00 INSTITUTO DE COMPUTACAO
=001 UNIVERSIDADE ESTADUAL DE CAMPINAS

Design, Verification and Implementation of
Exception Control Flows for Product Line
Architectures

Patrick H. S. Brito Nelio Cacho
Alessandro Garcia Cecilia M. F. Rubira
Rogério de Lemos

Technical Report - 1C-09-11 - Relatério Técnico

March - 2009 - Marco

The contents of this report are the sole responsibility of the authors.
O contetdo do presente relatério € de Gnica responsabilidade dos autores.

Design, Verification and Implementation of Exception Control
Flows for Product Line Architectures

Patrick H. S. Brito! Nelio Cacho? Alessandro Garcia?
Cecilia M. F. Rubira!

Rogério de Lemos®
! University of Campinas (UNICAMP), Brazil 2 Lancaster University, UK
{pbrito, cmrubira}@ic.unicamp.br {cacho, garcia}@lancaster.ac.uk

3 University of Coimbra, Portugal
rdelemos@dei.uc.pt

Abstract

Separation of concerns is one of the overarching goals of exception handling in or-
der to keep separate normal and exceptional behaviour of a software system. In the
context of software product lines, this separation of concerns is important for designing
software variability related to different exception handling strategies. This technical
report presents a tool-supported solution for designing, verifying and implementing ex-
ceptional behaviour variability into product lines architectures. Our solution is based
on: (i) the adoption of an exception handling model that supports explicit exception
control flows and pluggable handlers; (ii) a strategy for designing and automatically ver-
ifying the selection of variation points related to exception control flows and handlers;
and (iii) an aspect-oriented implementation for exceptional behaviour variability. We
evaluate qualitatively and quantitatively our solution through a case study targeting a
real mobile application.

1 Introduction

Fault tolerance is the ability of a system to continue delivering its service despite the presence
of faults [3]. The provision of fault tolerance relies on the existence of redundancies, which
can be implicitly incorporated through the usage of exception handling for supporting error
detection and handling. The importance of exception handling is attested by the fact that
many mainstream programming languages, such as, Java, Ada, C++ and C#, implement
exception handling mechanisms. These languages provide constructs to indicate the occur-
rence of an error (raise or throw an exception), and means to incorporate recovery actions
(handle the exception), including error handling. However, during system design special
care has to be taken to avoid entangling normal and exceptional specifications, which can
increase system complexity, and compromise system analysis and reuse. Separation of con-
cerns is one of the overarching goals of exception handling in order to keep separate normal

2 Brito et al.

and exceptional behaviour of a software system. This separation promotes both adaptabil-
ity and reuse of normal and error handling code, and it can also lead to an error handling
strategy that supports plugging and unplugging of handlers. Moreover, it is also desirable
to consider the exceptional control flow from a global perspective in order to promote the
rationale of the system’s exceptional behaviour. In the context of software product lines
(SPL), this separation of concerns between normal and exceptional behaviour is particularly
adequate for designing software variability related to different exception handling strategies
to perform error recovery. The exceptional behaviour variability should consider both the
selection of different exception control flows and different exception handlers according to
the resources available for each product. This technical report presents a tool-supported so-
lution for incorporating exception handling into the development of fault-tolerant software
Systems.

One of the main artefacts in the contexts of a SPL is the product line architecture (PLA),
which explicitly represents the commonalities and variabilities of architectural elements and
their configurations. While abstracting away from system details, architectures provide a
global system perspective that is key for the explicit representation of exceptional control
flows, and structural separation between the representation of normal and exceptional be-
haviour. In a PLA, the commonalities of architectural elements and their configurations
are reused in different products, while the variabilities are resolved through design decisions
related to the choices captured by the PLA. The contribution of this technical report is the
provision of tool support for the architectural design and implementation of fault tolerant
software, which employs a novel exception handling model. This new model, explicitly
represents exception control flows, and promotes the reuse of the exception handlers of the
software. The tool support integrates the architectural design of the software system with
the verification process of the exception control flows and handlers. As part of the tool,
the variability related to the exceptional behaviour is implemented using an aspect-oriented
solution.

The rest of this technical report is organised as follows. Section 2 discusses the liabilities
of conventional models for exception handling. Section 3 presents the exception handling
model adopted as part of our solution. Section 4 describes the target system that will
be used throughout the technical report for exemplifying and evaluating our contribution.
Section 5 describes the tool-support for incorporating exceptional behaviour during the
development of software systems. Details about the formal representation and verification
of exception flows in software architectures are presented in Section 6. Section 7 presents
the implementation of our exception handling mechanism using an aspect-oriented solution.
In Section 8, the proposed exception handling is evaluated through a quantitative and
qualitative comparison between two products derived from the same SPL, but with different
exceptional behaviours. Section 9 describes some related work. Finally, Section 10 provides
some concluding remarks, and identifies future directions of research.

Exception Control Flows for Product Line Architectures 3

2 Problem Definition

This section discusses the liabilities of exception handling mechanisms in terms of their
limited separation of concerns between the normal and exceptional behaviour (Section 2.1),
and implicit exceptional control flows (Section 2.2). We argue that in the context of SPLs
it is even more necessary to overcome these limitations.

2.1 Limited Separation of Concerns

Exception handling contexts (EHCs) are regions in a program where the same exceptions
are always treated in the same way. For this, EHCs can have a set of associated handlers,
which are activated when exceptions are raised within the context. In Java, try blocks
define EHCs, and catch blocks define handlers.

Separation of concerns is one of the overarching goals of exception handling, ans is
specially important in the context of software product lines (SPL). In fact, one of the main
motivating factors for the appearance of exception handling mechanisms was to separate the
normal and exceptional behaviuor [24, 26]. Nonetheless, the kind of separation promoted
by the exception handling mechanisms of most mainstream programming languages brings
only limited advantages [9, 12, 20]. In particular, it hinders in explicitly separating the
implementation of the normal code and its respective exception handlers.

Since fault tolerance activities are intrinsically an application-specific issue, it is ex-
tremely difficult to reuse exception handlers that implement activities of system recovery.
The high coupling existing between the normal and exceptional behaviour makes it diffi-
cult the construction of reliable SPLs, since it does not facilitate the changing of handlers
according to the necessity of specific products. It is necessary to have a “low-coupling”
exception handling approach that makes it possible the specification of pluggable exception
handlers since the system architectural design, where structural properties can be verified,
until the system implementation, in order to promote the reuse of source code for the normal
behaviour.

