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Abstract

In this paper we propose a Lagrangian relaxation framework to solve the vertex separator
problem (VSP). This framework is based on the development of relax-and-cut algorithms which
embed the separation of valid inequalities for the VSP discussed in [3] in the subgradient method.
These relax-and-cut algorithms are then used as a preprocessing phase in a hybrid algorithm
which combines them with branch-and-cut algorithms proposed in [12]. This is done basically
by feeding the branch-and-cut algorithms not only with the primal bound but also the cuts
separated during the preprocessing phase. Computational results obtained with benchmarks
from the literature showed that the hybrid algorithm developed here outperforms the best exact
algorithm available for the VSP to date.

Keywords: Lagrangian relaxation, cutting planes, Integer Programming, relax-and-cut algo-
rithms, vertex separator.

1 Introduction

A wertex separator in an undirected graph is a subset of the vertices, whose removal disconnects
the graph in at least two nonempty connected components. Recently, Balas and de Souza [3, 12]
studied the vertex separator problem (VSP) which can formally be stated as follows.

INSTANCE: a connected undirected graph G = (V, E), with |V| = n, an integer 1 < b < n and a
cost ¢; associated with each vertex 1 € V.

PROBLEM: find a partition of V' into disjoint sets A, B, C, with A and B nonempty, such that (i) E
contains no edge (i,j) with i € 4, j € B, (i1) max{|A|,|B[} <, (iii) 3 ;- ¢; is minimized.

The sets A and B are called the shores of the separator C'. A separator C' that satisfies (i)
but violates (i7) is termed infeasible; one that satisfies (i) and (1) is feasible; and a separator
that satisfies (i), (i4), (4i7) is optimal. Unless otherwise specified, the term separator is used
here to denote a feasible one. The VSP is N'P-hard and has widespread applicability in network
connectivity. Further discussion on applications appears in [3].

In that paper Balas and de Souza also conducted the first polyhedral investigation on the
VSP. They introduced several classes of strong valid inequalities for the polytope associated to the
problem. In a companion paper to that study, the same authors reported extensive computational
experiments with a branch-and-cut (B&C) algorithm based on those inequalities. In [6] Borndorfer
et al considered a generalization of the VSP where the partitioning of the vertex set has to be done
in two or more subsets. However, contrarily to the VSP, solutions where one of the shores remains
empty are allowed.

Based on the Integer Programming (IP) model and on the strong valid inequalities introduced
by Balas and de Souza, we propose an algorithm that combines Lagrangian relaxation with cutting
plane techniques to solve the VSP. Our method belongs to a class of Lagrangian relaxation algo-
rithms where constraints of certain families of inequalities may only be explicitly dualized when they
become violated at some Lagrangian relaxation solution. These so-called Relax-and-Cut (R&C)
algorithms appear as a promising alternative approach to strengthen Lagrangian relaxation bounds
as reported in several recent works in the literature [7, 16, 17, 18, 19, 20]. These algorithms use a
dynamic inequality dualization scheme that renders viable the application of Lagrangian Relaxation
to models with an exponential number of inequalities. Indeed, a similar approach for the traveling
salesman problem [2] date from the early 80’s.



Furthermore, we describe a framework that proposes a hybridization between our R&C algo-
rithm and a modified version of the B&C algorithm presented in [12], to our knowledge, the best
exact algorithm available for the VSP. Basically, this hybridization consists in using our R&C as a
preprocessing subroutine of the B&C algorithm and we denote it by HYBRID. Similar hybrid ap-
proaches were already tried on other optimization problems [9, 10, 11]. However this work presents
the first attempt to use it in the exact computation of VSP instances. The experiments conducted
here show that different versions of the HYBRID method outperform the B&C algorithm when used
alone.

The paper is organized as follows. Section 2 presents the TP formulation for the VSP given
in [3, 12] and used here. Section 3 briefly reviews the Lagrangian relaxation technique and the
subgradient method (SM) and gives a general description of R&C algorithms. The elements of the
R&C algorithm we developed for the VSP are presented in Section 4. This section includes details
of the Lagrangian relaxations considered, descriptions of the separation routines implemented and
of the primal heuristic we devised. Section 5 discusses how we integrated Lagrangian relaxation
with other Integer Linear Programming techniques to design an exact algorithm to solve the VSP.
The setup of our test environment is detailed in Section 6. Section 7 describes the structure of our
algorithm and reports on the computational results obtained for test instances gathered from the
literature. Finally, in Section 8, we draw some conclusions and point out some possible extensions
of this study.

2 An IP formulation for the VSP

We describe here the mixed IP formulation presented in [3, 12] on which our Lagrangian relaxation
is based. For every vertex ¢ € V, two binary variables are defined: u;; = 1 if and only if i € A
and u;p = 1 if and only if i € B. For S CV and k € {1,2}, let u(S) denote > (uj : i € S), and
u(S) = ui(S) + uz(S). An IP model for the VSP is given by

max Z ci(uir + ui9)

i€V
w1 + ujp < 1, VieV (1)
uin +ujo < 1, ujp +up <1, V(i,j) € E (2)
ur(V) > 1, (3)
uz (V) <0, (4)
u (V) —ug(V) <0, (5)
uio >0, u; € {0,1}, VieV. (6)

Inequalities (1) force every vertex to belong to at most one shore. Inequalities (2) prohibits the
extremities of an edge to be on distinct shores. Inequalities (3) to (5) limit the size of the shores
and, at the same time, reduce the symmetry of the model by forcing the size of shore A to be
bounded by that of shore B. As observed in [12], if the u;; variables are integer for all i € V', the
integrality of the uo variables can be dropped from the formulation. Though this observation is not
taken into account by our Lagrangian relaxation, it is relevant for IP solvers.



3 Relax-and-Cut (R&C) algorithms

For completeness, we briefly review the basics on Lagrangian relaxation and relax-and-cut algo-
rithms that are relevant to us. Denote by X a subset of B" = {0,1}" and let

Z =max {cx: Az <b, x € X} (7)

be a formulation for a NP-hard combinatorial optimization problem. In association with (7) one
has b € R™, ¢ € R" and A € R™*", where m and n are positive integral values representing,
respectively, the number of constraints and the number of variables involved. Let Z’ denote the
formulation obtained after removing constraints Az < b from (7). Also, assume that Z’ can be
solved faster than Z (typically in polynomial or pseudo-polynomial time in the problem size).

A Lagrangian relaxation of (7) is obtained by bringing the term A(b — Az) into the objective
function of Z’, where A € R is the corresponding vector of Lagrange multipliers. The resulting
Lagrangian relazation Problem (LRP())) is

Z(A) =max {cx+Ab—Az): z € X} =max {(c— M)z + Xb: z € X}. (8)

It is a known fact that Z(\) > Z and, therefore, the tightest possible upper bound on Z,
attainable through LRP()), is given by an optimal solution to the Lagrangian dual problem (LDP)
Zp = minyegpp {max {(c—AA)z+Ab: z € X}}. In the literature, several methods exist to compute
the LDP. Among these, due to its simplicity and the acceptable results it returns, the subgradient
method (SM) is the most widely used [5]. A brief review of that method follows since the R&C
algorithm we suggest here for the VSP is deeply based on SM.

SM is an iterative procedure which solves a succession of LRPs like the one in (8). It starts with
a feasible vector A\’ of Lagrangian multipliers and, at iteration %k, generates a new feasible vector
M of multipliers and an associated LRP. Usually, the algorithm stops when a given limit on the
number of iterations is reached.

At iteration k, let Z* be an optimal solution to (8) with cost Z(A\¥) and let 2% 5 be a known lower
bound on (7). An associated subgradient vector (for the m relaxed constraints) is then computed
as gf = (bj — a;@%), i = 1,2,...,m. That vector is then used to update \*. To that order, a step
size O% is computed. The following formula is commonly applied to perform this calculation [5]

gk — ™ (Z(\*) = 2} p)
>t (gF)?
Typically, the real parameter 7% is set to an initial value (7°). Along the iterations, it is reduced to

a fraction of its current value whenever an a priori fixed number of LRPs have been solved without
improving the upper bound on Z. Finally, once 6% is obtained, \* is updated as

(9)

k

AFL — max {0; \F — 0FgFY, i =1,2,...,m. (10)

Notice that the straightforward use of formulas (9-10) may become troublesome when a huge number
of dualized inequalities exist. An alternative may be to modify SM according to the R&C scheme
discussed below.

In the literature two strategies to implement R&C algorithms are discussed. They differ, ba-
sically, on the moment at which the new inequalities are identified and dualized. In a Delayed



Relax-and-Cut (DR&C), several executions of SM are made. The search for violated cuts is per-
formed solely at the end of each such execution and, if some of them are encountered, they are
dualized and a new execution of SM starts. In a Non Delayed Relax-and-Cut (NDR&C), typically
a single SM execution is done and cuts are dualized along the iterations as they are found (see
[7, 16, 18, 19, 20] for details). In a comparison carried out in [19], NDR&C performed better than
DR&C. However, in our work, we decide to implement both strategies in order to compare them in
the context of the VSP. Also, we propose a third strategy which combines ideas borrowed from the
previous ones. We denote it by Postponed (non-delayed) Relaz-and-Cut (PR&C). As for NDR&C,
in PR&C the cuts are separated at each SM iteration. However, these cuts are not immediately
dualized. Instead, they are stored in a buffer. Similarly to what happens in DR&C, the SM is
executed several times. In the beginning of each execution, the buffer is emptied and all its cuts
are dualized for the next SM round.

Clearly, if there are exponentially many inequalities in (7), the use of traditional Lagrangian
relaxation becomes impracticable. Alternatively the R&C scheme proposes a dynamic strategy to
dualize inequalities. In this process, one should be able to identify inequalities that are violated by
z*. To do so, likewise polyhedral cutting-plane generation, a separation problem must be solved at
every iteration of SM. Thus, one tries to find at least one inequality violated by the current LRP
solution. The inequalities thus identified are candidates to be dualized. It is worth noting that
separation problems arising in R&C algorithms may be easier than their polyhedral cutting-plane
algorithm counterparts. That applies since LRP normally has integral valued solutions (cf. [20]).

4 Relax-and-cut algorithms for the VSP

Different Lagrangian relaxations can be devised from the formulation given in section 2. During
this work we evaluated some of them, always considering the trade-off between two aspects: (a)
the strength (sharpness) of the resulting Lagrangian dual bounds and (b) the difficulty of solving
the Lagrangian primal and dual problems, which influence on the amount of computation required
to obtain the bounds. With this in mind, we considered three relaxations, all of which can be easily
seen to satisfy the integrality property. Then, in all three cases, the best dual bound attainable
is equal to the value of the VSP linear programming relaxation. Therefore, what prevailed in our
choice of the Lagrangian relaxation to be used was the computational effort involved in solving
LRP and LDP.

We decided to start with a simple relaxation where the constraint sets (1) and (2) are dualized by

means of the vector multipliers A € R‘f‘, Bl e R‘f‘ and 32 € R‘f‘, respectively. Also, observe that
symmetry is not of primary concern for the Lagrangian relaxation. Thus, we consider an alternative
IP formulation where the inequalities (3) and (4) are replaced, respectively, by 1 < (V') < b, with
[ = 1,2, and inequality (5) is dropped. Accordingly, the resulting LRP is given by

LRP(\, 8, %) = max { Z(Eiluil + Ciouia + Ai) + Z (B + B7;) : ug € {0,1},

eV i,j
i€ G)es (11)

VEkeVandl =12, satisfying 1 < (V) <b}

where ¢x1 = ¢k — Ak — Dk jyer Bli,j — D ikyeE sz and Cra = . — M — D hyer ﬁ},k = D (kj)eE ,31%,]'
k<j i<k i<k k<j

<
(for each k in V) are the Lagrangian costs of, respectively, ux; and uys. Notice that (11) can be



solved in O(|V|]log|V|) time by sorting the variables according to their Lagrangian costs and after
performing a few simple calculations.

The second relaxation we experimented with is very similar to the first one, differing only by
the fact that inequalities (1) are not dualized anymore. The resulting LRP is thus

LRP(Bl,BQ) = max {Z(Eilﬂil + ¢iguig) + Z (521’3 + ,312’]) tug € {0,1},

eV (i,iQ]gE (12)

VkeVandl=1,2, satisfying (1), 1 < (V) < b}

where ¢,; = ¢;, — Z(kéﬂgﬁE B,i’j - ZUQ%E /sz and Cpo = ¢ — Z(,,QEE 51‘1,k - Z(kéﬂgﬁE fBl%,j (for each k in
V') are the Lagrangian]costs of, respectively, ug; and ugs. It is possible to devi]se a simple dynamic
programming algorithm that solves LRP(3!, 32) in O(|V|?).

The third relaxation comes from the observation that a matrix formed by the coefficients of
the set of constraints described in (1) and (2) is totally unimodular. Thus, when all but these
constraints are dualized, the resulting LRP is a well-solved problem that can be computed in
polynomial-time using a specialized network flow algorithm or an interior point method for linear
programming. Now, given the vectors of Lagrangian multipliers 0 € R}I_, n e Rﬁ_ and v € R}I_, the
resulting LRP is

LRP(0,n,7v) = max {Z(Eiluil + Ciouio) — 0+ nb:
i€V (13)
ug, Vk €V and I = 1,2, satisfy (1), (2) and (6)}

where ¢x1 = ¢ + 60 — v and ¢xo = ¢ —n + 7y (for each k in V') are the Lagrangian costs of ug; and
upo, respectively.

Among the three relaxations discussed above, the first one provided the best trade-off between
the strength of dual bounds and the computation time required to solve the Lagrangian subproblem.
For this reason, it was the one adopted in the final configuration of our relax-and-cut algorithm.

4.1 Classes of valid inequalities and separation problems

The relax-and-cut algorithms developed here are based on two families of valid inequalities intro-
duced by Balas and de Souza in their polyhedral study of the VSP [3]. Inequalities in both families
have dominators as part of their support graphs. The first is related to minimal connected domina-
tors and the inequalities belonging to it are called C'D inequalities. The second family is associated
to minimal but not necessarily connected dominators and has its strength increased through a
tricky lifting procedure. The latter inequalities are termed LD inequalities.

