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AbstratIn this paper we propose a Lagrangian relaxation framework to solve the vertex separatorproblem (VSP). This framework is based on the development of relax-and-ut algorithms whihembed the separation of valid inequalities for the VSP disussed in [3℄ in the subgradient method.These relax-and-ut algorithms are then used as a preproessing phase in a hybrid algorithmwhih ombines them with branh-and-ut algorithms proposed in [12℄. This is done basiallyby feeding the branh-and-ut algorithms not only with the primal bound but also the utsseparated during the preproessing phase. Computational results obtained with benhmarksfrom the literature showed that the hybrid algorithm developed here outperforms the best exatalgorithm available for the VSP to date.Keywords: Lagrangian relaxation, utting planes, Integer Programming, relax-and-ut algo-rithms, vertex separator.1 IntrodutionA vertex separator in an undireted graph is a subset of the verties, whose removal disonnetsthe graph in at least two nonempty onneted omponents. Reently, Balas and de Souza [3, 12℄studied the vertex separator problem (VSP) whih an formally be stated as follows.INSTANCE: a onneted undireted graph G = (V;E), with jV j = n, an integer 1 � b � n and aost i assoiated with eah vertex i 2 V .PROBLEM: �nd a partition of V into disjoint sets A;B;C, with A and B nonempty, suh that (i) Eontains no edge (i; j) with i 2 A, j 2 B, (ii) maxfjAj; jBjg � b, (iii) Pj2C j is minimized.The sets A and B are alled the shores of the separator C. A separator C that satis�es (i)but violates (ii) is termed infeasible; one that satis�es (i) and (ii) is feasible; and a separatorthat satis�es (i), (ii), (iii) is optimal. Unless otherwise spei�ed, the term separator is usedhere to denote a feasible one. The VSP is NP-hard and has widespread appliability in networkonnetivity. Further disussion on appliations appears in [3℄.In that paper Balas and de Souza also onduted the �rst polyhedral investigation on theVSP. They introdued several lasses of strong valid inequalities for the polytope assoiated to theproblem. In a ompanion paper to that study, the same authors reported extensive omputationalexperiments with a branh-and-ut (B&C) algorithm based on those inequalities. In [6℄ Bornd�orferet al onsidered a generalization of the VSP where the partitioning of the vertex set has to be donein two or more subsets. However, ontrarily to the VSP, solutions where one of the shores remainsempty are allowed.Based on the Integer Programming (IP) model and on the strong valid inequalities introduedby Balas and de Souza, we propose an algorithm that ombines Lagrangian relaxation with uttingplane tehniques to solve the VSP. Our method belongs to a lass of Lagrangian relaxation algo-rithms where onstraints of ertain families of inequalities may only be expliitly dualized when theybeome violated at some Lagrangian relaxation solution. These so-alled Relax-and-Cut (R&C)algorithms appear as a promising alternative approah to strengthen Lagrangian relaxation boundsas reported in several reent works in the literature [7, 16, 17, 18, 19, 20℄. These algorithms use adynami inequality dualization sheme that renders viable the appliation of Lagrangian Relaxationto models with an exponential number of inequalities. Indeed, a similar approah for the travelingsalesman problem [2℄ date from the early 80's. 1



Furthermore, we desribe a framework that proposes a hybridization between our R&C algo-rithm and a modi�ed version of the B&C algorithm presented in [12℄, to our knowledge, the bestexat algorithm available for the VSP. Basially, this hybridization onsists in using our R&C as apreproessing subroutine of the B&C algorithm and we denote it by hybrid. Similar hybrid ap-proahes were already tried on other optimization problems [9, 10, 11℄. However this work presentsthe �rst attempt to use it in the exat omputation of VSP instanes. The experiments ondutedhere show that di�erent versions of the hybrid method outperform the B&C algorithm when usedalone.The paper is organized as follows. Setion 2 presents the IP formulation for the VSP givenin [3, 12℄ and used here. Setion 3 briey reviews the Lagrangian relaxation tehnique