2.2 Implicit Exception Control Flows

In our view, the most serious problems with exception handling stem from the fact that it
is a global design issue [28]. Existing exception handling mechanisms do not appropriately
take this into account [16]. They are based on the implicit assumption that it is enough to
specify the places where exceptions are raised and the places where they are handled. The
main consequence of this limitation is that exceptions introduce implicit control flow [7, 22].
If something changes between the raising and handling of exceptions, the control flow in
apparently unrelated parts of the system may change in surprising ways [28]. This creates
two direct complications: (i) it becomes difficult to discover where the exceptions raised
within a given context will be handled; (ii) it is also difficult to trace a handled exception
to the place where it was originally raised. In other words, traditional exception handling
mechanisms provide constructs for raising and handling exceptions [15]. However, not much
support is provided to the task of understanding the paths the exceptions take from the
raising site to the handling site [22, 27, 28|.

4 Brito et al.

Some strategies, such as the implemented by Java, try to alleviate these problems by
supporting the definition of an explicit exception interface. They require the specification of
a list of unhandled exceptions that each operation signals to its clients, otherwise, an error is
detected. The main problem with this approach is that it hinders software maintenance [31].
If a new exception is added to the exception interface of a single operation at the bottom of
the call chain, the exception interfaces of all operations through which the new exception
will be propagated also have to be updated. For systems with long operation call chains,
this is a time-consuming and error-prone task [31, 28], causing severe problems on the
system architecture evolution [23]. Moreover, in the architectural point of view, this local
specification of exception propagation hinders the traceability of the exception, which can
be mapped to a different type during the propagation.

The bottom line is that, in general, outside of the raising and handling scopes, exceptions
work as an undesirable (and difficult to track) side-effect to the normal behaviour. Many of
the problems reported in the literature pertaining to exception handling are related to the
inability of properly modularizing it, so that the interface between exceptions/exception
handling and the normal code is well-documented. Approaches such as exception interface
alleviate this problem, but only to a limited degree. Besides, they create new problems of
their own. To the best of our knowledge, there are no general approaches to modularize error
handling code, so that it can be understood and maintained separately from the normal
code.

In the context of software product lines (SPL), the explicit separation between the nor-
mal code and the exception handlers is even more necessary. This low-coupling is necessary
for specifying the variabilities between the different products of the same SPL. Depending
on the design decisions involved in each product, different strategies for exception handling
can be implemented. This “exceptional variability” depends on the resources available in
each product, and is related to both the selection of proper handlers, and the existence of
different exception control flows.

3 An Exception Handling Model for PLA

As discussed earlier, it is necessary to adopt an approach to (i) separate normal code from
exception handling code, and (ii) analyse exception flows from an end-to-end perspective.
In this context, an exception handling model is the core of our approach since it defines
the interaction between the sites raise and handle exceptions. The model presented in this
section extends the Java model by introducing two new concepts: explicit exception chan-
nels and pluggable handlers. We describe these concepts in the following two subsections.
Then, in Sections 6 and 7, we present the proposed model used at the architectural and
implementation level, respectively.

3.1 Explicit Exception Channels

An explicit exception channel (channel, for short) is an abstract duct through which ex-
ceptions flow from a raising site to a handling site. More precisely, an explicit exception
channel (FEC) is a 5-tuple consisting of: (i) a set of exception types E; (ii) a set of raising

Exception Control Flows for Product Line Architectures 5

sites RS, (iii) a set of handling sites HS; (iv) a set of intermediate sites S; and (v) a function
ET that specifies the channel’s exception interface. Fxzception types, as the name indicates,
are types that, at runtime, are instantiated to exceptions that flow through the channel.
For simplicity, we use the term “exception” to refer to both exceptions (runtime elements)
and exception type (compile-time element). When necessary, we make the distinction ex-
plicit. The raising sites are loci of computation where exceptions from F can be raised.
The actual erroneous condition that must be detected to raise an exception depends on
the semantics of the application and on the assumed failure model. For reasoning about
exception flow, the fault that caused an exception to be raised is not important, just the
fact that the exception was raised. The handling sites of an explicit exception channel are
loci of computation where exceptions from E are handled. Even when the handler raises
exceptions, it is not considered a raising site. In languages such as Java, both raising and
handling sites are methods.

If an explicit exception channel has no associated handlers for one or more of the ex-
ceptions that flow through it, it is necessary to define its exception interface. The latter is
a statically verifiable list of exceptions that a channel signals to its enclosing context, simi-
larly to Java’s throws clause. In our model, the exception interface is defined as a function
(ExlaFEz2) that translates exceptions flowing (Fx1) through the channel to exceptions
signalled (Ez2) to the enclosing exception handling context (EHC).

Raising and handling sites are the two ends of an explicit exception channel. Handling
sites can be potentially any node in the method call graph that results from concatenating
all maximal chains of method invocations starting in elements from HS and ending in
elements from RS. To keep the model simple, we do not consider a handling site that
throws exceptions a raising site. All the nodes in such graph that are neither handling
nor raising sites are considered intermediate sites. Intermediate sites comprise the loci of
computation through which an exception passes from the raising site on its way to the
handling site. Intermediate sites in Java are methods that indicate in their interfaces the
exceptions that they throw, i.e., exceptions are just propagated through them, without side
effects to program behaviour. Note that the notions of handling, raising, and intermediate
site are purely conceptual and depend on the specification of the explicit exception channel.

3.2 Pluggable Handlers

A pluggable handler is an exception handler that can be associated to arbitrary EHCs,
thus separating error handling code from normal code. A single pluggable handler can
be associated, for example, to an operation in a component Cl, two different operations
in another component, C2, and all operations in a third component C3. In this sense,
they are an improvement over traditional notions of exception handler. For example, the
exception handling model of Guide [17] allows one to bind handlers to blocks, methods,
classes, and exceptions, but not all of them at the same time! Another difference is that a
pluggable handler exists independently of the EHCs to which it is associated. Therefore,
these handlers can be reused both within an application and across different applications.

