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Abstra
tIn this paper we propose a Lagrangian relaxation framework to solve the vertex separatorproblem (VSP). This framework is based on the development of relax-and-
ut algorithms whi
hembed the separation of valid inequalities for the VSP dis
ussed in [3℄ in the subgradient method.These relax-and-
ut algorithms are then used as a prepro
essing phase in a hybrid algorithmwhi
h 
ombines them with bran
h-and-
ut algorithms proposed in [12℄. This is done basi
allyby feeding the bran
h-and-
ut algorithms not only with the primal bound but also the 
utsseparated during the prepro
essing phase. Computational results obtained with ben
hmarksfrom the literature showed that the hybrid algorithm developed here outperforms the best exa
talgorithm available for the VSP to date.Keywords: Lagrangian relaxation, 
utting planes, Integer Programming, relax-and-
ut algo-rithms, vertex separator.1 Introdu
tionA vertex separator in an undire
ted graph is a subset of the verti
es, whose removal dis
onne
tsthe graph in at least two nonempty 
onne
ted 
omponents. Re
ently, Balas and de Souza [3, 12℄studied the vertex separator problem (VSP) whi
h 
an formally be stated as follows.INSTANCE: a 
onne
ted undire
ted graph G = (V;E), with jV j = n, an integer 1 � b � n and a
ost 
i asso
iated with ea
h vertex i 2 V .PROBLEM: �nd a partition of V into disjoint sets A;B;C, with A and B nonempty, su
h that (i) E
ontains no edge (i; j) with i 2 A, j 2 B, (ii) maxfjAj; jBjg � b, (iii) Pj2C 
j is minimized.The sets A and B are 
alled the shores of the separator C. A separator C that satis�es (i)but violates (ii) is termed infeasible; one that satis�es (i) and (ii) is feasible; and a separatorthat satis�es (i), (ii), (iii) is optimal. Unless otherwise spe
i�ed, the term separator is usedhere to denote a feasible one. The VSP is NP-hard and has widespread appli
ability in network
onne
tivity. Further dis
ussion on appli
ations appears in [3℄.In that paper Balas and de Souza also 
ondu
ted the �rst polyhedral investigation on theVSP. They introdu
ed several 
lasses of strong valid inequalities for the polytope asso
iated to theproblem. In a 
ompanion paper to that study, the same authors reported extensive 
omputationalexperiments with a bran
h-and-
ut (B&C) algorithm based on those inequalities. In [6℄ Bornd�orferet al 
onsidered a generalization of the VSP where the partitioning of the vertex set has to be donein two or more subsets. However, 
ontrarily to the VSP, solutions where one of the shores remainsempty are allowed.Based on the Integer Programming (IP) model and on the strong valid inequalities introdu
edby Balas and de Souza, we propose an algorithm that 
ombines Lagrangian relaxation with 
uttingplane te
hniques to solve the VSP. Our method belongs to a 
lass of Lagrangian relaxation algo-rithms where 
onstraints of 
ertain families of inequalities may only be expli
itly dualized when theybe
ome violated at some Lagrangian relaxation solution. These so-
alled Relax-and-Cut (R&C)algorithms appear as a promising alternative approa
h to strengthen Lagrangian relaxation boundsas reported in several re
ent works in the literature [7, 16, 17, 18, 19, 20℄. These algorithms use adynami
 inequality dualization s
heme that renders viable the appli
ation of Lagrangian Relaxationto models with an exponential number of inequalities. Indeed, a similar approa
h for the travelingsalesman problem [2℄ date from the early 80's. 1



Furthermore, we des
ribe a framework that proposes a hybridization between our R&C algo-rithm and a modi�ed version of the B&C algorithm presented in [12℄, to our knowledge, the bestexa
t algorithm available for the VSP. Basi
ally, this hybridization 
onsists in using our R&C as aprepro
essing subroutine of the B&C algorithm and we denote it by hybrid. Similar hybrid ap-proa
hes were already tried on other optimization problems [9, 10, 11℄. However this work presentsthe �rst attempt to use it in the exa
t 
omputation of VSP instan
es. The experiments 
ondu
tedhere show that di�erent versions of the hybrid method outperform the B&C algorithm when usedalone.The paper is organized as follows. Se
tion 2 presents the IP formulation for the VSP givenin [3, 12℄ and used here. Se
tion 3 brie
y reviews the Lagrangian relaxation te
hnique and thesubgradient method (SM) and gives a general des
ription of R&C algorithms. The elements of theR&C algorithm we developed for the VSP are presented in Se
tion 4. This se
tion in
ludes detailsof the Lagrangian relaxations 
onsidered, des
riptions of the separation routines implemented andof the primal heuristi
 we devised. Se
tion 5 dis
usses how we integrated Lagrangian relaxationwith other Integer Linear Programming te
hniques to design an exa
t algorithm to solve the VSP.The setup of our test environment is detailed in Se
tion 6. Se
tion 7 des
ribes the stru
ture of ouralgorithm and reports on the 
omputational results obtained for test instan
es gathered from theliterature. Finally, in Se
tion 8, we draw some 
on
lusions and point out some possible extensionsof this study.2 An IP formulation for the VSPWe des
ribe here the mixed IP formulation presented in [3, 12℄ on whi
h our Lagrangian relaxationis based. For every vertex i 2 V , two binary variables are de�ned: ui1 = 1 if and only if i 2 Aand ui2 = 1 if and only if i 2 B. For S � V and k 2 f1; 2g, let uk(S) denote P(uik : i 2 S), andu(S) = u1(S) + u2(S). An IP model for the VSP is given bymax Xi2V 
i(ui1 + ui2)ui1 + ui2 � 1; 8 i 2 V (1)ui1 + uj2 � 1; uj1 + ui2 � 1; 8 (i; j) 2 E (2)u1(V ) � 1; (3)u2(V ) � b; (4)u1(V )� u2(V ) � 0; (5)ui2 � 0; ui1 2 f0; 1g; 8 i 2 V: (6)Inequalities (1) for
e every vertex to belong to at most one shore. Inequalities (2) prohibits theextremities of an edge to be on distin
t shores. Inequalities (3) to (5) limit the size of the shoresand, at the same time, redu
e the symmetry of the model by for
ing the size of shore A to bebounded by that of shore B. As observed in [12℄, if the ui1 variables are integer for all i 2 V , theintegrality of the u2 variables 
an be dropped from the formulation. Though this observation is nottaken into a

ount by our Lagrangian relaxation, it is relevant for IP solvers.2



3 Relax-and-Cut (R&C) algorithmsFor 
ompleteness, we brie
y review the basi
s on Lagrangian relaxation and relax-and-
ut algo-rithms that are relevant to us. Denote by X a subset of B n = f0; 1gn and letZ = max f
x : Ax � b; x 2 Xg (7)be a formulation for a NP-hard 
ombinatorial optimization problem. In asso
iation with (7) onehas b 2 Rm , 
 2 Rn and A 2 Rm�n , where m and n are positive integral values representing,respe
tively, the number of 
onstraints and the number of variables involved. Let Z 0 denote theformulation obtained after removing 
onstraints Ax � b from (7). Also, assume that Z 0 
an besolved faster than Z (typi
ally in polynomial or pseudo-polynomial time in the problem size).A Lagrangian relaxation of (7) is obtained by bringing the term �(b � Ax) into the obje
tivefun
tion of Z 0, where � 2 Rm+ is the 
orresponding ve
tor of Lagrange multipliers. The resultingLagrangian relaxation Problem (LRP (�)) isZ(�) = max f
x+ �(b�Ax) : x 2 Xg = max f(
 � �A)x+ �b : x 2 Xg: (8)It is a known fa
t that Z(�) � Z and, therefore, the tightest possible upper bound on Z,attainable through LRP (�), is given by an optimal solution to the Lagrangian dual problem (LDP)ZD = min�2Rm+ fmax f(
��A)x+�b : x 2 Xgg: In the literature, several methods exist to 
omputethe LDP. Among these, due to its simpli
ity and the a

eptable results it returns, the subgradientmethod (SM) is the most widely used [5℄. A brief review of that method follows sin
e the R&Calgorithm we suggest here for the VSP is deeply based on SM.SM is an iterative pro
edure whi
h solves a su

ession of LRPs like the one in (8). It starts witha feasible ve
tor �0 of Lagrangian multipliers and, at iteration k, generates a new feasible ve
tor�k of multipliers and an asso
iated LRP. Usually, the algorithm stops when a given limit on thenumber of iterations is rea
hed.At iteration k, let �xk be an optimal solution to (8) with 
ost Z(�k) and let zkLB be a known lowerbound on (7). An asso
iated subgradient ve
tor (for the m relaxed 
onstraints) is then 
omputedas gki = (bi � ai�xk); i = 1; 2; : : : ;m. That ve
tor is then used to update �k. To that order, a stepsize �k is 
omputed. The following formula is 
ommonly applied to perform this 
al
ulation [5℄�k = �k(Z(�k)� zkLB)Pmi=1(gki )2 : (9)Typi
ally, the real parameter �k is set to an initial value (�0). Along the iterations, it is redu
ed toa fra
tion of its 
urrent value whenever an a priori �xed number of LRPs have been solved withoutimproving the upper bound on Z. Finally, on
e �k is obtained, �k is updated as�k+1i = max f0;�ki � �kgki g; i = 1; 2; : : : ;m: (10)Noti
e that the straightforward use of formulas (9-10) may be
ome troublesome when a huge numberof dualized inequalities exist. An alternative may be to modify SM a

ording to the R&C s
hemedis
ussed below.In the literature two strategies to implement R&C algorithms are dis
ussed. They di�er, ba-si
ally, on the moment at whi
h the new inequalities are identi�ed and dualized. In a Delayed3



Relax-and-Cut (DR&C), several exe
utions of SM are made. The sear
h for violated 
uts is per-formed solely at the end of ea
h su
h exe
ution and, if some of them are en
ountered, they aredualized and a new exe
ution of SM starts. In a Non Delayed Relax-and-Cut (NDR&C), typi
allya single SM exe
ution is done and 
uts are dualized along the iterations as they are found (see[7, 16, 18, 19, 20℄ for details). In a 
omparison 
arried out in [19℄, NDR&C performed better thanDR&C. However, in our work, we de
ide to implement both strategies in order to 
ompare them inthe 
ontext of the VSP. Also, we propose a third strategy whi
h 
ombines ideas borrowed from theprevious ones. We denote it by Postponed (non-delayed) Relax-and-Cut (PR&C). As for NDR&C,in PR&C the 
uts are separated at ea
h SM iteration. However, these 
uts are not immediatelydualized. Instead, they are stored in a bu�er. Similarly to what happens in DR&C, the SM isexe
uted several times. In the beginning of ea
h exe
ution, the bu�er is emptied and all its 
utsare dualized for the next SM round.Clearly, if there are exponentially many inequalities in (7), the use of traditional Lagrangianrelaxation be
omes impra
ti
able. Alternatively the R&C s
heme proposes a dynami
 strategy todualize inequalities. In this pro
ess, one should be able to identify inequalities that are violated by�xk. To do so, likewise polyhedral 
utting-plane generation, a separation problem must be solved atevery iteration of SM. Thus, one tries to �nd at least one inequality violated by the 
urrent LRPsolution. The inequalities thus identi�ed are 
andidates to be dualized. It is worth noting thatseparation problems arising in R&C algorithms may be easier than their polyhedral 
utting-planealgorithm 
ounterparts. That applies sin
e LRP normally has integral valued solutions (
f. [20℄).4 Relax-and-
ut algorithms for the VSPDi�erent Lagrangian relaxations 
an be devised from the formulation given in se
tion 2. Duringthis work we evaluated some of them, always 
onsidering the trade-o� between two aspe
ts: (a)the strength (sharpness) of the resulting Lagrangian dual bounds and (b) the diÆ
ulty of solvingthe Lagrangian primal and dual problems, whi
h in
uen
e on the amount of 
omputation requiredto obtain the bounds. With this in mind, we 
onsidered three relaxations, all of whi
h 
an be easilyseen to satisfy the integrality property. Then, in all three 
ases, the best dual bound attainableis equal to the value of the VSP linear programming relaxation. Therefore, what prevailed in our
hoi
e of the Lagrangian relaxation to be used was the 
omputational e�ort involved in solvingLRP and LDP.We de
ided to start with a simple relaxation where the 
onstraint sets (1) and (2) are dualized bymeans of the ve
tor multipliers � 2 RjV j+ , �1 2 RjEj+ and �2 2 RjEj+ , respe
tively. Also, observe thatsymmetry is not of primary 
on
ern for the Lagrangian relaxation. Thus, we 
onsider an alternativeIP formulation where the inequalities (3) and (4) are repla
ed, respe
tively, by 1 � ul(V ) � b; withl = 1; 2, and inequality (5) is dropped. A

ordingly, the resulting LRP is given byLRP(�; �1; �2) = max fXi2V (�
i1ui1 + �
i2ui2 + �i) + X(i;j)2Ei<j (�1i;j + �2i;j) : ukl 2 f0; 1g;8 k 2 V and l = 1; 2; satisfying 1 � ul(V ) � b g (11)where �
k1 = 
k � �k �P(k;j)2Ek<j �1k;j �P(i;k)2Ei<k �2i;k and �
k2 = 
k � �k �P(i;k)2Ei<k �1i;k �P(k;j)2Ek<j �2k;j(for ea
h k in V ) are the Lagrangian 
osts of, respe
tively, uk1 and uk2. Noti
e that (11) 
an be4



solved in O(jV j log jV j) time by sorting the variables a

ording to their Lagrangian 
osts and afterperforming a few simple 
al
ulations.The se
ond relaxation we experimented with is very similar to the �rst one, di�ering only bythe fa
t that inequalities (1) are not dualized anymore. The resulting LRP is thusLRP(�1; �2) = max fXi2V (�
i1ui1 + �
i2ui2) + X(i;j)2Ei<j (�1i;j + �2i;j) : ukl 2 f0; 1g;8 k 2 V and l = 1; 2; satisfying (1), 1 � ul(V ) � bg (12)where �
k1 = 
k�P(k;j)2Ek<j �1k;j�P(i;k)2Ei<k �2i;k and �
k2 = 
k�P(i;k)2Ei<k �1i;k�P(k;j)2Ek<j �2k;j (for ea
h k inV ) are the Lagrangian 
osts of, respe
tively, uk1 and uk2. It is possible to devise a simple dynami
programming algorithm that solves LRP(�1; �2) in O(jV j3).The third relaxation 
omes from the observation that a matrix formed by the 
oeÆ
ients ofthe set of 
onstraints des
ribed in (1) and (2) is totally unimodular. Thus, when all but these
onstraints are dualized, the resulting LRP is a well-solved problem that 
an be 
omputed inpolynomial-time using a spe
ialized network 
ow algorithm or an interior point method for linearprogramming. Now, given the ve
tors of Lagrangian multipliers � 2 R1+ , � 2 R1+ and 
 2 R1+ , theresulting LRP isLRP(�; �; 
) = max fXi2V (�
i1ui1 + �
i2ui2)� � + �b :ukl; 8 k 2 V and l = 1; 2; satisfy (1), (2) and (6)g (13)where �
k1 = 
k + � � 
 and �
k2 = 
k � � + 
 (for ea
h k in V ) are the Lagrangian 
osts of uk1 anduk2, respe
tively.Among the three relaxations dis
ussed above, the �rst one provided the best trade-o� betweenthe strength of dual bounds and the 
omputation time required to solve the Lagrangian subproblem.For this reason, it was the one adopted in the �nal 
on�guration of our relax-and-
ut algorithm.4.1 Classes of valid inequalities and separation problemsThe relax-and-
ut algorithms developed here are based on two families of valid inequalities intro-du
ed by Balas and de Souza in their polyhedral study of the VSP [3℄. Inequalities in both familieshave dominators as part of their support graphs. The �rst is related to minimal 
onne
ted domina-tors and the inequalities belonging to it are 
alled CD inequalities. The se
ond family is asso
iatedto minimal but not ne
essarily 
onne
ted dominators and has its strength in
reased through atri
ky lifting pro
edure. The latter inequalities are termed LD inequalities.The CD and LD inequalities are des
ribed below. In the dis
ussion that follows, P is de�nedas the 
onvex hull of the integer solutions of the IP model given in se
tion 2, i.e., P := 
onvfu 2f0; 1g2jV j : u satis�es (1){(6)g. The point �u = (�u1; �u2), to whi
h we apply our separation routines,refers to an optimal solution of the LRP 
urrently under 
onsideration. Also, given G = (V;E),for any S � V , Adj(S) refers to the set of all verti
es in V nS whi
h are adja
ent to at least onevertex in S (when S = fig we write Adj(i) to denote Adj(fig)). Similarly, for a 
ertain k 2 V nS,we denote Adjs(k) := fi 2 S : (i; k) 2 Eg. 5