and thesubgradient method (SM) and gives a general desription of R&C algorithms. The elements of theR&C algorithm we developed for the VSP are presented in Setion 4. This setion inludes detailsof the Lagrangian relaxations onsidered, desriptions of the separation routines implemented andof the primal heuristi we devised. Setion 5 disusses how we integrated Lagrangian relaxationwith other Integer Linear Programming tehniques to design an exat algorithm to solve the VSP.The setup of our test environment is detailed in Setion 6. Setion 7 desribes the struture of ouralgorithm and reports on the omputational results obtained for test instanes gathered from theliterature. Finally, in Setion 8, we draw some onlusions and point out some possible extensionsof this study.2 An IP formulation for the VSPWe desribe here the mixed IP formulation presented in [3, 12℄ on whih our Lagrangian relaxationis based. For every vertex i 2 V , two binary variables are de�ned: ui1 = 1 if and only if i 2 Aand ui2 = 1 if and only if i 2 B. For S � V and k 2 f1; 2g, let uk(S) denote P(uik : i 2 S), andu(S) = u1(S) + u2(S). An IP model for the VSP is given bymax Xi2V i(ui1 + ui2)ui1 + ui2 � 1; 8 i 2 V (1)ui1 + uj2 � 1; uj1 + ui2 � 1; 8 (i; j) 2 E (2)u1(V ) � 1; (3)u2(V ) � b; (4)u1(V )� u2(V ) � 0; (5)ui2 � 0; ui1 2 f0; 1g; 8 i 2 V: (6)Inequalities (1) fore every vertex to belong to at most one shore. Inequalities (2) prohibits theextremities of an edge to be on distint shores. Inequalities (3) to (5) limit the size of the shoresand, at the same time, redue the symmetry of the model by foring the size of shore A to bebounded by that of shore B. As observed in [12℄, if the ui1 variables are integer for all i 2 V , theintegrality of the u2 variables an be dropped from the formulation. Though this observation is nottaken into aount by our Lagrangian relaxation, it is relevant for IP solvers.2



3 Relax-and-Cut (R&C) algorithmsFor ompleteness, we briey review the basis on Lagrangian relaxation and relax-and-ut algo-rithms that are relevant to us. Denote by X a subset of B n = f0; 1gn and letZ = max fx : Ax � b; x 2 Xg (7)be a formulation for a NP-hard ombinatorial optimization problem. In assoiation with (7) onehas b 2 Rm ,  2 Rn and A 2 Rm�n , where m and n are positive integral values representing,respetively, the number of onstraints and the number of variables involved. Let Z 0 denote theformulation obtained after removing onstraints Ax � b from (7). Also, assume that Z 0 an besolved faster than Z (typially in polynomial or pseudo-polynomial time in the problem size).A Lagrangian relaxation of (7) is obtained by bringing the term �(b � Ax) into the objetivefuntion of Z 0, where � 2 Rm+ is the orresponding vetor of Lagrange multipliers. The resultingLagrangian relaxation Problem (LRP (�)) isZ(�) = max fx+ �(b�Ax) : x 2 Xg = max f( � �A)x+ �b : x 2 Xg: (8)It is a known fat that Z(�) � Z and, therefore, the tightest possible upper bound on Z,attainable through LRP (�), is given by an optimal solution to the Lagrangian dual problem (LDP)ZD = min�2Rm+ fmax f(��A)x+�b : x 2 Xgg: In the literature, several methods exist to omputethe LDP. Among these, due to its simpliity and the aeptable results it returns, the subgradientmethod (SM) is the most widely used [5℄. A brief review of that method follows sine the R&Calgorithm we suggest here for the VSP is deeply based on SM.SM is an iterative proedure whih solves a suession of LRPs like the one in (8). It starts witha feasible vetor �0 of Lagrangian multipliers and, at iteration k, generates a new feasible vetor�k of multipliers and an assoiated LRP. Usually, the algorithm stops when a given limit on thenumber of iterations is reahed.At iteration k, let �xk be an optimal solution to (8) with ost Z(�k) and let zkLB be a known lowerbound on (7). An assoiated subgradient vetor (for the m relaxed onstraints) is then omputedas gki = (bi � ai�xk); i = 1; 2; : : : ;m. That vetor is then used to update �k. To that order, a stepsize �k is omputed. The following formula is ommonly applied to perform this alulation [5℄�k = �k(Z(�k)� zkLB)Pmi=1(gki )2 : (9)Typially, the real parameter �k is set to an initial value (�0). Along the iterations, it is redued toa fration of its urrent value whenever an a priori �xed number of LRPs have been solved withoutimproving the upper bound on Z. Finally, one �k is obtained, �k is updated as�k+1i = max f0;�ki � �kgki g; i = 1; 2; : : : ;m: (10)Notie that the straightforward use of formulas (9-10) may beome troublesome when a huge numberof dualized inequalities exist. An alternative may be to modify SM aording to the R&C shemedisussed below.In the literature two strategies to implement R&C algorithms are disussed. They di�er, ba-sially, on the moment at whih the new inequalities are identi�ed and dualized. In a Delayed3



