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Finding Minimal Bases in

Arbitrary Spline Spaces

Ana Paula Resende Malheiro∗ Jorge Stolfi†

June 2009

Abstract

In this work we describe a general algorithm to find a finite-element basis with
minimum total support for an arbitrary spline space, given any basis for that same
space. The running time is exponential on n in the worst case, but O(nm3) for many
cases of practical interest, where n is the number of mesh cells and m is the dimension
of the spline space.

Symbols Meaning Section

n number of cells 5
C set of cells of the mesh 1.2
d dimension of the mesh 2.1
P(C) space of all polynomial splines on C 2.3
g maximum degree 1.2
r continuity order 1.2

Pg
r(C) splines of P(C) with degree g and continuity r 1.2

S,S1,S2 spline spaces 2.3
m dimension of a spline space 5

K,K1,K2 subsets of cells 2.3
φ, ψ, ξ spline bases 1.1
φi, ψi elements of a basis (i = 1, . . . ,m) 1.1
ξc
k basis element k associated with cell c 7
〈φ〉 space generated by splines in φ 2.3
#X cardinality of set X 2.2

suppk f (supp f) set of k-parts (cells) where f is nonzero 2.2
wtk φ k-weight of basis

∑

i #suppk φi 3

Table 1: Index of symbols

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Pesquisa de-
senvolvida com suporte financeiro parcial do CNPq, processo 143088/2005-0

†Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
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2 Malheiro and Stolfi

1 Introduction

1.1 Splines and finite elements

In general terms, a spline is a piecewise-defined function with pieces of a certain type, joined
with certains constraints of continuity and smoothness. There is a great variety of spline
families, the polynomial ones being the most popular.

Many applications require splines with certain constraints, such as prescribed maximum
degree or prescribed order of continuity between the pieces. When working with such
splines, if is useful to have a basis for the linear vector space of all splines that satisfy such
constraints. Besides providing a minimal representation for such splines, the basis often
gives valuable insight about the space.

It is relatively casy to compute a basis φ for a spline space defined in this way. For
efficiency reasons, however, it is desirable to minimize the support of the basis elements.
For example, to compute the value of f at a point x, we need to compute only the values of
φi(x) for the elements φi such that x is in support of φi. In the same way, when computing
integrals like

∫

φi(x)f(x)dx we only need to integrate over the support of φi. Thus, by
reducing the size of the supports we reduce the cost of those computations. For this reason,
splines whose support is a small subset of the domain, called finite elements (FEs), have
become an essential tool in many scientific and engineering disciplines [4, 6, 11, 13].

1.2 Finding finite element bases

Finding a finite element basis for a given spline space has been more of an art than a
science. There are many specialized constructions that give small (but not necessarity
minimal) bases for specific spline spaces, e.g. polynomial splines on triangulations of R

2,
R

3 or S
2 with maximum degree g and specified continuity r. However, there are still may

combinations of g and r, and many mesh geometries, for which the optimum basis (or even
any finite element basis) is not known. There are also many spaces that do not admit any
finite-element basis. However, such a space may still contain a subspace that does, and that
is still large enough for the application at hand. Finding such subspaces, too, is more an
art than a science.

For example, consider the space Pg
r [C] of trivariate polynomial splines of degree g and

continuity r in a generic tetrahedral partition C of R
3. According to Lai and Schumaker [9]

the problem of finding a basis for Pg
r [C] (or just its dimension) seems to be quite difficult

unless g is much larger than r. Alfeld, Schumaker and Sirvent [2] showed that Pg
r [C] has a

local basis for g > 8r+ 1, but they do not give an explicit construction. Alfeld, Schumaker
and Whiteley [3] give an explicit construction for P8

1[C]. Schumaker and Sorokina [10] say
that they do not know of any general construction for a finite element basis of P5

1[C], but
they give an explicit formula for a finite element basis of the subspace of P5

1[C] consisting
of all splines which have continuity 2 on the vertices of C. Hecklin, Nürnberger, Schumaker
and Zeilfelder [8] constructed a finite element basis for P3

1[C] where C is a specific tetrahedral
mesh derived from a uniform cubical mesh in R

3.
For another example, consider a partition T of R

3 into trihedra with apices at the origin.
Let Hg

r [T ]/S2 be the space of homogeneous trivariate polynomial splines over T of degree
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g, defined on R
3 but restricted to the sphere S

2, with continuity r on S
2. Alfed, Neamtu

and Schumaker [1] gave an explicit construction for the case g > 3r + 2 and conjecture
that finite element bases do not exist when g 6 3r + 1. Gomide and Stolfi [7] described
another basis for the space Hg

1[T ]/S2, except for meshes T with coplanar edges) some of
whose elements have smaller support that those given by Alfed at al.