CD-Separation(G)1. Constru
t G�u = (W;F );2. Determine nCC , the number of 
onne
ted 
omponents of G�u;3. if nCC = 1 then /* G�u is 
onne
ted */4. if V � (W [ Adj(W )) then /* W is a dominator of V */5. Turn W into a minimal CD;6. return the CD inequality u(W ) � jW j � 1;7. else return FAIL; /* no new 
ut is returned for dualization */Figure 1: Separation routine for CD inequalities.4.1.1 CD inequalitiesBalas and de Souza [3℄ 
all a valid inequality for VSP symmetri
 if, for all j 2 V , the 
oeÆ
ients ofthe variables uj1 and uj2 in the inequality are the same. Besides, they show that vertex separatorsare intimately related to vertex dominators. A vertex dominator is a subset of verti
es of the graphsu
h that all the remaining verti
es are adja
ent to at least one of them. The dominator is said tobe 
onne
ted if the subgraph indu
ed by its verti
es is 
onne
ted. Balas and de Souza then statedthe following property: every separator and every 
onne
ted dominator have at least one vertexin 
ommon. From this observation, they derived a 
lass of symmetri
 inequalities asso
iated with
onne
ted dominators, the so-
alled CD inequalities. If S � V is a 
onne
ted dominator, the CDinequality for S is given by u(S) � jSj � 1: (14)Inequality (14) is 
learly valid for the VSP polytope P . It is non dominated only if S is minimalwith respe
t to vertex removal. Noti
e that minimality here applies to both the dominan
e and the
onne
tivity properties. Though ne
essary and suÆ
ient 
onditions for CD inequalities to de�nefa
ets are not known in general, they are shown in [12℄ to be very e�e
tive in 
omputations.A valuable 
hara
teristi
 of our R&C algorithms is the fast separation routine that looks forviolated CD inequalities at �u. A high level des
ription of our pro
edure is given in Figure 1. Theroutine starts by 
onstru
ting the subgraph G�u = (W;F ) of the input graph G = (V;E) whi
h isindu
ed by the verti
es i 2 V with �ui1+�ui2 � 1. It is easy to see that, ifW is a dominator and G�u is
onne
ted then the CD inequality asso
iated to W is violated by �u. Unfortunately, the 
onverse isnot true in general. It holds when 
onstraints (1) are satis�ed, in whi
h 
ase, as 
ited before, LRP
an be solved by dynami
 programming. Appendix A presents a thorough dis
ussion regardingthe 
omplexity of separating CD inequalities and appendix B des
ribes a dynami
 programmingalgorithm to solve LRP.Thus, our separation routine 
an be viewed as a heuristi
. Step 5 of the algorithm tries tostrengthen the inequality sin
e the minimality of the dominator is a ne
essary 
ondition for a CDinequality to be fa
et de�ning. It 
he
ks if the removal of a limited number of verti
es preservesthe 
onne
tivity of the graph indu
ed by W and the dominan
e property. The separation routineimplemented has a worst-
ase 
omplexity of O(jV j(jV j+ jEj)). But, in general, the size of minimal
onne
ted dominators de
reases with graph density and the hardest VSP instan
es 
orrespond tographs of relatively high densities. In su
h 
ases, the algorithm behaves more like a O(jV j + jEj)algorithm.In our R&C algorithm the separation pro
edure is 
alled at every SM iteration. Sin
e we6



implemented two greedy ways to obtain minimal CD inequalities, at most two 
uts are produ
edper iteration. Every new 
ut separated is stored in a pool and dualized in a Lagrangian fashion.The relaxation in (11) is then modi�ed to in
orporate this 
onstraint. As a result, the termPjpooljk=1 �k(jSkj � 1� u(Sk)) is added to the 
ost fun
tion of (11), where � 2 Rjpoolj+ is the ve
tor ofmultipliers of the CD inequalities that are 
urrently dualized and Sk (k = 1 : : : jpoolj) 
orrespondsto the 
onne
ted dominator asso
iated to the CD inequality at position k in the pool.4.1.2 Conditional (CD) CutsA

ording to de Souza and Balas, in [12℄, for unit 
osts, one 
an adapt the separation routine tosear
h for more stringent CD inequalities. These inequalities are valid for all ve
tors u 2 P satisfyingu(V ) � zLB + 1, but 
hop o� several feasible solutions with smaller 
osts. Their usage preservesoptimality and is 
onditioned to the existen
e of a lower bound zLB . We 
all them 
onditional
uts, in an analogy to what is done for the set 
overing problem in [4℄. For the VSP, these 
utsare obtained 
omputing � = maxfzLB � b+ 1; 1g and sear
hing minimal dominators that 
over atleast k = jV j � � + 1 verti
es (k-dominators). Thus, given a lower bound zLB for the optimum,the separation routine 
an be 
hanged to identify minimal 
onne
ted k-dominators. Obviously, theinteresting situation o

urs when zLB > b, meaning that not all jV j verti
es need to be 
overed.Conditional 
uts are used both in the B&C algorithm in [12℄ and in the R&C algorithm presentedhere. In our implementation, 
onditional CD 
uts are 
onsidered already along the exe
ution ofthe R&C algorithm. When a 
onditional CD 
ut is identi�ed, it repla
es any CD inequality itdominates.4.1.3 LD inequalitiesLet S � V be a dominator of V . For i 2 S, P (i) = fk 2 V nS : Adjs(k) = figg is the set of pendentverti
es of i. Also, if S is minimal and P (i) = ;, for some i 2 S, the presen
e of i in S is neededonly to dominate i itself. We 
all su
h a vertex a self-dominator. Now, take S � V a minimaldominator of G, not ne
essarily 
onne
ted. Then, the inequalityu1(S) � jSj � 1: (15)is trivially valid1 for the VSP polytope P and is fa
et de�ning only under some spe
ial 
onditions,a

ording to the following proposition:Proposition 4.1 (Balas and de Souza[3℄) The inequality (15), where S is a minimal dominator ofG, de�nes a fa
et of P if and only if the following 
onditions are satis�ed: (a) V nS = Si2S P (i);(b) S 
ontains no self-dominator, and (
) S is an independent set.Balas and de Souza [3℄ propose two forms of lifting the inequality (15) when some of the
onditions in proposition 4.1 are not satis�ed. In the R&C algorithm designed here, we applythe �rst lifting devised by them, whi
h alters the 
oeÆ
ients of the variables asso
iated to theassignment of verti
es of S to the shore B. It applies when the dominator S is not an independentset. Sin
e the resulting inequalities are asso
iated with minimal dominators and a with a liftingpro
edure, they were 
alled LD (Lifting Dominator) inequalities.1We assume that jSj � b, for otherwise (15) would be implied by (4), hen
e redundant.7



Now, let S be a minimal dominator that is not an independent set. Further, let S1; S2; : : : ; Skbe the vertex sets of the 
omponents of G[S℄ (the graph indu
ed by S in G) su
h that jSlj > 1; l =1; : : : ; k. A

ording to [3℄, for ea
h 
omponent G[Sl℄, one must build an ordered set of verti
esIl = fv1; v2; : : : ; vqg having the following properties: (
1) Il is an independent set of G[Sl℄; (
2)for all i 2 f2; : : : ; qg, vi is at (edge) distan
e two from the vertex set fv1; v2; : : : ; vi�1g and (
3) Ilis maximal. Su
h a set always exists and is usually not unique. Balas and de Souza designed analgorithm to �nd su
h a set whi
h 
omputes a spanning tree Tl of G[Sl℄ as follows.Initially all the verti
es in Sl are unmarked. The algorithm starts by arbitrarily 
hoosing v 2 Slas the root of Tl = (VTl ; ETl) and mark v. Also, all the verti
es w 2 Adj(v) in G[Sl℄ and all theedges joining them to v in G[Sl℄ are put into Tl. Then, for ea
h w 2 SlnTl, w 2 Adj(VTl) in G[Sl℄,the following steps are repeated until all the verti
es of Sl have been in
luded in Tl: (i) w is markedand put into Tl by joining it through an edge from G[Sl℄ to some (arbitrarily 
hosen) unmarkedvertex of Tl; (ii) using edges from G[Sl℄, add to Tl all the verti
es in (SlnTl)\Adj(w) (the adja
en
yhere is de�ned over G[Sl℄).It is not hard to see that the verti
es marked in Tl form an ordered set satisfying the 
onditionsde�ned earlier for Il. Moreover, be
ause of the freedom one has to 
hoose the unmarked vertex ofTl to whi
h a newly marked vertex is joined by an edge to Tl, the tree is not unique. Figure 2 showsan example of 
omponent G[Sl℄, along with two distin
t ordered sets satisfying 
onditions (
1),(
2) and (
3). The spanning trees 
orresponding to ea
h of the ordered sets are also depi
ted.Besides, the marked verti
es and their degrees are highlighted.
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Figure 2: Two ordered sets satisfying 
onditions (
1), (
2) and (
3) and the 
orrespondingspanning trees asso
iated with ea
h one of them.8



LD-Separation(G)1. Constru
t G�u = (W;F );2. Determine nCC , the number of 
onne
ted 
omponents of G�u;3. if nCC � 2 then /* G�u is 
onne
ted or has at most two 
omponents */4. if V � (W [Adj(W )) then /* W is a dominator of V */5. Turn W into a minimal dominator with nCC 
omponents of G[W ℄;6. for l = 1; ::; nCC do7. Constru
t Tl and identify an independent set Il = fv1; v2; : : : ; vqg � VTl ;8. Determine Ævj = Æ(vj) for all vj 2 Il. Set Ævj = 0 for all vj 2 VTlnIl;9. return the LD inequality u1(W ) +Pvj2W Ævjuvj2 � jW j � 1;10. return FAIL; /* no new 
ut is returned for dualization */Figure 3: Separation routine for LD inequalities.Suppose that the algorithm above exe
uted for ea
h 
omponent G[Sl℄ resulting in a spanningtree Tl and an ordered set Il. Balas and de Souza [3℄ prove that the inequalityu1(S) +Xj2S Æjuj2 � jSj � 1 (16)is valid and fa
et de�ning for the polytope P , where ea
h Æj is equal to the degree of vj in Tl if thisvertex is marked and is null otherwise.To identify LD inequalities we implemented a heuristi
 separation routine whi
h uses this �rstlifting pro
edure from Balas and de Souza. The pro
edure is detailed in Figure 3. Like in the CDseparation, the routine starts by 
onstru
ting the subgraph G�u = (W;F ) of G whi
h is indu
edby the verti
es i 2 V with �ui1 + �ui2 � 1. Then, to save 
omputation time, in step 3 we restri
tthe separation routine to the 
ases where G�u has at most two 
onne
ted 
omponents. Thoughrestri
tive, this pro
edure allows us to generate LD 
uts both for 
onne
ted and non 
onne
teddominating sets, 
ontrarily to the CD inequality 
ase. Thus, the lifting of variables in the smallerset is produ
ed with the aid of at most two spanning trees (steps 6{8). In our �nal implementation,the sele
tion of verti
es to mark and to 
onne
t ea
h newly marked vertex is done in in
reasingorder of vertex labels. It is worth mentioning that we also experimented to sele
t the vertexwith the highest degree in G[SlnVT (i)l ℄. In prin
iple this may generate LD 
onstraints with smallersupports resulting in lighter LPs. However, sin
e no a
tual gain was observed and some additional
omputation was required, this strategy was abandoned. Finally, a LD inequality asso
iated to thedominator W that 
uts o� �u is built. The 
omputational 
omplexity of the separation routine forLD inequalities is the same as that of the CD inequalities, i.e., O(jV j(jV j + jEj)). As said before,in pra
ti
e, for dense graphs, the separation routine is quite fast be
ause minimal dominators areobtained from already small W dominators.Similarly to what is reported by de Souza and Balas in [12℄, CD inequalities showed, experi-mentally, to be mu
h more e�e
tive than LD 
uts. Moreover, we noti
ed that the LD inequalitiesover 
onne
ted dominator often produ
ed better dual bounds than those over not 
onne
ted dom-inators. Thus, in our �nal experiments, we de
ided to separate LD inequalities only when ourCD separation is turned on and just 
onsidering 
onne
ted dominators. In our experiments, these
hoi
es resulted in time savings during LD separation sin
e they redu
ed its exe
ution to steps 1,2 and, for nCC = 1, to steps 7 to 9 of the algorithm in Figure 3.9