The CD and LD inequalities are described below. In the discussion that follows, P is defined
as the convex hull of the integer solutions of the IP model given in section 2, i.e., P := conv{u €
{0,1}2IV1 ;4 satisfies (1)-(6)}. The point @ = (i, @i2), to which we apply our separation routines,
refers to an optimal solution of the LRP currently under consideration. Also, given G = (V, E),
for any S C V, Adj(S) refers to the set of all vertices in V'\S which are adjacent to at least one
vertex in S (when S = {i} we write Adj(i) to denote Adj({i})). Similarly, for a certain k € V\S,
we denote Adjs(k):={i € S: (i,k) € E}.



CD-Separation(G)
1. Construct Gz = (W, F);
2. Determine nc¢, the number of connected components of G;

3. if ncc =1 then /* Gy is connected */

4. if V C (W UAdj(W)) then /* W is a dominator of V */

) Turn W into a minimal CD;

6. return the CD inequality w(W) < |W| —1;

7. else return FAIL; /* no new cut is returned for dualization */

Figure 1: Separation routine for CD inequalities.

4.1.1 CD inequalities

Balas and de Souza [3] call a valid inequality for VSP symmetric if, for all j € V', the coefficients of
the variables uj; and uj in the inequality are the same. Besides, they show that vertex separators
are intimately related to vertex dominators. A vertex dominator is a subset of vertices of the graph
such that all the remaining vertices are adjacent to at least one of them. The dominator is said to
be connected if the subgraph induced by its vertices is connected. Balas and de Souza then stated
the following property: every separator and every connected dominator have at least one vertex
in common. From this observation, they derived a class of symmetric inequalities associated with
connected dominators, the so-called CD inequalities. If S C V is a connected dominator, the CD
inequality for S is given by

u($) <18 - 1. (14)

Inequality (14) is clearly valid for the VSP polytope P. It is non dominated only if S is minimal
with respect to vertex removal. Notice that minimality here applies to both the dominance and the
connectivity properties. Though necessary and sufficient conditions for CD inequalities to define
facets are not known in general, they are shown in [12] to be very effective in computations.

A valuable characteristic of our R&C algorithms is the fast separation routine that looks for
violated CD inequalities at 4. A high level description of our procedure is given in Figure 1. The
routine starts by constructing the subgraph Gz = (W, F') of the input graph G = (V, E) which is
induced by the vertices i € V with ;1 +4;0 > 1. Tt is easy to see that, if W is a dominator and Gy is
connected then the CD inequality associated to W is violated by «. Unfortunately, the converse is
not true in general. It holds when constraints (1) are satisfied, in which case, as cited before, LRP
can be solved by dynamic programming. Appendix A presents a thorough discussion regarding
the complexity of separating CD inequalities and appendix B describes a dynamic programming
algorithm to solve LRP.

Thus, our separation routine can be viewed as a heuristic. Step 5 of the algorithm tries to
strengthen the inequality since the minimality of the dominator is a necessary condition for a CD
inequality to be facet defining. It checks if the removal of a limited number of vertices preserves
the connectivity of the graph induced by W and the dominance property. The separation routine
implemented has a worst-case complexity of O(|V|(|V|+ |E|)). But, in general, the size of minimal
connected dominators decreases with graph density and the hardest VSP instances correspond to
graphs of relatively high densities. In such cases, the algorithm behaves more like a O(|V| + |E|)
algorithm.

In our R&C algorithm the separation procedure is called at every SM iteration. Since we



implemented two greedy ways to obtain minimal CD inequalities, at most two cuts are produced
per iteration. Every new cut separated is stored in a pool and dualized in a Lagrangian fashion.
The relaxation in (11) is then modified to incorporate this constraint. As a result, the term
ZZ’;’?” pk(|Sk] — 1 —u(Sk)) is added to the cost function of (11), where u € R‘f(m” is the vector of
multipliers of the CD inequalities that are currently dualized and Sy (k = 1...|pool|) corresponds
to the connected dominator associated to the CD inequality at position k in the pool.

4.1.2 Conditional (CD) Cuts

According to de Souza and Balas, in [12], for unit costs, one can adapt the separation routine to
search for more stringent CD inequalities. These inequalities are valid for all vectors u € P satisfying
u(V) > zrp + 1, but chop off several feasible solutions with smaller costs. Their usage preserves
optimality and is conditioned to the existence of a lower bound zrg. We call them conditional
cuts, in an analogy to what is done for the set covering problem in [4]. For the VSP, these cuts
are obtained computing & = maxz{zrg — b+ 1,1} and searching minimal dominators that cover at
least k = |V| — a + 1 vertices (k-dominators). Thus, given a lower bound zzp for the optimum,
the separation routine can be changed to identify minimal connected k-dominators. Obviously, the
interesting situation occurs when zz5 > b, meaning that not all |V| vertices need to be covered.
Conditional cuts are used both in the B&C algorithm in [12] and in the R&C algorithm presented
here. In our implementation, conditional CD cuts are considered already along the execution of
the R&C algorithm. When a conditional CD cut is identified, it replaces any CD inequality it
dominates.

4.1.3 LD inequalities

Let S C V be a dominator of V. For i € S, P(i) = {k € V\S : Adjs(k) = {i}} is the set of pendent
vertices of 4. Also, if S is minimal and P(i) = (, for some i € S, the presence of i in S is needed
only to dominate ¢ itself. We call such a vertex a self-dominator. Now, take S C V a minimal
dominator of G, not necessarily connected. Then, the inequality

u(S) < S| —-1. (15)

is trivially valid' for the VSP polytope P and is facet defining only under some special conditions,
according to the following proposition:

Proposition 4.1 (Baras anp pe Souvza[3]) The inequality (15), where S is a minimal dominator of
G, defines a facet of P if and only if the following conditions are satisfied: (a) V\S = J;cq P(i);
(b) S contains no self-dominator, and (c) S is an independent set.

Balas and de Souza [3] propose two forms of lifting the inequality (15) when some of the
conditions in proposition 4.1 are not satisfied. In the R&C algorithm designed here, we apply
the first lifting devised by them, which alters the coefficients of the variables associated to the
assignment of vertices of S to the shore B. It applies when the dominator S is not an independent
set. Since the resulting inequalities are associated with minimal dominators and a with a lifting
procedure, they were called LD (Lifting Dominator) inequalities.

'"We assume that |S| < b, for otherwise (15) would be implied by (4), hence redundant.



Now, let S be a minimal dominator that is not an independent set. Further, let S1,S,..., Sk
be the vertex sets of the components of G[S] (the graph induced by S in G) such that |S;| > 1,1 =
1,...,k. According to [3], for each component G[S)], one must build an ordered set of vertices
I} = {v1,v2,...,v4} having the following properties: (c1) I; is an independent set of G[S)]; (c2)
for alli € {2,...,q}, v; is at (edge) distance two from the vertex set {v1,va,...,v;—1} and (c3) I
is maximal. Such a set always exists and is usually not unique. Balas and de Souza designed an
algorithm to find such a set which computes a spanning tree T; of G[S)] as follows.

Initially all the vertices in S; are unmarked. The algorithm starts by arbitrarily choosing v € S
as the root of T; = (Vr,, E1,) and mark v. Also, all the vertices w € Adj(v) in G[S)] and all the
edges joining them to v in G[S)] are put into 7). Then, for each w € S\T}, w € Adj(Vr,) in G[S)],
the following steps are repeated until all the vertices of S; have been included in 7j: (i) w is marked
and put into 7} by joining it through an edge from G[S] to some (arbitrarily chosen) unmarked
vertex of Tj; (ii) using edges from G[S)], add to T; all the vertices in (S;\7;) N Adj(w) (the adjacency
here is defined over G[5)]).

It is not hard to see that the vertices marked in 7T) form an ordered set satisfying the conditions
defined earlier for I;. Moreover, because of the freedom one has to choose the unmarked vertex of
T; to which a newly marked vertex is joined by an edge to T}, the tree is not unique. Figure 2 shows
an example of component G[S)], along with two distinct ordered sets satisfying conditions (c1),
(c2) and (c3). The spanning trees corresponding to each of the ordered sets are also depicted.
Besides, the marked vertices and their degrees are highlighted.

G[Sl]l

Il ={1,3,8,9}
I? = {6,1,10}

§=(4,2,2,1) §=(7,1,1)

Figure 2: Two ordered sets satisfying conditions (c1), (c2) and (c3) and the corresponding
spanning trees associated with each one of them.



LD-Separation(G)

1. Construct Gz = (W, F);

2. Determine ncc, the number of connected components of Gy;

3. if nce < 2 then /* Gy is connected or has at most two components */
4. if V C (W UAdj(W)) then /* W is a dominator of V' */

5 Turn W into a minimal dominator with ncc components of G[W7;

6 forl=1,..,ncc do

7. Construct 7) and identify an independent set I; = {v1,v2,...,v,} C Vpy;
8 Determine §,; = d(v;) for all v; € I;. Set d,; = 0 for all v; € Vp,\I;

9 return the LD inequality u, (W) + Zujew 0oty < W[ = 1;

10. return FAIL; /* no new cut is returned for dualization */

Figure 3: Separation routine for LD inequalities.

Suppose that the algorithm above executed for each component G[S;] resulting in a spanning
tree T; and an ordered set [;. Balas and de Souza [3] prove that the inequality

ui(S) + > djujp < S| —1 (16)
jES

is valid and facet defining for the polytope P, where each 4, is equal to the degree of v; in T} if this
vertex is marked and is null otherwise.

To identify LD inequalities we implemented a heuristic separation routine which uses this first
lifting procedure from Balas and de Souza. The procedure is detailed in Figure 3. Like in the CD
separation, the routine starts by constructing the subgraph Gz = (W, F) of G which is induced
by the vertices 1 € V with u;1 + @;2 > 1. Then, to save computation time, in step 3 we restrict
the separation routine to the cases where Gz has at most two connected components. Though
restrictive, this procedure allows us to generate LD cuts both for connected and non connected
dominating sets, contrarily to the CD inequality case. Thus, the lifting of variables in the smaller
set is produced with the aid of at most two spanning trees (steps 6-8). In our final implementation,
the selection of vertices to mark and to connect each newly marked vertex is done in increasing
order of vertex labels. It is worth mentioning that we also experimented to select the vertex
with the highest degree in G[Sl\VTl(i)]. In principle this may generate LD constraints with smaller

supports resulting in lighter LPs. However, since no actual gain was observed and some additional
computation was required, this strategy was abandoned. Finally, a LD inequality associated to the
dominator W that cuts off w is built. The computational complexity of the separation routine for
LD inequalities is the same as that of the CD inequalities, i.e., O(|V[(|V| + | E|)). As said before,
in practice, for dense graphs, the separation routine is quite fast because minimal dominators are
obtained from already small W dominators.

Similarly to what is reported by de Souza and Balas in [12], CD inequalities showed, experi-
mentally, to be much more effective than LD cuts. Moreover, we noticed that the LD inequalities
over connected dominator often produced better dual bounds than those over not connected dom-
inators. Thus, in our final experiments, we decided to separate LD inequalities only when our
CD separation is turned on and just considering connected dominators. In our experiments, these
choices resulted in time savings during LD separation since they reduced its execution to steps 1,
2 and, for ncc = 1, to steps 7 to 9 of the algorithm in Figure 3.



In our R&C algorithm the LD separation routine is called at every SM iteration. It produces at
most two cuts per iteration and the lifting procedure is called even when the basic LD inequality
(15) is not violated by the solution of the current Lagrangian subproblem.

Every new cut separated is stored in a pool and dualized in a Lagrangian fashion. The relaxation
in (11) is then modified to incorporate this constraint. As a result, the expression Z‘kp:{” ok (| Sk| —

1 —us(Sk) — D jes, juj1) is added to the cost function of (11), where ¢ € R‘_foo” is the vector of
multipliers of the LD inequalities currently dualized.

Notice that, due to the inequality dualization scheme within relax-and-cut algorithms, the same
cut may be repeatedly identified by the separation routines. Managing the cut pools of CD and LD
inequalities is quite simple and is restricted to redundancy checks, i.e., a new inequality is inserted
only if it is not identical to another inequality already in the pool or in the original formulation.
The use of suitable data structures and standard hashing techniques render our implementation of
redundancy verification very fast.

4.2 A Lagrangian primal heuristic

The generation of good primal bounds is important for the computation of the step size (9) in the
SM and to assess the duality gap along the iterations of the algorithm. In order to compute lower
bounds for the VSP, we devise a simple greedy heuristic whose steps are summarized in Figure 4.
Initially, the set L containing the vertices that are candidates to be part of the shores is built.
This excludes the universal vertices, i.e., those which are adjacent to all the other vertices, which
clearly belong to any separator. The heuristic chooses arbitrarily two nonadjacent vertices of L
and assigns them to different shores so that, in the end, they will not be empty. It proceeds by
assigning vertices to shores, prioritizing the assignments corresponding to the variables with higher
weighted Lagrangian costs. The choice of the weighting method is controlled by the parameters
p(k) € {0,1}, where k stands for the shore indices, i.e., &k = 1,2. It is implemented by multiplying
or dividing the Lagrangian cost of the variable associated to a vertex v by the degree of v, §(v),
as seen in step 5, and can be distinct for variables associated to the same vertex but to different
shores. This allows us to distribute the vertices between the two shores according to their costs and
degrees. Since universal vertices are always in a separator, our intuition was that, in an optimal
solution, vertices with high degrees are less likely to belong to a shore. This would count if favor
of cost division. However, to our surprise, preliminary tests with a subset of instances showed that
only multiplying the costs produce slightly better solutions than the other combinations. Hence,
in our default setting, we fixed p(1) = p(2) = 1.