These and many other examples motivated our search for a general algorithm, even if
relatively expensive, that would to determine a finite element basis with minimum support
for an arbitrary spline space S; or, if the space I does not have such a basis, that would
can find a large subspace of I that does.

2 Notation and definitions

2.1 Meshes and parts

A mesh over R
n is a finite collection of disjoint subsets of R

n, the parts of the mesh. In
this work we are considering only well-formed meshes, that satisfy the following properties:

1. Every part is homeomorphic to a k-dimensional open ball.

2. The topological closure of any part is the union of a finite number of parts.

3. There existis an integer d such that every part with dimension j < d is contained in
the frontier of a d-dimensional part.

The integer d is called the dimension of the mesh.
A k-part is a part with dimension k; we denote by Ck the subset of C consisting of all

its k-parts. Parts with dimension k = 0, 1, 2, 3 are called vertices, edges, walls and blocks

respectively. The parts of maximum dimension d are called cells. The parts contained in
the closure of a part e are the faces of e. If e has dimension k, the faces of dimension k− 1
are the facets of e. The union ∪C ⊆ R

n of all parts of a mesh C is the domain of C.

2.2 Polynomial splines

A polynomial spline on a mesh C over R
n is a function f defined on domain ∪C, such that

the restriction f |c of f to each cell c ∈ C (called the c-patch of the spline) coincides with
some polynomial function on the n coordinates of the argument.

The support of a spline f on C, denoted by supp(f), is the set of all parts of C (of any
dimension) where f is not identically zero. The k-support of f , denoted by suppk(f), is
the subset of supp(f) consisting of all its k-parts. Note that supp(f) is a set of parts, not
points; so that ∪ supp(f) is generally bigger that the set of points of ∪C where f is different
of zero. The size of the k-support is the number of parts in it, that is, # suppk f .

2.3 Spline spaces

We denote by P(C) the set of all polynomial splines on the mesh C. It is easy to see that
P(C) is a linear vector space.



4 Malheiro and Stolfi

We will denote by 〈φ〉 the linear space generated by a set φ of splines of P(C). That is,
〈φ〉 is the set of all splines f such that:

f =

m−1
∑

i=0

aiφi (1)

for some coefficients a0, . . . , an−1 ∈ R.
For any subset K of C, we denote by S[K] the subspace of S consisting of the splines

whose support is contained in K.

2.4 Spline bases

If the dimension d of C is positive, the space P(C) has infinite dimension. However, if
we specify a maximum degree g for the polynomials that define the patches, we get a
finite-dimensional subspace Pg(C) of P(C). If we specify additional linear constraints on
the splines (for example, continuity constraints between adjacent patches), we get various
linear subspaces of Pg(C). An important example is the space Pg

r(C) of all splines of Pg(C)
that are continuous to order r over the entire domain ∪C.

Any finite-dimensional space S of polynomial splines has a finite basis, that is, a list
φ = (φ0, . . . , φm−1) of linearly independent splines of S such that 〈φ〉 = S.

3 Finite element bases

Let C be a d-dimensional mesh and φ1, . . . , φm a basis for some subspace I of P(C). The
sum

∑m−1
i=0 # suppk(φi) is the k-weight of the basis, denoted by wtk φ.

Suppose that we can efficiently identify the cell c of C that contains a given point x ∈ R
n,

and obtain the list of all basis elements φi that are nonzero in c. The cost of computing
f(x) by formula (1) is then the number of those elements times the mean cost of evaluating
each φi. Suppose now that x is a random point of ∪C, such that (1) the probability that x
belongs to a cell c ∈ C is the same for all the cells, and (2) the probability that x belongs to
any j-part with j < d is zero. It is easy to see that the expected cost of computing f(x) by
formula (1) is essentially the cost of evaluating each φi(x) times

∑m−1
i=0 # suppd(φi), that is,

times the weight wtd of φ. Therefore the expected cost to compute f(x) is minimum when
wtd φ is minimum.

A finite element basis is a basis of splines where # suppd φ is “small” for all i, compared
with the total number of mesh elements #C. The term is meaningful only when applied to
families of meshes and spline spaces, and it usually means that # suppφi is limited by a
constant that is independent of i and #C.