In our R&C algorithm the LD separation routine is 
alled at every SM iteration. It produ
es atmost two 
uts per iteration and the lifting pro
edure is 
alled even when the basi
 LD inequality(15) is not violated by the solution of the 
urrent Lagrangian subproblem.Every new 
ut separated is stored in a pool and dualized in a Lagrangian fashion. The relaxationin (11) is then modi�ed to in
orporate this 
onstraint. As a result, the expressionPjpooljk=1 'k(jSkj �1 � u2(Sk) �Pj2Sk Æjuj1) is added to the 
ost fun
tion of (11), where ' 2 Rjpoolj+ is the ve
tor ofmultipliers of the LD inequalities 
urrently dualized.Noti
e that, due to the inequality dualization s
heme within relax-and-
ut algorithms, the same
ut may be repeatedly identi�ed by the separation routines. Managing the 
ut pools of CD and LDinequalities is quite simple and is restri
ted to redundan
y 
he
ks, i.e., a new inequality is insertedonly if it is not identi
al to another inequality already in the pool or in the original formulation.The use of suitable data stru
tures and standard hashing te
hniques render our implementation ofredundan
y veri�
ation very fast.4.2 A Lagrangian primal heuristi
The generation of good primal bounds is important for the 
omputation of the step size (9) in theSM and to assess the duality gap along the iterations of the algorithm. In order to 
ompute lowerbounds for the VSP, we devise a simple greedy heuristi
 whose steps are summarized in Figure 4.Initially, the set L 
ontaining the verti
es that are 
andidates to be part of the shores is built.This ex
ludes the universal verti
es, i.e., those whi
h are adja
ent to all the other verti
es, whi
h
learly belong to any separator. The heuristi
 
hooses arbitrarily two nonadja
ent verti
es of Land assigns them to di�erent shores so that, in the end, they will not be empty. It pro
eeds byassigning verti
es to shores, prioritizing the assignments 
orresponding to the variables with higherweighted Lagrangian 
osts. The 
hoi
e of the weighting method is 
ontrolled by the parameters��(k) 2 f0; 1g, where k stands for the shore indi
es, i.e., k = 1; 2. It is implemented by multiplyingor dividing the Lagrangian 
ost of the variable asso
iated to a vertex v by the degree of v, Æ(v),as seen in step 5, and 
an be distin
t for variables asso
iated to the same vertex but to di�erentshores. This allows us to distribute the verti
es between the two shores a

ording to their 
osts anddegrees. Sin
e universal verti
es are always in a separator, our intuition was that, in an optimalsolution, verti
es with high degrees are less likely to belong to a shore. This would 
ount if favorof 
ost division. However, to our surprise, preliminary tests with a subset of instan
es showed thatonly multiplying the 
osts produ
e slightly better solutions than the other 
ombinations. Hen
e,in our default setting, we �xed ��(1) = ��(2) = 1.Noti
e that, in the heuristi
, all the assignments of verti
es to shores are made so as to maintainthe viability and to respe
t the maximum size of the shores. As a �nal step, a lo
al sear
h subroutinemay be 
alled in an attempt to improve on the solution produ
ed by the heuristi
. The de
isionon whether or not the lo
al sear
h is exe
uted works as follows. Let z be the 
ost of the 
urrentsolution and 
(z) the number of solutions having 
ost z found so far throughout the R&C exe
ution.The lo
al sear
h is exe
uted only when 
(z) < �, where � is a parameter that spe
i�es a limit onthe number of improvements trials over solutions having the same 
ost.The lo
al sear
h routine is des
ribed in Figure 5. It starts by enlarging the 
urrent separatorC with as many verti
es of the shores belonging to its adja
en
y as possible (steps 1 to 5). Thenverti
es are transferred from the new separator C 0 ba
k to the shores in step 6 in an arbitraryorder. However, the 
hoi
e of the destination shore is made so as to in
rease the 
han
es of future10



Lagrangian heuristi
 (G = (V;E); 
; 
, ��;�)1. L V nfuniversal verti
es in Gg;2. v0  fany vertex in L that maximizes �
(ui1)g;3. Initialize shore A: A fv0g, L Lnfv0g and L0  LnAdj(v0);4. Initialize shore B: B  fv1 2 L0 : Æ(v1) � Æ(v);8v 2 L0g and L Lnfv1g;5. for k = 1; 2 do:for all i 2 L, 
ompute wuik  �
(uik) � [��(k) � Æ(i) + (1� ��(k))=Æ(i)℄;Let Sk be the list of variables uik sorted non in
reasingly by wuik ;for all j 2 Adj(v2�k) do Sk  Sknfujkg;6. while jAj < b or jBj < b dof1  fvertex 
orresponding to the �rst variable in S1g;f2  fvertex 
orresponding to the �rst variable in S2g;if �
(uf1;1) > �
(uf2;2) thenA A [ ff1g; S1  S1nfuf1;1g;for all j 2 Adj(f1) do S2  S2nfuj;2g;elseB  B [ ff2g; S2  S2nfuf2;2g;for all j 2 Adj(f2) do S1  S1nfuj;1g;if jAj = b, �
(uf1;1) �1; /* avoids new verti
es in A */if jBj = b, �
(uf2;2) �1; /* avoids new verti
es in B */7. Compute the separator: C  V nfA [ Bg8. if 
(Pj2C 
j) < �, 
all Lo
al Sear
h(G;A;B;C; 
);9. return (A;B;C) Figure 4: Lagrangian heuristi
.moves from the separator to the shores. This is evaluated via the simple 
omputations in steps 6.ito 6.m. The overall 
omplexity of the Lagrangian heuristi
, in
luding the lo
al sear
h pro
edure,is O(jV j log jV j � jEj).5 Integrating R&C and B&CAn alternative to be more e�e
tive in solving VSP problems to optimality is to devise a hybridapproa
h that 
ombines Lagrangian relaxation with Integer Linear Programming (IP), in the stylesuggested in [7℄. We denote this hybridization of R&C and B&C algorithms by hybrid. In su
h
ombination, optimization is split in three steps: (i) the LR phase, based on our relax-and-
utframework, whose output are pools of valid inequalities and a primal bound; (ii) a remodellingphase, where the IP formulation is tightened a

ording to the information gathered during the �rstphase and, subsequently, (iii) the LP phase where a bran
h-and-
ut 
ode is exe
uted over the newIP model. Among the 
uts used in this last phase, we in
lude those 
uts separated throughout theexe
ution of the R&C algorithm in the initial phase. We 
all them the Lagrangian 
uts.The exe
ution 
ow of the algorithm is depi
ted in Figure 6. The two �rst phases are generi
allytermed as the prepro
essing phase of our hybrid algorithm. Below we des
ribe the three phases ofthe hybrid algorithm in more detail. 11



Lo
al Sear
h (G;A;B;C; 
)/* initializations */1. Let AC be the verti
es in A that have neighbors in C;2. Let BC be the verti
es in B that have neighbors in C;3. if A = AC then AC  ACnfarbitrarily 
hosen vertex of Ag;4. if B = BC then BC  BCnfarbitrarily 
hosen vertex of Bg;5. A0  AnAC ; B0  BnBC ; C 0  C [AC [ BC ;/* main loop */6. for every vertex v 2 C 0 do:6.a if jA0j = b and jB0j = b then break;6.b if jAdj(v) \ A0j 6= ; and jAdj(v) \B0j 6= ;, then 
ontinue;6.
 C 0  C 0nfvg;6.d if Adj(v) � C 0 then6.e if jA0j = b then B0  B0 [ fvg;6.f else6.g if jB0j = b then A0  A0 [ fvg;6.h else6.i nA  0; nB  0;6.j for all w 2 Adj(v) do6.k nA  nA + jAdj(w) \Aj; nB  nB + jAdj(w) \Bj;6.l if nA > nB then A0  A0 [ fvg;6.m else B0  B0 [ fvg;6.n else6.o if Adj(v) � A0 [ C 0 and jA0j < b then A0  A0 [ fvg;6.p else /* Adj(v) � B0 [ C 0 */6.q if jB0j < b then B0  B0 [ fvg;7. if Pi2C 
i >Pi2C0 
i then A A0, B  B0, C  C 0.Figure 5: Primal heuristi
: the lo
al sear
h pro
edure
12
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Figure 6: Flow Diagram of the hybrid algorithms.5.1 The LR phaseThe LR phase is 
omprised of an R&C module. It 
orresponds to one of the implementations ofthe relax-and-
ut algorithm des
ribed in Se
tion 4 and is the 
ore of our framework. During itsexe
ution, valid CD and/or LD inequalities are identi�ed and inserted into the 
orresponding pool.After 
ompleting the exe
ution of the relax-and-
ut algorithm in this module, the �nal dualitygap is veri�ed. If the problem is not solved during the R&C run, some information are passed asthe input of the next phases. This in
ludes not only the 
ut pools, but also the best primal solutionand its 
ost, i.e., the best lower bound found so far.5.2 The remodelling phaseIn addition to CD and LD inequalities identi�ed in the previous phase, some 
onstraints may beadded or adapted to strengthen the original formulation presented in se
tion 2.The �rst 
onstraint 
onsidered 
omes from the observation that universal verti
es must belongto any separator. Thus, given the input graph G = (V;E) and U = fi 2 V : jAdj(i)j = jV j � 1g,the 
onstraint Pi2U (ui1 + ui2) = 0 is trivially valid for the problem. This 
onstraint was not usedduring the LR phase be
ause it resulted in some degradation of the R&C performan
e in terms ofdual and primal bounds yielded. Also, this 
onstraint is not taken into a

ount in [3℄. However,when dealing with high density graphs, the o

urren
e of universal verti
es is very frequent. Inpra
ti
e, the bene�ts with the addition of this 
onstraint to the IP model justi�ed its in
lusion aspart of our remodelling phase.Now, we 
on
entrate on how to use the lower bound yielded by the R&C module to tighten ourIP model. To this end, we fo
us on unit 
ost instan
es, i.e., those for whi
h 
i = 1;8i 2 V . We doso be
ause these instan
es often o

ur in pra
ti
al appli
ations.Assume that zLB is the 
ost of the best known solution 
omputed in this 
ase. Sin
e u2(V ) �u1(V ), we 
an dedu
e that u2(V ) � � zLB2 �+1 must be satis�ed by any solution with 
ost higher than13



Separation Strategy(sep, CDP , LDP )/* 
all table look up routines to obtain Lagrangian 
uts */1. runLagrangianSeparation(CD,CDP); /* L-CD is always ran */2. if sep 2 fhL-CD,CD,L-LD,LDi ; hL-CD,CD,L-LDi ; hL-CD,L-LDig then2.a runLagrangianSeparation(LD,LDP); /* add L-LD 
uts *//* test and 
all de Souza and Balas' routines to generate 
uts */3 if sep =2 fhL-CD,L-LDig and there is no Lagrangian 
ut violated then3.a runCDSeparation(); /* 
all CD separation */3.b if sep = hL-CD,CD,L-LD,LDi then3.
 runLDSeparation(); /* 
all LD separation */Figure 7: The separation strategy exe
uted in the L-B&C module.zLB . For any su
h solution, it is also straightforward to 
on
lude that if zLB� b > 1, 
onstraint (3)
an be repla
ed by the stronger inequality u1(V ) � zLB � b.Although the previous modi�
ations rely on rather simple arguments, in this phase we in
orpo-rate them to the model. As a matter of fa
t, ex
ept for the last 
hange, preliminary experiments we
arried out with these modi�
ations in the IP model revealed an improvement in the performan
eof our modi�ed bran
h-and-
ut algorithm.5.3 The LP phase.The LP phase has as its input the 
ut pools, the best solution and the best primal bound from theLR phase and the new IP model from the remodelling phase. It has two modules that we dis
ussbelow.Linear Programming Solver (LP). This module solves the LP 
orresponding to the relaxationof the IP model 
oming from the remodelling phase, appended with the 
uts present in the 
utpool. This model is 
omputed only if the (relative) Lagrangian gap resulting from the R&C module,given by gap0 = 100 � (zUB � zLB)=zLB is lower than a threshold value �. The purpose here is touse linear programming to avoid running the B&C module unne
essarily. It is well-known that, inpra
ti
e, 
omputing dual bounds within R&C algorithms 
ommonly produ
e meager values thanthe linear relaxation optimum value. Thus, this module is a possible workaround to bypass somenumeri
al diÆ
ulty in 
losing the integrality gap.Bran
h-and-Cut with Lagrangian 
uts (L-B&C). This module runs only if the R&C (LRphase) and/or the LP solver fail to prove optimality (i.e., gap � 1). Re
all that the prepro
essingphase yields as outputs the sets of (
onditional) CD 
uts and/or LD inequalities whi
h are 
andi-dates to be added to the formulation given as input of L-B&C. Moreover, L-B&C is also given thevalues of zLB (best in
umbent), whi
h may help to prune the enumeration earlier.Figure 7 shows the separation strategy adopted at ea
h node of the enumeration tree duringthe exe
ution of the L-B&C module. This strategy is �xed a

ording to the 
ontents of the orderedsequen
e denoted by sep. The elements of sep are taken in the set fCD, LD, L-CD, L-LDg. Themeanings of these strings are: CD and LD 
orrespond to the separation routines for CD and LD14



inequalities as implemented in [12℄, while L-CD and L-LD are the separation routines for Lagrangian
uts implemented by a table look up s
heme. This s
heme 
onsists basi
ally of algorithms that s
anlinearly the 
ut pools, trying to identify (Lagrangian) inequalities that may 
uto� the 
urrent LPoptimal solution. As per this notation, sep=<L-CD,CD> means that the separation of a fra
tionalsolution is �rst made by the table look up pro
edure for Lagrangian CD 
uts and then by de Souzaand Balas' routine for CD 
uts. Lagrangian CD and LD 
uts are stored in pools CDP and LDP,respe
tively.The 
alls to runCDSeparation and runLDSeparation in lines 3.a and 3.
 of the algorithmrefer to the separation routines from [3℄.It was experimentally observed that, L-B&C performan
e is very sensitive to the way in whi
hCD inequalities are added during the bran
h-and-
ut exe
ution. Thus, several experiments wereperformed in order to determine the maximum amount of 
uts to be added per node. The mostpromising settings took into a

ount the density of the graphs underlying the instan
es (see Table1 for details).6 Test Environment SetupThis se
tion des
ribes the setup of the environment under whi
h our tests were 
arried out. Thealgorithms were 
oded in C and C++, using resour
es of the Standard Template Library and preparedto be exe
uted under Linux OS. We used the free 
ompiler g++ (g

 version 4.0.3) with options-O3 and -lm sele
ted. Tests were ran on a Pentium IV ma
hine 2.66 GHz having 1GB of RAM andxpress Optimizer 17.01.02 was used as the IP solver.6.1 Data setsOur main experiments were made on a subset of instan
es taken from [12℄ whi
h 
an be down-loaded from www.i
.uni
amp.br/~
id/Problem-instan
es/VSP.html. Additionally, hard in-stan
es from the miplib [6℄ subset were used to perform further tests. Initially, from the morethan 140 instan
es used in [12℄, we sele
t the ones that required more than a minute of CPU timeto be solved by the bran
h-and-bound (B&B) algorithm of xpress in its default 
on�guration. Atthis point, it is worth noting that xpress default 
on�guration implements 
ut separation routinesthat would permit us to 
lassify its default algorithm as a bran
h-and-
ut algorithm, rather than asbran
h-and-bound. However, to distinguish it more easily from the several algorithms we 
omparethroughout our experiments, we will refer to xpress default algorithm as being a bran
h-and-bound(B&B) one.We end up with 62 instan
es for our tests, all of whi
h, with 
ost ve
tor equals to the sumve
tor. The parameter b delimiting the maximum size of a shore is always set to d2n=3e but, forthe miplib instan
es, that value is 
omputed as b1:05 � n=2
.The majority of our reports relies on 
omparing results for instan
es that were solved by at leastone of the algorithms used in our experiments. Thus, among the 62 instan
es initially sele
ted,only 51 were broadly used in performan
e 
omparisons, sin
e 11 instan
es were not solved by anyof the implemented algorithms within the time limit imposed of 30 minutes2.A 
ommon 
hara
teristi
 of the bulk of these 51 instan
es is the mid-high (> 20%) density of thegraphs underlying them. As already mentioned in [12℄ and [8℄, 
utting-plane algorithms (espe
ially2Table 8, in appendix C, summarizes some 
omputational results for these 11 not solved instan
es.15



