
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

INSTITUTO DE COMPUTAÇ�OUNIVERSIDADE ESTADUAL DE CAMPINAS

Verifying Arhitetural Variabilities inSoftware Fault Tolerane TehniquesPatrik H. S. Brito Rogério de LemosCeília M. F. RubiraTehnial Report - IC-09-10 - Relatório TénioMarh - 2009 - MarçoThe ontents of this report are the sole responsibility of the authors.O onteúdo do presente relatório é de únia responsabilidade dos autores.

Verifying Architectural Variabilities in Software Fault

Tolerance Techniques

Patrick H. S. Brito1∗ Rogério de Lemos2

Cećılia M. F. Rubira1

1 University of Campinas, Brazil 2 University of Coimbra, Portugal

{pbrito, cmrubira}@ic.unicamp.br rdelemos@dei.uc.pt

Abstract

This technical report considers the representation of different software fault toler-
ance techniques as a product line architecture (PLA) for promoting the reuse of software
artefacts, such as formal specifications and verification. The proposed PLA enables to
specify a series of closely related applications in terms of a single architecture, which
is obtained by identifying variation points associated with design decisions regarding
software fault tolerance. These decisions are used to choose the appropriate technique
depending on the features selected for the instance, e.g, the number of redundant re-
sources, or the type of adjudicator. The proposed approach also comprises the for-
malisation of the PLA, using B-Method and CSP, for systematising the verification of
fault-tolerant software systems at the architectural level. The properties verified cover
two complementary contexts: the selection of the correct architectural variabilities for
instantiating the PLA, and also the properties of the chosen fault tolerance techniques.

1 Introduction

Software systems that can cause risks for human lives or great financial losses should be
made fault-tolerant. Software fault tolerance is an inherent aspect of strongly-structured
systems [18], i.e., systems in which the structuring of redundancy is part of the actual sys-
tem, thus restricting the impact of faults. Also, because fault tolerance has a global system
scope, it should be related to both architectural elements (components and connectors)
and architectural configurations which implement the rules by which they interact. How-
ever, the incorporation of fault tolerance into systems normally increases their complexity,
making their analysis more difficult. In order to support this analysis, many development
approaches suggest the use of automatic verification techniques, which constitute an impor-
tant way to remove faults at specification time. Although its importance, the verification
activity is considered resource consuming and can expensive the software cost. One of the
possible ways to to reduce the verification effort is to maximize the reuse of formal artefacts
during the verification process.

∗Supported by Fapesp/Brazil, grant 06/02116-2 and CAPES/Brazil, grant 0722-07-3.

1

2 Brito, de Lemos and Rubira

Currently, many efforts are being spent in order to achieve a bigger level of reuse. One
of the main approaches present in the literature for promoting the reuse of software arte-
facts is called software product lines (SPL). A SPL is an approach that systematises the
reuse of software artefacts through the exploration of commonalities and variabilities among
similar instances [3]. One of the main artefacts in the contexts of a SPL is the product line
architecture (PLA), which explicitly represents the commonalities and variabilities of archi-
tectural elements and their configurations. The commonalities are reused for instantiating
the specific instances, while the variabilities are resolved through design decisions related
to the choices at the PLA.

This technical report considers the representation of different software fault tolerance
techniques into a PLA for promoting the reuse of software artefacts. In particular, the
variabilities of the PLA capturing different software fault tolerance techniques, such as,
recovery blocks and N-version programming [13], should be associated with design decisions
that define, for instance, the number of redundant resources available and the different kinds
of adjudicators. For systematising the verification of fault-tolerant software systems using
PLAs, and increase the reuse of formal artefacts related to the verification process, we have
adopted B-Method and CSP. The adoption of B-Method and CSP was mainly motivated by
the explicit separation between the structural and behavioural specifications. We claim that
this specification facilitates the comprehension of the formal model, as well as its adjustment
for running extra verification. Moreover, the existence of a compliant model checker tool
(ProB [14]) was also considered. The properties verified cover two complementary contexts:
the selection of the correct architectural variabilities, and also the properties of the chosen
fault tolerance techniques.