Notice that, in the heuristic, all the assignments of vertices to shores are made so as to maintain
the viability and to respect the maximum size of the shores. As a final step, a local search subroutine
may be called in an attempt to improve on the solution produced by the heuristic. The decision
on whether or not the local search is executed works as follows. Let z be the cost of the current
solution and 7y(z) the number of solutions having cost z found so far throughout the R&C execution.
The local search is executed only when 7(z) < T', where I' is a parameter that specifies a limit on
the number of improvements trials over solutions having the same cost.

The local search routine is described in Figure 5. It starts by enlarging the current separator
C with as many vertices of the shores belonging to its adjacency as possible (steps 1 to 5). Then
vertices are transferred from the new separator C’ back to the shores in step 6 in an arbitrary
order. However, the choice of the destination shore is made so as to increase the chances of future
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Lagrangian heuristic (G = (V, E),c,¢, p,T)
L + V\{universal vertices in G};
vg < {any vertex in L that maximizes ¢(u;;)};
Initialize shore A: A <+ {vo}, L + L\{vo} and L’ <+ L\Adj(vp);
Initialize shore B: B < {v; € L' : §(v1) > §(v),Yv € L'} and L + L\{v; };
for k=1,2 do:
for all i € L, compute w,,, < c¢(ui) x [p(k) *5(1) + (1 — p(k))/d(i)];
Let Si be the list of variables u;; sorted non increasingly by w,,
for all j € Adj(vgfk) do S + Sk\{Ujk};
6. while |A| < bor |B| <bdo
f1 « {vertex corresponding to the first variable in S; };
f2 « {vertex corresponding to the first variable in S };
if é(ug 1) > é(uy, o) then

G Lo =

ik?

A« AU{f Y Sy Si\ug 1}

for ally € Adj(fl) do S2 — SQ\{UJ'Q};
else

B« BU{f:}; Sy = Sa\{up 2}

for all j € Adj(fz) do S « Sl\{u]’71};
if [A| = b, E(uyp 1) < —oc; /* avoids new vertices in A */
if |B| =0, ¢(uy,,2) ¢ —oc; /* avoids new vertices in B */

7. Compute the separator: C < V\{AU B}
8. if y(} ;e ¢j) < T, call Local Search(G, A4, B,C,c);
9. return (4, B,C)

Figure 4: Lagrangian heuristic.

moves from the separator to the shores. This is evaluated via the simple computations in steps 6.i
to 6.m. The overall complexity of the Lagrangian heuristic, including the local search procedure,
is O(|V]log |V| x |E|).

5 Integrating R&C and B&C

An alternative to be more effective in solving VSP problems to optimality is to devise a hybrid
approach that combines Lagrangian relaxation with Integer Linear Programming (IP), in the style
suggested in [7]. We denote this hybridization of R&C and B&C algorithms by HYBRID. In such
combination, optimization is split in three steps: (i) the LR phase, based on our relax-and-cut
framework, whose output are pools of valid inequalities and a primal bound; (ii) a remodelling
phase, where the TP formulation is tightened according to the information gathered during the first
phase and, subsequently, (i) the LP phase where a branch-and-cut code is executed over the new
TP model. Among the cuts used in this last phase, we include those cuts separated throughout the
execution of the R&C algorithm in the initial phase. We call them the Lagrangian cuts.

The execution flow of the algorithm is depicted in Figure 6. The two first phases are generically
termed as the preprocessing phase of our hybrid algorithm. Below we describe the three phases of
the hybrid algorithm in more detail.
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Local Search (G, A, B,C,c¢)
/¥ initializations */
Let A¢ be the vertices in A that have neighbors in C;
Let B¢ be the vertices in B that have neighbors in C
if A = Ac then Ac + Ac\{arbitrarily chosen vertex of A};
if B = B¢ then Be < Be\{arbitrarily chosen vertex of B};
A'(—A\Ac; B'(—B\Bc; C'" <+ CUAc U Bg;
/* main loop */
6. for every vertex v € C' do:
6.a if |A'| = b and |B'| = b then break;
6.b if |[Adj(v) N A’ # 0 and |Adj(v) N B'| # 0, then continue;
6.c C'+ C'"\{v};
6.d if Adj(v) C C' then

culs DN =

6.c if |A’| = b then B' + B'U{v};

6.f else

6.g if |B'| = b then A" + A' U {v};

6.h else

6.1 na < 0; np < 0;

6.] for all w € Adj(v) do

6.k na < na+ |Adj(w) N Al; np < np + |Adj(w) N B;
6.1 if ng > np then A’ + A'U {v};

6.m else B' + B'U{v};

6.n else

6.0 if Adj(v) C A'UC" and |A’| < b then A" + A’ U {v};
6.p else /* Adj(v) c B'UC' */

6.q if |B'| < b then B’ + B' U {v};

7. if Y ccCi > Y icencithen A A", B+ B', C + C".

Figure 5: Primal heuristic: the local search procedure
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Figure 6: Flow Diagram of the HYBRID algorithms.

5.1 The LR phase

The LR phase is comprised of an R&C module. It corresponds to one of the implementations of
the relax-and-cut algorithm described in Section 4 and is the core of our framework. During its
execution, valid CD and/or LD inequalities are identified and inserted into the corresponding pool.

After completing the execution of the relax-and-cut algorithm in this module, the final duality
gap is verified. If the problem is not solved during the R&C run, some information are passed as
the input of the next phases. This includes not only the cut pools, but also the best primal solution
and its cost, i.e., the best lower bound found so far.

5.2 The remodelling phase

In addition to CD and LD inequalities identified in the previous phase, some constraints may be
added or adapted to strengthen the original formulation presented in section 2.

The first constraint considered comes from the observation that universal vertices must belong
to any separator. Thus, given the input graph G = (V,E) and U = {i € V : |Adj(i)| = |V| — 1},
the constraint ), (w1 + u;2) = 0 is trivially valid for the problem. This constraint was not used
during the LR phase because it resulted in some degradation of the R&C performance in terms of
dual and primal bounds yielded. Also, this constraint is not taken into account in [3]. However,
when dealing with high density graphs, the occurrence of universal vertices is very frequent. In
practice, the benefits with the addition of this constraint to the IP model justified its inclusion as
part of our remodelling phase.

Now, we concentrate on how to use the lower bound yielded by the R&C module to tighten our
IP model. To this end, we focus on unit cost instances, i.e., those for which ¢; = 1,Vi € V. We do
so because these instances often occur in practical applications.

Assume that zpp is the cost of the best known solution computed in this case. Since ug(V') >
u1(V), we can deduce that us(V) > | 22 | +1 must be satisfied by any solution with cost higher than
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Separation Strategy(sep, CDP, LDP)
/* call table look up routines to obtain Lagrangian cuts */

1. runLagrangianSeparation(CD,CDP); /*L-CD is always ran */
2. if sep € {(L-CD,CD,L-LD,LD), (L-CD,CD,L-LD), (L-CD,L-LD)} then
2.a runLagrangianSeparation(LD,LDP);  /* add L-LD cuts */

/* test and call de Souza and Balas’ routines to generate cuts */
3 if sep ¢ {(L-CD,L-LD)} and there is no Lagrangian cut violated then

3.a runCDSeparation(); /* call CD separation */
3.b if sep = (L-CD,CD,L-LD,LD) then
3.c runLDSeparation(); /* call LD separation */

Figure 7: The separation strategy executed in the L-B&C module.

zr,B. For any such solution, it is also straightforward to conclude that if z;, 5 —b > 1, constraint (3)
can be replaced by the stronger inequality uy (V) > zrp — b.

Although the previous modifications rely on rather simple arguments, in this phase we incorpo-
rate them to the model. As a matter of fact, except for the last change, preliminary experiments we
carried out with these modifications in the IP model revealed an improvement in the performance
of our modified branch-and-cut algorithm.

5.3 The LP phase.

The LP phase has as its input the cut pools, the best solution and the best primal bound from the
LR phase and the new IP model from the remodelling phase. It has two modules that we discuss
below.

Linear Programming Solver (LP). This module solves the LP corresponding to the relaxation
of the IP model coming from the remodelling phase, appended with the cuts present in the cut
pool. This model is computed only if the (relative) Lagrangian gap resulting from the R&C module,
given by gap’ = 100 x (2 — 21.8)/21B 1s lower than a threshold value o. The purpose here is to
use linear programming to avoid running the B&C module unnecessarily. It is well-known that, in
practice, computing dual bounds within R&C algorithms commonly produce meager values than
the linear relaxation optimum value. Thus, this module is a possible workaround to bypass some
numerical difficulty in closing the integrality gap.

Branch-and-Cut with Lagrangian cuts (L-B&C). This module runs only if the R&C (LR
phase) and/or the LP solver fail to prove optimality (i.e., gap > 1). Recall that the preprocessing
phase yields as outputs the sets of (conditional) CD cuts and/or LD inequalities which are candi-
dates to be added to the formulation given as input of L-B&C. Moreover, L-B&C is also given the
values of z7p (best incumbent), which may help to prune the enumeration earlier.

Figure 7 shows the separation strategy adopted at each node of the enumeration tree during
the execution of the [-B&C module. This strategy is fixed according to the contents of the ordered
sequence denoted by sep. The elements of sep are taken in the set {CD, LD, L-CD, L-LD}. The
meanings of these strings are: CD and LD correspond to the separation routines for CD and LD
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inequalities as implemented in [12], while L-CD and L-LD are the separation routines for Lagrangian
cuts implemented by a table look up scheme. This scheme consists basically of algorithms that scan
linearly the cut pools, trying to identify (Lagrangian) inequalities that may cutoff the current LP
optimal solution. As per this notation, sep=<L-CD,CD> means that the separation of a fractional
solution is first made by the table look up procedure for Lagrangian CD cuts and then by de Souza
and Balas’ routine for CD cuts. Lagrangian CD and LD cuts are stored in pools CDP and LDP,
respectively.

The calls to runCDSeparation and runLDSeparation in lines 3.a and 3.c of the algorithm
refer to the separation routines from [3].

It was experimentally observed that, L-B&C performance is very sensitive to the way in which
CD inequalities are added during the branch-and-cut execution. Thus, several experiments were
performed in order to determine the maximum amount of cuts to be added per node. The most
promising settings took into account the density of the graphs underlying the instances (see Table
1 for details).

6 Test Environment Setup

This section describes the setup of the environment under which our tests were carried out. The
algorithms were coded in C and C++, using resources of the Standard Template Library and prepared
to be executed under Linux OS. We used the free compiler g++ (gcc version 4.0.3) with options
-03 and -1m selected. Tests were ran on a Pentium IV machine 2.66 GHz having 1GB of RAM and
XPRESS Optimizer 17.01.02 was used as the IP solver.

6.1 Data sets

Our main experiments were made on a subset of instances taken from [12] which can be down-
loaded from www.ic.unicamp.br/~cid/Problem-instances/VSP.html. Additionally, hard in-
stances from the MIPLIB [6] subset were used to perform further tests. Initially, from the more
than 140 instances used in [12], we select the ones that required more than a minute of CPU time
to be solved by the branch-and-bound (B&B) algorithm of XPRESS in its default configuration. At
this point, it is worth noting that XPRESS default configuration implements cut separation routines
that would permit us to classify its default algorithm as a branch-and-cut algorithm, rather than as
branch-and-bound. However, to distinguish it more easily from the several algorithms we compare
throughout our experiments, we will refer to XPRESS default algorithm as being a branch-and-bound
(B&B) one.

We end up with 62 instances for our tests, all of which, with cost vector equals to the sum
vector. The parameter b delimiting the maximum size of a shore is always set to [2n/3] but, for
the MIPLIB instances, that value is computed as [1.05 x n/2].

The majority of our reports relies on comparing results for instances that were solved by at least
one of the algorithms used in our experiments. Thus, among the 62 instances initially selected,
only 51 were broadly used in performance comparisons, since 11 instances were not solved by any
of the implemented algorithms within the time limit imposed of 30 minutes?.

A common characteristic of the bulk of these 51 instances is the mid-high (> 20%) density of the
graphs underlying them. As already mentioned in [12] and [8], cutting-plane algorithms (especially

2Table 8, in appendix C, summarizes some computational results for these 11 not solved instances.
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based on CD inequalities) are likely to be more effective for mid-high density graphs. Nevertheless,
a few VSP instances arising from low density graphs were kept in our experiments. This allowed
us to analyse the behavior of our approach for some hard instances from the MIPLIB benchmark.

As for de Souza and Balas in [12], our results are reported by classes of instances: DIMACS
graphs, MATRIXMARKET graphs — divided in three categories, MM-I, MM-II and MM-HD, according
to common characteristics used in their construction — and row intersection graphs corresponding
to coefficient matrices of some of the MIPLIB instances. Moreover, within each class, the instances
are listed in increasing order of graph density.

6.2 Parameter settings

General parameters. The following settings were used for the basic parameters of the subgra-
dient algorithm: (a) the Lagrangian heuristic is called at every SM iteration; (b) the local search
heuristic is called just after Lagrangian heuristic execution. However, along the SM execution, the
maximum number of improvement trials for solutions with same cost (I') was limited to 5. Notice
that cost repetition is easily identified in our case since there are only O(|V|) possible values for
the cost function; (c) the algorithm stops when the limit of 2000 SM iterations is reached or when
7k < 107 in equation (9), whatever occurs first. Moreover, as in [12], the execution time of any
algorithm tested in our experiments was limited to 30 minutes.

Algorithm dependent parameters. When the SM is called inside the NDR&C algorithm, m,
in equation (9), is initially set to 2 and multiplied by 0.5 each 90 consecutive SM iterations without
improvement on the upper bound. Also, the routine responsible for the generation of conditional
cuts is called whenever a minimum amount of new CD cuts are added to the pool. In our final tests
this upper bound corresponds to 10% of the maximum number of SM iterations. Anyway, provided
that a CD inequality is generated along the iterations, we ensure that the routine is called at least
once.