based on CD inequalities) are likely to be more e�e
tive for mid-high density graphs. Nevertheless,a few VSP instan
es arising from low density graphs were kept in our experiments. This allowedus to analyse the behavior of our approa
h for some hard instan
es from the miplib ben
hmark.As for de Souza and Balas in [12℄, our results are reported by 
lasses of instan
es: dima
sgraphs, matrixmarket graphs { divided in three 
ategories, MM-I, MM-II and MM-HD, a

ordingto 
ommon 
hara
teristi
s used in their 
onstru
tion { and row interse
tion graphs 
orrespondingto 
oeÆ
ient matri
es of some of the miplib instan
es. Moreover, within ea
h 
lass, the instan
esare listed in in
reasing order of graph density.6.2 Parameter settingsGeneral parameters. The following settings were used for the basi
 parameters of the subgra-dient algorithm: (a) the Lagrangian heuristi
 is 
alled at every SM iteration; (b) the lo
al sear
hheuristi
 is 
alled just after Lagrangian heuristi
 exe
ution. However, along the SM exe
ution, themaximum number of improvement trials for solutions with same 
ost (�) was limited to 5. Noti
ethat 
ost repetition is easily identi�ed in our 
ase sin
e there are only O(jV j) possible values forthe 
ost fun
tion; (
) the algorithm stops when the limit of 2000 SM iterations is rea
hed or when�k � 10�5 in equation (9), whatever o

urs �rst. Moreover, as in [12℄, the exe
ution time of anyalgorithm tested in our experiments was limited to 30 minutes.Algorithm dependent parameters. When the SM is 
alled inside the NDR&C algorithm, �,in equation (9), is initially set to 2 and multiplied by 0:5 ea
h 90 
onse
utive SM iterations withoutimprovement on the upper bound. Also, the routine responsible for the generation of 
onditional
uts is 
alled whenever a minimum amount of new CD 
uts are added to the pool. In our �nal teststhis upper bound 
orresponds to 10% of the maximum number of SM iterations. Anyway, providedthat a CD inequality is generated along the iterations, we ensure that the routine is 
alled at leaston
e.When running the PR&C algorithm, however, the Lagrangian dual problem is solved typi
allyseveral times using SM. We 
all ea
h 
omplete exe
ution of SM a pass. The total number of passesis an input parameter for the postponed relax-and-
ut algorithms, denoted by �. In our �nalexperiments we adopted � = 15. Now, let Æ be the number of the 
urrent pass. In equation (9),�0(Æ=1) is initially set to 2 and, for the other passes, �0(Æ>1) is 
omputed by the re
urren
e relation:�0(Æ) = �0(Æ�1) � f(Æ), where f(Æ) = 1 � (Æ � 1)=�2. Observe that �0 de
reases monotoni
allyand smoothly as Æ in
reases. In our experiments, the small de
reases in the initial values of � inequation (9) proved to be bene�
ial for the 
omputation of tighter dual bounds.Moreover, along ea
h pass, the � value is update at ea
h 20 
onse
utive iterations withoutimprovement on the upper bound. Here, similarly to NDR&C strategy, the routine in 
harge of thegeneration of 
onditional 
uts is 
alled. In this 
ase, it is done every time a Lagrangian subproblemis solved. Nevertheless, the dualization of inequalities identi�ed along the exe
ution of a pass isdone only when the SM terminates.During L-B&C exe
ution, the amount of CD Lagrangian 
uts added at ea
h node is mainlydetermined by the input graph density. Also, it was experimentally observed that adding many
uts at the �rst node often speeds up the sear
h. Thus after some tuning we ended up with the�nal 
on�gurations displayed in Table 1. Essentially, the graphs were divided into three densityranges and, in ea
h of these groups, we �xed the number of 
uts at the root and at the remaining16



nodes of the sear
h tree. For instan
e, when dealing with graphs having density in (35:6%; 64:3%℄,in the �rst node we put up to 50% of the 
uts in the pool. After, for the other nodes, at most 10CD 
uts violated are added. In the 
ase of LD inequalities, the amount of Lagrangian 
uts addedat ea
h node followed the tuning used by de Souza and Balas in [12℄, i.e., 10 
uts per node.Table 1: Number of Lagrangian CD 
uts added in the L-B&C algorithm.Density Maximum number of 
utsrange �rst node other nodes� 35:6% 10 2(35:6%; 64:3%℄ 0:5 � pool size 10> 64:3% 0:75 � pool size 10As a �nal remark, it is worth noting that to determine the settings dis
ussed above, the tuningsof the parameter values were 
arefully performed with a representative subset of instan
es 
ontainingat least one representative of ea
h 
lass.7 Computational resultsIn this se
tion we report the 
omputational tests 
arried out with the several 
on�gurations ofrelax-and-
ut algorithms and hybridizations implemented for the VSP.7.1 Relax-and-
ut algorithms: the prepro
essing phaseThe main results of the 
omputational experiments done with the relax-and-
ut algorithms devel-oped are do
umented in Table 2 for the 62 instan
es sele
ted. Double horizontal lines in thesetables split instan
es from 
lasses dima
s, MM-I, MM-II, MM-HD and miplib. Also, these tablesare divided in �ve groups of 
olumns. The �rst group, relative to 
olumns 1{4, des
ribes the in-stan
e 
hara
teristi
s: name (label), number of nodes (n), graph densities (d) and the optimumvalue (Opt) or the best known solution value (when it appears underlined). The other four groupsof 
olumns report the results, respe
tively, 
on
erning the non-delayed relax-and-
ut (NDR&C) andpostponed (non-delayed) relax-and-
ut (PR&C) algorithms developed. These groups have the fol-lowing format of 
olumns: ub, the upper bound obtained; the value of the best solution found(lb) and the total time, t(s), required to run ea
h algorithm. Additionally, although not detailedhere, some preliminary tests were performed with a delayed relax-and-
ut algorithm. However, assuggested by a previous 
omparison 
arried out by Lu
ena ([19℄) the results we obtained 
on�rmedthat, NDR&C strategies perform better than DR&C ones.Before analyzing the quality of the dual bounds produ
ed by the Lagrangian methods, let usdis
uss the linear relaxation bound. In fa
t, the linear relaxation of the IP model from Se
tion 2is rather weak. By setting all variables to 1=2 one 
an satisfy all the 
onstraints provided that bis suÆ
iently large (whi
h is the 
ase for all instan
es in our data set). This gives the worst dualbound one 
ould 
ome up with: n ! Thus, poor dual bounds are expe
ted unless strong 
uts areadded to the formulation. Results reported in [12℄ show that CD inequalities ful�ll this requirement.However, a drawba
k to use su
h inequalities 
omes from the fa
t that the 
orresponding separationproblem is NP-hard in general. The authors had then to resort to a heuristi
 pro
edure to performthe task. Their heuristi
 is of quadrati
-time 
omplexity and, in pra
ti
e, more expensive than17



the routine we use to separate integral points whi
h behaves more like a linear-time algorithm (seeSe
tion 4.1).Analyzing the results reported in Table 2 one 
an see that: (i) in terms of optimality, only fourinstan
es (with results indi
ated in bold) have been solved to proven optimality when separatingCD inequalities. In this aspe
t, PR&C seems to have a better performan
e than NDR&C algorithm;(ii) 
on
erning dual bounds we 
an highlight that: in most of the 
ases, the algorithms that embedCD inequalities separation produ
ed mu
h stronger dual bounds than LP relaxation bound. Dualbounds produ
ed by NDR&C(LD) and PR&C(LD) are very poor, with values typi
ally near tothe linear programming bounds, and are not entered here; (iii) 
onsidering the primal boundsobtained by our heuristi
 (lb 
olumn), we noti
e that they have attained the optimum3 in 65 to71% of the instan
es, depending on the relax-and-
ut version. Alternatively, if we refer to the bestknown and extend our analysis to all the 62 instan
es tested, the rate of su

ess in
reases a bitfurther: from 66 to 71%. (iv) the algorithms NDR&C and PR&C 
annot be said to dominate oneanother.In addition, inspe
ting the 
olumns 
orresponding to the total time required by the various
on�gurations we see that, in general, the running times are quite a

eptable. Also, in most 
ases,the use of LD inequalities led to marginal gains and only provoked an in
rease in CPU time.As a general remark, 
ontrarily to what happened to other problems, these results do noten
ourage the appli
ation of pure relax-and-
ut algorithms to solve VSP instan
es exa
tly. However,as shown below, they 
an be 
ombined with other exa
t methods in a 
lever way to form new andeÆ
ient algorithms to ta
kle the problem.Primal bounds. Though our main fo
us with the relax-and-
ut algorithms was to strengthenthe dual bounds, on the primal side, ex
ellent results were a
hieved. As seen in 
olumns lb ofTable 2, in about 70% of the 
ases our simple Lagrangian heuristi
 found an optimal solution, withslight variations, depending on the relax-and-
ut version. To illustrate the quality of our primalheuristi
, 
onsider the results obtained by PR&C(CD,LD) algorithm. In this 
ase, the averageerror of the heuristi
 was lower than 1.4% and only for 6 instan
es this error was higher than 5%.However, the maximum error was 19.3% for miplib.noswot.p, the only instan
e for whi
h theerror ex
eeded 8.5%.For a better appre
iation of the performan
e of the Lagrangian heuristi
 (LR-H), we 
omparethe exe
ution time it spent with the time needed by B&C(CD,LD) primal heuristi
 (LP-H) to �ndits best solution. This 
omparison 
an be visualized by inspe
ting the histogram in Figure 8 where,to be able to 
ompare pro
essing times, we restri
ted ourselves to the 35 
ases for whi
h both, LR-Hand LP-H, rea
hed a proved optimum. This histogram reveals that LR-H �nds optimal solutionsmu
h qui
ker than the LP based heuristi
 from de Souza and Balas. Besides, it shows that in 80%of the 
ases, the optimum was found in at most 0.01 se
onds and, for all instan
es, LR-H rea
hedthe optimum in at most one se
ond. On the other hand, in 80% (40%) of the 
ases, LP-H neededat least one (�ve) se
ond(s) to found an optimum.7.2 The hybrid algorithmsResults in Table 2 reveal the good performan
es of our relax-and-
ut algorithms that separate CDinequalities: they often produ
e good dual and primal bounds rapidly. However, they fail to solve3Entries in 
olumn Opt reveal that optimum values are known for 51 of the 62 instan
es tested.18