In particular, a piecewise basis is a basis where the support of each element φi is a
single cell of C. The spaces Pg(C) have infinitely many piecewise bases. One may take, for
example, each element of the canonical basis for the d-variate polynomial, (all monomials of
degree ≤ g in variables) restricted to each part of C. For meshes consisting of triangles, one
may take instead the Bernstein-Bezier polynomials of each cell. However Pg

c(C) generaly
does not have a piecewise basis when c > 0.



Minimal Bases 5

4 The basic algorithm

We describe here a generic algorithm to find a minimum-weight basis for an arbitrary spline
space S ⊆ P(C). The basic procedure is Algorithm 1 below, which is explained in the rest
of this section, and improved in the following sections.

Algorithm 1

1: p← 0; φ← (); set Mφ to a 0×m matrix.
2: q ← m; θ ← ψ; set Mθ to the m×m identity matrix.
3: for s = 1, . . . , n do

4: for every K ⊆ Ck such that #K = s do

5: while

6: there is an element ξ in 〈φ, θ〉 with suppd ξ = K that is not in 〈φ〉
7: do

8: append ξ to φ, incrementing p and adjusting Mφ;
9: exclude some redundant θj from θ, decrementing q and updating Mθ;

10: end while

11: end for

12: end for

4.1 Inputs

The input to Algorithm 1 is an arbitrary basis ψ0, . . . , ψm−1 for the space S, and a com-
putable criterion to determine whether a spline is identically zero in a given cell c. Specifi-
cally, for each cell c ∈ Ck the client must supply a full-rank matrix N c with rc rows and m
columns, such that

(∀i ∈ 0 . . . rc − 1)
∑

N c
ijaj = 0 ⇔ (∀x ∈ c)

∑

ajψj(x) = 0 (2)

For example, we can take N c
ij = ψj(zi) where {z0, z1, . . . , zrc−1} is an appropriate set of

points of c. If ψ is a piecewise basis, then N c is simply the subset of the rows of the identity
matrix that correspond to the elements ψi whose support is {c}.

4.2 Outputs

The output of the algorithm is another basis φ0, . . . , φm−1 for S whose weight is minimum
among all bases of S. As a byproduct, the algorithm also outputs an m×m basis change

matrix M that relates the two bases, that is:

φi =

m−1
∑

j=0

Mijψj (3)
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4.3 Description of the algorithm

Before each iteration of the inner loop of our algorithm (steps 6 – 9), we have con-
structed a partial finite element basis φ = (φ0, φ1, . . . , φp−1) and a complementary basis
θ = (θ0, . . . , θq), such that p + q = m, as well as corresponding basis change matrices, Mφ

of size p× n and Mθ of size q × n. The following invariants hold:

P1 〈φ, θ〉 = 〈ψ〉 = S

P2 wt(φ) is minimum among all sets of p linearly independent splines of S

P3 φi =

m−1
∑

k=0

Mφ
ikψk for i ∈ 0, . . . , p− 1

P4 θj =

m−1
∑

k=0

Mθ
jkψk for j ∈ 0, . . . , q − 1

At the beginning of each iteration, {θ0, . . . , θq−1} is a subset of {ψ0, . . . , ψm−1}, so the q
rows of Mθ are a subset of the rows of I.

Finding the redundant element. If the new element ξ found in step 6 can be written
as ξ =

∑p−1
i=0 uiφi +

∑q−1
j=0 vjθj, then in step 9 we can choose any θj such that vj 6= 0. In this

step we exclude row j from Mθ, and we insert (w0, w1, . . . , wm−1) as row p of Mφ, where

wk =
∑p−1

i=0 uiM
φ
ik +

∑q−1
j=0 vjM

θ
jk.

Finding the new element. The test of step 6 can be performed as follows: (a) determine
the subspace S[K] of S = 〈φ, θ〉 that consists of all splines f with suppk f ⊆ K, and then (b)
test whether S[K] contains any element not in 〈φ〉. Since S has finite dimension, item (a)
means solving a system of linear equations. Therefore, to perform tests (a) and (b) above,
we build the system

NKM−1a = 0 (4)

where

• NK is the vertical concatenation of the matrices N c for all c ∈ K;

• M is the current basis change matrix, the vertical concatenation of Mφ and Mθ; and

• a is a vector with m coefficients, the concatenation of p coefficients (u0, . . . , up−1) for
φ and q coefficients (v0, . . . , vq−1) for θ.