6 Brito et al.

4 Description of the Target System

In the following, in order to exemplify and evaluate our contribution, we present as a case
study a real software application, called MobileMedia [14]. MobileMedia is a SPL of a
mobile application that manipulates photo, music, and video on mobile devices, such as
mobile phones. The application uses various technologies based on the Java ME platform,
such as SMS, WMA and MMAPI.

We believe that this application is representative of how exception handling is typically
used to deal with errors in real software development efforts for two reasons. First, Mobile-
Media encompasses a large number of exception handlers that implement diverse exception
handling strategies ranging from trivial to sophisticated. Second, they present heteroge-
neous crosscutting relationships involving the normal code, the handler code, the clean-up
actions, and other crosscutting concerns.

Figure 1 presents a simplified view of the feature model of MobileMedia, following the
representation proposed by Ferber et al. [13]. The core features of the MobileMedia are:
Create/Delete Media, Media (photo, music or video), Label Media, and View/Play Media.
The multiple features are just the types of media supported: Photo, Music, and/or Video.
Finally, the optional features are: send photo via SMS (SMS for short), Copy Media, and
set favourite media (Favourites). The core features of MobileMedia are applicable to all
the mobile phone devices that are J2ME enabled. The optional and alternative features
are configurable on selected mobile phones depending on the API support they provided.
MobileMedia was developed for a family of four brands of devices, namely Nokia, Motorola,
Siemens, and RIM.

MobileMedia
‘ Media ‘ ‘ Favourites H ﬁgg% H SMS ‘ ‘Mar':{algiirient
=t [
: ; Create/ || Label ||View/Play
‘ Photo H Music H Video ‘ ‘ Delete H Media H Media ‘
Legend:

‘ Feature \Mandatory \OOptionaI AMultiple ‘

Figure 1: Simplified feature model of the MobileMedia SPL

4.1 Specification of the PLA

The software architecture of the MobileMedia SPL is mainly determined by the use of the
Model-View-Controller (MVC) architectural pattern [5]. The exception handling code for
the Java implementation followed the design approach described in detail elsewhere [28].
Figure 2 presents a representative partial view of software architecture. The three grey
boxes encompass components that realise each of the three roles of the MVC pattern,
namely model, view, and controller. Figure 2 also relates the architectural elements with
the features in the feature model (Figure 1). This is done by the circles on the left top of the
architectural elements. For instance, the SMS on the top of the SMS Controller (Figure 2)

Exception Control Flows for Product Line Architectures 7

indicates that this element contributes to the implementation of the feature SMS in the
feature model (Figure 1).

View

EMS> 2]

<<component>> <<component>> <<component>>
SMSScreen PhotoViewScreen || MediaListScreen

O @® e

Controller |

EMS> & || csms> Phote> ¢
<<component>> <<component>> <<component>>
SMSController MediaController || SendPhotoController

—5

Model

<<component>> <<component>>

AlbumData MediaAccessor

T
_ 2
util
<<component>>
MediaUtil

Figure 2: Product Line Architecture of the MobileMedia SPL

4.2 Exception Flows at the PLA

For better illustrating the exceptional behaviour of MobileMedia, Figure 3 depicts four
of its 26 exception flows. The figure presents five components: MediaUtil, MediaAccessor,
AlbumData, MediaController, and PhotoViewController. Each component is divided in terms
of its normal behaviour (white part) and its error handling code (grey part). The ellipses
inside the components represent methods. A black arrow from a to b indicates that method
a invoked method b. A dashed arrow in the opposite direction indicates that, during the
execution of b, an exception can be raised and this exception will be signalled to a. As would
be expected, each arrow also indicates that control flow is passed from one method to the
other. We also explicitly indicate the types of exceptions that the components encounters
and signals.

We can define several different explicit exception channels in terms of the elements
of Figure 3. For example, let EEC2 be the explicit exception channel defined by the tuple
{{InvalidArrayFormat}, {mu.getImageInfoFromBytes() }, {ma.loadlmageDataFromRMS()},
{ad.getImages(), mc.showImageList()}, {}}. Only exception InvalidArrayFormat is raised
in this channel. Explicit exception channel FEC?2 has method mu.getImageInfoFromBytes ()
as its sole raising site and ma.loadImageDataFromRMS () as its only intermediate site. Meth-
ods ad.getImages () and mc.showImageList () are handling sites, since pluggable handlers
h2 and h& are bound to them, respectively. The latter catches exception InvalidArrayFor-
mat and maps it to exception UnavailablePhotoAlbum, whereas the former catches exception
UnavailablePhotoAlbum and stops its propagation. It is important to stress that method
ad.getImages () is not an intermediate site because it is associated to a pluggable handler.
FEEC?2 does not define an exception interface, as it includes handlers for all of its excep-

8 Brito et al.

g .

|
Controller !
i
MediaC (mc) ﬁ am &] v ompﬂm“b>(wc$):‘ :

L Handle Handle h3 .
ommand Unavailable i
MP ofoAlbum % may |

> i
Il

[not SVIS] } . - !
[SMS] ~ ; [SMS] Unavailable !
‘m [not SMS]! ™ PhotoAlbum |
i o ;

odel

etimageFrol
I Retoisions 2
ereateNewPhote
e e
getimages() getimages()

el

may ImageNot EEC4 } 9 ge
nfopy [Found® |~ ~ = ° 0 a
[ew EEC eat oo i
< Rbam > | In—vaﬁdF'hot ; o
L 5 cadimageData Legend:
@Albumrlame FromR%llS() 9

\, Normal request

S

<<compbnent>> N3] * Exception flow
MediaUtil (mu) E‘ﬁ & Exception type

etimagelnfo InvalidArray _EEC2 %etlmagel o M Handler
romBytes() ‘Fo’rm‘% EEC3 romBytes(|

Operation

Figure 3: Control flow among components

tions. In total, the figure indicates three other explicit exception channels. It is important
to notice that there is a variation point specified between FEC2 and EECS3. It guaran-
tees that a different exception flow (and handler) is activated when feature SMS is being
used. Regarding FECY, since it has no handling site, it should include ImageNotFound
in its interface. It is defined by the tuple ({ImageNotFound}, {ma.getImagelnfo()}, {},
{ad.getImageFromRecordStore()}, {ImageNotFound o ImageNotFound}).