Table 2: Results for VSP instan
es: relax-and-
ut algorithms NDR&C and PR&C.Instan
e NDR&C (CD) PR&C (CD) NDR&C (CD,LD) PR&C (CD,LD)label n d Opt ub lb t(s) ub lb t(s) ub lb t(s) ub lb t(s)dim.DSJC125.1 125 0.09 90 122 89 4.12 122 88 4.37 122 88 13.23 124 89 11.28dim.games120 120 0.09 102 121 99 2.14 120 99 1.67 120 99 2.79 120 99 4.64dim.my
iel7 191 0.13 156 193 155 3.71 188 155 3.86 192 153 5.19 188 155 5.84dim.my
iel6 95 0.17 76 90 75 1.43 89 75 1.18 92 73 2.05 89 75 2.59dim.queen12 12 144 0.25 97 131 97 6.69 131 97 7.57 133 97 21.71 132 97 25.83dim.queen11 11 121 0.27 81 109 81 5.56 108 81 5.97 110 81 17.76 109 81 20.23dim.queen10 10 100 0.30 67 88 67 4.04 88 67 4.47 89 67 12.28 89 67 16.74dim.queen8 12 96 0.30 65 85 65 4.02 85 65 3.69 86 65 13.26 86 65 18.30dim.queen9 9 81 0.33 55 69 55 2.73 70 55 3.21 70 55 8.84 71 55 13.57dim.queen8 8 64 0.36 43 53 43 1.67 53 43 2.10 54 43 7.28 54 43 9.53dim.miles1000 128 0.40 110 119 109 4.06 119 109 3.98 120 110 8.23 120 109 9.04dim.queen7 7 49 0.40 31 40 31 0.90 40 31 1.25 40 31 3.17 40 31 6.36dim.DSJC125.5 125 0.50 74 101 74 5.11 101 74 6.11 101 74 13.49 102 74 17.00dim.DSJC125.9 125 0.90 22 63 22 5.73 62 22 6.20 63 22 6.63 62 22 6.61mat.
an96 96 0.20 72 89 72 1.78 87 72 2.33 89 72 6.52 89 72 9.09mat.
an73 73 0.25 53 65 53 1.60 64 53 1.69 66 53 6.91 66 53 7.76mat.rw136 136 0.07 121 136 120 2.49 133 119 1.62 136 120 5.17 135 119 18.66mat.gre 115 115 0.09 95 114 91 2.98 113 93 3.45 114 90 9.01 114 91 9.82mat.L125.gre 185 125 0.15 104 120 104 4.64 119 104 4.19 120 104 20.01 122 104 22.37mat.
an 144 144 0.16 126 136 126 5.60 138 126 5.75 138 126 24.88 140 126 24.48mat.L125.
an 161 125 0.16 97 119 95 4.07 118 97 4.10 119 95 14.98 120 97 15.38mat.lund a 147 0.26 118 130 116 4.83 129 116 5.17 136 116 17.08 130 116 16.97mat.L125.b
sstk05 125 0.35 101 108 101 3.48 104 101 3.68 116 101 8.35 107 101 10.30mat.L125.dwt 193 125 0.38 95 105 95 3.49 102 95 3.68 107 95 8.60 106 95 6.91mat.L125.fs 183 1 125 0.44 98 135 95 2.32 135 97 2.49 135 95 2.59 134 98 2.70mat.b
sstk04 132 0.68 84 94 84 4.63 91 84 4.83 91 84 4.61 90 84 5.36mat.ar
130 130 0.93 88 102 88 7.51 100 88 7.80 103 88 12.65 100 88 13.21mat.L100.steam2 100 0.36 76 82 76 2.85 82 76 2.84 83 76 9.43 83 76 10.76mat.L120.�dap025 120 0.39 102 110 102 2.57 111 102 2.76 108 102 4.49 110 102 6.08mat.L120.
avity01 120 0.42 99 120 99 3.36 119 99 2.60 121 99 4.77 122 98 4.88mat.L120.�dap021 120 0.43 98 115 98 2.84 114 98 2.77 114 98 4.59 116 98 4.76mat.L120.rbs480a 120 0.46 88 95 88 3.40 96 88 3.60 97 88 6.44 96 88 5.72mat.L120.wm2 120 0.47 98 127 92 1.73 125 92 2.24 127 92 1.89 125 92 2.37mat.L100.rbs480a 100 0.52 73 82 73 2.26 82 73 2.46 81 73 2.74 82 73 2.70mat.L80.wm2 80 0.58 61 84 60 1.37 82 60 1.42 84 59 1.66 80 61 1.96mat.L100.wm3 100 0.59 77 100 77 2.43 99 74 1.87 103 71 1.96 99 76 2.64mat.L120.e05r0000 120 0.59 90 108 90 2.39 107 90 2.71 108 90 2.90 108 90 3.20mat.L100.wm1 100 0.60 74 102 71 2.23 90 73 2.30 102 71 2.39 95 73 3.42mat.L120.�dap022 120 0.60 84 91 84 3.87 90 84 4.10 92 84 4.70 91 84 4.20mat.L100.�dapm02 100 0.62 69 70 69 2.39 70 69 2.28 70 69 2.79 69 69 2.70mat.L120.�dap001 120 0.63 82 88 82 4.08 87 82 4.40 87 82 5.60 87 82 5.48mat.L100.e05r0000 100 0.64 70 84 70 1.92 85 70 1.99 84 70 2.10 85 70 2.19mat.L80.�dapm02 80 0.65 53 54 53 1.54 53 53 0.89 54 53 1.73 54 53 1.74mat.L120.�dapm02 120 0.65 86 94 86 3.44 92 86 3.50 93 86 4.94 93 86 4.37mat.L100.�dap001 100 0.68 64 71 64 2.76 69 64 2.87 73 64 3.06 70 64 3.20mat.L100.�dap022 100 0.68 62 71 62 2.83 71 62 2.91 71 62 3.12 71 62 3.34mat.L80.�dap001 80 0.72 54 62 54 1.40 62 54 1.52 62 54 1.47 62 54 1.75mat.L80.�dap022 80 0.76 41 53 41 1.65 52 41 1.85 53 41 1.95 51 41 2.00mat.L100.�dap027 100 0.81 69 70 69 2.48 69 69 1.60 69 69 1.94 69 69 2.12mat.L100.�dap002 100 0.82 66 86 66 1.91 85 66 2.21 86 66 2.05 85 66 2.45mat.L120.�dap002 120 0.82 68 91 68 3.09 89 68 3.15 88 68 3.41 89 68 3.37mat.L120.�dap027 120 0.85 83 84 83 3.51 83 83 3.02 84 83 3.83 83 83 2.33miplib.noswot.p 182 0.09 167 187 139 3.24 186 146 2.77 189 140 5.27 188 146 4.52miplib.khb05250.p 100 0.27 75 99 75 1.10 95 75 1.20 99 75 1.20 95 75 1.31miplib.stein27 r.p 118 0.32 62 116 62 3.78 106 62 4.20 118 62 18.84 110 62 23.56miplib.10teams.p 210 0.34 120 203 120 10.55 180 120 11.21 205 120 25.06 188 120 25.99miplib.mod010.p 146 0.38 90 145 88 3.99 126 86 5.26 149 85 6.74 131 85 19.19miplib.l152lav.p 97 0.40 61 97 60 1.73 79 60 2.34 95 58 2.60 83 60 6.47miplib.lp4l.p 85 0.46 50 80 47 1.87 63 48 1.95 81 48 1.82 70 49 4.32miplib.air03.p 124 0.61 75 124 73 3.45 107 73 4.64 123 74 5.83 109 73 7.90miplib.mis
03.p 96 0.63 52 83 52 3.54 72 52 2.81 82 52 9.85 78 52 11.03miplib.mis
07.p 212 0.80 116 218 113 12.64 212 114 11.80 214 115 20.19 212 114 13.92
19
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Figure 8: Time to optimum for Lagrangian (LR-H) and LP-based (LP-H) heuristi
s.to proven optimality the vast majority of the instan
es. Moreover, inspe
ting the behavior of theB&C algorithm developed in [12℄, whi
h we had a

ess to, we noti
ed that a 
ouple of CD inequalitiesneeded to be separated and added to the model before good dual bounds are 
omputed. Thus, itwould be very helpful if one 
ould qui
kly generate a set of initial CD 
uts.The hybrid algorithm dis
ussed in Se
tion 5 appear as a possible option to handle this situation.A

ording to the exe
ution 
ow depi
ted in Figure 6, any of our relax-and-
ut algorithms 
ould beused to generate 
uts that would allow the IP solver work on a tighter VSP formulation.Before we report on the results a
hieved by the hybrid algorithms, we rede�ne our data set.Initially, from the 62 instan
es originally sele
ted to be part of the ben
hmark, only the 58 notsolved to optimality by any relax-and-
ut algorithms were kept. Later, we eliminate from ouranalysis the 11 instan
es that were not solved by any of the algorithms used in the totality ofthe experiments. We did so be
ause they 
ould introdu
e spurious information that 
ould havedistorted our 
on
lusions. Thus, unless stated otherwise, the next dis
ussions apply only to the 47instan
es that are left.Computational experiments were performed taking into a

ount a 
onsiderable variety of hy-brid 
on�gurations. The results revealed a 
oating performan
e of the algorithms, depending onthe density of the input graph. This observation 
on�rms the reports in [12℄. There, instan
es are
lassi�ed to be of high (� 35%) or low density a

ording to the density of the input graphs. We pro-
eeded similarly in our preliminary tests. However, these initial tests led us to regroup the instan
esin di�erent 
lassi�
ation ranges: mid-high (> 20%) and low density instan
es, 
orresponding to atotal of, respe
tively, 38 and 9 instan
es. The results reported in this se
tion are organized in lightof this regrouping. Furthermore, for ea
h these new groups, the 
omparison measure used as a20



basis for the majority of our 
on
lusions was the total amount of time required and nodes exploredto solve all the instan
es in ea
h group.7.2.1 Results for mid-high density graphsWe now report the main results obtained with mid-high density instan
es whi
h 
orrespond to themajority of our �nal test set. Table 3 
ompares the out
omes of the most promising algorithms formid-high density instan
es. A total of three postponed and non-delayed relax-and-
ut 
on�gura-tions have their results reported. These 
on�gurations prioritize the separation of CD inequalities,in a

ordan
e to what is suggested in [12℄. Also, we display the results returned by two variationsof the B&C algorithms from [12℄ { to our knowledge, the best ones available in literature to solvethe VSP { and by xpress under default settings.The number of nodes and the time required for ea
h algorithm are reported. When the timeex
eeds 1800 se
onds, it means that the instan
e was not solved by the 
orresponding algorithmwithin that time bound. The main headings that identify the relax-and-
ut 
on�gurations whoseresults are presented in Table 3 have the following meaning: (i) Only CD Cuts: 
orresponds to theusage of our NDR&C(CD) (or PR&C(CD)) algorithm followed by L-B&C, with sep =hL-CD,CDi.This 
on�guration is denoted later by ndhybrid(CD) (phybrid(CD)); (ii) CD Cuts and L-LDCuts: 
ombines the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-and-
ut algorithm withL-B&C, with sep =hL-CD,CD,L-LDi. This 
on�guration is denoted later by ndhybrid(CD,L-LD)(phybrid(CD,L-LD)); (iii) CD and LD Cuts: refers to NDR&C(CD,LD) (or PR&C(CD,LD))pre
eding L-B&C, with sep =hL-CD,CD,L-LD,LDi. This 
on�guration is denoted later by nd-hybrid(CD,LD) (phybrid(CD,LD)). Also, 
olumns B&C(CD) and B&C(CD,LD) 
orrespond to thealgorithm des
ribed in [12℄ separating, respe
tively, only CD and both, CD and LD inequalities.Finally, xpress results are reported on the last two 
olumns.At the bottom of ea
h 
olumn and for ea
h algorithm, three summations are shown. The �rstof them 
orresponds to the total time (or total number of nodes explored in the sear
h trees) onlyfor those algorithms that solved to optimality the whole set of instan
es listed in the table. Tounderstand the other summations, let S0 be the subset of instan
es in Table 3 that are solved byany hybrid version and any B&C 
on�guration within 30 minutes, i.e., all of them ex
ept instan
emiplib.mis
07.p. Likewise, let S00 be the subset of instan
es in S0 also solved by xpress within thesame time limit. (i.e., S0nS00 = fdim.DSJC125.9, mat.lund a, mat.b
sstk04, mat.L120.fidap001and miplib.air03.pg). The penultimate (last) line 
ontains the total number of nodes and timeneeded by ea
h approa
h to solve all the instan
es in S0 (S00) subset. Unless stated otherwise, ouranalyses are restri
ted to instan
es in S00 only when xpress results are also under 
onsideration.Entries with the symbol \�" 
orrespond to the instan
es that were solved after the LP moduleexe
ution, i.e., before bran
hing. These entries permit us to 
on
lude that, besides the four instan
esalready solved during the Lagrangian phase, six more instan
es were solved to optimality beforeentering the L-B&C module in Figure 6.Comparing the last three lines in Table 3, we 
an 
on
lude that: (1) all the six hybridproposed outperform the B&C algorithm detailed in [12℄ over the S0 data set; (2) over the subsetS00 of instan
es, the hybrid algorithms also performed better, in terms of time, than the otherthree approa
hes. However, the number of nodes of the sear
h tree explored by B&C(CD) isslightly smaller than that of our best hybrid 
on�gurations; (3) algorithms based 
hie
y onCD inequalities seem to be the most promising approa
hes 
urrently available to ta
kle mid-high21



Table 3: Results for VSP instan
es using hybrid 
on�gurations, B&C algorithms from [12℄ and xpress.Mid-high density instan
e Only CD Cuts CD Cuts and L-LD Cuts CD and LD Cuts B&C [ref.[12℄℄ B&B (xpress)ndhybrid phybrid ndhybrid phybrid ndhybrid phybrid B&C(CD) B&C(CD,LD)label d(> 20%) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s)dim.queen8 8 0.36 1807 75.02 1707 90.22 1863 85.01 2283 136.40 2541 125.79 2283 136.03 4315 70.51 3143 58.27 23131 126.29dim.miles1000 0.40 17 12.97 13 11.62 7 10.82 9 14.05 9 11.52 9 14.65 11 18.37 35 26.22 287 83.96dim.queen7 7 0.40 391 14.11 313 16.73 403 16.56 243 20.48 253 17.13 243 20.89 431 10.77 265 9.93 27833 78.53dim.DSJC125.9 0.90 4275 596.45 4143 537.01 4229 532.45 6405 722.50 6375 743.80 6417 775.66 33833 1107.29 28475 1291.54 51261 1800.00mat.
an73 0.25 5343 46.15 5505 50.57 4975 64.53 5157 59.63 5367 57.37 5195 59.35 5123 71.50 5615 46.44 33195 147.62mat.lund a 0.26 3145 401.39 2715 384.14 2033 454.57 3565 543.09 3345 479.10 3005 511.01 2231 462.03 2709 332.09 27506 1800.00mat.L125.b
sstk05 0.35 709 85.65 - 4.53 - 7.25 - 8.02 - 7.25 - 8.02 1573 326.20 1625 196.01 1635 211.38mat.L125.dwt 193 0.38 21 23.11 27 25.07 21 34.49 39 40.78 41 45.06 39 40.66 131 97.31 721 134.80 17767 1301.43mat.L125.fs 183 1 0.44 29 28.11 21 26.16 29 32.82 746 69.37 29 43.27 27 41.02 25 35.45 29 31.74 1515 182.78mat.b
sstk04 0.68 13 22.90 - 4.35 13 22.02 - 5.68 31 31.14 - 5.68 133 124.60 247 132.27 16572 1800.00mat.ar
130 0.93 83 160.19 83 163.80 103 186.66 73 231.78 75 246.58 73 235.17 101 370.67 101 329.59 957 926.12mat.L100.steam2 0.36 45 21.02 41 20.67 45 25.73 79 38.06 77 34.79 69 35.92 149 40.83 241 37.98 11577 229.98mat.L120.�dap025 0.39 - 2.50 - 2.59 - 3.58 - 4.75 - 3.58 - 4.75 13 12.00 49 17.67 889 107.73mat.L120.
avity01 0.42 13 9.13 15 10.50 11 9.62 35 18.35 35 14.87 15 11.83 13 16.88 41 21.52 813 91.69mat.L120.�dap021 0.43 5 5.63 7 5.88 3 7.14 3 6.98 3 7.34 3 7.00 35 24.74 67 36.63 1031 150.22mat.L120.rbs480a 0.46 125 64.01 141 67.75 123 71.81 75 59.20 75 60.34 75 61.14 367 218.67 3007 249.27 15619 1308.79mat.L120.wm2 0.47 33 28.04 35 36.68 75 19.47 73 26.55 75 20.25 33 38.57 33 47.82 33 45.71 351 88.71mat.L100.rbs480a 0.52 59 11.90 67 15.60 61 18.18 45 15.44 49 17.81 45 16.76 63 21.33 91 21.34 2951 189.73mat.L80.wm2 0.58 9 3.28 11 4.31 13 4.82 51 6.07 13 5.90 13 6.53 13 4.90 15 5.65 379 67.22mat.L100.wm3 0.59 11 7.63 13 10.48 17 12.00 61 16.24 19 18.64 13 10.66 17 13.26 15 13.34 379 65.70mat.L120.e05r0000 0.59 5 7.05 3 7.63 7 7.70 7 7.74 5 8.51 7 7.82 9 11.49 43 25.31 2703 543.05mat.L100.wm1 0.60 19 10.74 13 9.18 17 9.59 71 18.40 27 14.35 17 12.00 25 15.67 35 24.36 877 94.07mat.L120.�dap022 0.60 77 22.53 17 13.75 81 27.72 43 20.60 41 20.28 43 21.22 53 38.17 81 53.04 13319 1522.86mat.L120.�dap001 0.63 - 4.94 - 5.07 - 6.71 - 6.66 - 6.71 - 6.66 31 32.57 189 84.70 33120 1800.00mat.L100.e05r0000 0.64 15 8.39 17 8.17 15 8.75 19 6.46 33 8.50 19 6.59 19 11.19 39 12.49 3559 284.25mat.L120.�dapm02 0.65 - 2.87 - 2.91 - 4.28 - 3.65 - 4.28 - 3.65 17 24.52 57 55.66 4457 552.37mat.L100.�dap001 0.68 35 7.10 35 7.54 33 9.00 29 9.87 35 11.46 29 9.82 49 15.96 73 23.21 34321 950.38mat.L100.�dap022 0.68 109 22.66 105 22.36 99 23.75 54 16.17 63 18.00 54 17.19 171 52.20 93 27.31 57415 1594.48mat.L80.�dap001 0.72 - 1.55 - 1.55 - 1.61 - 1.75 - 1.61 - 1.75 1 1.76 33 5.20 3523 101.25mat.L80.�dap022 0.76 197 14.25 159 11.90 135 11.92 57 7.18 55 7.89 57 7.68 173 15.28 45 5.51 19279 308.05mat.L100.�dap002 0.82 5 3.22 3 3.52 5 3.48 5 4.00 3 3.10 5 4.05 7 4.75 29 10.19 2111 240.58mat.L120.�dap002 0.82 5 6.88 1 5.73 5 6.60 3 5.56 3 6.72 3 5.58 73 41.59 93 48.59 10415 1284.46miplib.khb05250.p 0.27 119 3.94 121 5.26 119 4.28 121 5.16 119 4.48 121 5.43 91 3.21 111 4.84 3641 66.37miplib.l152lav.p 0.40 213 46.27 185 54.66 245 64.35 611 72.76 749 103.57 129 60.48 283 70.12 853 101.98 22885 567.68miplib.lp4l.p 0.46 275 34.27 271 33.10 321 37.02 2083 93.82 1295 69.37 265 50.19 551 50.10 5965 151.72 27523 409.73miplib.air03.p 0.61 115 111.94 117 119.98 117 111.50 135 139.86 119 146.10 111 163.87 135 167.35 135 180.01 14215 1800.00miplib.mis
03.p 0.63 2993 111.95 2717 121.67 3293 138.31 2589 168.23 2785 178.78 2225 173.42 4819 138.07 3947 155.22 53417 1794.42miplib.mis
07.p 0.80 173 1280.36 177 1519.38 169 1162.75 1102 1809.86 117 1402.40 147 1704.75 125 1800.00 78 1800.00 2243 1800.00sum total of S 20480 3320.10 18789 3442.02 18685 3258.85 - - 23861 4007.64 20789 4303.45 - - - - - -sum total of S0 20315 2039.74 18621 1922.64 18516 2096.10 24769 2631.29 23744 2605.24 20642 2598.70 47706 3286.19 58345 4007.35 - -sum total of S00 15912 1303.51 14361 1256.23 14157 1423.42 18229 1756.59 17219 1677.49 14114 1646.83 13574 1854.38 29299 2318.83 427260 17471.88
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density instan
es. This observation reinfor
es the 
on
lusions reported in [12℄ about the use andthe strength of CD inequalities to solve high (� 35%) density instan
es. Nevertheless, the out
omesfrom our experiments showed that, for instan
es mat.
an73, mat.lund a and miplib.khb05250.p,both hybrid and bran
h-and-
ut algorithms outperform xpress. Hen
e, one 
ould push the frontierof the 
on
lusions of de Souza and Balas to in
lude mid-high density (over 20%) graphs.Besides, we noti
e that �ve out of our six 
on�gurations were able to solve the instan
emiplib.mis
07.p whereas no other approa
h tested solved it within 30 minutes. Dire
t 
om-parison of these �ve algorithms over the whole set of instan
es in Table 3 allows us to 
on
ludethat our three best 
on�gurations 
ome from using only CD 
uts and from using NDR&C(CD,LD)as relax-and-
ut algorithm 
ombined with L-B&C, with sep =hL-CD,CD,L-LDi denoted, as saidbefore, by ndhybrid(CD,L-LD).In addition to that 
on
lusion, for a fairer 
omparison of the entire set of algorithms, we restri
tourselves to instan
es in S00 (last row of Table 3). One 
an see that phybrid(CD) is the fastestalgorithm. Figure 9 highlights the results obtained with phybrid(CD) and B&C(CD), the bestbran
h-and-
ut version from [12℄. The performan
e of these algorithms is measured as a per
entageof the time required by xpress B&B to solve the instan
es in S00. First, noti
e that, in general, bothalgorithms are mu
h faster than xpress B&B under default settings. A
tually, only for instan
emat.L125.b
sstk05 xpress surpassed B&C(CD). Also, on average, phybrid(CD) is about twotimes faster than B&C(CD): the former requires, on average, about 10.6% of the 
omputation timeused by xpress to solve the instan
es while the latter needs approximately 19.3% of that time.
PHYBRID(CD) and B&C(CD) comparative time performance over B&B
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Figure 9: Time performan
e: phybrid and B&C(CD) against xpress (default) B&B.Figure 10 exhibits a graphi
al 
omparison of the 
omputation times among the six 
ombinedapproa
hes reported in Table 3 against the two best B&C versions. It highlights the big savingsobtained by the hybrid algorithms with respe
t to the B&C algorithms. For instan
e, the e�e
tof repla
ing B&C(CD,LD) by phybrid(CD) would be a CPU time redu
tion of 52%. Also, onaverage, 
onsidering the results for the six variations of our hybrid approa
h, time savings overB&C(CD,LD) and B&C(CD) are, respe
tively, of about 42% and 30%.23



