We
also compare Lehtinen’s special finite-element basis with two other similar bases that are often
used for meshless data interpolation, namely a radial basiswith a Gaussian mother function, and
Shepard’s inverse-square-distance weighted interpolation. The results confirm the superiority
of Lehtinen’s basis and clarify why the other two bases provide inferior-looking results.

1 Introduction

Realistic rendering usually requires modeling the indirect illumination, due to light that interacts
two or more times with the scene’s surface [1, 2]. For most scenes, the total light flow (including
direct and indirect lighting) is adequately described by the rendering equationproposed by Jim
Kajiya in 1986 [3].

Radiosity[2] is a general method for realistic rendering that uses finite element modeling to
solve the rendering equation with Lambertian scenes. In this formulation, the surface of the scene
is divided into a large number ofsurface elements. The light flow in the scene is found by solving
a large system of linear equations(I − R)λ = ε, where the vectorε gives the spontaneous light
emission andλ gives the total emission (spontaneous plus scattered) of each element.

Traditionally, the surface elements were the cells of a polygonal mesh approximating the scene’s
surface. A major source of difficulty in this approach is the complexity and variety of scene models,
which called for rather complicated meshing algorithms. For one thing, computational cost often
mandated the use of a mesh whose cells are much larger than many scene objects. Another source

∗Institute of Computing – University of Campinas (UNICAMP),13081-970. Research developed with financial sup-
port from CNPq.
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of difficulty was the need to smooth out the inherent discontinuity of the radiosity between adjacent
cells.

In 2007, Jaako Lehtinen proposed an alternative approach, where the surface patches are re-
placed by “fuzzy” finite elements, defined by a collection of sampling points on the surface [4, 5].
Lehtinen’smeshless radiosityapproach does not require an approximating mesh, but only the abil-
ity to find a point of the surface along a given ray. Therefore,it can cope with arbitrarily complex
geometries, and can be used for almost any scene that can be rendered by ray tracing. Moreover,
the representation is inherently smooth and provides fairly good results even with relatively coarse
approximations.

Lehtinen’s model for the radiosity function is a modifiedradial basisapproximation [6], using
a Gaussian-like kernel multiplied by a term that depends on the surface normal, and then adjusted
to have the partition-of-unit property. Given the many approximations that are embedded in the
method, its quantitative accuracy is not easy to analyze. Furthermore, there seems to be no pub-
lished comparison of Lehtinen’s basis with other finite-element bases that have often been used for
meshless data interpolation.

In this paper we provide an experimental validation of Lehtinen’s method by comparing its result
on a simple scene with an independent numerical solution of the rendering equation. We also com-
pare Lehtinen’s basis with two other scattered-data interpolation methods, namely a radial basis [6]
with Gaussian mother function, and Shepard’s inverse-distance-squared interpolation formula [7].
For these two, we use a normal-sensitive distance function that captures Lehtinen’s directional fac-
tor in a more systematic manner. The results validate Lehtinen’s approach and provide insight on
what qualities of a finite-element basis are most important for radiosity computations.

2 The rendering equation

Kajiya’s rendering equation can be written as

L = E +RL (1)

where:

• L(x, u) is the (unknown)total radiance function, the total light power emitted or scattered by
the scene near the surface pointx along directions near the unit vectoru;

• E(x, u) is thespontaneous emittance function, the light power emitted by the scene nearx
and alongu;

• R is thelight transfer operator, that expresses how light is scattered by the scene.

Informally, theradianceL(x, u) is the apparent intensity of the light emitted by the surfacenearx,
as seen by an observer in the directionu. It is the value that should be encoded in the corresponding
pixel of a synthetic image of the scene, rendered assuming that the observer is in the directionu
from x. The emittanceE(x, u) is the part ofL(x, u) that is due to light generated, rather than
scattered, by the surface atx; it is therefore nonzero only on light sources that are part of the scene,
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such as lamps; or parts that scatter light from sources external to the scene, such as a sunlit floor or
wall.

The emittance and radiance functions usually depend on the wavelength band (color channel).
However, in most applications one can render each channel independently. Therefore, in this paper
we consider the rendering of single color channel, that is, with essentially monochromatic light.

The transfer operatorR models the transport of light between the points of the sceneand how
that light interacts with the scene’s objects. Its effect onan arbitrary functionZ(x, u) is

(RZ)(x, u) =

∫

S2

ρ(x, v, u)Z(x↑v,−v)H(x, v) dv (2)

(see figure 1), where:

• S
2 is the set of all directions (i.e. the unit sphere);

• x↑v is the first point of the scene’s surface along the ray that leavesx in the directionv.