Relax-and-Cut (DR&C), several exeutions of SM are made. The searh for violated uts is per-formed solely at the end of eah suh exeution and, if some of them are enountered, they aredualized and a new exeution of SM starts. In a Non Delayed Relax-and-Cut (NDR&C), typiallya single SM exeution is done and uts are dualized along the iterations as they are found (see[7, 16, 18, 19, 20℄ for details). In a omparison arried out in [19℄, NDR&C performed better thanDR&C. However, in our work, we deide to implement both strategies in order to ompare them inthe ontext of the VSP. Also, we propose a third strategy whih ombines ideas borrowed from theprevious ones. We denote it by Postponed (non-delayed) Relax-and-Cut (PR&C). As for NDR&C,in PR&C the uts are separated at eah SM iteration. However, these uts are not immediatelydualized. Instead, they are stored in a bu�er. Similarly to what happens in DR&C, the SM isexeuted several times. In the beginning of eah exeution, the bu�er is emptied and all its utsare dualized for the next SM round.Clearly, if there are exponentially many inequalities in (7), the use of traditional Lagrangianrelaxation beomes impratiable. Alternatively the R&C sheme proposes a dynami strategy todualize inequalities. In this proess, one should be able to identify inequalities that are violated by�xk. To do so, likewise polyhedral utting-plane generation, a separation problem must be solved atevery iteration of SM. Thus, one tries to �nd at least one inequality violated by the urrent LRPsolution. The inequalities thus identi�ed are andidates to be dualized. It is worth noting thatseparation problems arising in R&C algorithms may be easier than their polyhedral utting-planealgorithm ounterparts. That applies sine LRP normally has integral valued solutions (f. [20℄).4 Relax-and-ut algorithms for the VSPDi�erent Lagrangian relaxations an be devised from the formulation given in setion 2. Duringthis work we evaluated some of them, always onsidering the trade-o� between two aspets: (a)the strength (sharpness) of the resulting Lagrangian dual bounds and (b) the diÆulty of solvingthe Lagrangian primal and dual problems, whih inuene on the amount of omputation requiredto obtain the bounds. With this in mind, we onsidered three relaxations, all of whih an be easilyseen to satisfy the integrality property. Then, in all three ases, the best dual bound attainableis equal to the value of the VSP linear programming relaxation. Therefore, what prevailed in ourhoie of the Lagrangian relaxation to be used was the omputational e�ort involved in solvingLRP and LDP.We deided to start with a simple relaxation where the onstraint sets (1) and (2) are dualized bymeans of the vetor multipliers � 2 RjV j+ , �1 2 RjEj+ and �2 2 RjEj+ , respetively. Also, observe thatsymmetry is not of primary onern for the Lagrangian relaxation. Thus, we onsider an alternativeIP formulation where the inequalities (3) and (4) are replaed, respetively, by 1 � ul(V ) � b; withl = 1; 2, and inequality (5) is dropped. Aordingly, the resulting LRP is given byLRP(�; �1; �2) = max fXi2V (�i1ui1 + �i2ui2 + �i) + X(i;j)2Ei<j (�1i;j + �2i;j) : ukl 2 f0; 1g;8 k 2 V and l = 1; 2; satisfying 1 � ul(V ) � b g (11)where �k1 = k � �k �P(k;j)2Ek<j �1k;j �P(i;k)2Ei<k �2i;k and �k2 = k � �k �P(i;k)2Ei<k �1i;k �P(k;j)2Ek<j �2k;j(for eah k in V ) are the Lagrangian osts of, respetively, uk1 and uk2. Notie that (11) an be4