The contributions of this technical report are twofold: a PLA for software fault toler-
ance techniques, and the support for verifying the PLA, as well as the respective instances
created from it. The rest of this technical report is organised as follows. Section 2 presents
some background regarding the concepts considered in this technical report. Section 3 con-
textualises the proposed approach with some related work. Section 4 presents the product
line architecture specified for the software fault tolerance techniques. Section 5 describes
how the architectural verification is done using the ProB model checker [14]. Section 6
summarises the evaluation of the proposed approach Finally, Section 7 evaluates the the
overall approach and provides some concluding remarks and future directions of research.

2 Background

This section presents some background concepts regarding product line architectures, the
software fault tolerance techniques used in this technical report, and formal methods.

2.1 Product Line Architectures

Software product line is a systematic software reuse approach that promotes the generation
of specific products from a set of core assets for a given domain, exploiting the common-
alities and variabilities among these products [3]. Feature modeling is one of the most
accepted ways to represent commonalities and variabilities at the requirements phase. A

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 3

feature is a system property that is relevant to some stakeholder and it is used to capture
commonalities and variabilities amongst systems in a product line [8]. Based on a hierarchi-
cal structure, a feature model represents the commonalities among all products of a product
line as mandatory features, while variabilities among products are represented as variable
features, which is also called variants. Variable features largely fall into three categories:
(i) optional, which may or may not be present in a product; (ii) alternative, which indicates
a set of features, from which only one must be present in a product; and (iii) multiple
features, which represents a set of features, from which at least one must be present in a
product. Besides the structural relationships between features, the feature model can also
represent additional constraints between features. These constraints indicate which feature
combinations are valid to generate a product in a product line. Some examples of con-
straints are mutually dependency, when a feature requires another, and mutually exclusion,
when a feature excludes another.

A key factor for successfully implementing an architectural product line approach is to
structure commonalities and variabilities into a product line architecture (PLA) in terms
of variable architectural elements, and their respective interfaces, which are associated to
variants. In PLAs, software variability can be reached by delaying certain architectural
design decisions, which are described through variation points. A variation point is the
place at the software architecture where a design decision can be made. These variation
points should reflect the variants of the feature model, which affect design alternatives
associated to the variation points [10].

For generating a specific product, it is necessary to instantiate the PLA considering
the design choices associated with particular variants. In order to support these choices,
a decision model should be constructed in order to relate the possible choices of variants
in the feature model, to high-level decisions of the software architecture in the form of
variation points. In other words, the decision model documents the decisions that need to
be made at the context of a PLA, and which are related to the variants of the feature model.
In other words, it provides support for tuning the software architecture according to the
requirements of the system [3].

2.2 Software Fault Tolerance

Fault tolerance is the ability of a system to continue its normal operation despite the pres-
ence of faults [2]. For implementing techniques of software fault tolerance, it is normally
necessary to structure the use of multiple versions of software (or diversity), for preventing
that design faults in one version cause system failures [5]. There are three main techniques
for implementing software fault tolerance using design diversity: recovery blocks, N-version
programming, and N-self-checking programming. Each technique can be realised by a ref-
erence architecture, which provides a proven template solution for a particular domain, as
well as a common vocabulary to facilitate the communication between the stakeholders [12].
The recovery blocks (RB) technique combines the basics of the checkpoint and restart ap-
proach with multiple versions of a software component such that a different version is tried
after an error is detected [18]. Checkpoints are created before a version is executed for
providing an operational state for recovering after a version fails. A reference architecture

4 Brito, de Lemos and Rubira

for tolerating a single fault using the recovery blocks (RB) technique is shown in Figure 1.
The Switch is responsible for choosing a proper Alternate to execute the service, in case
an error is detected by the AcceptanceTest. The data integrity between two executions is
guaranteed by the Checkpoint element.

Figure 1: Reference Architectures for Recovery Blocks Technique

N-version programming (NVP) is a multi-version technique in which all the versions are
designed to satisfy the same specification. The outcome is obtained using compensation
by comparing the outputs of the versions through majority voting [5]. Figure 2 presents a
reference architecture for tolerating a single fault using the N-version programming (NVP)
technique. In this architecture, the Adjudicator connector is responsible to receive the results
of all the three versions of components and then judge if there is a reliable result based on
majority election.