To ensure condition (b) we add to this system the equation

ui = 0 (5)

for every i such that suppd φi ⊆ K.
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Solving this system as described in appendix A yields a set of r linearly independent
vectors (u0, . . . , up−1, v0, . . . , vq−1) that satisfy system (4) and (5); that is, r linearly inde-
pendent splines of S whose support is contained in K.

If one of these vectors has vi 6= 0 for some i, then the corresponding spline ξ =
∑

i uiφi+
∑

j vjθj is not in 〈φ〉. Moreover, the support of φ cannot be strictly contained in K,
otherwise it would have been found in a precious iteration of steps 5 through 10. Therefore
supp(ξ) = K. Conversely, if all of those vectors have v0 = v1 = · · · = vq−1 = 0 then all the
splines that satisfy system (4) are in 〈φ〉, and there is no ξ that satisfies the condition of
step 6.

4.4 Correctness of the algorithm

To prove that Algorithm 1 is correct, we need to show that each iteration of 6 – 9 preserves
the invariants (P1 – P4). Note that this is a “greedy” algorithm [12], that, at each iteration
of step 6 – 9, adds to the basis φ the spline of S with smallest support that is not yet in
〈φ〉. The question is whether adding the smallest possible element ξ at one iteration could
somehow prevent us from finding a minimal basis at the end.

Our problem can be represented by a matroid (H,E,K) as defined by Edmonds [5].
The correspondence between Edmonds’s notation and ours is as follows:

• Edmonds’s set H of elements of the matroid is our set of all splines of S;

• an element j of the index set E for Edmonds is for us a coefficient vector a in terms
of the original basis ψ. Therefore, Edmonds’s set E is our R

m;

• Edmonds’s weight cj of that index element is in our algorithm the quantity −# supp
(
∑

aiψi); and

• Edmonds’s family K of maximal of independent sets is, in our algorithm, the set of
all bases of S.

With these correspondences, Algorithm 1 becomes equivalent to Edmonds’s greedy algo-
rithm [5, paragraph (7)]:

in each step, choose any largest weight member of E, not already chosen, which

together with the members already chosen forms a subset of some member of K,

and stop when the chosen members of E comprise a member of K.

Edmonds’s algorithm chooses the largest-weight member of E at each step. In our problem,
the weights are always integers. The external loop of our algorithm (step 3), considers
every possible weight −s in decreasing order. For each s, steps 4 through 7 look for the
coefficients a1, . . . , am of a spline of S (i.e. a member j of E) that is linearly independent
of the splines φ1, . . . , φp already chosen. The “elements already chosen” are the splines
φ1, . . . , φp (more precisely the coefficients vectors of those splines in terms of the basis ψ.
Thus, the correctness of the algorithm is proved by Edmonds in [5, paragraphs (18 – 28)].
�
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5 Efficiency

The efficiency of this algorithm depends on how many times the test of step 6 is performed.

The two outer for loops of Algorithm 1 enumerate all 2n subsets K of Cd, where n is
the number of cells in the mesh, in order of increasing cardinality. For each iteration of the
for loops, the test of the while loop is executed tK + 1 times, where tK is the number of
elements ξ found for that set K. Since the sum of all tK is m, the dimension of the space
〈ψ〉, the algorithm runs in time (2n +m)T where T is the time to buid and solve the system
(4) – which is O(m3).

6 Optimizations

Algorithm 1 can be improved in many ways. As we shall see for most cases of interest, its
running time can be reduced from exponential to polynomial, and eventually linear, in the
size of the mesh.

6.1 Early stopping

For one thing, we can stop as soon as p = m, since step 3 will then certainly fail for all
K. Thus, if S has a basis whose maximum support size is t, the algorithm runs in only
(n0 )+ · · ·+(nt )+ t iterations of step 6, which is O(nt). Since the cost of one iteration of steps
6 . . . 9 is O(m3), the total time will be O(ntm3).

6.2 Restriction to connected subsets

We can improve the efficiency even further by observing that some sets K cannot possibly
provide a new element ξ. A subset K ⊆ C is connected with respect to a spline space S if
for every non-trivial partition K1, K2 of K we have

S[K] 6= S[K1]⊕ S[K2] (6)

Theorem 1 In a basis of minimum weight, the support of each element φi is a connected

set of cells of C.

Proof: Let φ a basis of minimum weight for a space S. Suppose for contradiction that
suppφi is not connected, that is, suppφi is a set K = K1 ⊎ K2 satistying (6). Then φi can
be written as φ′ +φ′′ where φ′ ∈ S[K1] and φ′′ ∈ S[K2]. Therefore, if we remove φi and add
φ′ and φ′′, the resulting set still generates the space S. Since this substitution increases the
number of elements by one, there must be some linear dependence between the elements of
the resulting basis, that is, there is an element φ∗ that is a linear combination of φ′ and/or
φ′′ and/or other elements φj.