When running the PR&C algorithm, however, the Lagrangian dual problem is solved typically
several times using SM. We call each complete execution of SM a pass. The total number of passes
is an input parameter for the postponed relax-and-cut algorithms, denoted by A. In our final
experiments we adopted A = 15. Now, let § be the number of the current pass. In equation (9),

w?5:1 is initially set to 2 and, for the other passes, ”?5>1) is computed by the recurrence relation:

7T?5) = 71'?671) x f(8), where f(6) = 1 — (6§ — 1)/A2. Observe that 7" decreases monotonically
and smoothly as ¢ increases. In our experiments, the small decreases in the initial values of 7 in
equation (9) proved to be beneficial for the computation of tighter dual bounds.

Moreover, along each pass, the 7 value is update at each 20 consecutive iterations without
improvement on the upper bound. Here, similarly to NDR&C strategy, the routine in charge of the
generation of conditional cuts is called. In this case, it is done every time a Lagrangian subproblem
is solved. Nevertheless, the dualization of inequalities identified along the execution of a pass is
done only when the SM terminates.

During L-B&C execution, the amount of CD Lagrangian cuts added at each node is mainly
determined by the input graph density. Also, it was experimentally observed that adding many
cuts at the first node often speeds up the search. Thus after some tuning we ended up with the
final configurations displayed in Table 1. Essentially, the graphs were divided into three density
ranges and, in each of these groups, we fixed the number of cuts at the root and at the remaining
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nodes of the search tree. For instance, when dealing with graphs having density in (35.6%, 64.3%)],
in the first node we put up to 50% of the cuts in the pool. After, for the other nodes, at most 10
CD cuts violated are added. In the case of LD inequalities, the amount of Lagrangian cuts added
at each node followed the tuning used by de Souza and Balas in [12], i.e., 10 cuts per node.

Table 1: Number of Lagrangian CD cuts added in the L-B&C algorithm.

Density Maximum number of cuts
range first node [ other nodes
< 35.6% 10 2
(35.6%, 64.3%] | 0.5 x pool size 10
> 64.3% 0.75 X pool size 10

As a final remark, it is worth noting that to determine the settings discussed above, the tunings
of the parameter values were carefully performed with a representative subset of instances containing
at least one representative of each class.

7 Computational results

In this section we report the computational tests carried out with the several configurations of
relax-and-cut algorithms and hybridizations implemented for the VSP.

7.1 Relax-and-cut algorithms: the preprocessing phase

The main results of the computational experiments done with the relax-and-cut algorithms devel-
oped are documented in Table 2 for the 62 instances selected. Double horizontal lines in these
tables split instances from classes DIMACS, MM-I, MM-II, MM-HD and MIPLIB. Also, these tables
are divided in five groups of columns. The first group, relative to columns 1-4, describes the in-
stance characteristics: name (label), number of nodes (n), graph densities (d) and the optimum
value (Opt) or the best known solution value (when it appears underlined). The other four groups
of columns report the results, respectively, concerning the non-delayed relax-and-cut (NDR&C) and
postponed (non-delayed) relax-and-cut (PR&C) algorithms developed. These groups have the fol-
lowing format of columns: ub, the upper bound obtained; the value of the best solution found
(1b) and the total time, t(s), required to run each algorithm. Additionally, although not detailed
here, some preliminary tests were performed with a delayed relax-and-cut algorithm. However, as
suggested by a previous comparison carried out by Lucena ([19]) the results we obtained confirmed
that, NDR&C strategies perform better than DR&C ones.

Before analyzing the quality of the dual bounds produced by the Lagrangian methods, let us
discuss the linear relaxation bound. In fact, the linear relaxation of the IP model from Section 2
is rather weak. By setting all variables to 1/2 one can satisfy all the constraints provided that b
is sufficiently large (which is the case for all instances in our data set). This gives the worst dual
bound one could come up with: n ! Thus, poor dual bounds are expected unless strong cuts are
added to the formulation. Results reported in [12] show that CD inequalities fulfill this requirement.
However, a drawback to use such inequalities comes from the fact that the corresponding separation
problem is N'P-hard in general. The authors had then to resort to a heuristic procedure to perform
the task. Their heuristic is of quadratic-time complexity and, in practice, more expensive than
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the routine we use to separate integral points which behaves more like a linear-time algorithm (see
Section 4.1).

Analyzing the results reported in Table 2 one can see that: (i) in terms of optimality, only four
instances (with results indicated in bold) have been solved to proven optimality when separating
CD inequalities. In this aspect, PR&C seems to have a better performance than NDR&C algorithm;
(i1) concerning dual bounds we can highlight that: in most of the cases, the algorithms that embed
CD inequalities separation produced much stronger dual bounds than LP relaxation bound. Dual
bounds produced by NDR&C(LD) and PR&C(LD) are very poor, with values typically near to
the linear programming bounds, and are not entered here; (iii) considering the primal bounds
obtained by our heuristic (1b column), we notice that they have attained the optimum?® in 65 to
71% of the instances, depending on the relax-and-cut version. Alternatively, if we refer to the best
known and extend our analysis to all the 62 instances tested, the rate of success increases a bit
further: from 66 to 71%. (iv) the algorithms NDR&C and PR&C cannot be said to dominate one
another.

In addition, inspecting the columns corresponding to the total time required by the various
configurations we see that, in general, the running times are quite acceptable. Also, in most cases,
the use of LD inequalities led to marginal gains and only provoked an increase in CPU time.

As a general remark, contrarily to what happened to other problems, these results do not
encourage the application of pure relax-and-cut algorithms to solve VSP instances exactly. However,
as shown below, they can be combined with other exact methods in a clever way to form new and
efficient algorithms to tackle the problem.

Primal bounds. Though our main focus with the relax-and-cut algorithms was to strengthen
the dual bounds, on the primal side, excellent results were achieved. As seen in columns 1b of
Table 2, in about 70% of the cases our simple Lagrangian heuristic found an optimal solution, with
slight variations, depending on the relax-and-cut version. To illustrate the quality of our primal
heuristic, consider the results obtained by PR&C(CD,LD) algorithm. In this case, the average
error of the heuristic was lower than 1.4% and only for 6 instances this error was higher than 5%.
However, the maximum error was 19.3% for miplib.noswot.p, the only instance for which the
error exceeded 8.5%.

For a better appreciation of the performance of the Lagrangian heuristic (LR-H), we compare
the execution time it spent with the time needed by B&C(CD,LD) primal heuristic (LP-H) to find
its best solution. This comparison can be visualized by inspecting the histogram in Figure 8 where,
to be able to compare processing times, we restricted ourselves to the 35 cases for which both, LR-H
and LP-H, reached a proved optimum. This histogram reveals that LR-H finds optimal solutions
much quicker than the LP based heuristic from de Souza and Balas. Besides, it shows that in 80%
of the cases, the optimum was found in at most 0.01 seconds and, for all instances, LR-H reached
the optimum in at most one second. On the other hand, in 80% (40%) of the cases, LP-H needed
at least one (five) second(s) to found an optimum.

7.2 The HYBRID algorithms

Results in Table 2 reveal the good performances of our relax-and-cut algorithms that separate CD
inequalities: they often produce good dual and primal bounds rapidly. However, they fail to solve

®Entries in column Opt reveal that optimum values are known for 51 of the 62 instances tested.
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Table 2: Results for VSP instances: relax-and-cut algorithms NDR&C and PR&C.

| Tnstance [ NDR&C (CD) | PR&C (CD) | NDR&C (CD,LD) | PR&C (CD,LD) |
[Tabel n d_Opt| ub b t(s) [ ub b t(s) [ ub b t(s) [ ub b t(s) |
dim.DSJC125.1 125 0.09 90 | 122 89 4.12 | 122 88 4.37 | 122 88 13.23 | 124 89 11.28
dim.games120 120 0.09 102 | 121 99 2.14 | 120 99 1.67 | 120 99 2.79 [ 120 99 4.64
dim.myciel7 191 0.13 156 | 193 155 3.71 1188 155 3.86 | 192 153 5.19 [ 188 155 5.84
dim.myciel6 95 0.17 76 90 75 1.43 89 75 1.18 92 73 2.05 89 75 2.59
dim.queen12_12 144  0.25 97 ] 131 97 6.69 | 131 97 7.57 | 133 97 21.71 | 132 97 25.83
dim.queen11_11 121 0.27 81 | 109 81 5.56 | 108 81 5.97 | 110 81 17.76 | 109 81 20.23
dim.queen10_10 100 0.30 67 88 67 4.04 88 67 4.47 89 67 12.28 89 67 16.74
dim.queen8_12 96 0.30 65 85 65 4.02 85 65 3.69 86 65 13.26 86 65 18.30
dim.queen9_9 81 0.33 55 69 55 2.73 70 55 3.21 70 55 8.84 71 55 13.57
dim.queen8_8 64 0.36 43 53 43 1.67 53 43 2.10 54 43 7.28 54 43 9.53
dim.miles1000 128 0.40 110|119 109 4.06 | 119 109 3.98 | 120 110 8.23 | 120 109 9.04
dim.queen7.7 49  0.40 31 40 31 0.90 40 31 1.25 40 31 3.17 40 31 6.36
dim.DSJC125.5 125 0.50 741 101 74 5.11 | 101 74 6.11 | 101 74 13.49 | 102 74 17.00
dim.DSJC125.9 125 0.90 22 63 22 5.73 62 22 6.20 63 22 6.63 62 22 6.61
[ mat.can96 96 0.20 72 ] 89 72 1.78 87 72 2.33 [ 89 72 6.52 89 72 9.09 |
[mat.can73 73 0.5 53| 65 53 1.60] 64 53 1.69] 66 53 _ 6.91] 66 53 7.76 |
mat.rwl36 136 0.07 121|136 120 2.49 | 133 119 1.62 | 136 120 5.17 | 135 119 18.66
mat.gre__115 115 0.09 95 | 114 91 2,98 [ 113 93 3.45 | 114 90 9.01 | 114 91 9.82
mat.L125.gre__185 125 0.15 104 | 120 104 4.64 | 119 104 4.19 | 120 104 20.01 | 122 104 22.37
mat.can__144 144 0.16 126 | 136 126 5.60 | 138 126 5.75 | 138 126 24.88 | 140 126 24.48
mat.L125.can__161 125 0.16 97| 119 95 4.07 | 118 97 4.10 | 119 95 14.98 | 120 97 15.38
mat.lund_a 147 0.26 118 | 130 116 4.83 1129 116 5.17 | 136 116 17.08 | 130 116 16.97
mat.L125.besstk05 125 0.35 101 [ 108 101 3.48 | 104 101 3.68 | 116 101 8.35 | 107 101 10.30
mat.L125.dwt__193 125 0.38 95 | 105 95 3.49 | 102 95 3.68 | 107 95 8.60 | 106 95 6.91
mat.[.125.fs_183_1 125 0.44 98 | 135 95 2.32 | 135 97 2.49 | 135 95 2.59 | 134 98 2.70
mat.bcsstk04 132 0.68 84 94 84 4.63 91 84 4.83 91 84 4.61 90 84 5.36
mat.arc130 130 0.93 88 | 102 88 7.51 [ 100 88 7.80 [ 103 88 12.65 | 100 88 13.21
mat.L100.steam?2 100 0.36 76 82 76 2.85 82 76 2.84 83 76 9.43 83 76 10.76
mat.L120.fidap025 120 0.39 102 | 110 102 2.57 | 111 102 2.76 | 108 102 4.49 | 110 102 6.08
mat.[.120.cavity01l 120 0.42 99 | 120 99 3.36 | 119 99 2.60 | 121 99 4.77 1 122 98 4.88
mat.[.120.fidap021 120 0.43 98 | 115 98 2.84 | 114 98 2.77 [ 114 98 4.59 | 116 98 4.76
mat.L120.rbs480a 120 0.46 88 95 88 3.40 96 88 3.60 97 88 6.44 96 88 5.72
mat.[.120.wm2 120 0.47 98 | 127 92 1.73 |1 125 92 2.24 [ 127 92 1.89 | 125 92 2.37
mat.1.100.rbs480a 100 0.52 73 82 73 2.26 82 73 2.46 81 73 2.74 82 73 2.70
mat.L80.wm?2 80 0.58 61 84 60 1.37 82 60 1.42 84 59 1.66 80 61 1.96
mat.L100.wm3 100 0.59 77 | 100 77 2.43 99 74 1.87 | 103 71 1.96 99 76 2.64
mat.[.120.e05r0000 120 0.59 90 | 108 90 2.39 | 107 90 2.71 | 108 90 2.90 [ 108 90 3.20
mat.[L100.wm1 100 0.60 74 1102 71 2.23 90 73 2.30 | 102 71 2.39 95 73 3.42
mat.L120.fidap022 120 0.60 84 91 84 3.87 90 84 4.10 92 84 4.70 91 84 4.20
mat.L100.fidapm02 100 0.62 69 70 69 2.39 70 69 2.28 70 69 2.79 | 69 69 2.70
mat.[120.fidap001 120 0.63 82 88 82 4.08 87 82 4.40 87 82 5.60 87 82 5.48
mat.L100.e05r0000 100 0.64 70 84 70 1.92 85 70 1.99 84 70 2.10 85 70 2.19
mat.L80.fidapm02 80 0.65 53 54 53 1.54| 53 53 0.89 54 53 1.73 54 53 1.74
mat.[L120.fidapm02 120 0.65 86 94 86 3.44 92 86 3.50 93 86 4.94 93 86 4.37
mat.L100.fidap001 100 0.68 64 71 64 2.76 69 64 2.87 73 64 3.06 70 64 3.20
mat.L100.fidap022 100 0.68 62 71 62 2.83 71 62 2.91 71 62 3.12 71 62 3.34
mat.L80.fidap001 80 0.72 54 62 54 1.40 62 54 1.52 62 54 1.47 62 54 1.75
mat.L80.fidap022 80 0.76 41 53 41 1.65 52 41 1.85 53 41 1.95 51 41 2.00
mat.L100.idap027 100 0.81 69 70 69 2.48 | 69 69 1.60 | 69 69 1.94| 69 69 2.12
mat.L100.fidap002 100 0.82 66 86 66 1.91 85 66 2.21 86 66 2.05 85 66 2.45
mat.L120.fidap002 120 0.82 68 91 68 3.09 89 68 3.15 88 68 3.41 89 68 3.37
mat.L120.fidap027 120 0.85 83 84 83 3.51 83 83 3.02 84 83 3.83 | 83 83 2.33
miplib.noswot.p 182 0.09 167 | 187 139 3.24 | 186 146 2.77 | 189 140 5.27 | 188 146 4.52
miplib.khb05250.p 100 0.27 75 99 75 1.10 95 75 1.20 99 75 1.20 95 75 1.31
miplib.stein27_r.p 118 0.32 62| 116 62 3.78 | 106 62 4.20 | 118 62 18.84 | 110 62 23.56
miplib.10teams.p 210 0.34 120 | 203 120 10.55 [ 180 120 11.21 | 205 120 25.06 | 188 120 25.99
miplib.mod010.p 146 0.38 90 [ 145 88 3.99 | 126 86 5.26 | 149 85 6.74 | 131 85 19.19
miplib.1152lav.p 97 0.40 61 97 60 1.73 79 60 2.34 95 58 2.60 83 60 6.47
miplib.Ip4l.p 85 0.46 50 80 47 1.87 63 48 1.95 81 48 1.82 70 49 4.32
miplib.air03.p 124 0.61 75 | 124 73 3.45 | 107 73 4.64 | 123 74 5.83 | 109 73 7.90
miplib.misc03.p 96 0.63 52 83 52 3.54 72 52 2.81 82 52 9.85 78 52 11.03
miplib.misc07.p 212 0.80 116 | 218 113 12.64 [ 212 114 11.80 | 214 115 20.19 | 212 114 13.92
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Figure 8: Time to optimum for Lagrangian (LR-H) and LP-based (LP-H) heuristics.