• ρ(x, v, u) is thebi-directional radiance distribution function(BRDF), that gives the fraction
of the incident light at the pointx, coming from the directionv, that is re-emitted along
directions nearu;

• H(x, v) is the light spread factorfor the pointx and directionv, that depends on the angle
between the normaln(x) of the surface atx and the light source directionv.

p  v
vu

p

Figure 1: Parameters of the rendering equation,
integrated over the directionv.

The factorH(x, v) accounts for the fact that light coming from directionv gets spread over a larger
or smaller portion of the scene surface at pointp, depending on the angle betweenv and the surface
normaln(x) atx:

H(x, v) = n(x) · v (3)

Note that the visibility between the points of the surface isimplicitly taken into account by the↑
operation. Note also that this model allows translucent surfaces, if they are visible from both sides.
By integrating over the scene’s surface, instead over all directions, we get an alternative formulation
of the light transfer operatorR:

(RZ)(x, u) =
∫

C

ρ(x, x→y, u)Z(y, x→y)V (x, y)G(x, y) dy
(4)

where
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• V (x, y) is thevisibility factor, defined as 1 if light scattered or emitted at pointx can illumi-
nate pointy, and 0 if that light is blocked by some other part of the scene strictly betweenx
andy;

• G(x, y) is thegeometric factor, defined asG(x, y) = H(x, x→y)K(x, y) whereH is the
light spread factor (3), that accounts for the local inclination of the light reachingx from the
direction ofy, andK is theapparent size factor

K(x, y) =
1

4π

n(y) · (y→x)

|x− y|2
(5)

accounts for the apparent size (solid angle) of the area elementdy as seen fromx.

For an opaque Lambertian diffuse surface, the functionρ(x, v, u) is 2β(x) if v andu are pointing
out the object, and 0 otherwise; whereβ(x) is thescattering coefficientor albedo(“intrinsic color”)
of the surface at the pointx. See figure 2.

p

u
q

dq

Figure 2: Parameters of the rendering equation,
integrated over the surface pointq.

The rendering equation, as described above, is still only anapproximation to reality. It fails ac-
count for several physical phenomena, like diffraction, interference, polarization, and fluorescence.
Fortunately, these phenomena are of little importance in the modeling of everyday ambients and
objects.

2.1 Solving the rendering equation

In image synthesis, all elements of this equation are known except the radiance functionL. For-
mally, the solution of the rendering equation isL = (I − R)−1E, whereI is the identity operator
and−1 denotes operator inversion. In favorable circumstances, the rendering operator(I − R)−1

can be computed by Neumann’s formula

(I −R)−1 = (I +R+R2 +R3 + · · ·) (6)

Each termRk accounts for light that interactedk times with the surface of the scene before being
observed.

3 Finite element radiosity

We use the termsite to mean a pairp = (ṗ, ~p) of a pointṗ and a unit vector~p. We will denote byΓ
the set of all sites, that is,R3 × S

2.
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From now on we consider the emittance and radiance functionsas being functions of pairs site-
direction(p, v) instead of point-direction(x, v). We are only interested in the values ofE(p, v) and
L(p, v) for the subsetS of all sitesp that belong to the scene, namely whereṗ is a point on the
scene’s surface and~p is the corresponding unit normal vector. However, this formulation makes it
possible to use a representation for the functions that is independent of the geometry of the surface.

For Lambertian radiosity, the emittance and radiance functions are independent of the direction
v, so we can consider them as functions of the sitep alone.

A finite elementis a functionφ defined on the scene’s surface sites, such thatφ(p) is nonzero
only for a relatively small and compact set of sites (thesupportof φ). A finite element basisfor
radiosity is a collectionφ = {φ1, φ2, ...φn} of finite elements. A real-valued function of the surface
sites, such asL orE, can be approximated by a linear combinationB of basis elements

B(p) =

n
∑

i=1

βiφi(p) (7)

whereβ1, β2, . . . βn are real coefficients. For this purpose, the supports of the basis elements must
cover the whole surface of the scene, and the functionsφi must be linearly independent.

4 General properties of finite element bases

4.1 Interpolating bases

An interpolation basisis a function basisφ1, φ2,....φn with the property thatψ(pj) is 1 if i = j, and
0 otherwise. With such a basis, iff is any combination

∑

i ciφi, the value off at eachpi is justci.