Ba
k to Table 3, one may argue that instan
e dim.DSJ125.9 may have distorted a little theanalysis to the detriment of the B&C algorithms. In fa
t, it had 
ontributed with high amountsto both the total number of nodes and the running time. However, it should be noti
ed that thisinstan
e does not belong to S00 and the superiority of the hybrid algorithms over this set is alsonoti
eable. For this set, the redu
tion in time by using phybrid(CD) in pla
e of B&C(CD) was of32.3% (
ompared to 41.5% for S0). Moreover, phybrid(CD) ran faster than B&C(CD) in 92% ofthe 
ases, namely, in 35 out of the 38 mid-high density instan
es tested. This 
an be easily seemwith the help of Figure 12 where the time performan
e of the two 
odes are 
ompared with respe
tto graph densities.
HYBRID: percentage of time savings over B&C
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Figure 10: Time performan
e: hybrid variants � B&C algorithms des
ribed in [12℄.Consolidated � instan
e-based analysis. Although usual in literature, analyses of 
omputa-tional results fo
used on the total time spent in solving the entire data set may mislead the 
on
lu-sions. Driven by this observation, we 
onstru
ted the graphi
 in Figure 11 that shows an alternativeway of 
omposing results on time performan
e. There, for ea
h hybrid algorithm, the per
entage ofB&C(CD) CPU time 
onsumed to solve ea
h instan
e in S0 is 
omputed and an arithmeti
 mean istaken. Basi
ally, the average expression is given by AV G(a) = 100� 1jS0j�Pi2S0( t(i;hybrid(a))t(i;B&C(CD)) ); a 2f1; :::; 6g, where a are labels 
orresponding to the hybrid algorithms tested and t(i; A) refers tothe CPU time algorithm labeled as A takes to solve instan
e i. Hen
e, those values refer to theper
entage of B&C(CD) exe
ution time one should expe
t to be spent, on average, by ea
h one ofour algorithms. The premise adopted is that, under dis
repan
ies of running times, repla
ing totaltime by per
entage may lead to a more suitable analysis.Comparing graphi
s in Figures 10 and 11 we see, however, that quite similar values were gen-erated, presenting deviation inferior to 4%. For example, the time redu
tion with ndhybrid(CD)in Figure 10 is of 37.9% while in Figure 11 it is of 41.3%. Noti
e that, rather than unexpe
ted,the similarities between both results reinfor
e what is shown in Figure 10. Taking into a

ountthese 
omputational results 
on
erning time performan
e we 
an 
on
lude that ndhybrid(CD) and24



phybrid(CD) are the best algorithms we developed. To better illustrate that in details, graphi
in Figure 12 
arries out a 
omparison between both approa
hes. Similarly to what happened inFigure 11, we adopted per
entages over B&C(CD) running times. The results are presented inin
reasing order of graph density. One 
an see that, in general, for instan
es having input graphdensity below to 60%, ndhybrid(CD) outperforms the postponed version. On the other hand,phybrid(CD) shows to be more suitable to solve higher density instan
es.
Average Time Savings over B&C(CD)
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Savings (%)Figure 11: Average time savings of hybrid algorithms relative to B&C(CD) times for instan
es inS0. As seen above, 
onsolidated and instan
e-based analyses both led to the 
on
lusion that phy-brid(CD) and ndhybrid(CD) are the two most promising algorithms to solve instan
es in S0.However, these results do not render possible to assert that one algorithm ex
els the other. Inan attempt to answer to that question, further investigation is reported below. Per
entages overB&C(CD) running times was adopted in order to 
ompare the two algorithms.phybrid � ndhybrid: the Wil
oxon signed-rank (WSR) test. The Wil
oxon signed-ranktest is a well known nonparametri
 statisti
al test [5, 15℄ that has been used in the optimizationliterature [1, 13, 15, 21℄ to 
ompare two heuristi
s. The �nal out
ome of the test is always givenin terms of the null hypothesis: we either reje
t the null hypothesis or fail to reje
t it. Whenwe reje
t the null hypothesis, we have only shown that it is highly unlikely to be true { we havenot proven it in the mathemati
al sense. Reje
ting the null hypothesis then, suggests that analternative hypothesis may be true. Alternative hypothesis may be one-tailed or two-tailed. Aone-tailed hypothesis 
laims that a parameter is either larger or smaller than the value given bythe null hypothesis. A two-tailed hypothesis 
laims that a parameter is simply not equal to thevalue given by the null hypothesis - the dire
tion does not matter.25



Time Performance of Non-Delayed and Delayed HYBRID: global density.
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Figure 12: Time performan
e: postponed � non-delayed versions of hybrid (grouped by inputgraph densities).Here, we apply WSR test to try to infer, statisti
ally, any superiority between phybrid(CD)and ndhybrid(CD) algorithms when solving mid-high density VSP instan
es (the null hypothesis
laims that there is no dominan
e of one algorithm over the other one). Hen
e, we applied the testusing a dire
tional (one-tailed) hypothesis over the results used to build the graphi
 in Figure 11.Let W and W 0 be, respe
tively, the sum of the signed ranks and the 
riti
al value 
omputed inWSR test. As the number n of instan
es used in the test in
reases, the distribution of W tendstoward the normal distribution. Furthermore, for n � 10, the 
riti
al valueW 0 
an be approximatedby W 0 = Z(�)pn(n+ 1)(2n+ 1)=6, where Z(�) 
orresponds to the standard normal quantile su
hthat a proportion � of the area is to the left of Z(�). In fa
t, � is the term used to express the levelof signi�
an
e we will a

ept the hypothesis. As an example, for 90% 
on�den
e, � = 0:10, andtesting a hypothesis at the � = 0:10 level or establishing a 90% 
on�den
e interval are essentiallythe same thing. In both 
ases the 
riti
al values and the region of reje
tion are the same.In our 
ase, the di�eren
es between mat
hed pairs of results 
omputed in WSR were obtainedsubtra
ting values obtained by ndhybrid(CD) from values 
orresponding to phybrid(CD) results.Thus, if W > W 0, the null hypothesis should be reje
ted at the � signi�
an
e level [15℄. As a
onsequen
e, for that 
on�den
e assumed when 
omputingW 0, it would mean that ndhybrid(CD)has better performan
e than phybrid(CD). A
tually, the sum of the signed ranks 
omputed withour results was 181 and, if we set � = 0:10 (Z(�) = 1:282), we obtain W 0 = 169:96. This tell usthat if the null hypothesis is true, then in only 10% of the 
ases W is expe
ted to ex
eed 169:96.Hen
e, we refute the null hypothesis at the signi�
an
e level of 90% and infer that ndhybrid(CD)outperforms phybrid(CD).Applying Wil
oxon signed-rank test 
learly in
reases our 
on�den
e in the 
omparison 
arriedout between both algorithms and graphi
ally shown in Figure 11. However, it is noteworthy thatwe may not be able to reje
t the null hypothesis if we try to 
ome out with a stronger eviden
e ofsuperiority of ndhybrid(CD). A manner to 
on
lude that is using a smaller � value. For instan
e,if we set � = 0:05 (Z(�) = 1:645), we get W 0 = 218:08. It implies, a

ording WSR test, thatwe failed to reje
t the null hypothesis for 95% 
on�den
e, i.e., no dominan
e is veri�ed at that26



signi�
an
e level.7.2.2 hybrid algorithms and sparse graphsComputational results reported in [12℄ dis
ourage the use of 
utting planes 
orresponding to CDor LD inequalities when the input graph is sparse. There, in general, the in
rease in 
omputingtime per sear
h tree node resulted in an in
rease of total 
omputing time. In other words, usingxpress with default settings was, normally, more advantageous for instan
es asso
iated to low-density graphs. Despite these reports, we de
ided to investigate if that 
on
lusion goes on beingtrue when using a more re
ent xpress solver version. Thus, some variations of our hybrid approa
hwere tested, as well as the two best bran
h-and-
ut 
on�gurations from [12℄. Tables 4 and 5 andFigure 13 do
ument the main results obtained with these 
omputational experiments.Table 4 shows, essentially, four 
on�gurations of our hybrid algorithms: two postponed andtwo non-delayed relax-and-
ut were used as prepro
essing. The number of nodes and the totalCPU time required are reported for ea
h algorithm. When the time is � 1800 se
onds, it meansthat the instan
e was not solved by the 
orresponding algorithm. The main headings that iden-tify the relax-and-
ut 
on�gurations whose results are presented in Table 4 have the followingmeaning: (i) Only CD Cuts: 
orresponds to the usage of our NDR&C(CD) (or PR&C(CD)) fol-lowed by L-B&C, with sep =hL-CD,CDi; (ii) L-CD Cuts and L-LD Cuts: 
ombines the usageof NDR&C(CD,LD) (or PR&C(CD,LD)) pre
eding L-B&C, with sep =hL-CD,L-LDi. (iii) CDCuts and L-LD Cuts: regards to the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-and-
ut algorithm with L-B&C, having sep =hL-CD,CD,L-LDi; (iv) CD and LD Cuts: refers toNDR&C(CD,LD) (or PR&C(CD,LD)) pre
eding L-B&C, with sep =hL-CD,CD,L-LD,LDi.Complementary, in Table 5, 
olumns B&C(CD) and B&C(CD,LD) 
orrespond to the algorithmdes
ribed in [12℄ separating, respe
tively, only CD and both, CD and LD inequalities. Also, theresults returned by xpress under default settings are shown. In both tables, at the bottom ofea
h 
olumn, two summations are shown for ea
h algorithm. To understand them, let _S be thesubset of instan
es with sparse graphs that are solved by any hybrid and any B&C 
on�gurationwithin 30 CPU minutes, i.e., we ex
lude instan
es mat.
an96, mat.rw136 and mat.
an 144. Inaddition, let �S � _S be the subset of instan
es in _S also solved by xpress within that time limit.The penultimate (last) line 
ontains the total number of nodes and time needed by ea
h approa
hto solve all the instan
es in _S ( �S) subset.Examining the values 
orresponding to the variants of our 
ombined approa
h (Table 4, sub-set _S) we 
an dedu
e that our best performan
es were attained by ndhybrid(L-CD,L-LD) andphybrid(L-CD,L-LD). This observation lead us to infer that, in this 
ase, 
uts dis
overed duringthe Lagrangian phase were helpful.Comparing B&C algorithms via results in Table 5 we 
an 
on
lude that separating both, CDand LD 
uts, is better than identifying only CD inequalities. So, as opposed to what has been seento mid-high density instan
es, B&C(CD,LD) outperforms B&C(CD).Inspe
ting the behavior of xpress in Table 5, we 
an see that it was the only algorithm to solveinstan
es mat.
an96 and mat.rw136. Also, together with ndhybrid(CD,L-CD), they were the onlyones to solve instan
e mat.
an 144. On the other hand, xpress was the single approa
h to failwhen trying to solve dim.my
iel7. Now, restri
ting ourselves to the other �ve instan
es (i.e., �S set),results suggest that our three best hybrid algorithms, ndhybrid(L-CD,L-LD), phybrid(L-CD,L-LD) and phybrid(CD,L-LD), outperform both, B&C from [12℄ and xpress, when the 
riterion is27