If we exclude this element φ∗, we are left with a basis for S whose total weight is
wt(φ)−# supp(φi)+# supp(φ′)+# supp(φ′′)−# supp(φ∗) = wt(φ)−# supp(φ∗) < wt(φ)
contradicting the hypothesis that φ had minimum weight. �
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6.3 Finding connected subsets of cells

Suppose that the space S is defined in terms of a piecewise basis β of size t (such that
# supp(βi) = 1 for every i) by a set of r homogeneous linear constraints

s ∈ S ⇔
t−1
∑

j=0

Rijaj = 0, i = 0, 1, . . . , r − 1 (7)

where a0, . . . , at−1 are the coeficients of the spline s relative to β, and R is an r × t
matrix. These constraints may be continuity conditions between adjacent cells, boundary
conditions, etc.

Consider the graph G derived from the matrix R as follows. Each vertex of G is a cell
of C, and there is an edge between two vertices c′, c′′ ∈ C iff there is some equation that
relates the coefficients of those two cells, that is, a row of R which has two nonzero elements
Rij′ and Rij′′ , where supp(βj′) = {c′} and supp(βj′′) = {c′′}.

Theorem 2 For any K ⊆ C, if the induced graph G[K] is disconnected, then K is discon-

nected relative to the spline space S.

Proof: Suppose the graph G[K] is disconnected, that is, K = K1 ∪ K2, K1 6= ∅, K2 6= ∅,
and there is no edge of G between K1 and K2. Then we can rearrange the rows of matrix
R and the basis elements β so that

R =





A1 0 B1

0 A2 B2

0 0 A3



 (8)

where A1 and B1 represent the equations that involve a cell of K1; A2 and B2 those that
involve a cell of K2; and A3 those that do not involve any cell of K.

In the subspace S[K], all coefficients aj such that supp(βj) /∈ K are zero. Therefore, we
can describe S[K] by a set of equations.





A1 0 0
0 A2 0
0 0 I









a1

a2

a3



 =





0
0
0



 (9)

where the sub-vectors a1 and a2 are the coefficients corresponding to elements βi in K1 and
K2, respectively, and a3 are the coefficients corresponding to elements in K. Similarly, the
splines of S[K1] are the solutions of:





A1 0 0
0 I 0
0 0 I









a1

a2

a3



 =





0
0
0



 (10)

and, the splines of S[K2] are defined by:




I 0 0
0 A2 0
0 0 I









a1

a2

a3



 =





0
0
0



 (11)
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It follows that an arbitrary spline of S[K] is an arbitrary spline of S[K1] added to an
arbitrary spline of S[K2], that is, S[K] = S[K1]⊕ S[K2]. �

In light of Theorem 2, we can speed up Algorithm 1 by considering only subsets K ⊆ Ck

that are connected in the graph G. This version is shown in Algorithm 2.

Algorithm 2

1: p← 0; φ← (); set Mφ to a 0×m matrix.
2: q ← m; θ ← ψ; set Mθ to the m×m identity matrix.
3: s← 1
4: while p < m and s 6 n do

5: for each connected subset K ⊆ Ck of G with #K= s do

6: while

7: there is an element ξ in 〈φ, θ〉 with suppd ξ = K that is not in 〈φ〉
8: do

9: append ξ to φ, incrementing p and adjusting Mφ;
10: exclude some redundant θj from θ, decrementing q and updating Mθ;
11: end while

12: end for

13: s← s+ 1
14: end while

For many meshes of practical interest, there is a relatively small bound h on the number of
neighbors of each cell, independent of the total number n of cells. Moreover the constraints C
are usually continuity constraints that relate coefficients aj′ , aj′′ which are in adjacent cells.
Therefore the maximum vertex degree of the graph G is h, and the number of connected
subgraphs of G with s nodes is O(hsn). It follows that the cost of iteration of steps 7 – 10
is O(hsn). Therefore, total time will be O((hsn)m3), where s is the maximum support size
of any element in the minimum weight basis.

Alternatively, Algorithm 2 can be used to find the basis of minimum weight in the space
S whose element supports do not exceed a specified size s.

