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Abstract

Most of existing techniques to estimate camera motion are based on analysis of
the optical flow. However, the estimation of the optical flow supports only a limited
amount of scene motion. In this report, we present a novel approach to estimate camera
motion based on analysis of local invariant features. Such features are robust across a
substantial range of affine distortion. Experiments on synthesized video clips with a fully
controlled environment show that our technique is more effective than the optical flow-
based approaches for estimating camera motion with a large amount of scene motion.

1 Introduction

The estimation of camera motion is one of the most important aspects for video processing,
analysis, indexing, and retrieval. Most of existing techniques to estimate camera motion
are based on analysis of the optical flow [1, 2, 3]. However, the estimation of the optical
flow, which is usually based on gradient or block matching methods, supports only a limited
amount of scene motion.

To address this problem, we present a novel approach for the estimation of camera
motion with a large amount of scene motion. Our technique relies on analysis of local
invariant features obtained from extrema in the scale space rather than on analysis of the
optical flow. Such features are robust across a substantial range of affine distortion.
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In order to validate our approach, we use synthetic videos sequences based on POV-Ray
scenes including all kinds of camera motion and many of their possible combinations. The
main advantage of such a synthetic test set is that the camera motion parameters can be
fully controlled. Further, we have conducted several experiments to show that our technique
is more effective than the optical flow-based ones for estimating camera motion with a large
amount of scene motion.

The remainder of the report is organized as follows. Section 2 presents our approach
for the estimation of camera motion. The experimental settings and results are discussed
in Section 3. Finally, Section 4 presents conclusions and directions for future work.

2 Our Approach

In presence of a substantial range of affine distortion, the methods for estimating camera
motion by analysis of the optical flow can fail [3]. To address this problem, we present
a novel approach for the estimation of camera motion based on the analysis of the local
invariant features. It consists of three main steps: (1) feature matching; (2) motion model
fitting; and (3) robust estimation of the camera parameters.

2.1 Feature Matching

The first step for estimating camera motion in video sequences is to extract and match
features between consecutive frames. Here, we use a framework to detect and describe local
invariant features in images, called Scale Invariant Features Transform (SIFT) [4]. This
approach is composed by four major stages: (1) scale-space peak selection; (2) keypoint
localization; (3) orientation assignment; and (4) keypoint description.

The scale-invariant features are efficiently identified by using a staged filtering approach.
The first stage identifies key locations in scale space by looking for locations that are max-
ima or minima of a difference-of-Gaussian function. Next, for each candidate keypoint,
interpolation of nearby data is used to accurately determine its position. Moreover, this
information allows to reject candidate keypoints that have low contrast or are poorly lo-
calized along an edge. Thereafter, it identifies the dominant orientations for each keypoint
using local image gradient directions. Finally, the method builds a local descriptor for each
keypoint based on the image gradients in its local neighborhood. To match keypoints from
two images, we use the Euclidean distance between the local descriptors. To ensure correct
match, the ratio of the distance for the best match and the second best match must be less
than 0.6 [4].

2.2 Motion Model Fitting

A camera projects a 3D world point into a 2D image point. The motion of the camera may
be limited to a single motion such as rotation, translation, or zoom, or some combination
of these three motions. Such camera motion can be well categorized by few parameters.
In our case, we use a two-dimensional affine model to estimate a parametric form for
describing the displacement of the video frame content from the correspondence between
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local invariant features. The affine model was employed in the following considerations.
First, the affine model is more resilient to noisy data. In addition, it can represent all of
the basic camera motions often used in video indexing.

If we denote the position in the first image by (x,y) and the corresponding position in
the second image by (Z, ), we can formulate the two-dimensional affine motion model as

()= ] (0)+(%)
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where {a;;}, t;, and t, are the motion parameters.