solved in O(jV j log jV j) time by sorting the variables aording to their Lagrangian osts and afterperforming a few simple alulations.The seond relaxation we experimented with is very similar to the �rst one, di�ering only bythe fat that inequalities (1) are not dualized anymore. The resulting LRP is thusLRP(�1; �2) = max fXi2V (�i1ui1 + �i2ui2) + X(i;j)2Ei<j (�1i;j + �2i;j) : ukl 2 f0; 1g;8 k 2 V and l = 1; 2; satisfying (1), 1 � ul(V ) � bg (12)where �k1 = k�P(k;j)2Ek<j �1k;j�P(i;k)2Ei<k �2i;k and �k2 = k�P(i;k)2Ei<k �1i;k�P(k;j)2Ek<j �2k;j (for eah k inV ) are the Lagrangian osts of, respetively, uk1 and uk2. It is possible to devise a simple dynamiprogramming algorithm that solves LRP(�1; �2) in O(jV j3).The third relaxation omes from the observation that a matrix formed by the oeÆients ofthe set of onstraints desribed in (1) and (2) is totally unimodular. Thus, when all but theseonstraints are dualized, the resulting LRP is a well-solved problem that an be omputed inpolynomial-time using a speialized network ow algorithm or an interior point method for linearprogramming. Now, given the vetors of Lagrangian multipliers � 2 R1+ , � 2 R1+ and  2 R1+ , theresulting LRP isLRP(�; �; ) = max fXi2V (�i1ui1 + �i2ui2)� � + �b :ukl; 8 k 2 V and l = 1; 2; satisfy (1), (2) and (6)g (13)where �k1 = k + � �  and �k2 = k � � +  (for eah k in V ) are the Lagrangian osts of uk1 anduk2, respetively.Among the three relaxations disussed above, the �rst one provided the best trade-o� betweenthe strength of dual bounds and the omputation time required to solve the Lagrangian subproblem.For this reason, it was the one adopted in the �nal on�guration of our relax-and-ut algorithm.4.1 Classes of valid inequalities and separation problemsThe relax-and-ut algorithms developed here are based on two families of valid inequalities intro-dued by Balas and de Souza in their polyhedral study of the VSP [3℄. Inequalities in both familieshave dominators as part of their support graphs. The �rst is related to minimal onneted domina-tors and the inequalities belonging to it are alled CD inequalities. The seond family is assoiatedto minimal but not neessarily onneted dominators and has its strength inreased through atriky lifting proedure. The latter inequalities are termed LD inequalities.The CD and LD inequalities are desribed below. In the disussion that follows, P is de�nedas the onvex hull of the integer solutions of the IP model given in setion 2, i.e., P := onvfu 2f0; 1g2jV j : u satis�es (1){(6)g. The point �u = (�u1; �u2), to whih we apply our separation routines,refers to an optimal solution of the LRP urrently under onsideration. Also, given G = (V;E),for any S � V , Adj(S) refers to the set of all verties in V nS whih are adjaent to at least onevertex in S (when S = fig we write Adj(i) to denote Adj(fig)). Similarly, for a ertain k 2 V nS,we denote Adjs(k) := fi 2 S : (i; k) 2 Eg. 5



CD-Separation(G)1. Construt G�u = (W;F );2. Determine nCC , the number of onneted omponents of G�u;3. if nCC = 1 then /* G�u is onneted */4. if V � (W [ Adj(W )) then /* W is a dominator of V */5. Turn W into a minimal CD;6. return the CD inequality u(W ) � jW j � 1;7. else return FAIL; /* no new ut is returned for dualization */Figure 1: Separation routine for CD inequalities.4.1.1 CD inequalitiesBalas and de Souza [3℄ all a valid inequality for VSP symmetri if, for all j 2 V , the oeÆients ofthe variables uj1 and uj2 in the inequality are the same. Besides, they show that vertex separatorsare intimately related to vertex dominators. A vertex dominator is a subset of verties of the graphsuh that all the remaining verties are adjaent to at least one of them. The dominator is said tobe onneted if the subgraph indued by its verties is onneted. Balas and de Souza then statedthe following property: every separator and every onneted dominator have at least one vertexin ommon. From this observation, they derived a lass of symmetri inequalities assoiated withonneted dominators, the so-alled CD inequalities. If S � V is a onneted dominator, the CDinequality for S is given by u(S) � jSj � 1: (14)Inequality (14) is learly valid for the VSP polytope P . It is non dominated only if S is minimalwith respet to vertex removal. Notie that minimality here applies to both the dominane and theonnetivity properties. Though neessary and suÆient onditions for CD inequalities to de�nefaets are not known in general, they are shown in [12℄ to be very e�etive in omputations.A valuable