7 Examples

In this section we show four examples with meshes that are subsets of the unit regular square
grid. We consider the piecewise basis ξ which, in each cell c, has the following elements:

1u0
0

v
1

ξc
0 = (1− u)(1− v) ξc

3 = uv
ξc
1 = u(1− v) ξc

4 = u(1− u)
ξc
2 = (1− u)v ξc

5 = v(1− v)

where u and v are cell-relative coordinates as in the figure at left. This basis generates the
space P2[C] of all splines of total degree 2 over that mesh. Therefore, if C is a mesh with n
cells, each spline of P2[C] is defined by 6n coefficients ac

i where c ∈ C and i ∈ 0 . . . 5.
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In all four these examples we consider the subspace S = P2
1[C] of P2[C] that consists

of continuous splines with continous 1st derivatives. A spline in P2
1[C] is defined by the

following C1 continuity constraints between every two horizontally adjacent cells c′, c′′:































ac′

1 − a
c′′

0 = 0

ac′

3 − a
c′′

2 = 0

ac′

5 − a
c′′

5 = 0

−ac′

0 + ac′

1 − a
c′

4 + ac′′

0 − a
c′′

1 − a
c′′

4 = 0

ac′

0 − a
c′

1 − a
c′

2 + ac′

3 − a
c′′

0 + ac′′

1 + ac′′

2 − a
c′′

3 = 0

(12)

The first three equations are C0 continuity constraints while the last two impose the conti-
nuity of derivatives, assuming that the C0 constraints are met. Similar equations hold for
vertically adjacent cells.

The meshes C used in the examples are shown in figure 1.

(1) (2) (3)

(4)

Figure 1: The meshes C used in examples 1, . . . , 4.
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The following table summarizes the examples:

Example n m wtψ wtφ

1 5 10 46 30

2 7 12 76 42

3 14 19 204 84

4 10 11 101 60

Table 2: Summary of the examples.

where n = #C is the number of cells, m is the dimension of P2
1[C], ψ is the starting basis

for S and φ is the optimal basis.
Figure 2 shows the input basis ψ for example 1, found by solving the constraints (12)

by the method of appendix A. The input bases for examples 2 – 4 were found in the same
way. Figures 3–6 show the minimum-weight bases φ computed from each ψ by Algorithm
2. In all examples, note that some of the elements have the whole grid as support.
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Figure 2: Input basis ψ for the space P2
1[C] where C is the mesh of figure 1 (1).
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Figure 3: Minimum-weight basis φ for the space P2
1[C] where C is the mesh of figure 1 (1).
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Figure 4: Minimum-weight basis for the space P2
1[C] where C is the mesh of figure 1 (2).
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Figure 5: Minimum-weight basis φ for the space P2
1[C] where C is the mesh in the figure 1

(3).
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Figure 6: Minimum-weight basis φ for the space P2
1[C] where C is the mesh of figure 1 (4)

– Part 1.
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Figure 7: Minimum-weight basis φ for the space P2
1[C] where C is the mesh of figure 1 (4)

– Part 2.
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A Solving a homogeneous system

In this apendix we describe how to find all solutions of a system of homogeneous linear
equations Mx = 0, where M is an m× n known matrix and x is a vector of n unknowns.
First we reduce the system, by Gauss’s elimination method with exchange of columns, to
a system NPx = 0 where P is the column permutation matrix, and N has form shown in
figure 8.

q n−q

q

m−q

y
y

y

y

1

2

q

m

...
...

Figure 8: The reduced matrix N . Shaded elements are zero.

The reduced matrix has q ≤ min(m,n) nonzero rows followed by m− q null rows. The
first q rows and q columns are a diagonal matrix with nonzero elements along the diagonal.

For each k from 1 to n− q, we generate an independent solution vector y(k) by setting:

y
(k)
j ←























0, if q + 1 ≤ j ≤ n, j 6= q + k − 1

1, if j = q + k − 1
∑n

r=q+1 y
(k)
r Njr

Njj

, if 1 ≤ j ≤ q

(13)

1: for k ← 1, k ≤ n− q, incrementing k by 1 do

2: for j ← n, j ≥ 1, decrementing j by 1 do

3: if j ≥ q then

4: if j = q + k − 1 then

5: y
(k)
j ← 1

6: else

7: y
(k)
j ← 0

8: end if

9: else

10: y
(k)
j ←

∑n
r=q+1 y

(k)
r Njr

Njj

11: end if

12: end for

13: end for
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The set of all solutions to the system Mx = 0 are all linear combination of P−1y1, . . . ,
P−1y(n−q). The computations can be performed with integer (exact) arithmetic.
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