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Abstract

The estimation of camera motion is one of the most important aspects for video
processing, analysis, indexing, and retrieval. Most of existing techniques to estimate
camera motion are based on optical flow methods in the uncompressed domain. How-
ever, to decode and to analyze a video sequence is extremely time-consuming. Since
video data are usually available in MPEG-compressed form, it is desirable to directly
process video material without decoding. In this paper, we present a novel approach
for estimating camera motion in MPEG video sequences. Our technique relies on linear
combinations of optical flow models. The proposed method first creates prototypes of
optical flow, and then performs a linear decomposition on the MPEG motion vectors,
which is used to estimate the camera parameters. Experiments on synthesized and real-
world video clips show that our technique is more effective than the state-of-the-art
approaches for estimating camera motion in MPEG video sequences.

1 Introduction

Advances in data compression, data storage, and data transmission have facilitated the
way videos are created, stored, and distributed. The increase in the amount of video data
has enabled the creation of large digital video libraries. This has spurred great interest for
systems that are able to efficiently manage video material [1–3].

Making efficient use of video information requires that the data be stored in an organized
way. For this, it must be associated with appropriate features in order to allow any future
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retrieval. An important feature in video sequences is the temporal intensity change between
successive video frames: apparent motion. The apparent motion is generally attributed to
the motion caused by object movement or introduced by camera operation. The estimation
of camera motion is one of the most important aspects to characterize the content of video
sequences [4].

Most of existing techniques to estimate camera motion are based on analysis of the
optical flow between consecutive video frames [5–10]. However, the estimation of the optical
flow, which is usually based on gradient or block matching methods, is computationally
expensive [11].

Since video data are usually available in MPEG-compressed form, it is desirable to
directly process the compressed video without decoding. A few methods that directly
manipulate MPEG compressed video to extract camera motion have been proposed [4, 11,
12]. These approaches use MPEG motion vectors as an alternative to optical flow which
allows to save high computational load from two perspectives: full decoding the video stream
and optical flow computation [4].

In this paper, we present a novel approach for estimating camera motion in MPEG video
sequences. It consists of three main steps. First, we extract the raw motion vectors from
MPEG stream by partial decoding. Next, we create prototypes of optical flow, and then
perform a linear decomposition on the MPEG motion vectors, which is used to estimate the
camera parameters. Finally, we apply a robust estimation technique to reduce the influence
of outliers.

In order to validate our approach, we use a synthetic test set and real-world video se-
quences including all kinds of camera motion and many of their possible combinations.
Further, we have conducted several experiments to show that our technique is more ef-
fective than the state-of-the-art approaches for estimating camera motion in MPEG video
sequences.

The remainder of the paper is organized as follows. In Section 2, we review three
existing approaches used as reference in our experiments. Section 3 presents our approach
for the estimation of camera motion. The experimental settings and results are discussed
in Section 4. Finally, Section 5 presents conclusions and directions for future work.

2 Related Work

In this section we review three approaches used as reference in our experiments. These
methods were implemented and their effectiveness are compared in Section 4.

Kim et al. [4] have used a two-dimensional affine model to detect six types of motion:
panning, tilting, zooming, rolling, object motion, and stationary. Beforehand, motion vector
outliers are filtered out by a simple smoothing filter. The camera parameters for the model
are estimated by using a least squares fit to the remaining data.

Smolic et al. [12] have used a simplified two-dimensional affine model to distinguish
between panning, tilting, zooming, and rolling. They use the M-estimator approach [13]
to deal with data corrupted by outliers. It is basically a weighted least square technique,
which reduces the effect of outliers by using an influence function.
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Gillespie et al. [11] have extended such approach in order to improve its effectiveness by
using a robust Least Median-of-Squares (LMedS) [13] to estimate the camera parameters
and minimize the influence of outliers.

3 Our Approach

The previous approaches simply find the best-fit affine model to estimate camera motion
by using the least squares method. However, the affine parameters are not directly related
to the physically meaningful camera operations.

In this sense, we propose a novel approach for the estimation of camera motion based
on optical flow models. The proposed method generates the camera model using linear
combinations of prototypes of optical flow produced by each camera operation. It consists of
three main steps: (1) feature extraction; (2) motion model fitting; and (3) robust estimation
of the camera parameters.