Table 4: Computational results for VSP low density (� 20%) instan
es: NDR&C and PR&C.Low density instan
e Only CD Cuts L-CD Cuts and L-LD Cuts CD Cuts and L-LD Cuts CD and LD Cutsndhybrid phybrid ndhybrid phybrid ndhybrid phybrid ndhybrid phybridlabel d nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s)dim.games120 0.09 84625 789.82 86767 978.87 96985 740.16 97349 754.08 82677 1066.70 85615 869.15 87667 1071.31 85787 1026.52dim.my
iel7 0.13 1823 304.02 2493 383.73 2499 287.90 2799 270.30 2251 374.36 1991 269.26 2779 442.20 2491 429.75dim.my
iel6 0.17 323 9.32 333 10.86 415 10.30 395 10.03 373 13.44 385 11.03 409 14.47 319 13.15mat.
an96 0.20 191769 1801.32 162842 1801.58 192310 1803.07 157351 1803.77 131426 1803.07 134256 1803.77 159271 1803.07 129012 1803.77mat.rw136 0.07 72063 1802.28 80603 1801.70 345446 1803.05 155538 1812.90 367218 1803.05 88741 1812.90 334492 1803.05 71316 1812.90mat.gre 115 0.09 7185 92.91 6471 92.90 6393 93.32 6371 89.77 6623 129.86 6047 111.01 6939 127.35 5993 113.05mat.L125.gre 185 0.15 1169 94.53 1089 92.68 1655 83.39 1639 77.56 1139 105.65 1255 106.63 1191 105.05 1255 111.04mat.
an 144 0.16 38265 1500.97 39849 1807.43 29193 1818.34 24692 1818.96 26048 1818.34 21465 1818.96 24977 1818.34 21666 1818.96miplib.noswot.p 0.09 27697 1265.17 27759 1351.65 29227 687.80 29219 715.29 27833 1342.92 17853 740.22 18879 882.22 17783 1012.83sum total of _S 122822 2555.77 124912 2910.69 137174 1902.87 137772 1917.03 120896 3032.93 113146 2107.30 117864 2642.60 113628 2706.34sum total of �S 120999 2251.75 122419 2526.96 134675 1614.97 134973 1646.73 118645 2658.57 111155 1838.04 115085 2200.40 111137 2276.59Table 5: Computational results for VSP low density (� 20%) instan
es: B&C and B&B.Low density instan
e B&C B&B (XP)B&C(CD) B&C(CD,LD)label d nodes t(s) nodes t(s) nodes t(s)dim.games120 0.09 82963 886.29 85051 980.73 161485 1077.10dim.my
iel7 0.13 3009 562.94 2033 328.17 28881 1800.00dim.my
iel6 0.17 377 14.60 423 11.69 5243 62.32mat.
an96 0.20 107849 1800.00 167804 1800.00 177163 1569.57mat.rw136 0.07 62049 1800.00 82714 1800.00 10083 81.55mat.gre 115 0.09 6517 103.87 6539 83.22 37177 295.66mat.L125.gre 185 0.15 1205 131.53 1603 71.00 15795 273.68mat.
an 144 0.16 19742 1800.00 27700 1800.00 12683 339.10miplib.noswot.p 0.09 27891 1343.88 17763 845.51 34719 849.71sum total of _S 121962 3043.11 113412 2320.32 � �sum total of �S 118953 2480.17 111379 1992.15 254419 2558.47
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pro
essing time. These results 
an be more 
learly visualized in Figure 13 that 
ompile the resultsof all approa
hes, 
onfronting them to xpress B&B results. Observe that xpress standard B&B
ode is by far the worst algorithm with respe
t to the number of nodes explored by the sear
h tree.Similarly, in terms of pro
essing time, it is worse than all approa
hes, ex
ept ndhybrid(CD,L-LD)version.
HYBRID and B&C approaches against B&B
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B&C(CD,LD)Figure 13: Sparse graphs results for instan
es in �S.7.3 Results on hard miplib instan
esA similar problem that 
an be 
onsidered a generalization of the VSP is dis
ussed in [6℄ byBornd�orfer et al. There is des
ribed a bran
h-and-
ut algorithm that use 
utting planes di�erentfrom [12℄ and 
omputational results are reported on a vast number of instan
es. Several instan
esfrom miplib are used and a subset of them demonstrated, experimentally, to be very hard to solve(or remained unsolved) within the time limit imposed to the algorithm exe
ution. Three amongthese instan
es have already their results reported in tables 3, 4 and/or 5: miplib.noswot.p andmiplib.mis
03.p were solved by all the approa
hes tested whereas miplib.mis
07.p was solvedto proven optimality only by the hybrid framework we proposed.Computational experiments were 
arried out aiming to assess the performan
e of our algorithmswhen ta
kling also the other instan
es from miplib whi
h were not solved in [6℄. Instan
es whoseunderlying graph is dis
onne
ted were dis
arded, for we are working with CD inequalities. As before,B&C algorithms from de Souza and Balas [12℄ and xpress were tested. The results obtained aredetailed in Tables 6 and 7. They have the same format as before: 
olumns R&C show 
omputationtimes spent by the relax-and-
ut algorithm used as prepro
essing and under gap 
olumns we listthe �nal gaps 
on
erning ea
h algorithm. Noti
e that, with the ex
eption of 
omputation times,these results 
an also be 
ompared with those reported in [6℄4.4For 
omparison purposes, noti
e that the values 
on
erning the bounds used to 
ompute the gaps reported here29



The sele
tion of hybrid implementations to test these hard miplib instan
es was based on theresults reported in the previous se
tions. A

ordingly, to test mid-high and low density instan
es we
hoose, respe
tively, ndhybrid(CD) and phybrid(L-CD,L-LD) versions. The 
hoi
e 
on
erningmid-high density instan
es was immediate from the previous analyses on the results reported inTable 3 and Figure 11. However, due to the very similar performan
e between ndhybrid(L-CD,L-LD) and phybrid(L-CD,L-LD) reported in Table 4, no natural 
hoi
e 
omes out. However, a qui
kinstan
e-based analysis de
ided in favor of phybrid(L-CD,L-LD).Results in Table 6 
on�rm the diÆ
ulty found by the various algorithms we tested to solvethose instan
es within the time limit of 30 minutes. However, regarding �nal gaps (entered asper
entages), they reveal that our hybrid algorithm outperforms the other ones in 4 out of the 7instan
es. Also, it was able to solve p0282 in less than 30% of the time needed by the se
ond bestalgorithm.Final gaps reported in Table 7 show that, in 12 out of the 14 instan
es, our 
ombined approa
his at least as good as the other algorithms. Noti
e that our algorithm and the B&C des
ribed in[12℄ were 
apable to solve the same subset of instan
es. However, our algorithm did it faster thanthe latter. On the other hand, the number of nodes yielded by our sear
h trees were usually higherthan the amount of nodes generated when applying de Souza and Balas' algorithm.Table 6: Computational results for miplib open problems: mid-high density (> 20%) instan
es.Instan
e ndhybrid(CD) B&C(CD) B&B B&C[6℄label d(> 20%) n R&C total t(s) nodes gap(%) t(s) nodes gap(%) t(s) nodes gap(%) gap(%)fast0507 20.82 484 24.57 1824.57 134 57.20 1800.00 194 68.49 1800.00 1188 86.39 59.14stein27 r 32.20 118 4.06 1804.06 22930 34.21 1800.00 20577 36.42 1800.00 89909 32.64 38.71air05 34.37 408 39.03 1839.03 173 75.76 1800.00 233 83.43 1800.00 317 88.19 77.6310teams 34.45 210 10.36 1810.36 1937 57.29 1800.00 3450 35.43 1800.00 13827 48.10 39.17mod010 37.97 146 5.04 1805.04 12336 3.58 1800.00 10146 13.69 1800.00 39346 27.82 13.79mis
05 40.09 266 13.61 1813.61 246 55.57 1800.00 129 70.54 1800.00 5467 60.13 58.67p0282 40.89 161 4.43 31.58 23 0.00 114.99 73 0.00 1112.33 2399 0.00 10.40Table 7: Computational results for miplib open problems: low density (� 20%) VSP instan
es.Instan
e phybrid(L-CD,L-LD) B&C(CD,LD) B&B B&C[6℄label d n R&C total t(s) nodes gap t(s) nodes gap t(s) nodes gap gapset1al 0.78 492 11.98 162.30 13567 0.00 471.28 11439 0.00 1695.38 39175 0.00 1.25set1
l 0.78 492 11.98 165.72 13567 0.00 464.22 11439 0.00 1731.34 39175 0.00 1.25set1
h 0.81 477 10.80 153.31 13512 0.00 430.26 11373 0.00 1800.00 30008 0.36 1.08�xnet3 r 1.10 478 12.91 20.73 77 0.00 21.24 71 0.00 406.00 5399 0.00 0.22mis
06 1.21 696 18.07 1818.07 12426 5.52 1800.00 7363 5.60 1800.00 13862 15.63 10.54qnet1 o 3.59 369 7.64 60.03 677 0.00 215.86 497 0.00 1800.00 16989 2.38 4.69qnet1 3.60 407 10.57 212.52 1085 0.00 532.12 1115 0.00 1800.00 19023 8.32 7.26danoint 4.49 664 52.14 1852.14 130 27.11 1800.00 1513 29.04 1800.00 5114 70.70 38.66gams 5.13 291 8.42 373.46 5235 0.00 419.52 4869 0.00 1800.00 22587 1.52 2.22adrud 5.50 795 43.40 1254.74 193 0.00 1325.10 205 0.00 1800.00 1110 2.76 2.88p0548 7.82 257 5.57 1805.57 125611 18.28 1800.00 24086 10.69 1800.00 41048 13.62 11.54air04 16.67 782 71.29 1871.29 17 73.54 1800.00 220 87.29 1800.00 18 89.67 82.44air06 16.82 570 51.00 1851.00 67 70.42 1800.00 184 85.51 1800.00 710 83.49 162.50stein45 r 19.59 331 30.83 1830.83 88 79.95 1800.00 723 84.61 1800.00 7253 73.29 80.79Noti
e that twelve miplib instan
es remained unsolved after our experiments with our 
ombinedapproa
h. For these problems, we kept our fo
us on the primal side. Thus, we de
ided to run againone of our relax-and-
ut algorithms to attempt to obtain better primal bounds. In order to doit, we rerun PR&C(CD,LD) with di�erent settings of parameters. Thus, we adopted: � = 25represent the size of the union of the shores in ea
h instan
e. Therefore they are the 
omplements (with respe
t tothe number of verti
es) of the separator size, whi
h are the values reported in [6℄.30



(number of passes of the PR&C algorithm) and �k (see 9) was updated at ea
h 50 
onse
utiveiterations without improvement on the upper bound and the maximum number of iterations waslimited to 5000. Besides, at ea
h SM iteration, the primal heuristi
 was 
alled at most four times,stopping at the �rst 
all with su

ess in obtaining an improvement on the best primal boundknown so far. At ea
h 
all, a distin
t 
hoi
e of the parameter �� (see Figure 4) that 
ontrols theweighting method is performed. After some preliminary tests, the �nal sequen
e of 
alls adoptedwas: �� = h1; 0i ; �� = h0; 1i ; �� = h1; 1i and �� = h0; 0i. The results obtained are shown in Figures 14and 15.The graphi
 in Figure 14 
ompares the results produ
ed by our heuristi
 against de Souza andBalas' primal results reported in [12℄. Sin
e the running times of PR&C(CD,LD) remained below90 se
onds for all instan
es used in this test, we imposed this time limit to the exe
ution of deSouza and Balas' algorithm. The graphi
 shows, for ea
h instan
e, how mu
h better/worse is thebest solution found by both approa
hes when 
ompared to the bounds reported in [6℄. Thus, apoint above x axis represents a better solution than the best we know from literature. Observethat, for this subset of instan
es, the solutions 
orresponding to our Lagrangian heuristi
 are, ingeneral, mu
h better and almost dominate those from the heuristi
 embedded in de Souza andBalas' algorithm. It is worth noting that in 83% of the 
ases our heuristi
 produ
ed results as goodas the best VSP solution already reported.
Primal Bound Improvements
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Figure 14: Performan
e of the heuristi
s embedded in phybrid(CD,LD) and B&C from [12℄ forhard miplib instan
es within a 90 se
onds running time limit.Now, regarding the exe
ution time to rea
h the best solution, we build up the graphi
 shownin Figure 15. Observe that for all instan
es but two, air04 and air05, our Lagrangian heuristi
needed less time than de Souza and Balas' heuristi
 to yield their best solutions.31