Basically, this model provides the means to specify, in a local manner, non-local infor-
mation pertaining to exception flows. For example, in Java, to implement explicit exception
channel EEC2, it would be necessary to: (i) include InvalidArrayFormat in the exception
interface of mu.getImageInfoFromBytes() and ma.loadImageDataFromRMS(); (ii) include
UnavailablePhotoAlbum in the exception interface of ad.getImages(); and (iii) to imple-
ment try-catch blocks in methods ad.getImages () and mc.showImageList (). This is not
a large amount of work, but the information about the exception that mu.getImageInfoFromBytes ()
signals and that ad.getImages() and mc.showImagelList () handle is scattered throughout
four different methods.

5 A Tool-Supported Architecture-Centred Development Pro-
cess

In our approach, the software architecture is considered as first-level unit, guiding the
development from the specification to the implementation of the application. An overview of
the development method is shown in Figure 4. Activity 1 is responsible for the specification
of the software architecture using a CASE! tool. After that, the graphical representation
of the software architecture should be exported to the XMI format (Activity 2), which

! Acronym for Computer Aided Software Engineering.

Exception Control Flows for Product Line Architectures 9

is also supported by the CASE tool. Then, the XMI specification is used as input for
automatically generating the formal specification of the software architecture (Activity 3).
Basically, this activity consists on an automatic model transformation from UML (XMI
files) to B-Method and CSP. The are two UML artefacts as input: a UML component
diagram representing the software architecture, and a UML sequence diagram representing
the interaction between architectural elements. Activity 4 is the formal verification of the
software architecture, in order to identify and remove design faults related to the exception
flow and the selection of features of the SPL. Activity 5 consists on the specification of the
interactions amongst architectural elements, which is represented through a sequence graph.
Afterwards, in Activity 6, this graph is used for generating integration and robustness test
cases.

$sttem requirements
H[1-Specification of the software architecture }

UML component diagram & Poseldon [Poseidon UML [\
UML sequence diagram

2-Export the UML specifications to the XMI format}
lXMI Specification of the SA

[3—Generate the formal model in B-Method and CSP }
lB—Method & CSP specifications of the SA

{4—Verification of the architectural exception flows }

J:en'ﬁcation results ProB M(;del checker[\

[property violation]

[no property violation] | specifications of the SA

{ 5-Representation of architectural interactions]

J/mteractlon graph
———————————— % 6-Generation of the test cases}

unit,_integration and
robustness test cases

Not yet automafed
(tool under development)

———————————————— { 7-Generation of the EJFlow source-code

Jaca case tool [\ \Lexcegtian flows compliant with EJFlow
(robustness testing) |- .

report of corrections

8-Execution of test cases

test results
[problems during validation] s [validation OK]
report of errors deployable system

9-Fix the source code

O}

Figure 4: A Tool-Supported Process for Modelling Exception Control Flows

With the system properly verified and the test cases already generated, Activity 7
consists on the source code generation of the exception flow according to the notation
presented in Section 7. In Activity 8, the source code should be validated against its
specification through the execution of the previously generated test cases. Finally, if any
faults are identified during the testing, they have to be fixed in Activity 9.

10 Brito et al.

6 Formal Verification of Exception Control Flows

6.1 Formal Representation of the PLA

For the representation of the PLA, shown in Figure 2, the B-Method is used for specifying
the structure of the PLA, while CSP is employed for specifying its behaviour. It is important
to know that the formal specification is automatically generated from XMI files representing
the software architecture (see Section 5). The adoption of B-Method and CSP was mainly
motivated by the explicit separation between the structural and behavioural specifications.
We claim that this specification facilitates the comprehension of the formal model, as well as
its adjustment for running extra verification. Moreover, the existence of a compliant model
checker tool (ProB [19]) was also considered. For length constraints, the details about the
formal models are not presented in this technical report.

Regarding the structural specification, we have defined a hierarchy of B-Method ma-
chines, shown in Figure 5, that explicitly separates the specification of the feature model
and the specification of the PLA. Following ProB notation, the rectangles represent B-
Method machines, and the arrows represent relationships between them. The featureTypes
and plaTypes machines contain sets that store the data types necessary for representing
the feature model and the PLA, respectively. The featureModel machine uses the data of
featureTypes to represent the feature model presented in Figure 1 in terms of its variants,
and the relations among features. The pla machine uses the data of plaTypes, and the
information of the feature model (featureModel) to structure the PLA presented in Figure 2
in terms of its architectural configuration, explicit exception channels, and the respective
variation points. The uses relationship means that the featureModel and pla machines can
refer, respectively, to the shared sets of featureTypes and plaTypes for defining its invariants.

It is important to stress that the channels are explicitly represented following the excep-
tion model presented in Section 3. For this, the pla B-Method machine defines relations for
representing each element of the channels’ five-tuple: raised exceptions, raising sites, han-
dling sites, intermediate sites, and functions of explicit propagation. Moreover, the formal
model also represents the exception mappings during the exception flow, which is important
to provide traceability during the model checking process, in order to identify architectural
mismatches.

For representing the variabilities associated to the exceptional behaviour, the formal
model also associates the exception channels and handlers to decisions of the feature model.
For example, in the case of EEC2 and FECS3 channels presented in Figure 3, the formal
model of the MobileMedia case study represents both channels. But when the SMS feature
is not selected, EEC2 is considered active, and EEC3 inactive, and the opposite occurs
when SMS feature is selected. The same occurs with architectural elements, the respective
interfaces, and architectural configurations.

The behavioural specification of the PLA is obtained by restricting the pla B-Method
machine with a CSP specification associated to it. This CSP specification defines the
interactive behaviour between the architectural elements, including requests, responses and
error signalling at the software architecture.