to proven optimality the vast majority of the instances. Moreover, inspecting the behavior of the
B&C algorithm developed in [12], which we had access to, we noticed that a couple of CD inequalities
needed to be separated and added to the model before good dual bounds are computed. Thus, it
would be very helpful if one could quickly generate a set of initial CD cuts.

The HYBRID algorithm discussed in Section 5 appear as a possible option to handle this situation.
According to the execution flow depicted in Figure 6, any of our relax-and-cut algorithms could be
used to generate cuts that would allow the IP solver work on a tighter VSP formulation.

Before we report on the results achieved by the HYBRID algorithms, we redefine our data set.
Initially, from the 62 instances originally selected to be part of the benchmark, only the 58 not
solved to optimality by any relax-and-cut algorithms were kept. Later, we eliminate from our
analysis the 11 instances that were not solved by any of the algorithms used in the totality of
the experiments. We did so because they could introduce spurious information that could have
distorted our conclusions. Thus, unless stated otherwise, the next discussions apply only to the 47
instances that are left.

Computational experiments were performed taking into account a considerable variety of HY-
BRID configurations. The results revealed a floating performance of the algorithms, depending on
the density of the input graph. This observation confirms the reports in [12]. There, instances are
classified to be of high (> 35%) or low density according to the density of the input graphs. We pro-
ceeded similarly in our preliminary tests. However, these initial tests led us to regroup the instances
in different classification ranges: mid-high (> 20%) and low density instances, corresponding to a
total of, respectively, 38 and 9 instances. The results reported in this section are organized in light
of this regrouping. Furthermore, for each these new groups, the comparison measure used as a
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basis for the majority of our conclusions was the total amount of time required and nodes explored
to solve all the instances in each group.

7.2.1 Results for mid-high density graphs

We now report the main results obtained with mid-high density instances which correspond to the
majority of our final test set. Table 3 compares the outcomes of the most promising algorithms for
mid-high density instances. A total of three postponed and non-delayed relax-and-cut configura-
tions have their results reported. These configurations prioritize the separation of CD inequalities,
in accordance to what is suggested in [12]. Also, we display the results returned by two variations
of the B&C algorithms from [12] — to our knowledge, the best ones available in literature to solve
the VSP — and by XPRESS under default settings.

The number of nodes and the time required for each algorithm are reported. When the time
exceeds 1800 seconds, it means that the instance was not solved by the corresponding algorithm
within that time bound. The main headings that identify the relax-and-cut configurations whose
results are presented in Table 3 have the following meaning: (i) Only CD Cuts: corresponds to the
usage of our NDR&C(CD) (or PR&C(CD)) algorithm followed by L-B&C, with sep =(L-CD,CD).
This configuration is denoted later by NDHYBRID(CD) (PHYBRID(CD)); (ii) CD Cuts and L-LD
Cuts: combines the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-and-cut algorithm with
L-B&C, with sep =(L-CD,CD,L-LD). This configuration is denoted later by NDHYBRID(CD,L-LD)
(PHYBRID(CD,L-LD)); (iii) CD and LD Cuts: refers to NDR&C(CD,LD) (or PR&C(CD,LD))
preceding L-B&C, with sep =(L-CD,CD,L-LD,LD). This configuration is denoted later by ND-
HYBRID(CD,LD) (PHYBRID(CD,LD)). Also, columns B&C(CD) and B&C(CD,LD) correspond to the
algorithm described in [12] separating, respectively, only CD and both, CD and LD inequalities.
Finally, XPRESS results are reported on the last two columns.

At the bottom of each column and for each algorithm, three summations are shown. The first
of them corresponds to the total time (or total number of nodes explored in the search trees) only
for those algorithms that solved to optimality the whole set of instances listed in the table. To
understand the other summations, let S’ be the subset of instances in Table 3 that are solved by
any HYBRID version and any B&C configuration within 30 minutes, i.e., all of them except instance
miplib.misc07.p. Likewise, let S” be the subset of instances in S’ also solved by XPRESS within the
same time limit. (i.e., $’\S” = {dim.DSJC125.9, mat.lund a, mat.bcsstk04, mat.L120.fidap001
and miplib.air03.p}). The penultimate (last) line contains the total number of nodes and time
needed by each approach to solve all the instances in S’ (S”) subset. Unless stated otherwise, our
analyses are restricted to instances in S” only when XPRESS results are also under consideration.

Entries with the symbol “—” correspond to the instances that were solved after the LP module
execution, i.e., before branching. These entries permit us to conclude that, besides the four instances
already solved during the Lagrangian phase, six more instances were solved to optimality before
entering the L-B&C module in Figure 6.

Comparing the last three lines in Table 3, we can conclude that: (1) all the six HYBRID
proposed outperform the B&C algorithm detailed in [12] over the S” data set; (2) over the subset
S" of instances, the HYBRID algorithms also performed better, in terms of time, than the other
three approaches. However, the number of nodes of the search tree explored by B&C(CD) is
slightly smaller than that of our best HYBRID configurations; (3) algorithms based chiefly on
CD inequalities seem to be the most promising approaches currently available to tackle mid-high

”
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Table 3: Results for VSP instances using HYBRID configurations, B&C algorithms from [12] and XPRESS.

Mid-high density instance Only CD Cuts CD Cuts and L-LLD Cuts CD and LD Cuts B&C [ref.[12]] B&B (XPRESS)
NDHYBRID PHYBRID NDHYBRID | PHYBRID NDHYBRID | PHYBRID B&C(CD) [ B&C(CD,ILD)
Tabel d(> 20%) | nodes t(s) [ nodes t(s) | nodes t(s) [ nodes t(s) | nodes t(s) [ nodes t(s) | nodes t(s) [ nodes t(s) nodes t(s)
dim.queen8_8 0.36 1807 75.02 1707 90.22 1863 85.01 2283 136.40 2541 125.79 2283 136.03 4315 70.51 3143 58.27 23131 126.29
dim.miles1000 0.40 17 12.97 13 11.62 7 10.82 9 14.05 9 11.52 9 14.65 11 18.37 35 26.22 287 83.96
dim.queen7_7 0.40 391 14.11 313 16.73 403 16.56 243 20.48 253 17.13 243 20.89 431 10.77 265 9.93 27833 78.53
dim.DSJC125.9 0.90 4275 596.45 4143 537.01 4229 532.45 6405 722.50 6375 743.80 6417 775.66 | 33833 1107.29 | 28475 1291.54 51261 1800.00
| mat.can73 0.25 | 5343 46.15 | 5505 50.57 | 4975 64.53 | 5157 59.63 5367 57.37 | 5195 59.35 | 5123 71.50 | 5615 46.44 | 33195 147.62 |
mat.lund_a 0.26 3145 401.39 2715 384.14 2033 454.57 3565 543.09 3345 479.10 3005 511.01 2231 462.03 2709 332.09 27506 1800.00
mat.1.125.besstk05 0.35 709 85.65 - 4.53 - 7.25 - 8.02 - 7.25 - 8.02 1573 326.20 1625 196.01 1635 211.38
mat.L125.dwt__193 0.38 21 23.11 27 25.07 21 34.49 39 40.78 41 45.06 39 40.66 131 97.31 721 134.80 17767 1301.43
mat.L125.fs_183_1 0.44 29 28.11 21 26.16 29 32.82 746 69.37 29 43.27 27 41.02 25 35.45 29 31.74 1515 182.78
mat.bcsstk04 0.68 13 22.90 - 4.35 13 22.02 - 5.68 31 31.14 - 5.68 133 124.60 247 132.27 16572 1800.00
mat.arc130 0.93 83 160.19 83 163.80 103 186.66 73 231.78 75 246.58 73 235.17 101 370.67 101 329.59 957 926.12
mat.1.100.steam?2 0.36 45 21.02 41 20.67 45 25.73 79 38.06 77 34.79 69 35.92 149 40.83 241 37.98 11577 229.98
mat.L120.fidap025 0.39 - 2.50 - 2.59 - 3.58 - 4.75 - 3.58 - 4.75 13 12.00 49 17.67 889 107.73
mat.L120.cavity01l 0.42 13 9.13 15 10.50 11 9.62 35 18.35 35 14.87 15 11.83 13 16.88 41 21.52 813 91.69
mat.1.120.fidap021 0.43 5 5.63 7 5.88 3 7.14 3 6.98 3 7.34 3 7.00 35 24.74 67 36.63 1031 150.22
mat.L120.rbs480a 0.46 125 64.01 141 67.75 123 71.81 75 59.20 75 60.34 75 61.14 367 218.67 3007 249.27 15619 1308.79
mat.L120.wm?2 0.47 33 28.04 35 36.68 75 19.47 73 26.55 75 20.25 33 38.57 33 47.82 33 45.71 351 88.71
mat.1.100.rbs480a 0.52 59 11.90 67 15.60 61 18.18 45 15.44 49 17.81 45 16.76 63 21.33 91 21.34 2951 189.73
mat.1.80.wm?2 0.58 9 3.28 11 4.31 13 4.82 51 6.07 13 5.90 13 6.53 13 4.90 15 5.65 379 67.22
mat.L100.wm3 0.59 11 7.63 13 10.48 17 12.00 61 16.24 19 18.64 13 10.66 17 13.26 15 13.34 379 65.70
mat.1.120.e05r0000 0.59 5 7.05 3 7.63 7 7.70 7 7.74 5 8.51 7 7.82 9 11.49 43 25.31 2703 543.05
mat.1.100.wm1 0.60 19 10.74 13 9.18 17 9.59 71 18.40 27 14.35 17 12.00 25 15.67 35 24.36 877 94.07
mat.1.120.fidap022 0.60 7 22.53 17 13.75 81 27.72 43 20.60 41 20.28 43 21.22 53 38.17 81 53.04 13319 1522.86
mat.L120.fidap001 0.63 - 4.94 - 5.07 - 6.71 - 6.66 - 6.71 - 6.66 31 32.57 189 84.70 33120 1800.00
mat.1,100.e05r0000 0.64 15 8.39 17 8.17 15 8.75 19 6.46 33 8.50 19 6.59 19 11.19 39 12.49 3559 284.25
mat.1.120.fidapm02 0.65 - 2.87 - 2.91 - 4.28 - 3.65 - 4.28 - 3.65 17 24.52 57 55.66 4457 552.37
mat.L100.fidap001 0.68 35 7.10 35 7.54 33 9.00 29 9.87 35 11.46 29 9.82 49 15.96 73 23.21 34321 950.38
mat.L100.fidap022 0.68 109 22.66 105 22.36 99 23.75 54 16.17 63 18.00 54 17.19 171 52.20 93 27.31 57415 1594.48
mat.1.80.fidap001 0.72 - 1.55 - 1.55 - 1.61 - 1.75 - 1.61 - 1.75 1 1.76 33 5.20 3523 101.25
mat.1.80.fidap022 0.76 197 14.25 159 11.90 135 11.92 57 7.18 55 7.89 57 7.68 173 15.28 45 5.51 19279 308.05
mat.L100.fidap002 0.82 5 3.22 3 3.52 5 3.48 5 4.00 3 3.10 5 4.05 7 4.75 29 10.19 2111 240.58
mat.1.120.fidap002 0.82 5 6.88 1 5.73 5 6.60 3 5.56 3 6.72 3 5.58 73 41.59 93 48.59 10415 1284.46
miplib.khb05250.p 0.27 119 3.94 121 5.26 119 4.28 121 5.16 119 4.48 121 5.43 91 3.21 111 4.84 3641 66.37
miplib.1152lav.p 0.40 213 46.27 185 54.66 245 64.35 611 72.76 749 103.57 129 60.48 283 70.12 853 101.98 22885 567.68
miplib.1p4l.p 0.46 275 34.27 271 33.10 321 37.02 2083 93.82 1295 69.37 265 50.19 551 50.10 5965 151.72 27523 409.73
miplib.air03.p 0.61 115 111.94 117 119.98 117 111.50 135 139.86 119 146.10 111 163.87 135 167.35 135 180.01 14215 1800.00
miplib.misc03.p 0.63 2993 111.95 2717 121.67 3293 138.31 2589 168.23 2785 178.78 2225 173.42 4819 138.07 3947 155.22 53417 1794.42
miplib.misc07.p 0.80 173 1280.36 177 1519.38 169 1162.75 1102 1809.86 117 1402.40 147 1704.75 125 1800.00 78 1800.00 2243 1800.00
SUM TOTAL of S 20480 3320.10 | 18789 3442.02 | 18685 3258.85 - - | 23861 4007.64 | 20789 4303.45 - - - - - -
SUM TOTAL of S’ 20315 2039.74 | 18621 1922.64 | 18516 2096.10 | 24769 2631.29 | 23744 2605.24 | 20642 2598.70 | 47706 3286.19 | 58345 4007.35 - -
SUM TOTAL of S” 15912 1303.51 | 14361 1256.23 | 14157 1423.42 | 18229 1756.59 | 17219 1677.49 | 14114 1646.83 | 13574 1854.38 | 29299 2318.83 | 427260 17471.88
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density instances. This observation reinforces the conclusions reported in [12] about the use and
the strength of CD inequalities to solve high (> 35%) density instances. Nevertheless, the outcomes
from our experiments showed that, for instances mat.can73, mat.lund a and miplib.khb05250.p,
both hybrid and branch-and-cut algorithms outperform XPRESS. Hence, one could push the frontier
of the conclusions of de Souza and Balas to include mid-high density (over 20%) graphs.