harateristi of our R&C algorithms is the fast separation routine that looks forviolated CD inequalities at �u. A high level desription of our proedure is given in Figure 1. Theroutine starts by onstruting the subgraph G�u = (W;F ) of the input graph G = (V;E) whih isindued by the verties i 2 V with �ui1+�ui2 � 1. It is easy to see that, ifW is a dominator and G�u isonneted then the CD inequality assoiated to W is violated by �u. Unfortunately, the onverse isnot true in general. It holds when onstraints (1) are satis�ed, in whih ase, as ited before, LRPan be solved by dynami programming. Appendix A presents a thorough disussion regardingthe omplexity of separating CD inequalities and appendix B desribes a dynami programmingalgorithm to solve LRP.Thus, our separation routine an be viewed as a heuristi. Step 5 of the algorithm tries tostrengthen the inequality sine the minimality of the dominator is a neessary ondition for a CDinequality to be faet de�ning. It heks if the removal of a limited number of verties preservesthe onnetivity of the graph indued by W and the dominane property. The separation routineimplemented has a worst-ase omplexity of O(jV j(jV j+ jEj)). But, in general, the size of minimalonneted dominators dereases with graph density and the hardest VSP instanes orrespond tographs of relatively high densities. In suh ases, the algorithm behaves more like a O(jV j + jEj)algorithm.In our R&C algorithm the separation proedure is alled at every SM iteration. Sine we6



implemented two greedy ways to obtain minimal CD inequalities, at most two uts are produedper iteration. Every new ut separated is stored in a pool and dualized in a Lagrangian fashion.The relaxation in (11) is then modi�ed to inorporate this onstraint. As a result, the termPjpooljk=1 �k(jSkj � 1� u(Sk)) is added to the ost funtion of (11), where � 2 Rjpoolj+ is the vetor ofmultipliers of the CD inequalities that are urrently dualized and Sk (k = 1 : : : jpoolj) orrespondsto the onneted dominator assoiated to the CD inequality at position k in the pool.4.1.2 Conditional (CD) CutsAording to de Souza and Balas, in [12℄, for unit osts, one an adapt the separation routine tosearh for more stringent CD inequalities. These inequalities are valid for all vetors u 2 P satisfyingu(V ) � zLB + 1, but hop o� several feasible solutions with smaller osts. Their usage preservesoptimality and is onditioned to the existene of a lower bound zLB . We all them onditionaluts, in an analogy to what is done for the set overing problem in [4℄. For the VSP, these utsare obtained omputing � = maxfzLB � b+ 1; 1g and searhing minimal dominators that over atleast k = jV j � � + 1 verties (k-dominators). Thus, given a lower bound zLB for the optimum,the separation routine an be hanged to identify minimal onneted k-dominators. Obviously, theinteresting situation ours when zLB > b, meaning that not all jV j verties need to be overed.Conditional uts are used both in the B&C algorithm in [12℄ and in the R&C algorithm presentedhere. In our implementation, onditional CD uts are onsidered already along the exeution ofthe R&C algorithm. When a onditional CD ut is identi�ed, it replaes any CD inequality itdominates.4.1.3 LD inequalitiesLet S � V be a dominator of V . For i 2 S, P (i) = fk 2 V nS : Adjs(k) = figg is the set of pendentverties of i. Also, if S is minimal and P (i) = ;, for some i 2 S, the presene of i in S is neededonly to dominate i itself. We all suh a vertex a self-dominator. Now, take S � V a minimaldominator of G, not neessarily onneted. Then, the inequalityu1(S) � jSj � 1: (15)is trivially valid1 for the VSP polytope P and is faet de�ning only under some speial onditions,aording to the following proposition:Proposition 4.1 (Balas and de Souza[3℄) The inequality (15), where S is a minimal dominator ofG, de�nes a faet of P if and only if the following onditions are satis�ed: (a) V nS = Si2S P (i);(b) S ontains no self-dominator, and () S is an independent set.Balas and de Souza [3℄ propose two forms of lifting the inequality (15) when some of theonditions in proposition 4.1 are not satis�ed. In the R&C algorithm designed here, we applythe �rst lifting devised by them, whih alters the oeÆients of the variables assoiated to theassignment of verties of S to the shore B. It applies when the dominator S is not an independentset. Sine the resulting inequalities are assoiated with minimal dominators and a with a liftingproedure, they were alled LD (Lifting Dominator) inequalities.1We assume that jSj � b, for otherwise (15) would be implied by (4), hene redundant.7