Exception Control Flows for Product Line Architectures 11

plaTypes
featu_reTy pes SETS: archElements,
SETS: features, . "
. interfaces, exceptions,
variants,
variantTypes excepChannels,
iationPoints, vpType
\<<uses>> \<<uses>>
featureModel pla

VARIABLES: archConfig,
elem_interf, numRedundancies,
exceptionChannels,
variationPoints,
selectedFeatures

VARIABLES:
featureDepends,
featureExclusions,
variantRelations

\ <<uses>>

Figure 5: Hierarchy of B-Method Machines

6.2 Properties of Interest

We have defined three complementary categories of properties to be verified: (i) decision
checking that checks the consistency between the variants of the feature model and the
variation points of the PLA, according to the respective decision model; (ii) invalid channels
checking that checks the consistency between the exceptional flows specified in the PLA
and the structural restrictions of the software architecture; and (iii) exceptional architectural
mismatches checking that checks the incompatibility between the exceptions propagated
from provided interfaces and the respective exceptions expected in required interfaces.

The decision checking consists of two complementary checks: (i) feature consistency,
which verifies the integrity of the selected features when compared with the rules defined
in the feature model (Figure 1); and (ii) structural consistency, which verifies the integrity
of the software architecture concerning the selected features. An example of a violation
of the feature consistency would be the non-selection of the MediaManagement feature,
which is mandatory according to the feature model (Figure 1). An example of a violation
of the structural consistency would be the existence of the SMSController component at
the software architecture when the feature SMS is not supposed to be selected. We have
defined a total of six consistency properties, which are verified for the featureModel B-
Method machine. The properties of structural consistency is specific for each PLA, and is
verified for the pla B-Method machine. In the context of the MobileMedia case study, we
have specified a total of 24 properties, one for each possible decision of the product line
architecture. These decisions concerns the possible selection scenarios of alternative and
optional features (see Figure 1).

The objective of invalid channels checking is to assess if all the exceptional flows can
actually occur in the PLA. This checking is conducted in two complementary perspectives:
(i) verification of the architectural configuration, in order to identify architectural elements
that, although should be part of a flow, it cannot be as a consequence of a missing depen-
dency in the architectural configuration; and (ii) verification of the exceptional masking,
in order to identify some architectural elements that, although should be part of a flow,
it cannot be as a consequence of exception masking before it should happen (impossible
propagation). We have specified four properties for verifying invalid channels.

The exceptional architectural mismatches checking focus on the exception propagation
between architectural elements, and intends to be sure that all the exceptions propagated
from an element to another is proper interpreted. In this way, the propagated exception
should either be the same, or an explicit conversion should be specified. Since the be-

12 Brito et al.

havioural specification states that exceptions should be propagated until the end of the
flow, in case of exceptional architectural mismatches, the flow is obliged to stop in an
unpredictable way. The model checker detects these mismatches as deadlocks.

7 Exception Flows: From Architecture to Implementation

This section presents EJFlow [6], an AspectJ extension that implements the proposed ex-
ception handling model. EJFlow provides means for developers to define explicit exception
channels and pluggable handlers in terms of the abstractions supported by AspectJ, namely,
pointcuts, advice, and inter-type declarations [18]. More specifically, we define a new point-
cut designator, a new kind of advice, and a new inter-type declaration. The pointcut (Sec-
tion 7.1) defines explicit exception channels in terms of the exceptions that flow through
them. The new advice (Section 7.2) implements pluggable handlers and, consequently, han-
dling sites. The inter-type declaration (Section 7.3) allows one to specify the exception
interfaces of explicit exception channels. Intermediate sites are computed automatically at
compile time by the EJFlow compiler.

7.1 Defining Explicit Exception Channels

EJFlow provides a new pointcut designator, echannel, to support the definition of explicit
exception channels. This pointcut designator takes a formal parameter, et, consisting of
the name of an exception type. It matches any join point where the raised exception
is a type of et. In the EJFlow pointcut language, named pointcut expressions built up
using the echannel designator are considered explicit exception channels, as described in
Section 3.1, where the name of the pointcut expression represents the name of the channel.
As a first example, the following simple pointcut declares an initial version of channel EEC'1
(Figure 3):

pointcut EEC1():echannel(InvalidPhotoAlbumName)

Here, the pointcut matches any statements that may signal exception InvalidPhotoAl-
bumName. Furthermore, EJFlow performs a static analysis [29] on the program’s method
call graph, in order to identify the raising and intermediate sites of a given explicit excep-
tion channel. The implementation of echannel attempts to locate methods that raise the
exception supplied as argument and considers them raising sites. A method can only be
considered a raising site if the act of raising the exception is not a consequence of another
exception, neither an implicitly propagated one nor an exception raised by a handler. The
analysis then proceeds upwards, through the method call graph, considering every method
to be part of the explicit exception channel, either as intermediate or handling sites. For
the example of Figure 3, the method ma.createNewPhotoAlbum() is identified as raising
site, and ad.createNewPhotoAlbum(), and mc.handleCommand () as either intermediate or
handling sites. In summary, EFEC1 matches all calls through which exceptions that were
raised as a result of the execution of method ma.createNewPhotoAlbum() flow, including
calls to methods ad.createNewPhotoAlbum(), and mc.handleCommand ().

Exception Control Flows for Product Line Architectures 13

As mentioned in Section 3, exhaustive definition of exception types et can impair the
usefulness of our approach. Hence, echannel supports AspectJ patterns to match excep-
tions related to a single class, a full class hierarchy, a class with a wildcard, or a combination
of classes using logical operators. Therefore, rather than defining channels for exceptions
SocketException, FileNotFoundException, EOFException, and so on, one can use just
echannel (I0Exception+) to match all subtypes of I0Exception.

An explicit exception channel like the one defined above is too general to be useful. It is
possible to specify more clearly-defined channels by explicit indicating the raising site of a
channel. The code snippet below illustrates the definition of the explicit exception channel
EEC1T including its respective raising site:

pointcut rSitel : withincode(public void createNewPhotoAlbum (..));
pointcut EEC1() : echannel(InvalidPhotoAlbumName, rSitel);

The second parameter of a channel definition identifies its raising site. The example
above define the raising sites as separate pointcuts that the definition of EECT use (Fig-
ure 3). Notice that the echannel designator only supports the specification of channels that
have a single raising site. At the implementation level, we see explicit exception channels
with multiple raising sites as compositions of simpler channels, each containing a sole rais-
ing site. EJFlow supports the definition of multi-raising site channels by means AspectJ’s
union operator (| 1).

In this manner, the specification of both simple and complex channels remains very
simple, in accordance to AspectJ’s semantics, and avoids too much syntax overload.