Besides, we notice that five out of our six configurations were able to solve the instance
miplib.miscO07.p whereas no other approach tested solved it within 30 minutes. Direct com-
parison of these five algorithms over the whole set of instances in Table 3 allows us to conclude
that our three best configurations come from using only CD cuts and from using NDR&C(CD,LD)
as relax-and-cut algorithm combined with L-B&C, with sep =(L-CD,CD,L-LD) denoted, as said
before, by NDHYBRID(CD,L-LD).

In addition to that conclusion, for a fairer comparison of the entire set of algorithms, we restrict
ourselves to instances in S” (last row of Table 3). One can see that PHYBRID(CD) is the fastest
algorithm. Figure 9 highlights the results obtained with PHYBRID(CD) and B&C(CD), the best
branch-and-cut version from [12]. The performance of these algorithms is measured as a percentage
of the time required by XPRESS B&B to solve the instances in S”. First, notice that, in general, both
algorithms are much faster than XPRESS B&B under default settings. Actually, only for instance
mat.L125.bcsstk05 XPRESS surpassed B&C(CD). Also, on average, PHYBRID(CD) is about two
times faster than B&C(CD): the former requires, on average, about 10.6% of the computation time
used by XPRESS to solve the instances while the latter needs approximately 19.3% of that time.

PHYBRID(CD) and B&C(CD) comparative time performance over B&B
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Figure 9: Time performance: PHYBRID and B&C(CD) against XPRESS (default) B&B.

Figure 10 exhibits a graphical comparison of the computation times among the six combined
approaches reported in Table 3 against the two best B&C versions. It highlights the big savings
obtained by the HYBRID algorithms with respect to the B&C algorithms. For instance, the effect
of replacing B&C(CD,LD) by PHYBRID(CD) would be a CPU time reduction of 52%. Also, on
average, considering the results for the six variations of our hybrid approach, time savings over
B&C(CD,LD) and B&C(CD) are, respectively, of about 42% and 30%.
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Back to Table 3, one may argue that instance dim.DSJ125.9 may have distorted a little the
analysis to the detriment of the B&C algorithms. In fact, it had contributed with high amounts
to both the total number of nodes and the running time. However, it should be noticed that this
instance does not belong to S” and the superiority of the HYBRID algorithms over this set is also
noticeable. For this set, the reduction in time by using PHYBRID(CD) in place of B&C(CD) was of
32.3% (compared to 41.5% for S’). Moreover, PHYBRID(CD) ran faster than B&C(CD) in 92% of
the cases, namely, in 35 out of the 38 mid-high density instances tested. This can be easily seem
with the help of Figure 12 where the time performance of the two codes are compared with respect
to graph densities.

HYBRID: percentage of time savings over B&C
[l Savings over B&C(CD) O Savings over B&C(CD,LD)
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Figure 10: Time performance: HYBRID variants x B&C algorithms described in [12].

Consolidated x instance-based analysis. Although usual in literature, analyses of computa-
tional results focused on the total time spent in solving the entire data set may mislead the conclu-
sions. Driven by this observation, we constructed the graphic in Figure 11 that shows an alternative
way of composing results on time performance. There, for each HYBRID algorithm, the percentage of
B&C(CD) CPU time consumed to solve each instance in S’ is computed and an arithmetic mean is
taken. Basically, the average expression is given by AV G(a) = 100 x ﬁ XY ics (%), a €
{1,...,6}, where a are labels corresponding to the HYBRID algorithms tested and #(i, A) refers to
the CPU time algorithm labeled as A takes to solve instance i. Hence, those values refer to the
percentage of B&C(CD) execution time one should expect to be spent, on average, by each one of
our algorithms. The premise adopted is that, under discrepancies of running times, replacing total
time by percentage may lead to a more suitable analysis.

Comparing graphics in Figures 10 and 11 we see, however, that quite similar values were gen-
erated, presenting deviation inferior to 4%. For example, the time reduction with NDHYBRID(CD)
in Figure 10 is of 37.9% while in Figure 11 it is of 41.3%. Notice that, rather than unexpected,
the similarities between both results reinforce what is shown in Figure 10. Taking into account
these computational results concerning time performance we can conclude that NDHYBRID(CD) and
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PHYBRID(CD) are the best algorithms we developed. To better illustrate that in details, graphic
in Figure 12 carries out a comparison between both approaches. Similarly to what happened in
Figure 11, we adopted percentages over B&C(CD) running times. The results are presented in
increasing order of graph density. One can see that, in general, for instances having input graph
density below to 60%, NDHYBRID(CD) outperforms the postponed version. On the other hand,
PHYBRID(CD) shows to be more suitable to solve higher density instances.

Average Time Savings over B&C(CD)

PHYBRID (CD, LD)

NHYBRID (CD,LD)

PHYBRID (CD, L-LD)

NHYBRID (CD,L-LD)

PHYBRID (CD)

R&C algorithms in preprocessing

NHYBRID (CD)

0 5 10 15 20 25 30 35 40 45
Savings (%)

Figure 11: Average time savings of HYBRID algorithms relative to B&C(CD) times for instances in
S’

As seen above, consolidated and instance-based analyses both led to the conclusion that PHY-
BRID(CD) and NDHYBRID(CD) are the two most promising algorithms to solve instances in S’
However, these results do not render possible to assert that one algorithm excels the other. In
an attempt to answer to that question, further investigation is reported below. Percentages over
B&C(CD) running times was adopted in order to compare the two algorithms.

PHYBRID x NDHYBRID: the Wilcoxon signed-rank (WSR) test. The Wilcoxon signed-rank
test is a well known nonparametric statistical test [5, 15] that has been used in the optimization
literature [1, 13, 15, 21] to compare two heuristics. The final outcome of the test is always given
in terms of the null hypothesis: we either reject the null hypothesis or fail to reject it. When
we reject the null hypothesis, we have only shown that it is highly unlikely to be true — we have
not proven it in the mathematical sense. Rejecting the null hypothesis then, suggests that an
alternative hypothesis may be true. Alternative hypothesis may be one-tailed or two-tailed. A
one-tailed hypothesis claims that a parameter is either larger or smaller than the value given by
the null hypothesis. A two-tailed hypothesis claims that a parameter is simply not equal to the
value given by the null hypothesis - the direction does not matter.
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Time Performance of Non-Delayed and Delayed HYBRID: global density.
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Figure 12: Time performance: postponed x non-delayed versions of HYBRID (grouped by input
graph densities).

Here, we apply WSR test to try to infer, statistically, any superiority between PHYBRID(CD)
and NDHYBRID(CD) algorithms when solving mid-high density VSP instances (the null hypothesis
claims that there is no dominance of one algorithm over the other one). Hence, we applied the test
using a directional (one-tailed) hypothesis over the results used to build the graphic in Figure 11.

Let W and W’ be, respectively, the sum of the signed ranks and the critical value computed in
WSR test. As the number n of instances used in the test increases, the distribution of W tends
toward the normal distribution. Furthermore, for n > 10, the critical value W' can be approximated
by W' = Z(a)y/n(n + 1)(2n + 1)/6, where Z(a) corresponds to the standard normal quantile such
that a proportion « of the area is to the left of Z(«). In fact, v is the term used to express the level
of significance we will accept the hypothesis. As an example, for 90% confidence, o = 0.10, and
testing a hypothesis at the a = 0.10 level or establishing a 90% confidence interval are essentially
the same thing. In both cases the critical values and the region of rejection are the same.

In our case, the differences between matched pairs of results computed in WSR were obtained
subtracting values obtained by NDHYBRID(CD) from values corresponding to PHYBRID(CD) results.
Thus, if W > W', the null hypothesis should be rejected at the a significance level [15]. As a
consequence, for that confidence assumed when computing W', it would mean that NDHYBRID(CD)
has better performance than PHYBRID(CD). Actually, the sum of the signed ranks computed with
our results was 181 and, if we set a = 0.10 (Z(a) = 1.282), we obtain W' = 169.96. This tell us
that if the null hypothesis is true, then in only 10% of the cases W is expected to exceed 169.96.
Hence, we refute the null hypothesis at the significance level of 90% and infer that NDHYBRID(CD)
outperforms PHYBRID(CD).

Applying Wilcoxon signed-rank test clearly increases our confidence in the comparison carried
out between both algorithms and graphically shown in Figure 11. However, it is noteworthy that
we may not be able to reject the null hypothesis if we try to come out with a stronger evidence of
superiority of NDHYBRID(CD). A manner to conclude that is using a smaller « value. For instance,
if we set @ = 0.05 (Z(«) = 1.645), we get W' = 218.08. It implies, according WSR test, that
we failed to reject the null hypothesis for 95% confidence, i.e., no dominance is verified at that
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significance level.

7.2.2 HYBRID algorithms and sparse graphs

Computational results reported in [12] discourage the use of cutting planes corresponding to CD
or LD inequalities when the input graph is sparse. There, in general, the increase in computing
time per search tree node resulted in an increase of total computing time. In other words, using
XPRESS with default settings was, normally, more advantageous for instances associated to low-
density graphs. Despite these reports, we decided to investigate if that conclusion goes on being
true when using a more recent XPRESS solver version. Thus, some variations of our hybrid approach
were tested, as well as the two best branch-and-cut configurations from [12]. Tables 4 and 5 and
Figure 13 document the main results obtained with these computational experiments.

Table 4 shows, essentially, four configurations of our hybrid algorithms: two postponed and
two non-delayed relax-and-cut were used as preprocessing. The number of nodes and the total
CPU time required are reported for each algorithm. When the time is > 1800 seconds, it means
that the instance was not solved by the corresponding algorithm. The main headings that iden-
tify the relax-and-cut configurations whose results are presented in Table 4 have the following
meaning: (i) Only CD Cuts: corresponds to the usage of our NDR&C(CD) (or PR&C(CD)) fol-
lowed by L-B&C, with sep =(L-CD,CD); (ii) L-CD Cuts and L-LD Cuts: combines the usage
of NDR&C(CD,LD) (or PR&C(CD,LD)) preceding L-B&C, with sep =(L-CD,L-LD). (iii) CD
Cuts and L-LD Cuts: regards to the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-
and-cut algorithm with L-B&C, having sep =(L-CD,CD,L-LD); (iv) CD and LD Cuts: refers to
NDR&C(CD,LD) (or PR&C(CD,LD)) preceding L-B&C, with sep =(L-CD,CD,L-LD,LD).

Complementary, in Table 5, columns B&C(CD) and B&C(CD,LD) correspond to the algorithm
described in [12] separating, respectively, only CD and both, CD and LD inequalities. Also, the
results returned by XPRESS under default settings are shown. In both tables, at the bottom of
each column, two summations are shown for each algorithm. To understand them, let S be the
subset of instances with sparse graphs that are solved by any HYBRID and any B&C configuration
within 30 CPU minutes, i.e., we exclude instances mat.can96, mat.rw136 and mat.can_144. In
addition, let S C S be the subset of instances in S also solved by XPRESS within that time limit.
The penultimate (last) line contains the total number of nodes and time needed by each approach
to solve all the instances in S (S) subset.

Examining the values corresponding to the variants of our combined approach (Table 4, sub-
set §) we can deduce that our best performances were attained by NDHYBRID(L-CD,L-LD) and
PHYBRID(L-CD,L-LD). This observation lead us to infer that, in this case, cuts discovered during
the Lagrangian phase were helpful.

Comparing B&C algorithms via results in Table 5 we can conclude that separating both, CD
and LD cuts, is better than identifying only CD inequalities. So, as opposed to what has been seen
to mid-high density instances, B&C(CD,LD) outperforms B&C(CD).

Inspecting the behavior of XPRESS in Table 5, we can see that it was the only algorithm to solve
instances mat .can96 and mat .rw136. Also, together with NDHYBRID(CD,L-CD), they were the only
ones to solve instance mat.can_144. On the other hand, XPRESS was the single approach to fail
when trying to solve dim.myciel7. Now, restricting ourselves to the other five instances (i.e., S set),
results suggest that our three best hybrid algorithms, NDHYBRID(L-CD,L-LD), PHYBRID(L-CD,L-
LD) and pPHYBRID(CD,L-LD), outperform both, B&C from [12] and XPRESS, when the criterion is
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Table 4: Computational results for VSP low density (< 20%) instances: NDR&C and PR&C.