4.2 Partition-of-unity bases

We say that a basisφ1, φ2, ..., φn is apartition of unityif and only if

φi(x) ≥ 0 (8)

for all i and allx in the domainΓ, and
n

∑

i=1

φi(x) = 1 (9)

for all x ∈ Γ. Such a basis has thesmoothingproperty, namely

cmin ≥
n

∑

i=1

ciφi(x) ≥ cmax (10)

wherecmin, cmax are the minimum and maximum among the coefficientsc1, c2, . . . , cn.
From any basisφ1, φ2, ..., φn with non-negative elements, one can define a basis with the

partition-of-unity propertyφ̃1, φ̃2, ...φ̃n by thenormalizationformula

φ̃i(x) =
φi(x)

∑n
j=1

φj(x)
for all x in Γ. (11)
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5 Generalized radial bases

The bases we use in this paper aregeneralized radial bases. A basis of this kind is defined by the
following parameters:

• a list of sitesP = (p1, p2, ....pn) on the scene’s surface, theelement centroids;

• a list of reals(α1, α2, ....αn), thenominal radiiof the elements;

• amother functionΦ from R to R;

• adistance metric‖·, ·‖ between sites;

• the elementscaling and placementformula; and

• anormalizationmethod applied to the basis elements.

In Lehtinen’s method, the centroids are chosen randomly on the surface of the scene, as in
figure 3; and each nominal radiusαi is such that there is a fixed numberm of centroidspj ∈ P with
‖pi, pj‖ < αi. In this paper, we takem = 10, as used by Lehtinen.

Figure 3: A simple scene (top) and a set of el-
ement centroidsp1, . . . , pn randomly chosen on
its surface (bottom). Note that invisible surfaces
are sampled too.

The scaling and placement rules define araw elementψi for each centroid, whose valueψi(p)
depends on the distance‖p, pi‖, the radiusαi, and the mother functionΦ. The raw elements are
usually defined so thatψi(p) is maximum (or nearly so) whenp = pi, and is zero (or nearly so)
if ‖p, pi‖ > αi. Finally, the normalization formula (11) may or may not be used to produce a
partition-of-unity basis, yielding the final basis elementsφi.
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5.1 Mother functions

A commonly chosen mother function is the Gaussian bell

G(r) = e−r2/2 (12)

which, for the purposes of image synthesis, can be assumed tobe zero forr > 4. For efficiency
reasons, however, it is preferable to use a polynomial spline approximation

K(r) =

{

2r3 − 3r2 + 1 if r ≤ 1
0 if r ≥ 1

(13)

Another important alternative is theShepard’s quadratic mother function

S(r) =
1

r2
(14)

 0

 0.5

 1

 1.5

 2

-3 -2 -1  0  1  2  3 -3 -2 -1  0  1  2  3 -3 -2 -1  0  1  2  3

Figure 4: Three mother functions: Gaussian
bell (left), spline bell (middle), and quadratic
Shepard (right).

5.2 Site distance function

In typical scenes, the radiance (apparent color) of most points depends strongly on the local orien-
tation of the surface. For this reason, one should take the normals into account when interpolating
the radiance, at a pointp, so that centroids with the same orientation asp get more weight than
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centroids that are closer top but have different orientation. Therefore, when computingthe distance
between two sitesp andq, we use thenormal sensitive site distance

‖p, q‖ =
|ṗ− q̇|

max{0, ~p · ~q}
(15)

where~p ·~q is the scalar product of the two normals. (This not a true distance function (metric) forΓ,
because it fails the triangle inequality; however, that property is not necessary for interpolation.) The
difference between formula (15) and the plain Euclidean distance|ṗ− q̇| is illustrated in figure 5.

Figure 5: Visualization of the Euclidean dis-
tance (left) and normal-sensitive site distance
(right) in a simple scene. The color used at each
sitep of the scene’s surface is1/(1 + d), where
d is the distance from the siteq on the back wall
marked with ‘X’.

6 Bases used in the tests

In our tests we used three generalized radial basesφS, φG, andφL. The basisφS uses the Shepard
mother functionS (14), applied to the absolute site distance, with partition-of-unit normalization:

ψS
i (p) = S(‖p, pi‖) =

1

‖p, pi‖
2
; φS

i (p) =
ψS

i (p)
∑n

j=1
ψS

j (p)
(16)

Note thatS(r) = 1/r2 is positive for allr and tends to+∞ whenr approaches 0. This property
together with formula (16) ensures that Shepard’s basis is always interpolating. See figure 6(top).