In some cases, a channel might fork at intermediate sites, resulting in two or more
different propagation paths for the same exceptions. For example, suppose that there is
an extra dashed arrow from ad.getImages() to ad.createNewPhotoAlbum() in Figure 3.
If we wanted to define EECT to be exactly the same as EECI in Figure 3, it would be
necessary to exclude this extra propagation “branch”. In EJFlow, to be more specific
about a channel, a developer can indicate some of its intermediate sites in its definition. In
a similar vein, one can exclude some intermediate sites. In both cases, the semantics is to
include or exclude the entire subtree of the channel whose root is the provided intermediate
site. Intermediate sites (both included and excluded) are supplied as extra arguments to
echannel. The following snippet presents a simple example:

pointcut rSitel : withincode(public void createNewPhotoAlbum (..));
pointcut iSitel : !withincode(public ImageData[] getlmages (..));
pointcut EECI() : echannel(InvalidPhotoAlbumName, rSite3 , iSitel);

Pointcut EEC1 above defines an explicit exception channel through which exception In-
validPhotoAlbumName flows, that has rSitel as its raising site, and that does not include
the branch that starts in method ad.getImages() and continues to mc.handleCommand ()
(notice the “I” symbol in the definition of iSitel).

Explicit exception channels defined using only echannel are obviously incomplete, as
they do not include handling sites nor an exception interface. If one compiles a program
that defines such a channel, the EJFlow compiler will indicate a compilation error because
there are exceptions that should be propagated to the enclosing EHC but are not part of

14 Brito et al.

the exception interface of the channel. Unlike Java, EJFlow verifies if exceptions flowing
through an explicit exception channel are handled or declared in its exception interface
regardless of the exception type, i.e., these rules apply to both checked and unchecked
exceptions.

7.2 Plugging Handlers to Exception Channels

In order to specify the handling site of an explicit exception channel, EJFlow provides the
ehandler advice. This advice is an implementation of pluggable handlers. It encapsulates
the exception handling code that is executed when a certain point in an explicit exception
channel is reached. Each ehandler advice consists of: (i) a set of parameters, like any
other advice; (ii) a boundto clause specifying the explicit exception channel to which the
handler is bound; (iii) an associated pointcut that determines the join point, within the
channel, at which the advice executes; (iv) a catching clause that indicates the exception
to be handled; and (v) a body, the actual handler implementation. To give an example of
basic ehandler functionality, the following code snippet presents a useful handler (h1) in
the context of channel EECT:

void ehandler () boundto(EEC1()) catching(InvalidPhotoAlbumName e):
withincode (public boolean handleCommand(..){ ... }

This advice handles exceptions flowing through explicit exception channel FEC1. Specif-
ically, the handler is activated when such exceptions are caught within method mc.handleCommand ().
A pluggable handler can be associated with multiple explicit exception channels by means
of AspectJ’s set union operator (|1).
It is also possible to define pluggable handlers that are not associated with channels.
In this case, they work as after throwing advice, with the difference that, like around
advice, they can stop the propagation of an exception. The code snippet below shows a
simple example:

void ehandler () catching(InvalidPhotoAlbumName e):
withincode (public boolean handleCommand(..)){ ... }

7.3 Specifying Exception Interfaces

When a program cannot handle all the exceptions that flow through an explicit exception
channel, it is necessary to declare these exceptions in the channel’s exception interface.
The declare einterface inter-type declaration serves this purpose. The following code
snippet illustrates the definition of exception interfaces:

pointcut rSited4 () : withincode(public ImageData getImagelnfo (..));
pointcut EEC4(): echannel(ImageNotFound, rSite4);
declare einterface : ImageNotFound

echannel EEC4(): execution (Image getImageFromRecordStore (..));

pointcut rSite4 () : withincode(public ImageData getImagelnfo (..));

Exception Control Flows for Product Line Architectures 15

pointcut EEC4(): echannel(ImageNotFound, rSited4);
declare einterface
echannel EEC4(): execution (Image getImageFromRecordStore (..));

The first inter-type declaration (lines 3-4) explicitly indicates the exception to be de-
clared in the exception interface of the channel. Alternatively, the second one (lines 8-9)
specifies only the explicit exception channel to which the exception interface is associated.
This second format is more general and states that every exception that flows through
channel EECY and is not handled is part of the channel’s exception interface.

The declare einterface inter-type declaration avoids the need to specify the excep-
tion interface of each method that acts as a raising or intermediate site within a channel.
Therefore, in the example of Figure 3, with the use of the two declarations above, ex-
ception ImageNotFound does not need to be declared in the throws clauses of methods
ma.getImageInfo(), and ad.getImageFromRecordStore(). However, the compiler still
performs the static checks. If one of these declarations is removed, the compiler issues an
error message.

8 Case Study Evaluation

Overall, this case study has shown that using explicit exception channels and pluggable
exception handlers it is possible to develop and evolve software product lines with variable
exceptional behaviour. Thus providing the means to apply model checking for verifying key
properties of the architecture, such as the feasibility of the channels specified, the existence
of uncaught exceptions, and the explicit declaration of exception propagation. Due to space
restrictions, we were not able to present in great detail the proposed solution and the many
benefits it can offer. In the following, in order to complement the material presented so far,
we summarise our experience when employing the solution for developing the MobileMedia
System.

During the verification of the MobileMedia, the model checker has detected two dead-
locks and the violation of two explicit exception channels. In both cases, the analyses of the
counter-examples that were provided helped to identify the cause of the violation. The two
deadlocks were caused by architectural mismatches in two channels: EEC2 and FECS3. Since
we forgot to specify in the model the conversion from InvalidArrayFormat to Unavailable-
PhotoAlbum at ad.getImage() (see Figure 3), those exceptions were considered incompatible
during the propagation checking. Moreover, two channels from the Model layer to the View
layer (see Figure 2) were considered impossible, for the software architecture didn’t define
dependencies between the architectural elements of these layers. The architecture has been
fixed afterwards.