Now, let S be a minimal dominator that is not an independent set. Further, let S1; S2; : : : ; Skbe the vertex sets of the omponents of G[S℄ (the graph indued by S in G) suh that jSlj > 1; l =1; : : : ; k. Aording to [3℄, for eah omponent G[Sl℄, one must build an ordered set of vertiesIl = fv1; v2; : : : ; vqg having the following properties: (1) Il is an independent set of G[Sl℄; (2)for all i 2 f2; : : : ; qg, vi is at (edge) distane two from the vertex set fv1; v2; : : : ; vi�1g and (3) Ilis maximal. Suh a set always exists and is usually not unique. Balas and de Souza designed analgorithm to �nd suh a set whih omputes a spanning tree Tl of G[Sl℄ as follows.Initially all the verties in Sl are unmarked. The algorithm starts by arbitrarily hoosing v 2 Slas the root of Tl = (VTl ; ETl) and mark v. Also, all the verties w 2 Adj(v) in G[Sl℄ and all theedges joining them to v in G[Sl℄ are put into Tl. Then, for eah w 2 SlnTl, w 2 Adj(VTl) in G[Sl℄,the following steps are repeated until all the verties of Sl have been inluded in Tl: (i) w is markedand put into Tl by joining it through an edge from G[Sl℄ to some (arbitrarily hosen) unmarkedvertex of Tl; (ii) using edges from G[Sl℄, add to Tl all the verties in (SlnTl)\Adj(w) (the adjaenyhere is de�ned over G[Sl℄).It is not hard to see that the verties marked in Tl form an ordered set satisfying the onditionsde�ned earlier for Il. Moreover, beause of the freedom one has to hoose the unmarked vertex ofTl to whih a newly marked vertex is joined by an edge to Tl, the tree is not unique. Figure 2 showsan example of omponent G[Sl℄, along with two distint ordered sets satisfying onditions (1),(2) and (3). The spanning trees orresponding to eah of the ordered sets are also depited.Besides, the marked verties and their degrees are highlighted.
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LD-Separation(G)1. Construt G�u = (W;F );2. Determine nCC , the number of onneted omponents of G�u;3. if nCC � 2 then /* G�u is onneted or has at most two omponents */4. if V � (W [Adj(W )) then /* W is a dominator of V */5. Turn W into a minimal dominator with nCC omponents of G[W ℄;6. for l = 1; ::; nCC do7. Construt Tl and identify an independent set Il = fv1; v2; : : : ; vqg � VTl ;8. Determine Ævj = Æ(vj) for all vj 2 Il. Set Ævj = 0 for all vj 2 VTlnIl;9. return the LD inequality u1(W ) +Pvj2W Ævjuvj2 � jW j � 1;10. return FAIL; /* no new ut is returned for dualization */Figure 3: Separation routine for LD inequalities.Suppose that the algorithm above exeuted for eah omponent G[Sl℄ resulting in a spanningtree Tl and an ordered set Il. Balas and de Souza [3℄ prove that the inequalityu1(S) +Xj2S Æjuj2 � jSj � 1 (16)is valid and faet de�ning for the polytope P , where eah Æj is equal to the degree of vj in Tl if thisvertex is marked and is null otherwise.To identify LD inequalities we implemented a heuristi separation routine whih uses this �rstlifting proedure from Balas and de Souza. The proedure is detailed in Figure 3. Like in the CDseparation, the routine starts by onstruting the subgraph G�u = (W;F ) of G whih is induedby the verties i 2 V with �ui1 + �ui2 � 1. Then, to save omputation time, in step 3 we restritthe separation routine to the ases where G�u has at most two onneted omponents. Thoughrestritive, this proedure allows us to generate LD uts both for onneted and non onneteddominating sets, ontrarily to the CD inequality ase. Thus, the lifting of variables in the smallerset is produed with the aid of at most two spanning trees (steps 6{8). In our �nal implementation,the seletion of verties to mark and to onnet eah newly marked vertex is done in inreasingorder of vertex labels. It is worth mentioning that we also experimented to selet the vertexwith the highest degree in G[SlnVT (i)l ℄. In priniple this may generate LD onstraints with smallersupports resulting in lighter LPs. However, sine no atual gain was