3.1 Feature Extraction

MPEG videos are composed by three main types of pictures: intra-coded (I-frames), pre-
dicted (P-frames), and bidirectionally predicted (B-frames). These pictures are organized
into sequences of groups of pictures (GOPs) in MPEG video streams.

A GOP must start with an I-frame and can be followed by any number of I and P-frames,
which are usually known as anchor frames. Between each pair of consecutive anchor frames
can appear several B-frames. Figure 1 shows a typical GOP structure.

Figure 1: A typical group of pictures (GOP) in MPEG video sequences.

An I-frame does not refer to any other video frame. On the other hand, the encoding
of a P-frame is based on a previous anchor frame, while the encoding of a B-frame can be
based on two anchor frames, a previous as well as a subsequent anchor frame.
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Each video frame is divided into a sequence of non-overlapping macroblocks. For each
macroblock, a motion vector which points to a similar block in an anchor frame is estimated.
Motion estimation algorithms try to find the best block match in terms of compression
efficiency. This can lead to motion vectors that do not represent the camera motion at
all [14].

The motion vectors are extracted directly from the compressed MPEG stream. Only
the motion vectors from P-frames are processed in our approach. They were chosen in the
following considerations. First, usually each third until fifth frame in a MPEG video is
a P-frame, and thus, the temporal resolution is suficient for most applications. Further,
both the prediction direction and the temporal distance of motion vectors are not unique
in B-frames, resulting in additional computational complexity.

3.2 Motion Model Fitting

A camera projects a 3D world point into a 2D image point. The motion of the camera may
be limited to a single motion such as rotation, translation, or zoom, or some combination
of these three motions. Such camera motion can be well categorized by few parameters.

If we consider that the visual field of the camera is small, we can establish ideal optical
flow models, which are noise-free, by using a numerical expression for the relationship of
the MPEG motion vectors, and creating prototypes of optical flow models.

Hence, we can approximate the optical flow by a weighted combination of optical flow
models:

f = P · p + T · t + Z · z + R · r, (1)

where p, t, z, and r are the prototypes generated by panning, tilting, zooming, and rolling,
respectively.

The parameter-estimation problem is now to obtain an estimate for the parameters P ,
T , Z, and R, based on a set of measured motion vectors {f̂i}. Since the measurements are
not exact, we can not assume that they will all fit perfectly to the model. Hence, the best
solution is to compute a least-squares fit to the data. For this, we define the model error as
the sum of squared norm of the discrepancy vectors between the measured motion vectors
f̂i and the motion vectors obtained from the model:

E =
∑

i

‖(P · pi + T · ti + Z · zi + R · ri) − f̂i‖
2, (2)

where P , T , Z, and R represent the motion induced by the camera operations of panning
(or tracking), tilting (or booming), zooming (or dollying), and rolling, respectively.

To minimize the model error E, we can take its derivatives with respect to the motion



Robust Estimation of Camera Motion using Optical Flow Models 5

parameters

∂E

∂P
=
∑

i

2 pT
i (P · pi + T · ti + Z · zi + R · ri − f̂i),

∂E

∂T
=
∑

i

2 tTi (P · pi + T · ti + Z · zi + R · ri − f̂i),

∂E

∂Z
=
∑

i

2 zT
i (P · pi + T · ti + Z · zi + R · ri − f̂i),

∂E

∂R
=
∑

i

2 rT
i (P · pi + T · ti + Z · zi + R · ri − f̂i),

and set them to zero, giving

∑

i

(P pT
i pi + T pT

i ti + Z pT
i zi + R pT

i ri − pT
i f̂i) = 0,

∑

i

(P tTi pi + T tTi ti + Z tTi zi + R tTi ri − tTi f̂i) = 0,

∑

i

(P zT
i pi + T zT

i ti + Z zT
i zi + R zT

i ri − zT
i f̂i) = 0,

∑

i

(P rT
i pi + T rT

i ti + Z rT
i zi + R rT

i ri − rT
i f̂i) = 0,

which can be written in matrix form as











∑

i〈pi, pi〉
∑

i〈pi, ti〉
∑

i〈pi, zi〉
∑

i〈pi, ri〉
∑

i〈ti, pi〉
∑

i〈ti, ti〉
∑

i〈ti, zi〉
∑

i〈ti, ri〉
∑

i〈zi, pi〉
∑

i〈zi, ti〉
∑

i〈zi, zi〉
∑

i〈zi, ri〉
∑

i〈ri, pi〉
∑

i〈ri, ti〉
∑

i〈ri, zi〉
∑

i〈ri, ri〉





















P
T
Z
R











=











∑

i〈pi, f̂i〉
∑

i〈ti, f̂i〉
∑

i〈zi, f̂i〉
∑

i〈ri, f̂i〉











, (3)

where

〈u, v〉 = uT v

is the inner product between the vectors u and v.