The basisφG, shown in figure??(middle), uses the Gaussian mother function (12), applied to
the relative site distance from the centroid (site distancedivided by the nominal radius), without
partition-of-unit normalization:

ψG
i (p) = G

(

‖p, pi‖

αi

)

; φG
i (p) = ψG

i (p) (17)

The basisφL is the basis described by Lehtinen??. It uses the polynomial mother functionK (13),
but applied to the relative Euclidean distance, instead of our normal-sensitive site distance, with an
external factor to account for the difference in the normals:

ψL
i (p) = K

(

|ṗ, ṗi|

α̇i

)

max
{

0, ~p〈~|pi〉
}

(18)
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Hereα̇i is computed like our radiusαi, but with Euclidean distances instead of site distance. The
raw basisψL was then normalized by formula 11 to yield a partition-of-unity basisφL See fig-
ure 6(bottom).

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

-4 -2 0 2 4 6

Figure 6: One-dimensional plots of the three
test basesφS, φG, andφL (light lines) for four
collinear sites on a flat surface, and the corre-
sponding interpolationf(x) to the four values
shown (solid line).

7 Discretizing the rendering equation

When the functionsL, E of the rendering equation (1) are represented in terms of a finite bases
φ1, φ2, ..., φn, the transfer operatorR is replaced by ann × n radiance transfer matrixR and the
equation becomes a linear equation system

λ = ε+Rλ (19)

whereλ = (λ1, λ2, . . . , λn)⊤ is the column coefficient vector ofL in the chosen basis, andε =
(ε1, ε2, . . . , εn)⊤ is the coefficient vector ofE.
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Each elementRjk of R represents the fraction of photons radiated (emitted or scattered) by
elementφk that are subsequently scattered by elementφj , without any intermediate scattering. That
is, columnk ofR is the coefficient vectorλ that describes the appearance of the scene when element
φk is the only source of light in the scene, without consideringmultiply-scattered light. See figure 7.

Figure 7: A simple scene (top), and the ra-
dianceL of its surface due to single-scattered
photons emitted by the basis elementφk whose
centroid is marked with ‘X’ (bottom).

Lehtinen observed that one can estimate the matrixR by assuming a point light source of ap-
propriate intensitywj located at each sitepj , and computing the radianceNi,j = L(pi) due to
single-bounce photons from that source, as in plain ray-tracing. The intensitywj of the point
light can be approximated by the total radiance of the element φj, that iswj =

∫

φj(p)dp where
the integral is taken over the whole surface of the scene. If the centroids are sufficiently dense, we
can assume that the scene surface nearpj is a plane with normal~pj. For an un-normalized radial
basis likeφG, the integral is a fixed constant timesα2

j . For a partition-of-unity basis likeφL and
φS, the expected value of the integral is1/δ whereδ is the local density of centroids per unit of
area. If the radiusαj is chosen so that it containst other centroids, then we can use the estimate
wj = 1/δ = πα2

j/t.

The matrixR is not very sparse in general, and the inverse(I −R)−1 is usually full. Therefore,
the coefficientsλi of the radiance functionL are usually computed iteratively, by settingλ ←
(0, ..., 0) and then iteratingλ← ε+ Rλ until convergence. Note that this iteration is equivalent to
evaluating Neumann’s formula (6).

Figure 8 shows a test scene rendered with plain ray-tracing and with meshless finite-element
radiosity, using 10 iterations of formula (19).
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Figure 8: Images of a test scene. From top:
the direct lighting component (represented in
theφL basis), and the meshless radiosity results
using the basesφS, φG, andφL.

8 Validation

In order to validate our implementation of Lehtinen’s method and compare its accuracy with the
three bases, we compared its results with an independent solution of the radiance equations for a
specific scene. The latter consists of a sphere of radiusr and a disk of radiusR with the center of
the ball on the disk’s axis, at some distanceh from its top surface. See figure 9(left). Both objects
have Lambertian finish, with uniform albedoβ. The primary illumination in this test case is due to
a single point source with intensityµ, on the vertical axis, at infinite distance above the disk.

Let p(θ, ζ) be the point on the sphere’s surface at longitudeθ and latitudeζ; and letq(ϕ, u)
be the point on the cylinder’s top surface at distanceu from the center and azimuthϕ. Due the
symmetry of the scene and lighting around the vertical axis,we can conclude that the radiance
functionsL andE are also symmetric (independent of the azimuthsθ andϕ).
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r

h

R

Figure 9: The reference scene (left) and the el-
ement centroids used in the meshless radiosity
computation (right).