The parameter-estimation problem consists in finding a good estimate of the six param-
eters ({aix},tz,ty) based on a set of measured point correspondences. We denote a set of
points in the first image as {(z;, y;)} and their corresponding points in the second image as
{(Z4,7:)}. Since the point measurements are not exact, we cannot assume that they will all
fit perfectly to the motion model. Hence, the best solution is to compute a least-squares

fit to the data. We consequently define the model error E as the sum of squared distances
between the measured positions (#;, 9;) and the positions obtained from the motion model:

F = Z((aooxi + aop1y; + tx) — i’i)Q -+ ((aloxi + a11y; + ty) — QZ)Q (1)
7

To minimize the model error F, we can take its partial derivatives with respect to the
model parameters ({a;},t,,t,) and set them to zero. This gives the equation system

DYDY DY 0 0 0 1 / awo > T
ST 2P 2V 0 0 0 ap1 > i Tiyi
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which can be solved more easily by splitting the equation system into two independent
systems.

Finally, we can express the estimated parameters in another form more directly related
to the physically meaningful camera motion, as follows:

1 1
pan = tz, tilt = t,, div = 5(6100 +an),rot = §(a10 —ap1),

where the terms pan, tilt, div, and rot represent the motion induced by the camera op-
erations of panning (or tracking), tilting (or booming), zooming (or dollying), and rolling,
respectively.

2.3 Robust Estimation of the Camera Parameters

The direct least-squares approach for parameter estimation works well for a small number
of outliers that do not deviate too much from the correct motion. However, the result is
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significantly distorted when the number of outliers is larger, or the motion is very different
from the correct camera motion. Especially if the video sequence shows independent object
motions, a least-squares fit to the complete data would try to include all visible object
motions into a single motion model.

To reduce the influence of outliers, we apply a well-known robust estimation technique
called RANSAC (RANdom SAmple Consensus) [5]. The idea is to repeatedly guess a set of
model parameters using small subsets of data that are drawn randomly from the input. The
hope is to draw a subset with samples that are part of the same motion model. After each
subset draw, the motion parameters for this subset are determined and the amount of input
data that is consistent with these parameters is counted. The set of model parameters with
the largest support of input data is considered the most dominant motion model visible in
the image.

3 Experiments and Results

In order to evaluate our approach, we create a synthetic test set with four MPEG-4 video
clips! (640 x 480 pixels of resolution) based on well textured POV-Ray scenes of a realistic
office model (Figure 1) including all kinds of camera motion and many of their possible
combinations. The main advantage is that the camera motion parameters can be fully
controlled which allows us to verify the estimation quality in a reliable way.

Figure 1: The POV-Ray scenes of a realistic office model used in our synthetic test set.

The first step to create the synthetic videos is to define the camera’s position and
orientation in relation to the scene. The world-to-camera mapping is a rigid transformation
that takes scene coordinates py = (Tw, Yw, 2w) Of a point to its camera coordinates p, =
(Zc, Ye, 2¢). This mapping is given by [6]

pe = Rpw + T, (3)

where R is a 3 x 3 rotation matrix that defines the camera’s orientation, and T defines the
camera’s position.

LAll video clips and ground truth data of our synthetic test set are available at http://www.liv.ic.
unicamp.br/~minetto/videos/.
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The rotation matrix R is formed by a composition of three special orthogonal matrices
(known as rotation matrices)

cos() 0 —sin(w) 1 0 0 cos(y) sin(y) 0
R, = 0 1 0 Ry= 1|0 cos(B) sin(B) | R.=| —sin(y) cos(y) 0
sinfa) 0 cos(«) 0 —sin(8) cos(B) 0 0 1

where «, 3, are the angles of the rotations.
We consider the motion of a continuously moving camera as a trajectory where the
matrices R and T' change according to the time ¢, in homogeneous representation,

pe | _ | BR®) T{) || pw
KRRt g
Thus, to perform camera motions such as tilting (gradual changes in R,), panning
(gradual changes in R,)), rolling (gradual changes in R.), and zooming (gradual changes in

focal distance f), we define a function F'(t) which returns the parameters «, 3, v, and f
used to move the camera at the time t. We use a smooth and cyclical function
1 —cos(2nt/T)(0.5 —t/T) 5
0.263 ’ (5)
where M is the maximum motion factor and 7 is the duration of camera motion in units
of time. We create all video clips using the maximum motion factor M equals to 3° for
tilting («), 8° for panning (3), 90° for rolling (), and 1.5 for zooming (f).
Figure 2 shows the main characteristics of each resulting video sequence M;. The terms
P, T, R, Z stand for the motion induced by the camera operations of panning, tilting,
zooming, and rolling, respectively. The videos M3 and M4 have combinations of two or
three types of camera motions. To represent a more realistic scenario, we modify the videos
M, and My to have occlusions due to object motion.