Here, we define the optical flow model for panning (p), tilting (t), zooming (z), and
rolling (r), respectively, as:

p(x, y) =

(

−1
0

)

, t(x, y) =

(

0
−1

)

, z(x, y) =

(

−x
−y

)

, r(x, y) =

(

y
−x

)

,

where (x, y) is the sample point whose coordinate system has origin at the center of the
image.

Figures 2, 3, 4, and 5 represent the prototypes which consist of optical flow models
generated by panning, tilting, zooming, and rolling, respectively. These optical flow models
express the amount and direction of the camera motion parameters, respectively.
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(a) Optical flow. (b) Prototype.

Figure 2: The optical flow and the prototype generated by panning.

(a) Optical flow. (b) Prototype.

Figure 3: The optical flow and the prototype generated by tilting.

(a) Optical flow. (b) Prototype.

Figure 4: The optical flow and the prototype generated by zooming.

3.3 Robust Estimation of the Camera Parameters

The direct least-squares approach for parameter estimation works well for a small number
of outliers that do not deviate too much from the correct motion. However, the result is
significantly distorted when the number of outliers is larger, or the motion is very different
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(a) Optical flow. (b) Prototype.

Figure 5: The optical flow and the prototype generated by rolling.

from the correct camera motion. Especially if the video sequence shows independent object
motions, a least-squares fit to the complete data would try to include all visible object
motions into a single motion model.

To reduce the influence of outliers, we apply a well-known robust estimation technique
called RANSAC (RANdom SAmple Consensus) [15]. The idea is to repeatedly guess a set
of model parameters using small subsets of data that are drawn randomly from the input.
The hope is to draw a subset with samples that are part of the same motion model. After
each subset draw, the motion parameters for this subset are determined and the amount of
input data that is consistent with these parameters is counted. The set of model parameters
with the largest support of input data is considered the most dominant motion model visible
in the image.

4 Experiments and Results

In order to evaluate the performance of the proposed method for estimating camera motion
in MPEG video sequences, experiments were carried out on both synthetic and real-world
video clips.

4.1 Results with noise-free synthetic data

First, we evaluate our approach on synthetic video sequences with known ground-truth data.
For this, we create a synthetic test set with four MPEG-4 video clips1 (640 × 480 pixels
of resolution) based on well textured POV-Ray scenes of a realistic office model (Figure 6),
including all kinds of camera motion and many of their possible combinations. The main
advantage is that the camera motion parameters can be fully controlled which allows us to
verify the estimation quality in a reliable way.

The first step for creating the synthetic videos is to define the camera’s position and
orientation in relation to the scene. The world-to-camera mapping is a rigid transformation

1All video clips and ground-truth data of our synthetic test set are available at http://www.liv.ic.

unicamp.br/~minetto/videos/.
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(a) (b) (c)

Figure 6: The POV-Ray scenes of a realistic office model used in our synthetic test set.

which takes scene coordinates pw = (xw, yw, zw) of a point to its camera coordinates pc =
(xc, yc, zc). This mapping is given by [16]

pc = Rpw + T, (4)

where R is a 3× 3 rotation matrix that defines the camera’s orientation, and T defines the
camera’s position.