Figure 2: Reference Architectures for N-Version Programming Technique

Finally, N-self-checking programming (NSCP) consists on the use of multiple software
versions, where each version is able to detect its own errors [13]. This detection is usually
performed either using acceptance test, or by comparison. Since all versions are executed

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 5

in parallel, it is also necessary to have multiple adjudicators. Using acceptance test, each
version has an individual acceptance tester for detecting errors. Using detection by com-
parison, it is necessary a comparator for each pair of distinct versions, in order to judge
if the result is correct. A reference architecture for tolerating a single fault using the N-
self-checking programming (NSCP) technique with comparison is shown in Figure 3. In this
case all the Versions are executed in parallel, and the Switch is responsible for switching the
result in case an error is detected by the Comparators, which are responsible for comparing
two-by-two the results provided by the Versions1.

Figure 3: Reference Architectures for N-Self-Checking Programming Technique

Analysing the structure for implementing different fault tolerance techniques, their refer-
ence architectures present similarities regarding its elements. Examples of common architec-
tural elements are: (i) version(s), used for executing the functionalities of the application;
(ii) adjudicator(s), which are responsible for detecting errors in the versions’ result; and
(iii) switcher, used for switching the result in the occurrence of an error and for synchronis-
ing the parallel execution, when appropriate. A product line architecture for software fault
tolerance techniques is presented in Section 4.

2.3 Formal Verification

Regarding the formal representation, Architecture Description Languages (ADLs) have the
specific purpose of formally representing software architectures; however, these languages
usually lack on support for representing specific aspects of the system. Examples of ADL’s
limitations concerns the representation of the state of the architectural elements, identifi-
cation of the operations into the interfaces, specification of architectural scenarios, etc. For
overcoming the ADLs’ limitations, it is necessary to use a formal language that makes it
possible to represent types in an explicit way, in order to distinguish the different states of

1Although [13] justifies the usage of the term ‘variant’, this technical report uses ‘version’ to avoid conflict
with the notion of variant from SPL.

6 Brito, de Lemos and Rubira

an architectural element. Moreover, for representing the chaining of error propagation and
masking, the formal notation should also support the specification of scenarios involving
the architectural elements.

B-Method is a general-purpose formal language based on set theory for specifying and
verifying system models with explicit representation of the state, and a modular representa-
tion through the concept of refinement [1]. Refinement allows us to build a model gradually
by making it more precise. The modularisation of the development facilitates the design
and improves the scalability of the verification because it is conducted incrementally. Once
the refinement is formally guaranteed, the properties verified at the abstract level are reused
at the refined level, hence do not need to be re-verified.

A limitation of the B-Method is its inability to easily restrict the correct order for
executing operations. Communicating Sequential Process (CSP) [7] is a process algebra
that allows an easy representation of execution sequences, and if combined with B-Method,
it compensates the aforementioned limitation [14]. As a combined solution, ProB [14] is
a model checker that uses B-Method and CSP in a complementary way. In ProB, a CSP
specification can be used to restrict the sequence of B-Method operations that are executed.

3 Related Work

Several contributions have proposed techniques for verifying software product lines. Most
of the existing solutions focus on the verification of the feature model, intending to check
the consistency of the choices used for instantiating specific products [6, 16, 17]. Examples
of these violations are dependencies between features, such as the existence of mutually
exclusive features. These works are complementary to ours, since we focus on the verification
of the product line architectures, dealing with specific aspects of software fault tolerance.
The work of Blundell et al. [6] is more similar to ours in what concerns the existence of
two phases of verification; first, the verification of individual elements; and second, the
verification of the elements interaction. But instead of dealing with variabilities at the
feature model, we explicitly consider the variation points of the product line architecture,
which reflect design decisions at the software architecture. These decisions are centred on
aspects regarding different techniques for software fault tolerance.