Low density instance Only CD Cuts L-CD Cuts and L-LD Cuts CD Cuts and L-LD Cuts CD and LD Cuts
NDHYBRID | PHYBRID NDHYBRID | PHYBRID NDHYBRID | PHYBRID NDHYBRID | PHYBRID

Tabel d t(s) [ nodes t(s) nodes t(s) | nodes t(s) nodes t(s) [ nodes t(s) nodes t(s) [ nodes t(s)

dim.games120 0.09 789.82 | 86767 _ 978.87 | 96985 _ 740.16 | 97349 _ 754.08 | 82677 1066.70 | 85615 _ 869.15 | 87667 1071.31 | 85787 1026.52

dim.myciel7 0.13 304.02 2493 383.73 2499 287.90 2799 270.30 2251 374.36 1091 269.26 | 2779 442.20 2491 429.75

dim.myciel6 0.17 9.32 333 10.86 415 10.30 395 10.03 373 13.44 385 11.03 409 14.47 319 13.15

mat.can96 0.20 1801.32 | 162842 1801.58 | 192310 _1803.07 | 157351 __1803.77 | 131426 _1803.07 | 134256 __1803.77 | 159271 _1803.07 | 129012 _1803.77 |

mat.rwi36 0.07 1802.28 | 80603 1801.70 | 345446 _1803.05 | 155538 1812.90 | 367218 _1803.05 | 88741 1812.90 | 334492 1803.05 | 71316 __1812.90

mat.gre__115 0.09 92.91 6471 92.90 | 6393 93.32 | 6371 89.77 | 6623 120.86 6047 111.01 6939 127.35 5993 113.05

mat.1.125.gre__185_0.15 94.53 1080 92.68 1655 83.39 1639 77.56 1139 105.65 1255 106.63 1191 105.05 1255 111.04

mat.can__144 0.16 1500.97 | 39849 1807.43 | 20103 1818.34 | 24692 1818.96 | 26048 1818.34 | 21465 1818.96 | 24977 1818.34 | 21666 1818.96
[(miplib.noswot.p__ 0.09 | 1265.17 | 277569 1351.65 | 20227 _ 687.80 | 29219  715.29 | 27833 1342.92 | 17853  740.22 | 18879  882.22 | 17783 1012.83 |
[[sua ToTAL Of S 2555.77 | 124912 2910.69 | 137174 1002.87 [ 137772 1917.03 [ 120896 3032.93 | 113146 2107.30 | 117864 2642.60 | 113628 2706.34 |
[[sum ToTAL Of S 2251.75 | 122419 2526.96 | 134675 1614.97 | 134973 1646.73 | 118645 2658.57 | 111155 1838.04 | 115085 2200.40 | 111137 2276.59 |

Table 5: Computational results for VSP low density (< 20%) instances: B&C and B&B.

Tow density instance B&C B&B (XP)
B&C(CD) | B&C(CD,LD)
Tabel d nodes t(s) [ nodes t(s) nodes t(s)
dim_games120 0.09 | 82963 886.29 | 85051 _ 980.73 | 161485 1077.10
dim.myciel7 0.13 | 3009 562.94 | 2033 328.17 | 28881 1800.00
dim.myciel6 0.17 377 14.60 423 11.69 | 5243 62.32
[(mat.can96 0.20 [ 107849 _1800.00 | 167804 _1800.00 | 177163 _1569.57 ]
mat.rw136 0.07 | 62049 1800.00 | 82714 1800.00 | 10083 __ 81.55
mat.gre__115 0.09 | 6517 103.87 | 6539  83.22 | 37177 295.66
mat. 1125 gre__185_ 0.15 | 1205 _ 131.53 1603 71.00 | 15795  273.68
mat.can__144 0.16 | 19742 _1800.00 | 27700 _1800.00 | 12683 _ 339.10
[miplib.noswot.p____0.09 | 27801 1343.88 | 17763 845.51 | 34719 _ 849.71 |
[[sum ToTAL Of S [ 121962  3043.11 [ 113412 2320.32 | — — ]
[[sum ToTaL of S [ 118953 2480.17 [ 111379 1992.15 | 254419 2558.47 |
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processing time. These results can be more clearly visualized in Figure 13 that compile the results
of all approaches, confronting them to XPRESS B&B results. Observe that XPRESS standard B&B
code is by far the worst algorithm with respect to the number of nodes explored by the search tree.
Similarly, in terms of processing time, it is worse than all approaches, except NDHYBRID(CD,L-LD)
version.

HYBRID and B&C approaches against B&B
120
B NHYBRID(CD)
@ 100 I PHYBRID(CD)
2 80 B NHYBRID(L-CD,L-LD)
a [0 PHYBRID(L-CD,L-LD)
B 60 - I NHYBRID(CD,L-LD)
% E PHYBRID(CD,L-LD)
"g 401 I NHYBRID(CD,LD)
20 OPHYBRID(CD,LD)
0. EB&C(CD)
Time Node WB&C(CD.LD)

Figure 13: Sparse graphs results for instances in S.

7.3 Results on hard MIPLIB instances

A similar problem that can be considered a generalization of the VSP is discussed in [6] by
Borndorfer et al. There is described a branch-and-cut algorithm that use cutting planes different
from [12] and computational results are reported on a vast number of instances. Several instances
from MIPLIB are used and a subset of them demonstrated, experimentally, to be very hard to solve
(or remained unsolved) within the time limit imposed to the algorithm execution. Three among
these instances have already their results reported in tables 3, 4 and/or 5: miplib.noswot.p and
miplib.misc03.p were solved by all the approaches tested whereas miplib.misc07.p was solved
to proven optimality only by the hybrid framework we proposed.

Computational experiments were carried out aiming to assess the performance of our algorithms
when tackling also the other instances from MIPLIB which were not solved in [6]. Instances whose
underlying graph is disconnected were discarded, for we are working with CD inequalities. As before,
B&C algorithms from de Souza and Balas [12] and XPRESS were tested. The results obtained are
detailed in Tables 6 and 7. They have the same format as before: columns R&C show computation
times spent by the relax-and-cut algorithm used as preprocessing and under gap columns we list
the final gaps concerning each algorithm. Notice that, with the exception of computation times,
these results can also be compared with those reported in [6]*.

*For comparison purposes, notice that the values concerning the bounds used to compute the gaps reported here
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The selection of HYBRID implementations to test these hard MIPLIB instances was based on the
results reported in the previous sections. Accordingly, to test mid-high and low density instances we
choose, respectively, NDHYBRID(CD) and PHYBRID(L-CD,L-LD) versions. The choice concerning
mid-high density instances was immediate from the previous analyses on the results reported in
Table 3 and Figure 11. However, due to the very similar performance between NDHYBRID(L-CD,L-
LD) and PHYBRID(L-CD,L-LD) reported in Table 4, no natural choice comes out. However, a quick
instance-based analysis decided in favor of PHYBRID(L-CD,L-LD).

Results in Table 6 confirm the difficulty found by the various algorithms we tested to solve
those instances within the time limit of 30 minutes. However, regarding final gaps (entered as
percentages), they reveal that our hybrid algorithm outperforms the other ones in 4 out of the 7
instances. Also, it was able to solve p0282 in less than 30% of the time needed by the second best
algorithm.

Final gaps reported in Table 7 show that, in 12 out of the 14 instances, our combined approach
is at least as good as the other algorithms. Notice that our algorithm and the B&C described in
[12] were capable to solve the same subset of instances. However, our algorithm did it faster than
the latter. On the other hand, the number of nodes yielded by our search trees were usually higher
than the amount of nodes generated when applying de Souza and Balas’ algorithm.

Table 6: Computational results for MIPLIB open problems: mid-high density (> 20%) instances.

[ Instance | NDHYBRID(CD) | B&C(CD) | B&B [ B&Cl6] |
[ Tabel d(> 20%) n [ R&C total t(s) nodes gap(%) | t(s) nodes gap(%) | t(s) nodes gap(%) [ gap(%) |
fast0507 20.82 484 | 24.57 1824.57 134 57.20 | 1800.00 194 68.49 | 1800.00 1188 86.39 59.14
stein27_r 32.20 118 4.06 1804.06 22930 34.21 | 1800.00 20577 36.42 | 1800.00 89909 32.64 38.71
air05 34.37 408 | 39.03 1839.03 173 75.76 | 1800.00 233 83.43 | 1800.00 317 88.19 77.63
10teams 34.45 210 | 10.36 1810.36 1937 57.29 | 1800.00 3450 35.43 | 1800.00 13827 48.10 39.17
mod010 37.97 146 5.04 1805.04 12336 3.58 | 1800.00 10146 13.69 | 1800.00 39346 27.82 13.79
misc05 40.09 266 | 13.61 1813.61 246 55.57 | 1800.00 129 70.54 | 1800.00 5467 60.13 58.67
p0282 40.89 161 4.43 31.58 23 0.00 114.99 73 0.00 | 1112.33 2399 0.00 10.40

Table 7: Computational results for MIPLIB open problems: low density (< 20%) VSP instances.

[ Instance | pHYBRID(L-CD,L-LD) | B&C(CD,LD) | B&B [ B&C[6] |
[ Tabel d n [ R&C total t(s) nodes gap | t(s) nodes gap | t(s) nodes gap | gap |
setlal 0.78 492 | 11.98 162.30 13567 0.00 471.28 11439 0.00 | 1695.38 39175 0.00 1.25
setlcl 0.78 492 | 11.98 165.72 13567 0.00 464.22 11439 0.00 | 1731.34 39175 0.00 1.25
setlch 0.81 477 | 10.80 153.31 13512 0.00 430.26 11373 0.00 [ 1800.00 30008 0.36 1.08
fixnet3_r 1.10 478 | 12.91 20.73 77 0.00 21.24 71 0.00 406.00 5399 0.00 0.22
misc06 1.21 696 | 18.07 1818.07 12426 5.52 | 1800.00 7363 5.60 | 1800.00 13862 15.63 10.54
gnetl_o 3.59 369 7.64 60.03 677 0.00 215.86 497 0.00 | 1800.00 16989 2.38 4.69
qnetl 3.60 407 | 10.57 212.52 1085 0.00 532.12 1115 0.00 [ 1800.00 19023 8.32 7.26
danoint 4.49 664 | 52.14 1852.14 130 27.11 | 1800.00 1513 29.04 | 1800.00 5114 70.70 38.66
gams 5.13 291 8.42 373.46 5235 0.00 419.52 4869 0.00 | 1800.00 22587 1.52 2.22
adrud 5.50 795 | 43.40 1254.74 193 0.00 | 1325.10 205 0.00 | 1800.00 1110 2.76 2.88
p0548 7.82 257 5.57 1805.57 125611 18.28 | 1800.00 24086 10.69 | 1800.00 41048 13.62 11.54
air04 16.67 782 | 71.29 1871.29 17 73.54 | 1800.00 220 87.29 | 1800.00 18 89.67 82.44
air06 16.82 570 [ 51.00 1851.00 67 70.42 | 1800.00 184 85.51 | 1800.00 710 83.49 162.50
steind5_.r 19.59 331 | 30.83 1830.83 88 79.95 | 1800.00 723 84.61 | 1800.00 7253 73.29 80.79

Notice that twelve MIPLIB instances remained unsolved after our experiments with our combined
approach. For these problems, we kept our focus on the primal side. Thus, we decided to run again
one of our relax-and-cut algorithms to attempt to obtain better primal bounds. In order to do
it, we rerun PR&C(CD,LD) with different settings of parameters. Thus, we adopted: A = 25

represent the size of the union of the shores in each instance. Therefore they are the complements (with respect to
the number of vertices) of the separator size, which are the values reported in [6].
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(number of passes of the PR&C algorithm) and 7% (see 9) was updated at each 50 consecutive
iterations without improvement on the upper bound and the maximum number of iterations was
limited to 5000. Besides, at each SM iteration, the primal heuristic was called at most four times,
stopping at the first call with success in obtaining an improvement on the best primal bound
known so far. At each call, a distinct choice of the parameter p (see Figure 4) that controls the
weighting method is performed. After some preliminary tests, the final sequence of calls adopted
was: p=(1,0),p=(0,1),p = (1,1) and p = (0,0). The results obtained are shown in Figures 14
and 15.

The graphic in Figure 14 compares the results produced by our heuristic against de Souza and
Balas’ primal results reported in [12]. Since the running times of PR&C(CD,LD) remained below
90 seconds for all instances used in this test, we imposed this time limit to the execution of de
Souza and Balas’ algorithm. The graphic shows, for each instance, how much better/worse is the
best solution found by both approaches when compared to the bounds reported in [6]. Thus, a
point above z axis represents a better solution than the best we know from literature. Observe
that, for this subset of instances, the solutions corresponding to our Lagrangian heuristic are, in
general, much better and almost dominate those from the heuristic embedded in de Souza and
Balas’ algorithm. Tt is worth noting that in 83% of the cases our heuristic produced results as good
as the best VSP solution already reported.

Primal Bound Improvements
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Figure 14: Performance of the heuristics embedded in PHYBRID(CD,LD) and B&C from [12] for
hard MIPLIB instances within a 90 seconds running time limit.

Now, regarding the execution time to reach the best solution, we build up the graphic shown
in Figure 15. Observe that for all instances but two, air04 and air05, our Lagrangian heuristic
needed less time than de Souza and Balas’ heuristic to yield their best solutions.
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Primal Bound Improvements: time to best bounds
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Figure 15: Computation times required by PHYBRID(CD,LD) and by B&C(CD,LD) to produce
their best primal bounds.

8 Conclusions and future works

In this paper we investigated the combined usage of Lagrangian relaxation and cutting planes in
the development of exact algorithms for the vertex separator problem. Though the pure relax-
and-cut algorithms resulting from this combination are usually not strong enough to reach this
goal, they proved to be a very effective preprocessing tool for a hybrid exact algorithm. In this
algorithmic framework, generically named here as HYBRID, the Lagrangian algorithms are succeeded
by a branch-and-cut algorithm. The latter is fed by invaluable outcomes from the (Lagrangian)
preprocessing phase. This includes strong primal bounds and cutting planes separated during the
relax-and-cut algorithms and corresponding to valid inequalities for the VSP presented in [3].