The rotation matrix R is formed by a composition of three special orthogonal matrices
(known as rotation matrices)

Rx =







cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)






,

Ry =







1 0 0
0 cos(β) sin(β)
0 − sin(β) cos(β)






,

Rz =







cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1






,

where α, β, γ are the angles of the rotations.
We consider the motion of a continuously moving camera as a trajectory where the

matrices R and T change according to the time t, in homogeneous representation,
[

pc

1

]

=

[

R(t) T (t)
0 1

] [

pw

1

]

. (5)

Thus, to perform camera motions such as tilting (gradual changes in Rx), panning
(gradual changes in Ry), rolling (gradual changes in Rz), and zooming (gradual changes in
focal distance f), we define a function F (t) which returns the parameters (α, β, γ, and f)
used to move the camera at the time t. We use a smooth and cyclical function

F (t) = M∗
1 − cos(2πt/T )(0.5 − t/T )

0.263
, (6)
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where M is the maximum motion factor and T is the duration of camera motion in units
of time. We create all video clips using the maximum motion factor M equals to 3o for
tilting (α), 8o for panning (β), 90o for rolling (γ), and 1.5 for zooming (f).

Figure 7 shows the main characteristics of each resulting video sequence (Mi). The
terms P, T, R, and Z stand for the motion induced by the camera operations of panning,
tilting, zooming, and rolling, respectively. The videos M3 and M4 have combinations of two
or three types of camera motions. In order to represent a more realistic scenario, we modify
the videos M2 and M4 to have occlusions due to object motion.

M

M

M

M

1

1

2

3

4
PP

P

PPP

PP PPP

P

TT

T

TT

TT TT

T

RRR

R

R

RRR R

R

ZZZ

Z

ZZ

ZZZ ZZ

Z

+++++ +++++

+++++ +++++

Frames
50 100 150 200 250 300 350 400 450 501

Figure 7: The main characteristics of each video sequence (Mi) in our synthetic test set.

We assess the effectiveness of the proposed method using the well-known Zero-mean
Normalized Cross Correlation (ZNCC) metric [17], defined by

ZNCC(F ,G) =

∑

t(F(t) − F̄)(G(t) − Ḡ)
√

∑

t(F(t) − F̄)2
∑

t(F(t) − Ḡ)2
(7)

where F(t) and G(t) are the estimate and the real camera parameters, respectively, at the
time t. It returns a real value between −1 and +1. A value equals to +1 indicates a perfect
estimation; and −1, an inverse estimation.

Tables 1, 2, 3, and 4 compare our approach with the techniques presented in Section 2.
Clearly, the use of optical flow models for estimating camera motion in MPEG video se-
quences is more effective than the affine model-based approaches.

Table 1: Effectiveness achieved by all approaches in video clip M1.

Method Tilting Panning Rolling Zooming

Our Approach 0.981419 0.996312 0.999905 0.964372

Gillespie et al. 0.970621 0.987444 0.999830 0.958607

Smolic et al. 0.950911 0.994171 0.999199 0.949852

Kim et al. 0.649087 0.912365 0.994067 0.858090

Despite MPEG motion vectors improve the runtime performance, they often do not
model real motion adequately [14]. Note that the effectiveness achieved by all methods is



10 J. Almeida, R. Minetto, T. A. Almeida, R. da S. Torres and N. J. Leite

Table 2: Effectiveness achieved by all approaches in video clip M2.

Method Tilting Panning Rolling Zooming

Our Approach 0.981029 0.995961 0.999913 0.965994

Gillespie et al. 0.972189 0.988062 0.999853 0.959516

Smolic et al. 0.936479 0.991438 0.999038 0.949367

Kim et al. 0.633559 0.821266 0.986408 0.865052

Table 3: Effectiveness achieved by all approaches in video clip M3.

Method Tilting Panning Rolling Zooming

Our Approach 0.587136 0.950760 0.999624 0.956845

Gillespie et al. 0.575178 0.931957 0.999521 0.954215

Smolic et al. 0.559669 0.940782 0.999037 0.951701

Kim et al. 0.501764 0.942563 0.997240 0.942588

Table 4: Effectiveness achieved by all approaches in video clip M4.

Method Tilting Panning Rolling Zooming

Our Approach 0.592071 0.949922 0.999659 0.956440

Gillespie et al. 0.577467 0.932568 0.999545 0.954286

Smolic et al. 0.557849 0.940886 0.998920 0.951640

Kim et al. 0.498081 0.941956 0.997334 0.944102

reasonably reduced for tilting operations in presence of several types of camera motions at
the same time.

4.2 Results with real-world video sequences

We also evaluate our technique over four real-world video sequences2. These video clips
were shot with a hand-held consumer-grade DVR (Canon Optura 40) with variable zoom.
They were recorded in MPEG format at 320 × 240 resolution, 14.98 frames per second.