The work of Auerswald et al. [4] has the same goal as ours in what concerns the specifi-
cation of product lines for fault-tolerant systems. In that work, the authors propose a PLA
with variabilities related to patterns for implementing software fault tolerance. The pro-
posed PLA presents two types of components: channel, which is responsible for executing
the functionalities and might be replicated; and controller, which is responsible for request-
ing services to the channels and for choosing a proper result to be returned. In contrast, the
PLA proposed in our work is related to design decisions associated with software fault tol-
erance techniques, presenting a more detailed design with elements that play specific roles,
such as adjudicator, switch, checkpoint, and the versions executed. Moreover, the solution
proposed in this technical report also covers the formal representation and verification of
both the PLA and the respective products generated from it. The focus of the verification
approach is to separate commonalities and variabilities in order to improve the reuse of

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 7

formal artefacts, as well as the scalability of the verification.

Finally, Lutz and Gannod [15] describe experiences with tool-assisted architectural anal-
ysis of a mission-critical software product line. The authors use model checking for facil-
itating the identification of points of interaction in the software architecture that need to
be better analysed using complementary informal analysis approaches. However, since they
do not represent variation points, it is difficult to reuse the formal artefacts over different
instances of the same PLA, which is also addressed by our approach. Moreover, beyond the
verification of the consistency of the variants’ selection, our approach also verifies specific
properties regarding techniques of software fault tolerance.

4 A PLA for Software Fault Tolerance Techniques

4.1 Feature Model of Software Fault Tolerance Techniques

A feature model for the software fault tolerance techniques presented in Section 2.2 is showed
in Figure 4, based on the representation proposed by Ferber et al. [9]. This feature model
was derived from the work of Laprie et al. [13], which compare the main techniques of soft-
ware fault tolerance. This feature model was used as the basic requirements for designing
the PLA. In the figure, the root feature, SFTArchitecture, is composed of six mandatory
features. The Error-processing technique feature captures a set of alternative features re-
lated to the different ways that can be employed for detecting errors. The Execution scheme
feature represents the two possible ways for executing the system components: either se-
quential or in parallel. The Number Variants for tolerating f sequential faults represents some
characteristics regarding the resources necessary for tolerating “f” faults. The Suspention
of service delivery during error processing feature indicates if the error recovery technique
suspend or not the execution when an error is detected. In case the execution is suspended
(the Suspention feature), it is also necessary to define what is the purpose of the suspention:
either for re-executing the service, or only for switching to another result. The Judgement
on result feature presents how the acceptance test should be performed, either with an abso-
lute criteria (involving the result of only one executor), or a relative criteria (involving the
results of more than one executor). Finally, the Consistency of input data feature presents
how the consistency of data is achieved, either implicitly through backward error recovery,
or explicitly through specialised algorithms of data consistency. The lines between features
represent constraints, according to the legend present in the figure. As it can be seen in
Figure 4, each set of alternative features represents a variant (V1 to V7).

4.2 An Architecture for Software Fault Tolerance Techniques

The product line architecture (PLA) was designed in three steps: (i) design a software
architecture for each software fault tolerance technique; (ii) identify commonalities and
variabilities between the software architectures; and (iii) design the PLA based on the com-
monalities and variabilities previously identified. Figure 5 presents a PLA that realises the
feature model of Figure 4. The AdjudicatorN is the architectural element responsible for
detecting errors in the results, in order to improve the system reliability. Depending on

8 Brito, de Lemos and Rubira

��������������	
����	�������� ��������	 ���������	�� ���� ����� ��������	�� ���������	 ����	
 ��������	����������	���� � �����	�� �����������	
 �����	���� ��������� ��� ������
�� !����������� �����	���	 �� ���"�������"��� ����	
 �������������	
�����	���	#� �����	���	V1 V2 V3 V4��� ����������	
��� �$�����	
V5%��
���	� �	������&�����"� !�������V6

'�	�����	�� ���	��� ����(������� ��������V7)*+*,-. #��� /*0123* 40,-01536781*3,019:* 421208-*;*,-*,<6 421208*=<82>95,
??@ABCDEE