F(t) = M=

Frames
1| 50 100 1?0 290 2?0 390 3?0 4(|)() 4{)0 5(|)1
1 : : | | 1 | | | 1 1
1| p \ T | R \ z |
9 | p \ T | R \ z |
gL PHT | THR | PR | P4Z | T4Z | ReZ | PITHZ | P4R4Z |
LU PH | TR | P4R | P42 | THZ | R#Z | P4THZ | PAR4Z |

Figure 2: The main characteristics of each video sequence (M;) in our synthetic test set.

We assess the effectiveness of the proposed method using the well-known Zero-mean
Normalized Cross Correlation (ZNCC) metric [7], defined by

ZNCC(F,G) = >(F(t) — F)(G() - G)
\/Zt (t) - ) Zt( (t) — )2

(6)
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where F(t) and G(t) are the estimate and the real camera parameters, respectively, at the
time ¢. It returns a real value between —1 and +1. A value equals to +1 indicates a perfect
estimation; and —1, an inverse estimation.

We compare our approach with the techniques proposed by Kim et al. [8] and
Minetto et al. [3]. The former estimates camera motion by using a least-squares fit to the
motion vectors extrated from MPEG bitstream. The latter uses a weighted least-squares
fit to the optical flow computed by using the well-known Kanade-Lucas-Tomasi (KLT) al-
gorithm [9].

The purpose of our experiments is to evaluate the effectiveness of different approaches
in estimating camera motion on a substantial range of affine distortion. We can vary the
amount of scene motion by using a sampling rate. Thus, we estimate camera motion between
temporally sparse frames.

Figure 3 shows the effectiveness achieved by all approaches on varying the amount of
scene motion by a proportion of the maximum motion factor M. Table 1 presents the
average time spent to estimate camera motion between two video frames. We performed
all experiments on Intel Core 2 Quad Q6600 (four cores running at 2.4 GHz), 2GB memory
DDR3.
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Figure 3: Effectiveness achieved by all approaches on varying the amount of scene motion.
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Table 1: Average time spent to estimate camera motion between two video frames.
Method Our Approach | Minetto et al. Kim et al.
Average Time (s) 0.234 0.423 0.006

In fact, the use of local invariant features for estimating camera motion with a substantial
range of affine distortion is more effective than the optical flow-based approaches. Moreover,
our approach is almost two times faster than the KLT-based method [3] to estimate camera
motion between two video frames.

Despite of the high computational efficiency presented by techniques based on MPEG
motion vectors, they support only a very small amount of scene motion. In addition, they
cannot be applied on all video formats neither for estimating camera motion in real-time
applications.

In order to show that our technique is suitable for real-time applications, we implement
a video player able to characterize different types of camera motions at the playing time?.
Figure 4 presents screenshots of our video player. The showed frames belong to video
recordings of a meeting of the Board of Trustees of the University of Campinas. On the top
left corner of each frame, there is a tag indicating which kind of camera motion is being
identified.

4 Conclusions

In this report, we present a novel approach to estimate camera motion based on analysis
of local invariant features. Such features are robust across a substantial range of affine
distortion.

We have provided several experiments showing that our technique is more effective
than two baselines (one based on the KLT algorithm [3] and other based on MPEG motion
vectors [8]) for estimating camera motion with a large amount of scene motion. Furthermore,
we show that our approach is suitable for real-time applications.

Future work includes the evaluation of other interest point detectors, motion models, and
robust estimation techniques. In addition, we want to investigate the effects of embedding
the proposed method into video recording devices for real-time applications.
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Figure 4: Screenshots of our video player. FEach row is associated to a kind of camera
motion: from top to bottom, we have panning to left, panning to right, tilting up, zooming
out, panning to right with zooming out, and tilting down with zooming in.
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