Therefore we denote byB(ζ) the total radiance (apparent color) of the sphere pointp(θ, ζ), and
by D(u) the radiance of the disk pointq(ϕ, u). It is convenient to consider the photons that have
been scattered only once as being emitted at the scattering point, so that the external source can be
ignored. We will denote this “emission” component ofB andD asB∗(ζ) andD∗(u), respectively:

B∗(ζ) = βµmax {0 , sin ζ}

D∗(u) =

{

β µ if r ≤ u ≤ R
0 otherwise

(20)

From symmetry it also follows that the form factorF (q(ϕ, u), p(θ, ζ)) can be writtenF̂ (u, τ, ζ) =
F (q(0, u), p(τ, ζ)) where τ = θ − ϕ. With these assumptions, the rendering equation can be
rewritten as two coupled integral equations

B(ζ) = B∗(ζ) + β
R
∫

0

D(u)
2 π
∫

0

F̂ (u, τ, ζ)u dτ du

D(u) = D∗(u) + β
π/2
∫

−π/2

B(ζ)
2π
∫

0

F̂ (u, τ, ζ) r2 cos ζ dτ dζ

(21)

Note that the visibility factor ofV (q(ϕ, u), p(θ, ζ)) is 0 only if the ball normal at the pointp(θ, ζ)
makes an obtuse angle with the directionq(ϕ, u)→p(θ, ζ); but in this case the form factorF is 0.
Therefore, we do not need to includeV in these formulas.

8.1 Discretization of the reference solution

In order to discretize the equations (21), we choose latitudesζ1, . . . , ζm in the interval[−π/2 , π/2],
radii u1, . . . , un in [0 , R], and azimuth differencesτ1, . . . , τk in [0 , 2π], all equally spaced, and
introduce the unknownsbi = B(ζi), dj = D(uj), and the known parametersb∗i = B∗(ζi), d∗j =
D∗(uj), Fisj = F (p(0, ζi), q(τs, uj)) andGjsi = F (q(0, uj), p(τs, ζi)). Then the integrals (21)
and (??) can be approximated by sums:

bi = b∗i + β
R

n

n
∑

j=1

dj
2π

k

k
∑

s=1

Fisj uj (22)
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dj = d∗j + β
π

m

m
∑

i=1

bi
2π

k

k
∑

s=1

Gjsi r
2 cos ζi (23)

We can write the equations (22) and (23) in the matrix formλ = ε+Rλ, whereλ = (b1, b2, . . . , bm, d1, d2, . . . , dn)⊤,
ε = (b∗1, b

∗
2, . . . , b

∗
m, d

∗
1, d

∗
2, . . . , d

∗
n)⊤,

R =

(

0 M
N 0

)

(24)

and

Nji = β
k

∑

s=1

Fisj Mij = β
l

∑

s=1

Gjsi (25)

Each elementNji represents the influence of the radiance of bandj of the disk on the radiance of
each point of the ringi of the sphere. Similarly,Mij represents the influence of ringi of the sphere
at each point of ringj of the disk.

The parameters we used wereR = 40, r = 5, h = 20, µ = 0.9, β = 0.9, n = m = k = 100.
We solved the system by iteratingλ ← ε + Rλ (which converged after a few iterations). See
figure 10

 0
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D

Figure 10: Reference solution, showing the ra-
dianceB(ζ) on the sphere as a function of lati-
tudeζ (left), and radiance on the diskD(u) as
a function of the radial positionu (right).

8.2 Comparison

The reference solution obtained as described in section 8.1was compared with the output of the
meshless radiosity algorithm described in section 7, usingeach of the three bases described in
section 6, for the set of centroids shown in figure 9(right), chosen so that their minimum separation
is 3. The results are shown in figures 11, 12, and 13. The thin line show the radiance along the
meridian with latitudeθ = 0 of the sphere, and along the ray with azimuthϕ = 0 of the disk.
The thick lines are the radiances averaged over all latitudes θ and all azimuthsϕ, namely over each
parallel of the sphere and each circle on the disk.
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Figure 11: Meshless radiosity solution with the
basisφS
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Figure 12: Meshless radiosity solution with the
basisφG

Further tests (not shown here) imply that the radiance computed with any of the three bases tends
to the same values as the number of elements increases.

9 Conclusions

Comparing the solutions obtained with the three bases with the reference solution, we conclude
that Lehtinen’s basisφL not only produce better-looking images (section 7) but alsomore accurate
radiance values (section 8). We believe that the validationstrategy proposed in section 8 can be
used for the validation of other global illumination algorithms.
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Figure 13: Meshless radiosity solution with the
basisφL

Our analysis also shows that the inferior-looking results obtained by the other two bases are not
due to systematic errors in the computed radiance values, but rather to the oscillations that they
introduce in the approximation, which are magnified by the human visual system.
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