??@ABCDEE

??@ABCDEE
??@ABCDEE??@ABCDEE??@ABCDEE??@ABCDEE??@ABCDEE??@ABCDEE??@ABCDEE

??@ABCDEE
??DFGH@IDAEE??DFGH@IDAEE

J�������

Figure 4: Feature Model of Software Fault Tolerance

the choices regarding the adopted technique, it is possible to have many adjudicators. The
Switch is an architectural element responsible for reconfiguring the architecture when an
error is detected. The VersionN architectural element is responsible for executing the func-
tionalities of the application. The number of versions depends on the adopted technique,
as well as the number of faults to be tolerated. Finally, the Checkpoint is an architectural
element responsible for providing support for roll-back the system state, when it is ap-
propriate. The activities of the Checkpoint includes the storage of error-free states of the
Versions, as well as the restoration of the system state in case of error. The communication
between the Checkpoint and the Versions is conducted through the IR State interface. The
seven variants presented in the feature model (Figure 4) were mapped into design decisions
represented as variation points. These variation points, which are represented in Figure 5
as dashed grey polygons, are used to generate the decision model that is necessary during
the instantiation of the PLA for generating specific products.KKLMNOMPQPRSSTUQLVOMWPR XYZ[\]\^X_Z`aZ[b

KKLMNOMPQPRSScdefdWLgRMhi
XYZ[bZjkX_Z[b KKLMNOMPQPRSS lmQhnWMPi X_ZjkZ`aX_ZjkZ[bXYZ[bZ`aKKLMPPQLRMhSSopWRLUXYZ[bZqr X_ZqrZ[b

stu
stv stwstx myz { |}~��^}�^r ���]�|]}\� j� � j� my� { |}~��^}�^r ���]�|]}\� j�� j� � j�my� { |}~��^}�^r ���]�|]}\� j� � j� my� { |}~��^}�^r �� �]�|]}\�j�� j�� j�� j� � j�j]�|]\|�} _�|}\ �j_��������

Figure 5: PLA for Software Fault Tolerance

Table 1 shows the decision model of the PLA presented in Figure 5. As it can be seen,

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 9

the goal of this artefact is to list all the combination of variabilities that do not violate
the constraints specified in the feature model (Figure 4). This information is very useful
for identifying the impact of the variant choices in the PLA, supporting the developer in
the instantiation of a specific product with no violation of the system requirements. Each
line of Table 1 represents a scenario of instantiation, containing the selection of features,
and the respective impact in the software architecture. Columns V1 to V7 of Table 1
present the possible decisions in each variant of the feature model. Column STF Technique
show the technique of fault tolerance that is used in each scenario. Columns VP1 to VP4
present the impact of the combination of decisions in the software architecture. Due to
space restrictions, we have used an abbreviated version of the features’ names to refer to
their choices in the variants. For exemplifying one scenario of use, the first scenario of
Table 1 shows that in case of this set of choices, the recovery block technique should be
applied. These choices are: (i) acceptance test for the error processing technique (VP1);
(ii) sequential execution (VP2); (iii) availability of ‘f+1’ versions (VP3); (iv) re-execution
of the service in case of an error (VP4 and VP5); (v) absolute judgement of the result; and
(vi) implicit consistency of the input data (using roll-back). The impact of these choices
in the PLA is also presented in Table 1: (i) use of the Checkpoint facility (VP1); (ii) the
Switch should reconfigure the architecture and use the Checkpoint when necessary; (iii) the
architecture should have ‘f+1’ Versions elements; and (iv) the architecture should have only
one adjudicator, which implements acceptance test.

Table 1: Decision Model of the PLA for Software Fault Tolerance
Variants of the Feature Model Variation Points of the PLA

V1 V2 V3 V4 V5 V6 V7 SFT Tech-

nique

VP1 VP2 VP3 VP4

AccpTst Seq f+1 Susp Re-
Exec

Abs Impl Recovery
Blocks

Used switch

between
different
versions &
roll-back
controller

f+1
Ver-

sions

one Ad-

judicator:
acceptance

test

AccpTst Par f+1 Susp Switch Abs Expl N-self-
checking
Program-
ming with
acceptance
test

Not
used

synchroni-

sation &
switch

between
different
versions

f+1
Ver-

sions

f+1 Ad-

judicators:
acceptance

test

Comp Par 2(f+1) Susp Switch Rel Expl N-self-
checking
Program-
ming with
comparison