Computational results were obtained for benchmarks from the literature and compared with
the best known results published so far. These experiments show that the best variants of the
HYBRID method we developed outperform the pure B&C algorithm introduced by de Souza and
Balas in [12], to our knowledge the best exact algorithm available for the VSP. For mid-high density
instances, the most difficult ones for the VSP, our algorithms beat the best branch-and-bound code
in 92% of the cases tested.

Besides, we show that the Lagrangian phase is a very effective heuristic for the VSP, often
producing optimal solutions extremely fast. Moreover, for the MIPLIB instances whose optimal still
remains unknown to date, our Lagrangian heuristic in most cases obtained stronger primal bounds
than those reported earlier in the literature.

Further developments and implementation issues should be considered to possibly improve the
performance of our current framework. This includes the study of different relaxations, the design
of more sophisticated primal heuristics and the identification of new valid inequalities for the VSP
polytope discussed in [3] to be used as cutting planes in the relaz-and-cut algorithms.
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A The complexity of the separation of CD inequalities

Let LRP be the Lagrangian subproblem resulting from the relaxation of the set of constraints (2).

Proposition A.1 Let G = (V, E) be the input graph for a VSP instance and u an optimal value
solution to LRP. Further, let S CV be the set of vertices i € V such as ;1 + t;2 = 1 and G[S] the
subgraph induced by S in G. Then, there exists W C V whose CD inequality is violated by 4 if and
only if S is a dominator and G|[S] is connected.
Proof: (=) Suppose that there exists a CD inequality violated by u. Let W be the connected
dominator associated to this inequality. Then, u; + ujo = 1 must hold for every i € W. Thus,
u(W) = |W| and, by construction of S, every vertez in W is also in S. Hence, W C S and S is a
dominator too.

Let us suppose that S is disconnected. Indeed, given that W C S and W is connected, there
is v € S\W with no adjacent vertex in W. Hence, we arrive to a contradiction because W is a
dominator.

(<) DoWw =801

Corollary A.1 The separation of CD inequalities over G[S] has polynomial time complezity when
the constraints uy + u;o < 1,¥ 1 € V are kept in LRP.

Notice that, if constraints (1) are relaxed, an optimal solution u of LRP may assign the same
vertex 1 in two distinct sets. Figure 16 depicts a counterexample for Proposition A.1 in this case.
In this picture if 7 is gray then u;; = u;o = 1, otherwise, u;; = u;o = 0. Observe that, together,
gray and black vertices form a connected dominator whose corresponding CD inequality is violated
although G[S] is disconnected.

(11 (11
Figure 16: Counterexample for Proposition A.1 when constraints (1) are relaxed.

Appendix B presents a description of a polynomial time dynamic programming algorithm that
solves the separation problem of CD inequalities in polynomial time when the constraints u;1 + u;o <
1,Vi € V are satisfied.

Corollary A.2 Let S be the set of vertices such that 4 + o > 1,4 € V, and G[S] be the subgraph
induced by S in G. Then, if S is a dominator and G[S] is connected, the CD inequality associated
to S is violated by u.

This result shows that our separation routine, described in Section 4.1.1 can only be viewed
as an heuristic to separate CD inequalities. In order to analyse the complexity of the separation
problem, let us rewrite the CD inequality associated to a connected dominator W of G as follows:

w(W) < |W|—-1 = w(W) < |W| = Z(uﬂ+ui2)<\W\.
eEW
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Therefore, if u violates the CD inequality to W, we must have ) ;- (ui1 + ui2) > [W].
Now, consider the following minimum weighted connected dominator problem of a graph G:

INSTANCE: Undirected graph G = (V, E) and weight w; € Z for all vertex i € V.
PROBLEM mWCD (Minimum Weighted Connected Dominator): Find a connected dominator W
whose weight, given by > .y w;, is minimum.

Taking w; = u;1 + w49 for all 4 € V., we have that the separation problem of CD inequalities can be
solved through the optimization problem just described. If the optimal value is equal to or larger
than |[W|, a CD inequality violated is found. Otherwise, all the CD inequalities are satisfied by u.

From now on, we focus on the decision version of m WCD where the additional integer value £
is given as input and the problem is to decide if there exists a connected dominator weighting at
most k in G. Besides, restricting the possible values of w; to the subset {0, 1,2}, we obtain exactly
the case corresponding to the separation of CD inequalities.

Consider the decision problem below.

INSTANCE: Undirected graph G = (V, E), |V| = n and a positive integer k.
PROBLEM MLST (Mazimum Leaf Spanning Tree): Find a spanning tree T for G such as at least
k' vertices of T have degree one, i.e., are leaves ?

Fact A.1 MLST is NP-complete (see [ND2] in [1]]).

Proposition A.2 mWCD is N'P-complete. Proof: It is easy to see that mWCD is in NP. Now,

we show that MLST o, mWCD.

Take k = n — k' in mWCD and set w; = 1 for all i € V. So, in mWCD, we look for a
connected dominator with no more than n — k' vertices. Notice that, by removing the leaves from
any spanning tree T, the remaining vertices form a set that is a connected dominator of G. Hence,
if T is a solution to MLST, at least k' vertices are leaves in T and the remaining vertices form a
connected dominator of size at most n — k' = k. On the other hand, if W is a solution to mWCD,
than, there is a spanning tree T' in G[W]. Since W is a dominator, any of the n — |W| vertices in
V\ W is linked to W through at least one edge. By adding to T' one of these edges for each of the
n — |W| vertices , we obtain a spanning tree for G with at least n —|W| > n —k = k' leaves. This
completes the proof. [

This proof shows that, in general, mWCD is N'P-complete, suggesting that the separation
problem is equally hard. However, we saw previously that the separation problem may be solved
in polynomial time when the corresponding m WCD has binary vertex weights and k = |[W|. Also,
the latter proof does not permit us to conclude that mW C D remains hard to solve when the vertex
weights are in {0, 1,2} and k is equal to |IW|. This is precisely the case of the separation problem
relative to the solution % of the Lagrangian relaxation when the inequalities 4;1 + @0 < 1,1 € V,
are dualized.

Denote by mC' D the special case of mW C'D where w; = 1 for all ¢ € V. According to the proof
of Proposition A.2, mCD is N'P-complete. Furthermore, observe that, when G has a connected
dominator of size p < k, G also has a connected dominator of size [, where p <[ < n. Hence, the
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problem of determining if there is a connected dominator of size k., named mC D= below, is also
NP-complete.

INSTANCE: Undirected graph G = (V, E) and a positive integer k.
PROBLEM mC D= (Minimum Connected Dominator): Find a connected dominator W C V in G
of size k7

Now, consider the separation of CD inequalities over a graph G with weights on the vertices
restricted to {0,1,2} and & = |W/|. This problem can be solved by the optimization problem
associated to the following decision problem:

INSTANCE: Undirected graph G = (V, E), |V| = n, weight w; € {0, 1,2} for all vertices i € V and
a positive integer ¢t < n.
PROBLEM SEP: Find a connected dominator W in G satisfying >, w; =t > [W|?

Fact A.2 mCD~ is N'P-complete.
Proposition A.3 SEP is N'P-complete.

Proof: It is not difficult to see that SEP belongs to NP. We now show that mCD~ <p SEP,
which proves that mC D= is also N'P-hard.

Figure 17 illustrates a polynomial time transformation of an arbitrary instance I(mCD~) of

mC D= into an instance I(SEP) of SEP. The figure shows details concerning the graph vertices,
edges and weights besides the expression that defines the input parameter t.
(I): mCD= YES = SEP YES. Let W C V be a connected dominator of G such that |W| = k.
Without loss in generality, we can suppose that W = {vi,va,...,vx} (black vertices in Figure
17). Further, let W' C V' be given by W' = WU AU {b1,c1} U{cks1,...,cn} U{d} and denote
p(W') = > icwr wi. Thus, based on the transformation of I(mCD<) into I(SEP) we can conclude
that:

Fact A.3 Since GIW] is a connected graph, G'[W'] is also a connected graph.

Fact A.J, W' is a dominator because: (i) all the vertices of V are covered by W ; (ii) d is in W';
(ii1) every vertex i € AU{cgs1,...,cn} is in W'; (iv) by and ¢y are both in W'; (v) {ba, ... by} are
covered by W while {bgi1,...,bp} are covered by {cxi1,...,¢cn}; (vi) {ca,...,ck} are covered by d
and (vii) {e} is covered by an_j1o.

Fact A.5 t > |W'| is satisfied since:

w A {01} {a}  Aektrrnen} {d}
p AN T AN AN ~ =~ ~ =
p(W") E +2n—k+2)+ 0 + 0 + 0 + 1 =2n—k+5,
N . . _ .
W' = k 4+ n—k+2)+_1 + 1 + n—k +_1 =2n—k+5,
w A {or} e} Aergrnen}  {d)

and, therefore,
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I(mCD=): G=(V,E)
I(SEP): G'= (V',E')

A= {a17a27"' 7an—k—|—2}
B={b1,bo,....bn}
C = {01,02,...,Cn}
V ={v1,v9,...,0,}

V= AUBUCUV U{d}U{e}
[V'|=4n—k+4

We;, =2, V7=1,...,n—k+2
wp, =W, =0, wy, =1, Vi=1,...,n

wd:1
we € {0,1,2}

t=2n—k-+5

Figure 17: Transformation of an instance of mC D= into an instance of SEP.

We conclude that if I(mCD™) is a YES instance for mCD=, I(SEP) is a YES instance for
SEP.

(II): SEP YES = mCD= YES. Let us suppose that W' is a connected dominator of G' satisfying
p(W')y =t =2n—k+5 > |W'|. First notice that the vertices in {d,a1,...,a, o} belong to any
connected dominator of G'. We want to show that W C V is a connected dominator of size k. To
this end, suppose that W =W'NV = {V1,Va,...,V,} where every V; is a connected component of

G.

Observe that p(W') = |W| +2/A| +|d| =2n—k+5=k+2(n—k+2)+1. So, W must have
exactly k vertices and |W'| cannot contain more than n — k + 2 vertices with zero weight without
violating p(W') > |W'|. Without loss in generality, assume that VAW = {vjy1,...,v,}. Vertices
{bgs1s---,bn} cannot be in W' since, otherwise, we would not have W' connected and satisfying
p(W') > |W'| simultaneously. Thus, the n — k vertices of {cxy1,...,¢n} are in W'. Now, every
component of G induced by vertices in W requires a pair of vertices {b;,c;} as connector to the
other vertices of W'. Indeed, we need at least 2p more vertices (2 for each connected component of
G) in W', beyond the 2n — k + 3 already identified, to guarantee that W' remains connected. But,
since the size of W' is limited to 2n — k+5, we are left only with two more vertices to put into W'.
Hence, W has a single connected component (p = 1), which must cover all the uncovered vertices
of V.. Consequently, W is a connected dominator of G with k vertices. [
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B A Dynamic Programming to CD inequalities

The dynamic programming algorithm described in Figure 18 solves the separation problem of CD
inequalities under the circumstances announced in corollary A.1.

DP Description (LRP') /¥ LRP' = LRP, where (1) is satisfied */
1. Definitions:

z: matrix (n+ 1) x (b+1) x (b+ 1), n = |V, keeping the subproblem solutions.

z[k,p, q] : stores the objective function maximum value considering that vertices k£ + 1 to n belong to
separator C' and that exactly p vertices are in subset A and that ¢ vertices are in subset B.

Ck1,Cra: costs for adding vertex k to A and B, respectively.
2. Initializations: suppose that, for all j = 1,2, c,(;); > Ce(it1);, for all i in V', ie., {©(1),0(2),...,0(n)}
corresponds to the sequence of vertices non-increasingly sorted by the costs c ;.

2[0,0,0] = z[k,0,0] = 0, Vk.

[k, p, 0] 0, ifp>k

z ’ = min .

. Zi:1{p7k} Cy(i)1, Otherwise.
if g >k

0,
2l 0.4 = { Z?;hf{q’k} Co(i)2> Otherwise.
z[k,p,q] = —o0, when p< 0 org<0orp+q>k.
3. Recurrence (subproblem solutions):
2|k, p, q] = max{z[k — 1,p,q],cr1 + z[k — 1,p— 1,q],cka + 2[k — 1,p, ¢ — 1]}, VEk, p, q.
4. Optimal solution value:
z* =max{z[|V],p,q]}, 1 <p<bel<g<h

Figure 18: Dynamic Programming description.

C Computational results on unsolved instances

Table 8 shows some results obtained with two of our best versions of relax-and-cut frameworks over
the set of 11 instances not solved by any of the implemented algorithms within the time limit of
30 minutes. In order to make possible performance comparisons with possible future algorithms to
the VSP the table shows final upper bounds, lower bounds and values corresponding to the number
of nodes produced by the B&C enumeration tree.

Table 8: Results for VSP unsolved instances.

[ Instance [ NDHYBRID(CD) | PHYBRID(CD) |
[ Tabel n d _Opt | ub Tb nodes | ub Tb nodes |
dim.DSJC125.1 125 0.09 90 | 102.26 89 143809 | 102.38 88 124345
dim.queen12_12 144 0.25 971 113.69 97 19518 | 114.12 97 16062
dim.queen11_11 121 0.27 81 91.64 81 37586 91.76 81 32499
dim.queen10_10 100 0.30 67 72.29 67 88727 72.28 67 81052
dim.queen8_12 96 0.30 65 69.56 65 96996 69.60 65 84300
dim.queen9_9 81 0.33 55 56.49 55 231242 56.44 55 202559
dim.DSJC125.5 125 0.50 74 88.91 74 6208 87.65 74 5329
mat.L125.can__161 125 0.16 97 | 105.37 95 73721 | 105.37 97 52825
miplib.stein27_r.p 118 0.32 62 82.00 62 18801 83.21 62 22951
miplib.10teams.p 210 0.34 120 | 188.67 120 1824 | 190.38 120 1768
miplib.mod010.p 146 0.38 90 97.29 88 16171 96.21 86 10965
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