Regarding the existence of exceptions that are not caught by any handler (uncaught
exceptions), the model checker has detected only one case, when we forgot to associate an
exception handler in the View layer; but after fixing the association, no other violation has
been found. In contrast, in a previous static analysis of an aspect-oriented implementation
of the MobileMedia [11], approximately 67,5% of the exceptions were not caught by any
handler. In part, we believe that the end-to-end perspective provided by the exception

16 Brito et al.

model reduces the chance of forgetting exceptions with no handler. As a whole, we consider
that the proposed rigorous solution has helped to identify and correct design faults in earlier
stages of the software development. Although most of these problems were simple to correct,
if they were left to be corrected in the later phases of the development, it would have been
much harder.

In order to assess the evolvability of the proposed solution towards the addition of
new features, we have considered two different releases of the MobileMedia system [11]:
(i) release V4, which permits the user to view photos and to make a catalogue of favourites;
and (ii) release V6, which also permits the sending of photos through SMS. First, we have
specified, verified, and implemented the PLA of release V4. Then, we evolved the PLA (and
the respective formal model) for attempting release V6. For evolving the PLA from release
V4 to release V6, first of all it was necessary to add new architectural elements (elements
with a SMS ellipse on the left top, in Figure 2). In addition, the decision model of the PLA
should also be updated in order to consider the possibility of selecting the SMS feature.

To evolve the formal model of the PLA (see Figure 5), it was necessary three punctual
changes, both in the pla B-Method machine. First, pla was updated in order to reflect the
new decision model and make it possible the selection of the SMS feature with no warning
from the model checker. Second, the pla was updated in order to add new architectural
elements, the respective interfaces, and the new explicit exception channels. Finally, it was
also necessary to change the content of two relations of pla: (i) association between features
and exception channels; and (ii) association between features and architectural elements.
As presented in Section 6, these relations make it possible the activation and deactivation
of explicit exception channels and architectural configurations, depending on the features
that are being selected for a specific product.

Finally, regarding the exception model used in this technical report, it was considered
essencial for the proposed solution, since it provides an end-to-end view of the exception
propagation, and a clear separation of concerns between the normal and abnormal behaviour
of the system [6]. Moreover, another characteristic that may help the evolution of products
(different from the PLA evolution discussed so far) is that the separation of concerns remains
at the implementation-level, what improves the modularity, high-cohesion and low-coupling
of the system’s source-code [6].

9 Related Work

In this section, we present work that is directly related to our own. For simplicity, we place
related work in two categories: (i) exception flow analyses and verification; and (ii) formal
verification of PLAs.

9.1 Exception Flow Analyses and Verification

Several contributions propose static analyses of source code for analysing exception flow [10,
30]. Usually, flow analysis consists on identifying propagation paths in a program to dis-
cover, for example, uncaught exceptions in languages with polymorphic types, such as Java.

Exception Control Flows for Product Line Architectures 17

Our approach leverages previous proposals for exception flow analysis, but differs in focus.
The proposed approach targets the early phases of development and is broader in scope.

Several approaches have been proposed for promoting the automated analysis of software
architectures. Wright [2] specifications can be translated to CSP and analysed for deadlock
freedom and interface compatibility. Abowd and his coleagues [1] use Z to formalise and
compare architectural styles. Ours is yet another work along this direction. It emphasises
the specification of exception flow at the architectural level, and the satisfaction of some
behavioural properties about exception handling.

Recent work by Castor et al. [8], in the Aereal framework, leverages existing languages
and tools to support the description and analysis of exception flow in software architec-
tures. That work is similar to ours in its focus, but it differs on the way exception flows
are represented and on the goal of verification. While we represent a flow involving many
architectural elements, the Aereal framework represents flows between two interconnected
architectural elements. Moreover, besides the properties verified by Aereal (e.g., the exis-
tence of uncaught exceptions and useless handlers), we are also interested on verifying the
viability or impossibility of each flow occurs.

9.2 Formal Verification of PLAs

Several contributions have proposed techniques for verifying software product lines. Most of
the existing solutions focus on the verification of the feature model, intending to check the
consistency of the choices used for instantiating specific products [4, 25]. These works are
complementary to ours, since we focus on the representation of variability and verification
of the exceptional behaviour of PLAs.

Lutz and Gannod [21] describe experiences with tool-assisted architectural analysis of
a mission-critical software product line. The authors use model checking to determine the
level of fault tolerance based on architectural scenarios. However, this approach only con-
siders properties related to scenarios which are common to all products of a PLA, and does
not provide a way to reuse the formal model in order to verify application-specific proper-
ties. Moreover, the verification solution that is proposed does not consider the exceptional
behaviour of the software architecture.

Finally, to the best of our knowledge, there is no other approach for representing and
verifying variability and correctness of the exceptional behaviour of product line architec-
tures.

10 Conclusions and Future Work

This technical report has presented a development solution for supporting the design, ver-
ification and implementation of exception control flows in product line architectures. This
solution allows the explicit representation of exceptional control flows at the software ar-
chitecture, and the specification of pluggable exception handlers. We claim that these
characteristics bring four main advantages to the software developer: (i) it makes exception
flow understandable in a localised way, without the need to examine other parts of the pro-
gram; (ii) it enhances program modularization by improving the error handling code reuse;

18 Brito et al.

(iii) it promotes better maintainability of normal and error handling code by separating the
handlers and eliminating annoying exception interface declarations; and (iv) it allows the
specification of variability regarding exception flows and the respective error handlers for
product line architectures. The verification approach combines the use of B-Method and
CSP for checking properties of interests regarding both the correct selection of features,
and the consistency between the exceptional flows specified in the product line architecture
and its structural and behavioural restrictions. Finally, we have implemented the exception
model with small syntactic additions to AspectJ. The feasibility of the proposed approach
was demonstrated in the context of a mobile system. Our ongoing work encompasses the
empirical evaluation of the error proneness on the use of the overall development approach
when compared to conventional proposals discussed in this technical report. Furthermore,
we intend to overcome a limitation of our solution regarding the explicit representation of
exception variability at the implementation-level. For this, one possibility is the use of ab-
stract aspects for representing alternative and optional sites of exception channels (raising
sites, intermediate sites and handling sites), as well as alternative and optional handlers.