Not
used

synchroni-

sation &
switch

between
different
versions

2(f+1)
Ver-

sions

f+1 Adjudi-

cators: com-

parison

Voting Par f+2 No-
Susp

— Rel Expl N-version
Program-
ming

Not
use

synchroni-

sation

f+2
Ver-

sions

one Adjudi-

cator: vot-

ing

10 Brito, de Lemos and Rubira

5 Verifying Product Line Architectures

5.1 Representing Variability in Software Architectures

For the representation of the PLA, shown in Figure 5, the B-Method is used for specifying
the structure of the PLA, while CSP is employed for specifying its behaviour. Regarding
the structural specification, we have defined a hierarchy of B-Method machines, shown
in Figure 6, which explicitly separates the commonalities and variabilities of the PLA.
Following ProB notation [14], the rectangles represent B-Method machines, and the arrows
represent relationships between them. The CSP specifications are represented by dashed
ellipses. The featureType and plaTypes machines contain setsthat store the data types
necessary for representing the feature model and the PLA, respectively. The featureModel
machine uses the data of featureTypes to represent the feature model presented in Figure 4
in terms of its variants, and the relations among features. The pla machine uses the data
of plaTypes, and the information of the feature model (featureModel) to structure the PLA
presented in Figure 5 in terms of its architectural configuration, explicit exception channels,
and the respective variation points. The uses relationship means that the featureModel
and pla machines can refer, respectively, to the shared sets of featureTypes and plaTypes for
defining its invariants. Finally, each of the other four machines (recoveryBlocks, nvp, nscpAt
and nscpComp) have their behavioural scenarios specified in CSP.

Figure 6: Hierarchy of B-Method Machines and CSP Specification

The behavioural specification of the PLA is obtained by restricting the B-Method ma-
chines with CSP specifications related to them. In the context of the pla machine, the CSP
specification defines the behaviour associated with the reference architectures. For exam-
ple, in the case of the recoveryBlocks machine, the CSP specification states the following
restrictions: (i) only a single alternate can be executed in each time (sequential execution);
and (ii) before a retry through a different alternate the system state has to be restored

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 11

using the checkpoint facility.

5.2 Properties of Interest

We have defined two complementary categories of properties to be verified: (i) decision
checking, which checks the consistency between the variants of the feature model and the
variation points of the PLA, according to the decision model presented in Table 1; and
(ii) behavioural checking that verifies the consistency between the behavioural specification
of a product against the behaviour of the reference architecture.

The decision checking consists of two complementary checks: (i) feature consistency,
which verifies the integrity of the selected features when compared with the rules defined in
the feature model (see Figure 4); and (ii) structural consistency, which verifies the integrity
of the software architecture concerning the selected features. An example of a violation of
the feature consistency would be the selection of “Voting” as the error processing technique,
and “f+1” as the number of redundant versions, which is forbidden according to the feature
model (Figure 4). An example of a violation of the structural consistency would be the
existence of the Checkpoint component in a software architecture when the execution scheme
should be parallel.

The objective of behavioural checking is to assess the consistency of the behavioural
specification of a product according to the behaviour of a reference architecture that im-
plements a specific software fault tolerance technique. The behaviour of each architectural
element is assessed according to their specified role in the reference architecture. Exam-
ples of roles that are verified for the N-self checking programming technique are: (i) the
Versions should be executed in parallel; (ii) the Switch should synchronise the returns from
the different Versions, request the error detection to an Adjudicator, and switch the result
in case of error; and (iii) the Adjudicators should detect errors in the values returned by the
Versions.

6 Evaluation

One of the claims we have for the proposed approach is that since it explicitly separate type
definition, structural variabilities and behavioural variability, the model is easier to evolve
in two different ways. First, a common change done in pla (see Figure 6) is automatically
reflected in all the fault tolerance techniques which are represented on it. Second, it is easy
to define new CSP specifications at the behavioural level, which reuse the structural model
to deal with other techniques of software fault tolerance.