observed and some additionalomputation was required, this strategy was abandoned. Finally, a LD inequality assoiated to thedominator W that uts o� �u is built. The omputational omplexity of the separation routine forLD inequalities is the same as that of the CD inequalities, i.e., O(jV j(jV j + jEj)). As said before,in pratie, for dense graphs, the separation routine is quite fast beause minimal dominators areobtained from already small W dominators.Similarly to what is reported by de Souza and Balas in [12℄, CD inequalities showed, experi-mentally, to be muh more e�etive than LD uts. Moreover, we notied that the LD inequalitiesover onneted dominator often produed better dual bounds than those over not onneted dom-inators. Thus, in our �nal experiments, we deided to separate LD inequalities only when ourCD separation is turned on and just onsidering onneted dominators. In our experiments, thesehoies resulted in time savings during LD separation sine they redued its exeution to steps 1,2 and, for nCC = 1, to steps 7 to 9 of the algorithm in Figure 3.9



In our R&C algorithm the LD separation routine is alled at every SM iteration. It produes atmost two uts per iteration and the lifting proedure is alled even when the basi LD inequality(15) is not violated by the solution of the urrent Lagrangian subproblem.Every new ut separated is stored in a pool and dualized in a Lagrangian fashion. The relaxationin (11) is then modi�ed to inorporate this onstraint. As a result, the expressionPjpooljk=1 'k(jSkj �1 � u2(Sk) �Pj2Sk Æjuj1) is added to the ost funtion of (11), where ' 2 Rjpoolj+ is the vetor ofmultipliers of the LD inequalities urrently dualized.Notie that, due to the inequality dualization sheme within relax-and-ut algorithms, the sameut may be repeatedly identi�ed by the separation routines. Managing the ut pools of CD and LDinequalities is quite simple and is restrited to redundany heks, i.e., a new inequality is insertedonly if it is not idential to another inequality already in the pool or in the original formulation.The use of suitable data strutures and standard hashing tehniques render our implementation ofredundany veri�ation very fast.4.2 A Lagrangian primal heuristiThe generation of good primal bounds is important for the omputation of the step size (9) in theSM and to assess the duality gap along the iterations of the algorithm. In order to ompute lowerbounds for the VSP, we devise a simple greedy heuristi whose steps are summarized in Figure 4.Initially, the set L ontaining the verties that are andidates to be part of the shores is built.This exludes the universal verties, i.e., those whih are adjaent to all the other verties, whihlearly belong to any separator. The heuristi hooses arbitrarily two nonadjaent verties of Land assigns them to di�erent shores so that, in the end, they will not be empty. It proeeds byassigning verties to shores, prioritizing the assignments orresponding to the variables with higherweighted Lagrangian osts. The hoie of the weighting method is ontrolled by the parameters��(k) 2 f0; 1g, where k stands for the shore indies, i.e., k = 1; 2. It is implemented by multiplyingor dividing the Lagrangian ost of the variable assoiated to a vertex v by the degree of v, Æ(v),as seen in step 5, and an be distint for variables assoiated to the same vertex but to di�erentshores. This allows us to distribute the verties between the two shores aording to their osts anddegrees. Sine universal verties are always in a separator, our intuition was that, in an optimalsolution, verties with high degrees are less likely to belong to a shore. This would ount if favorof ost division. However, to our surprise, preliminary tests with a subset of instanes showed thatonly multiplying the osts produe slightly better solutions than the other ombinations. Hene,in our default setting, we �xed ��(1) = ��(2) = 1.Notie that, in the heuristi, all the assignments of verties to shores are made so as to maintainthe viability and to respet the maximum size of the shores. As a �nal step, a loal searh subroutinemay be alled in an attempt to improve on the solution produed by the heuristi. The deisionon whether or not the loal searh is exeuted works as follows. Let z be the ost of the urrentsolution and (z) the number of solutions having ost z found so far throughout the R&C exeution.The loal searh is exeuted only when (z) < �, where � is a parameter that spei�es a limit onthe number of improvements trials over solutions having the same ost.The loal searh routine is desribed in Figure 5. It starts by enlarging the urrent separatorC with as many verties of the shores belonging to its adjaeny as possible (steps 1 to 5). Thenverties are transferred from the new separator C 0 bak to the shores in step 6 in an arbitraryorder. However, the hoie of the destination shore is made so as to inrease the hanes of future10