Acknowledgements

This work is supported in part by the European Commission grant IST-33710 - Aspect-
Oriented, Model-Driven Product Line Engineering (AMPLE), grant IST-2-004349: Eu-
ropean Network of Excellence on Aspect-Oriented Software Development (AOSD-Europe),
grant 479395/2004-7: Brazilian Council for Scientific and Technological Development (CNPq).
Patrick is supported by Fapesp/Brazil, grant 06/02116-2 and CAPES/Brazil, grant 0722-
07-3.

References

[1] G.D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions of
software architecture. ACM Trans. Software Engineering and Methodology, 4(4):319—
364, 1995.

[2] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.
Software Engineering and Methodology, 6(3):213-249, 1997.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEFE Trans. on Dependable and Secure
Computing, 1(1):11-33, January-March 2004.

[4] C. Blundell, K. Fisler, S. Krishnamurthi, and P. V. Hentenryck. Parameterized inter-
faces for open system verification of product lines. Automated Software Engineering
(ASE’04), 0:258-267, 2004.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented
software architecture: a system of patterns. John Wiley & Sons, Inc., New York, NY,
USA, 1996.

Exception Control Flows for Product Line Architectures 19

[6]

[11]

[14]

[15]

N. Cacho, F. C. Filho, A. Garcia, and E. Figueiredo. Ejflow: Taming exceptional con-
trol flows in aspect-oriented programming (to appear). In 7th International Conference
on Aspect-Oriented Software Development (AOSD’08), 2008.

T. Cargill. Exception handling: a false sense of security. pages 423-431, 1996.

F. Castor Filho, P. H. S. Brito, and C. M. F. Rubira. Specification of exception flow
in software architectures. Journal of Systems and Software, 79(10):1397-1418, 2006.

F. Castor Filho, N. Cacho, E. Figueiredo, R. M. ao, A. Garcia, and C. M. F. Rubira.
FExceptions and aspects: the devil is in the details. In Proc. of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering (SIGSOFT *06/FSE-
14), pages 152-162, 2006.

B.-M. Chang, J.-W. Jo, and S. H. Her. Visualization of exception propagation for
java using static analysis. In SCAM ’02: Proceedings of the Second IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation (SCAM’02), page 173,
Washington, DC, USA, 2002. IEEE Computer Society.

R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A. von Staa,
and C. Lucena. Assessing the impact of aspects on exception flows: An exploratory
study. In ECOOP’08: Proceedings of the European Conference on Object-Oriented
Programming, page (to appear), July 2008.

Q. Cui and J. Gannon. Data-oriented exception handling. IEFE Transacrions on
Software Engineering, 18(5):393-401, 1992.

S. Ferber, J. Haag, and J. Savolainen. Feature interaction and dependencies: Modeling
features for reengineering a legacy product line. In Proc. of the Second International
Software Product Lines Conference (SPLC), LNCS 2379, pages 3760, 2002.

E. Figueiredo et al. Evolving software product lines with aspects: An empirical study on
design stability. In Proc. of the 30rd international conference on Software engineering
(ICSE’08), page (to appear), 2008.

A. F. Garcia, C. M. F. Rubira, A. B. Romanovsky, and J. Xu. A comparative study
of exception handling mechanisms for building dependable object-oriented software.
Journal of Systems and Software, 59(2):197-222, 2001.

P. Greenwood, T. T. Bartolomei, E. Figueiredo, M. Dédsea, A. F. Garcia, N. Cacho,
C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, and A. Rashid. On the impact of
aspectual decompositions on design stability: An empirical study. In Proc. of 21st Fu-
ropean Conference on Object-Oriented Programming (ECOOP’07), LNCS 4609, pages
176-200, 2007.

S. Lacourte. Exceptions in guide, an object-oriented language for distributed appli-
cations. In FCOOP ’91: Proceedings of the European Conference on Object-Oriented
Programming, pages 268-287, London, UK, 1991. Springer-Verlag.

20

18]

[19]

[20]

[26]

[27]

Brito et al.

R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co., July 2003.

M. Leuschel and M. J. Butler. Prob: A model checker for b. In Proc. of Interfational
Conference on Formal Methods (FME’2003), LNCS 2805, pages 855-874. Pisa, Italy,
2004.

M. Lippert and C. V. Lopes. A study on exception detection and handling using
aspect-oriented programming. In Proc. of the 22nd international conference on Soft-
ware engineering (ICSE’00), pages 418-427, 2000.

R. R. Lutz and G. C. Gannod. Analysis of a software product line architecture: an
experience report. Journal of Systems and Software (JSS), 66(3):253-267, 2003.

D. Malayeri and J. Aldrich. Practical exception specifications. pages 200-220. 2006.

A. Molesini, A. F. Garcia, C. von Flach Garcia Chavez, and T. V. Batista. On the
quantitative analysis of architecture stability in aspectual decompositions. In Proc. of
the Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
pages 29-38, 2008.

D. L. Parnas and H. Wiirges. Response to undesired events in software systems. pages
231-246, 2001.

M. Poppleton. Towards feature-oriented specification and development with event-b. In
P. Sawyer, B. Paech, and P. Heymans, editors, 13th International Working Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ 07), LNCS
4542, pages 367-381, 2007.

B. Randell. The evolution of the recovery block concept. In Lyu, editor, Software Fault
Tolerance, chapter 1, pages 1-21. 1995.

D. Reimer and H. Srinivasan. Analyzing exception usage in large java applications. In
Proc. of ECOOP’2003 Workshop on Exception Handling in Object-Oriented Systems,
July 2003.

M. P. Robillard and G. C. Murphy. Designing robust java programs with exceptions.
SIGSOFT Softw. Eng. Notes, 25(6):2-10, 2000.

M. P. Robillard and G. C. Murphy. Static analysis to support the evolution of excep-
tion structure in object-oriented systems. ACM Trans. on Software Engineering and
Methodology, 12(2):191-221, 2003.

C. F. Schaefer and G. N. Bundy. Static analysis of exception handling in ada. Softw.
Pract. Exper., 23(10):1157-1174, 1993.

M. van Dooren and E. Steegmans. Combining the robustness of checked exceptions with
the flexibility of unchecked exceptions using anchored exception declarations. Proc. of

Exception Control Flows for Product Line Architectures 21

the 20th annual ACM SIGPLAN conference on Object oriented programming systems
languages and applications, 40(10):455-471, 2005.