In order to assess the evolvability of the proposed PLA towards other reference architec-
tures, we have considered two software fault tolerance techniques: (i) distributed recovery
blocks (DRB), which tolerates both software and hardware faults through the distribution
of RBs in different locations [11]; and (ii) consensus recovery blocks (CRB), which combines
the use of NVP and RB techniques [19]. To illustrate the evolution of PLAs, we will dis-
cuss about the adaptation of the PLA presented in Figure 5 for also supporting DRB. The
adaptation of the PLA for CRB was done in a similar way. For considering the reference

12 Brito, de Lemos and Rubira

architecture of the DRB technique, which is presented in Figure 7, first of all it was nec-
essary to update the feature model presented in Figure 4. The new feature model permits
the selection of two different execution schemes at the same time, as well as, two ways for
suspending the execution of service delivery during error processing. For this, variants V1
and V2 had to be changed to multiple selection, instead of alternative selection. In addi-
tion, the changes in the feature model had to be reflected in the variation points of the PLA
and in the respective decision model presented in Table 1. Basically, the decision model
had to add another possible decision: the selection of acceptance test as error processing
techniques and “f+1” Alternates, which should be instantiated twice, in different physical
locations. Finally, since each RB is executed sequentially and the two distributed locations
executes in parallel, the execution scheme is considered both sequential and in parallel at
the same time. Finally, the PLA also needed to be extended, in order to support many
Checkpoints.

Figure 7: Reference Architectures for Distributed Recovery Blocks Technique

To evolve the formal model of the PLA (see Figure 6), it was necessary three punctual
changes. First, the featureModel machine was updated for reflecting the changes in the
feature model. Second, the pla machine was updated in order to modify the variation points
and decision model of the software architecture. Third, it was necessary to define a new
CSP specification, called drb. This CSP specifies the scenarios according to the expected
behaviour of the DRB technique, which is: (i) parallel execution of primary alternate of
location 1 (Alternate1.1), and the secondary alternate of location 2 (Alternate2.2); (ii) if
Alternate1.1 fail, the switch should verify the result of Alternate2.2; (iii) if both fail, it is
necessary to execute the roll-back in both physical locations, and (iv) repeat the steps for
the Alternate1.2 and Alternate2.1.

7 Conclusions and Future Work

This technical report has presented a rigorous development approach for the formal speci-
fication and verification of a product line architecture for fault tolerance techniques. This

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 13

approach considers the representation of different software fault tolerance techniques into a
PLA for promoting the reuse of software artefacts. The proposed approach combines the use
of B-Method and CSP for promoting the representation of architectural elements, variants
and variation points, as well as, the specification of scenarios according to the characteristic
of each fault tolerance technique.

The claim being made in this technical report is that the explicit representation of
architectural variabilities in B-Method reduces the effort for verifying PLAs through the
reuse of formal artefacts. Due to space restrictions, we were not able to present in great
detail the proposed verification approach, as well as its benefits and limitations. In the
following, in order to complement the material presented so far, we summarise the main
benefits and limitations of the proposed approach.

The main benefits of the verification approach concerns three important issues: (i) the
reuse of formal artefacts; (ii) the scalability of the verification; and (iii) the coverage of the
verified properties. The explicit separation between the specification of the commonalities
and variabilities makes it possible to reuse the formal specification of the common part, and
the properties associated with these. In that case, the properties verified in the formal model
of the commonalities do not need to be re-verified in the refined models, which represents
the variabilities according to each software fault tolerance technique. The existence of two
levels of verification (commonalities and variabilities) also improves the scalability of the
solution because it considers the system in parts, instead of considering it as a whole.
Finally, the properties of interest cover both the verification of the PLA and the verification
of products’ architecture instantiated using it. The PLA is verified regarding the selection
of the correct architectural variabilities, according to the restrictions of the feature model
it should be consistent with. The individual instanes of the PLA are also verified through
specific properties, which should be instantiated based on the properties of the reference
architecture of the specific software fault tolerance technique that is used by the application.