Table 5 summarizes the main characteristics of each resulting real-world video sequence
(Ri). All videos clips were affected by natural noise. The videos R3 and R4 have occlusions
due to object motion.

In these experiments, we analyze the effectiveness of motion vector-based techniques in
relation to the well-known optical flow-based estimator presented in [9]. Each video clip
(Ri) takes less than 1 second to process the whole sequence using our approach on a Intel
Core 2 Quad Q6600 (four cores running at 2.4 GHz), 2GB memory DDR3. It is important

2All real-world video sequences are available at http://www.liv.ic.unicamp.br/~minetto/videos/.
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Table 5: The main characteristics of each real-world video sequence (Ri).

Video Frames Camera Operations

R1 338 P,T,R,Z

R2 270 P,T,R,Z

R3 301 P,T,R,Z

R4 244 P,T,R,Z

to realize that the optical flow-based method requires a magnitude of almost one second
per frame.

Tables 6, 7, 8, and 9 compare our approach with the techniques presented in Section 2. In
fact, the use of optical flow models for estimating camera motion in MPEG video sequences
outperforms the affine model-based approaches.

Table 6: Effectiveness achieved by all approaches in video clip R1.

Method Tilting Panning Rolling Zooming

Our Approach 0.986287 0.986294 0.987545 0.982227

Gillespie et al. 0.982345 0.978892 0.980464 0.964398

Smolic et al. 0.984085 0.976381 0.977135 0.966526

Kim et al. 0.982998 0.884470 0.795713 0.944286

Table 7: Effectiveness achieved by all approaches in video clip R2.

Method Tilting Panning Rolling Zooming

Our Approach 0.914379 0.954113 0.929268 0.684219

Gillespie et al. 0.863166 0.931218 0.899512 0.357249

Smolic et al. 0.874244 0.952316 0.919447 0.611227

Kim et al. 0.899520 0.901673 0.846316 0.670006

Table 8: Effectiveness achieved by all approaches in video clip R3.

Method Tilting Panning Rolling Zooming

Our Approach 0.964425 0.960878 0.957735 0.454204

Gillespie et al. 0.949270 0.931442 0.927145 0.379836

Smolic et al. 0.957662 0.953751 0.956303 0.444741

Kim et al. 0.954097 0.912121 0.924798 0.368722
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Table 9: Effectiveness achieved by all approaches in video clip R4.

Method Tilting Panning Rolling Zooming

Our Approach 0.976519 0.958020 0.927920 0.577974

Gillespie et al. 0.948314 0.902511 0.851247 0.308588

Smolic et al. 0.969314 0.956417 0.903442 0.523507

Kim et al. 0.969613 0.938639 0.839906 0.474439

Note that the optical flow models identify the camera operations better than the affine
parameters. For instance, considering zooming operations in the video R4, our method is
more than 10% (≈ 5 percentual points) better than the best affine model-based one.

5 Conclusions

In this paper, we have presented a novel approach for the estimation of camera motion in
MPEG video sequences. Our technique relies on linear combinations of optical flow models.
Such models identify the camera operations better than the affine parameters.

We have validated our technique using synthesized and real-world video clips including
all kinds of camera motion and many of their possible combinations. Our experiments have
showed that the use of optical flow models for estimating camera motion in MPEG video
sequences is more effective than the affine model-based approaches.

Future work includes an extension of the proposed method to distinguish between trans-
lational (tracking, booming, and dollying) and rotational (panning, tilting, and rolling)
camera operations. In addition, we want to investigate the effects of integrating the pro-
posed method into a complete MPEG system for camera motion-based search-and-retrieval
of video sequences.
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Erratum added in November 25, 2009.

Page Line For Read

5 7 rolling (r), respectively, as: rolling (r), respectively, as [10]:

13 18 [10] T. Zhang and C. Tomasi, [10] R. Minetto, N. J. Leite,
“Fast, robust, and consistent and J. Stolfi, “Reliable detection

camera motion estimation,” in of camera motion based on

13 19 CVPR, 1999, pp. 1164–1170. weighted optical flow fitting,”
in VISAPP, 2007, pp. 435–440.