Primal Bound Improvements: time to best bounds
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etheir best primal bounds.8 Con
lusions and future worksIn this paper we investigated the 
ombined usage of Lagrangian relaxation and 
utting planes inthe development of exa
t algorithms for the vertex separator problem. Though the pure relax-and-
ut algorithms resulting from this 
ombination are usually not strong enough to rea
h thisgoal, they proved to be a very e�e
tive prepro
essing tool for a hybrid exa
t algorithm. In thisalgorithmi
 framework, generi
ally named here as hybrid, the Lagrangian algorithms are su

eededby a bran
h-and-
ut algorithm. The latter is fed by invaluable out
omes from the (Lagrangian)prepro
essing phase. This in
ludes strong primal bounds and 
utting planes separated during therelax-and-
ut algorithms and 
orresponding to valid inequalities for the VSP presented in [3℄.Computational results were obtained for ben
hmarks from the literature and 
ompared withthe best known results published so far. These experiments show that the best variants of thehybrid method we developed outperform the pure B&C algorithm introdu
ed by de Souza andBalas in [12℄, to our knowledge the best exa
t algorithm available for the VSP. For mid-high densityinstan
es, the most diÆ
ult ones for the VSP, our algorithms beat the best bran
h-and-bound 
odein 92% of the 
ases tested.Besides, we show that the Lagrangian phase is a very e�e
tive heuristi
 for the VSP, oftenprodu
ing optimal solutions extremely fast. Moreover, for the miplib instan
es whose optimal stillremains unknown to date, our Lagrangian heuristi
 in most 
ases obtained stronger primal boundsthan those reported earlier in the literature.Further developments and implementation issues should be 
onsidered to possibly improve theperforman
e of our 
urrent framework. This in
ludes the study of di�erent relaxations, the designof more sophisti
ated primal heuristi
s and the identi�
ation of new valid inequalities for the VSPpolytope dis
ussed in [3℄ to be used as 
utting planes in the relax-and-
ut algorithms.A
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A The 
omplexity of the separation of CD inequalitiesLet LRP be the Lagrangian subproblem resulting from the relaxation of the set of 
onstraints (2).Proposition A.1 Let G = (V;E) be the input graph for a VSP instan
e and �u an optimal valuesolution to LRP. Further, let S � V be the set of verti
es i 2 V su
h as �ui1+ �ui2 = 1 and G[S℄ thesubgraph indu
ed by S in G. Then, there exists W � V whose CD inequality is violated by �u if andonly if S is a dominator and G[S℄ is 
onne
ted.Proof: ()) Suppose that there exists a CD inequality violated by �u. Let W be the 
onne
teddominator asso
iated to this inequality. Then, �ui1 + �ui2 = 1 must hold for every i 2 W . Thus,u(W ) = jW j and, by 
onstru
tion of S, every vertex in W is also in S. Hen
e, W � S and S is adominator too.Let us suppose that S is dis
onne
ted. Indeed, given that W � S and W is 
onne
ted, thereis v 2 SnW with no adja
ent vertex in W . Hen
e, we arrive to a 
ontradi
tion be
ause W is adominator.(() Do W = S �Corollary A.1 The separation of CD inequalities over G[S℄ has polynomial time 
omplexity whenthe 
onstraints ui1 + ui2 � 1;8 i 2 V are kept in LRP.Noti
e that, if 
onstraints (1) are relaxed, an optimal solution �u of LRP may assign the samevertex i in two distin
t sets. Figure 16 depi
ts a 
ounterexample for Proposition A.1 in this 
ase.In this pi
ture if i is gray then �ui1 = �ui2 = 1, otherwise, �ui1 = �ui2 = 0. Observe that, together,gray and bla
k verti
es form a 
onne
ted dominator whose 
orresponding CD inequality is violatedalthough G[S℄ is dis
onne
ted.
(1,1) (1,1)Figure 16: Counterexample for Proposition A.1 when 
onstraints (1) are relaxed.Appendix B presents a des
ription of a polynomial time dynami
 programming algorithm thatsolves the separation problem of CD inequalities in polynomial time when the 
onstraints ui1+ui2 �1;8i 2 V are satis�ed.Corollary A.2 Let S be the set of verti
es su
h that �ui1+�ui2 � 1; i 2 V , and G[S℄ be the subgraphindu
ed by S in G. Then, if S is a dominator and G[S℄ is 
onne
ted, the CD inequality asso
iatedto S is violated by �u.This result shows that our separation routine, des
ribed in Se
tion 4.1.1 
an only be viewedas an heuristi
 to separate CD inequalities. In order to analyse the 
omplexity of the separationproblem, let us rewrite the CD inequality asso
iated to a 
onne
ted dominator W of G as follows:u(W ) � jW j � 1 � u(W ) < jW j � Xi2W(ui1 + ui2) < jW j:35



Therefore, if �u violates the CD inequality to W , we must have Pi2W (ui1 + ui2) � jW j.Now, 
onsider the following minimum weighted 
onne
ted dominator problem of a graph G:INSTANCE: Undire
ted graph G = (V;E) and weight wi 2 Z for all vertex i 2 V .PROBLEM mWCD (Minimum Weighted Conne
ted Dominator): Find a 
onne
ted dominator Wwhose weight, given by Pi2W wi, is minimum.Taking wi = �ui1 + �ui2 for all i 2 V , we have that the separation problem of CD inequalities 
an besolved through the optimization problem just des
ribed. If the optimal value is equal to or largerthan jW j, a CD inequality violated is found. Otherwise, all the CD inequalities are satis�ed by �u.From now on, we fo
us on the de
ision version of mWCD where the additional integer value kis given as input and the problem is to de
ide if there exists a 
onne
ted dominator weighting atmost k in G. Besides, restri
ting the possible values of wi to the subset f0; 1; 2g, we obtain exa
tlythe 
ase 
orresponding to the separation of CD inequalities.Consider the de
ision problem below.INSTANCE: Undire
ted graph G = (V;E), jV j = n and a positive integer k.PROBLEM MLST (Maximum Leaf Spanning Tree): Find a spanning tree T for G su
h as at leastk0 verti
es of T have degree one, i.e., are leaves ?Fa
t A.1 MLST is NP-
omplete (see [ND2℄ in [14℄).Proposition A.2 mWCD is NP-
omplete. Proof: It is easy to see that mWCD is in NP. Now,we show that MLST �p mWCD.Take k = n � k0 in mWCD and set wi = 1 for all i 2 V . So, in mWCD, we look for a
onne
ted dominator with no more than n � k0 verti
es. Noti
e that, by removing the leaves fromany spanning tree T , the remaining verti
es form a set that is a 
onne
ted dominator of G. Hen
e,if T is a solution to MLST, at least k0 verti
es are leaves in T and the remaining verti
es form a
onne
ted dominator of size at most n� k0 = k. On the other hand, if W is a solution to mWCD,than, there is a spanning tree T 0 in G[W ℄. Sin
e W is a dominator, any of the n� jW j verti
es inV nW is linked to W through at least one edge. By adding to T 0 one of these edges for ea
h of then� jW j verti
es , we obtain a spanning tree for G with at least n� jW j � n� k = k0 leaves. This
ompletes the proof. �This proof shows that, in general, mWCD is NP-
omplete, suggesting that the separationproblem is equally hard. However, we saw previously that the separation problem may be solvedin polynomial time when the 
orresponding mWCD has binary vertex weights and k = jW j. Also,the latter proof does not permit us to 
on
lude that mWCD remains hard to solve when the vertexweights are in f0; 1; 2g and k is equal to jW j. This is pre
isely the 
ase of the separation problemrelative to the solution �u of the Lagrangian relaxation when the inequalities �ui1 + �ui2 � 1, i 2 V ,are dualized.Denote by mCD the spe
ial 
ase of mWCD where wi = 1 for all i 2 V . A

ording to the proofof Proposition A.2, mCD is NP-
omplete. Furthermore, observe that, when G has a 
onne
teddominator of size p � k, G also has a 
onne
ted dominator of size l, where p � l � n. Hen
e, the36



problem of determining if there is a 
onne
ted dominator of size k, named mCD= below, is alsoNP-
omplete.INSTANCE: Undire
ted graph G = (V;E) and a positive integer k.PROBLEM mCD=(Minimum Conne
ted Dominator): Find a 
onne
ted dominator W � V in Gof size k?Now, 
onsider the separation of CD inequalities over a graph G with weights on the verti
esrestri
ted to f0; 1; 2g and k = jW j. This problem 
an be solved by the optimization problemasso
iated to the following de
ision problem:INSTANCE: Undire
ted graph G = (V;E), jV j = n, weight wi 2 f0; 1; 2g for all verti
es i 2 V anda positive integer t � n.PROBLEM SEP: Find a 
onne
ted dominator W in G satisfying Pi2W wi = t � jW j?Fa
t A.2 mCD= is NP-
omplete.Proposition A.3 SEP is NP-
omplete.Proof: It is not diÆ
ult to see that SEP belongs to NP. We now show that mCD= �P SEP,whi
h proves that mCD= is also NP-hard.Figure 17 illustrates a polynomial time transformation of an arbitrary instan
e I(mCD=) ofmCD= into an instan
e I(SEP) of SEP. The �gure shows details 
on
erning the graph verti
es,edges and weights besides the expression that de�nes the input parameter t.(I): mCD= YES ) SEP YES. Let W � V be a 
onne
ted dominator of G su
h that jW j = k.Without loss in generality, we 
an suppose that W = fv1; v2; : : : ; vkg (bla
k verti
es in Figure17). Further, let W 0 � V 0 be given by W 0 = W [ A [ fb1; 
1g [ f
k+1; : : : ; 
ng [ fdg and denotep(W 0) =Pi2W 0 wi. Thus, based on the transformation of I(mCD=) into I(SEP) we 
an 
on
ludethat:Fa
t A.3 Sin
e G[W ℄ is a 
onne
ted graph, G0[W 0℄ is also a 
onne
ted graph.Fa
t A.4 W 0 is a dominator be
ause: (i) all the verti
es of V are 
overed by W ; (ii) d is in W 0;(iii) every vertex i 2 A[f
k+1; : : : ; 
ng is in W 0; (iv) b1 and 
1 are both in W 0; (v) fb2; : : : ; bkg are
overed by W while fbk+1; : : : ; bng are 
overed by f
k+1; : : : ; 
ng; (vi) f
2; : : : ; 
kg are 
overed by dand (vii) feg is 
overed by an�k+2.Fa
t A.5 t � jW 0j is satis�ed sin
e:p(W 0) = Wz}|{k + Az }| {2(n� k + 2)+ fb1gz}|{0 + f
1gz}|{0 + f
k+1;:::;
ngz}|{0 + fdgz}|{1 = 2n� k + 5;jW 0j = k|{z}W + (n� k + 2)| {z }A + 1|{z}fb1g + 1|{z}f
1g + n� k| {z }f
k+1;:::;
ng+ 1|{z}fdg = 2n� k + 5;and, therefore, t = p(w0) = Xi2W 0wi = jW 0j = 2n� k + 5:37
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G :Figure 17: Transformation of an instan
e of mCD= into an instan
e of SEP .We 
on
lude that if I(mCD=) is a YES instan
e for mCD=, I(SEP) is a YES instan
e forSEP.(II): SEP YES ) mCD= YES. Let us suppose that W 0 is a 
onne
ted dominator of G0 satisfyingp(W 0) = t = 2n� k + 5 � jW 0j. First noti
e that the verti
es in fd; a1; : : : ; an�k+2g belong to any
onne
ted dominator of G0. We want to show that W � V is a 
onne
ted dominator of size k. Tothis end, suppose that W =W 0 \ V = fV1; V2; : : : ; Vpg where every Vi is a 
onne
ted 
omponent ofG. Observe that p(W 0) = jW j+ 2jAj+ jdj = 2n� k + 5 = k + 2(n� k + 2) + 1. So, W must haveexa
tly k verti
es and jW 0j 
annot 
ontain more than n � k + 2 verti
es with zero weight withoutviolating p(W 0) � jW 0j. Without loss in generality, assume that V nW = fvk+1; : : : ; vng. Verti
esfbk+1; : : : ; bng 
annot be in W 0 sin
e, otherwise, we would not have W 0 
onne
ted and satisfyingp(W 0) � jW 0j simultaneously. Thus, the n � k verti
es of f
k+1; : : : ; 
ng are in W 0. Now, every
omponent of G indu
ed by verti
es in W requires a pair of verti
es fbi; 
ig as 
onne
tor to theother verti
es of W 0. Indeed, we need at least 2p more verti
es (2 for ea
h 
onne
ted 
omponent ofG) in W 0, beyond the 2n� k + 3 already identi�ed, to guarantee that W 0 remains 
onne
ted. But,sin
e the size of W 0 is limited to 2n� k+5, we are left only with two more verti
es to put into W 0.Hen
e, W has a single 
onne
ted 
omponent (p = 1), whi
h must 
over all the un
overed verti
esof V . Consequently, W is a 
onne
ted dominator of G with k verti
es. �38



B A Dynami
 Programming to CD inequalitiesThe dynami
 programming algorithm des
ribed in Figure 18 solves the separation problem of CDinequalities under the 
ir
umstan
es announ
ed in 
orollary A.1.DP Des
ription (LRP 0) /* LRP 0 � LRP , where (1) is satis�ed */1. De�nitions:z: matrix (n+ 1)� (b+ 1)� (b+ 1), n = jV j, keeping the subproblem solutions.z[k; p; q℄ : stores the obje
tive fun
tion maximum value 
onsidering that verti
es k + 1 to n belong toseparator C and that exa
tly p verti
es are in subset A and that q verti
es are in subset B.
k1; 
k2: 
osts for adding vertex k to A and B, respe
tively.2. Initializations: suppose that, for all j = 1; 2, 
'(i)j � 
'(i+1)j , for all i in V , i.e., f'(1); '(2); : : : ; '(n)g
orresponds to the sequen
e of verti
es non-in
reasingly sorted by the 
osts 
:j .z[0; 0; 0℄ = z[k; 0; 0℄ � 0, 8k.z[k; p; 0℄ = � 0; if p > kPminfp;kgi=1 
'(i)1; otherwise.z[k; 0; q℄ = � 0; if q > kPminfq;kgi=1 
'(i)2; otherwise.z[k; p; q℄ � �1, when p < 0 or q < 0 or p+ q > k.3. Re
urren
e (subproblem solutions):z[k; p; q℄ � maxfz[k � 1; p; q℄; 
k1 + z[k � 1; p� 1; q℄; 
k2 + z[k � 1; p; q � 1℄g;8k; p; q.4. Optimal solution value:z� = maxfz[jV j; p; q℄g, 1 � p � b e 1 � q � b.Figure 18: Dynami
 Programming des
ription.C Computational results on unsolved instan
esTable 8 shows some results obtained with two of our best versions of relax-and-
ut frameworks overthe set of 11 instan
es not solved by any of the implemented algorithms within the time limit of30 minutes. In order to make possible performan
e 
omparisons with possible future algorithms tothe VSP the table shows �nal upper bounds, lower bounds and values 
orresponding to the numberof nodes produ
ed by the B&C enumeration tree.Table 8: Results for VSP unsolved instan
es.Instan
e NDHYBRID(CD) PHYBRID(CD)label n d Opt ub lb nodes ub lb nodesdim.DSJC125.1 125 0.09 90 102.26 89 143809 102.38 88 124345dim.queen12 12 144 0.25 97 113.69 97 19518 114.12 97 16062dim.queen11 11 121 0.27 81 91.64 81 37586 91.76 81 32499dim.queen10 10 100 0.30 67 72.29 67 88727 72.28 67 81052dim.queen8 12 96 0.30 65 69.56 65 96996 69.60 65 84300dim.queen9 9 81 0.33 55 56.49 55 231242 56.44 55 202559dim.DSJC125.5 125 0.50 74 88.91 74 6208 87.65 74 5329mat.L125.
an 161 125 0.16 97 105.37 95 73721 105.37 97 52825miplib.stein27 r.p 118 0.32 62 82.00 62 18801 83.21 62 22951miplib.10teams.p 210 0.34 120 188.67 120 1824 190.38 120 1768miplib.mod010.p 146 0.38 90 97.29 88 16171 96.21 86 1096539