The current limitation of the proposed approach is the focus on the design of software
fault tolerance, instead of covering all the development cycle, from the requirements, passing
to the analysis, design and implementation. In this way, the proposed approach documents
the main architectural decisions regarding software fault tolerance and systematises the
architectural design according to the decisions. In order to complement the proposed ap-
proach with support for the analysis phase, first of all it is necessary to specify a feature
model which is comprehended by the client. Since we focus on the design, the variants
represented in the feature model of Section 4 does not reflect real requirements of the in-
stantiated product in the point of view of the clients. For example, instead of choosing an
error-processing technique (variant V1 of Figure 4) and the execution scheme (variant V2 of
Figure 4), it would be easier for the client to say if the application has critical requirements
of real-time, as well as the fault model of the application. Finally, it would be necessary to
define associations from the decisions at the client-level to design decisions at the software
architecture.

14 Brito, de Lemos and Rubira

References

[1] Jean-Raymond Abrial, Matthew K. O. Lee, Dave Neilson, P. N. Scharbach, and
Ib Sorensen. The b-method. In Proc. of the 4th International Symposium of VDM
Europe on Formal Software Development (VDM ’91), volume 2, pages 398–405, 1991.

[2] T. Anderson and P. A. Lee. Fault Tolerance: Principles and Practice. Prentice-Hall,
1981.

[3] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laiten-
berger, Roland Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst, and Jörg Zettel.
Component-based Product Line Engineering with UML. Addison-Wesley, 2002.

[4] Marko Auerswald, Martin Herrmann, Stefan Kowalewski, and Vincent Schulte-Coerne.
Reliability-oriented product line engineering of embedded systems. In Proc of the
4th International Workshop on Software Product-Family Engineering (PFE’01), LNCS
2290, pages 83–100, London, UK, 2002.

[5] A. Avizienis. The n-version approach to fault-tolerant software. IEEE Trans. on
Software Engineering, 11(12):1491–1501, 1985.

[6] Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, and Pascal Van Hentenryck.
Parameterized interfaces for open system verification of product lines. Automated
Software Engineering (ASE’04), 0:258–267, 2004.

[7] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequen-
tial processes. J. ACM, 31(3):560–599, 1984.

[8] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Models. Software
Process Improvement and Practice, John Wiley & Sons, 10(2):143–169, 2005.

[9] Stefan Ferber, Jrgen Haag, and Juha Savolainen. Feature interaction and dependencies:
Modeling features for reengineering a legacy product line. In Proc. of the Second
International Software Product Lines Conference (SPLC), LNCS 2379, pages 37–60,
2002.

[10] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability
in Software Product Lines. In Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), page 45, Washington, DC, USA, 2001. IEEE
Computer Society.

[11] K. H. Kim and Howard O. Welch. Distributed execution of recovery blocks: An ap-
proach for uniform treatment of hardware and software faults in real-time applications.
IEEE Trans. on Compututers, 38(5):626–636, 1989.

[12] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

Verifying Architectural Variabilities in Software Fault Tolerance Techniques 15

[13] Jean-Claude Laprie, Jean Arlat, Christian Béounes, and Karama Kanoun. Definition
and analysis of hardware- and software-fault-tolerant architectures. IEEE Computer,
23(7):39–51, 1990.

[14] M. Leuschel and Michael J. Butler. Prob: A model checker for b. In Proc. of Interfa-
tional Conference on Formal Methods (FME’2003), LNCS 2805, pages 855–874. Pisa,
Italy, 2004.

[15] Robyn R. Lutz and Gerald C. Gannod. Analysis of a software product line architecture:
an experience report. Journal of Systems and Software (JSS), 66(3):253–267, 2003.

[16] Prasanna Padmanabhan and Robyn R. Lutz. Tool-supported verification of product
line requirements. Automated Software Engineering (ASE’05), 12(4):447–465, 2005.

[17] Michael Poppleton. Towards feature-oriented specification and development with event-
b. In Peter Sawyer, Barbara Paech, and Patrick Heymans, editors, 13th International
Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 07), LNCS 4542, pages 367–381, 2007.

[18] B. Randell. System structure for software fault tolerance. In Proc. of the International
Conference on Reliable software, pages 437–449, 1975.

[19] R.K. Scott, J.W. Gault, and D.F. McAllister. The consensus recovery block. In Proc.
of Total Systems Reliability Symposium, pages 74–85, December 1983.