Lagrangian heuristi (G = (V;E); ; , ��;�)1. L V nfuniversal verties in Gg;2. v0  fany vertex in L that maximizes �(ui1)g;3. Initialize shore A: A fv0g, L Lnfv0g and L0  LnAdj(v0);4. Initialize shore B: B  fv1 2 L0 : Æ(v1) � Æ(v);8v 2 L0g and L Lnfv1g;5. for k = 1; 2 do:for all i 2 L, ompute wuik  �(uik) � [��(k) � Æ(i) + (1� ��(k))=Æ(i)℄;Let Sk be the list of variables uik sorted non inreasingly by wuik ;for all j 2 Adj(v2�k) do Sk  Sknfujkg;6. while jAj < b or jBj < b dof1  fvertex orresponding to the �rst variable in S1g;f2  fvertex orresponding to the �rst variable in S2g;if �(uf1;1) > �(uf2;2) thenA A [ ff1g; S1  S1nfuf1;1g;for all j 2 Adj(f1) do S2  S2nfuj;2g;elseB  B [ ff2g; S2  S2nfuf2;2g;for all j 2 Adj(f2) do S1  S1nfuj;1g;if jAj = b, �(uf1;1) �1; /* avoids new verties in A */if jBj = b, �(uf2;2) �1; /* avoids new verties in B */7. Compute the separator: C  V nfA [ Bg8. if (Pj2C j) < �, all Loal Searh(G;A;B;C; );9. return (A;B;C) Figure 4: Lagrangian heuristi.moves from the separator to the shores. This is evaluated via the simple omputations in steps 6.ito 6.m. The overall omplexity of the Lagrangian heuristi, inluding the loal searh proedure,is O(jV j log jV j � jEj).5 Integrating R&C and B&CAn alternative to be more e�etive in solving VSP problems to optimality is to devise a hybridapproah that ombines Lagrangian relaxation with Integer Linear Programming (IP), in the stylesuggested in [7℄. We denote this hybridization of R&C and B&C algorithms by hybrid. In suhombination, optimization is split in three steps: (i) the LR phase, based on our relax-and-utframework, whose output are pools of valid inequalities and a primal bound; (ii) a remodellingphase, where the IP formulation is tightened aording to the information gathered during the �rstphase and, subsequently, (iii) the LP phase where a branh-and-ut ode is exeuted over the newIP model. Among the uts used in this last phase, we inlude those uts separated throughout theexeution of the R&C algorithm in the initial phase. We all them the Lagrangian uts.The exeution ow of the algorithm is depited in Figure 6. The two �rst phases are generiallytermed as the preproessing phase of our hybrid algorithm. Below we desribe the three phases ofthe hybrid algorithm in more detail. 11



Loal Searh (G;A;B;C; )/* initializations */1. Let AC be the verties in A that have neighbors in C;2. Let BC be the verties in B that have neighbors in C;3. if A = AC then AC  ACnfarbitrarily hosen vertex of Ag;4. if B = BC then BC  BCnfarbitrarily hosen vertex of Bg;5. A0  AnAC ; B0  BnBC ; C 0  C [AC [ BC ;/* main loop */6. for every vertex v 2 C 0 do:6.a if jA0j = b and jB0j = b then break;6.b if jAdj(v) \ A0j 6= ; and jAdj(v) \B0j 6= ;, then ontinue;6. C 0  C 0nfvg;6.d if Adj(v) � C 0 then6.e if jA0j = b then B0  B0 [ fvg;6.f else6.g if jB0j = b then A0  A0 [ fvg;6.h else6.i nA  0; nB  0;6.j for all w 2 Adj(v) do6.k nA  nA + jAdj(w) \Aj; nB  nB + jAdj(w) \Bj;6.l if nA > nB then A0  A0 [ fvg;6.m else B0  B0 [ fvg;6.n else6.o if Adj(v) � A0 [ C 0 and jA0j < b then A0  A0 [ fvg;6.p else /* Adj(v) � B0 [ C 0 */6.q if jB0j < b then B0  B0 [ fvg;7. if Pi2C i >Pi2C0 i then A A0, B  B0, C  C 0.Figure 5: Primal heuristi: the loal searh proedure
12
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Figure 6: Flow Diagram of the hybrid algorithms.5.1 The LR phaseThe LR phase is omprised of an R&C module. It orresponds to one of the implementations ofthe relax-and-ut algorithm desribed in Setion 4 and is the ore of our framework. During itsexeution, valid CD and/or LD inequalities are identi�ed and inserted into the orresponding pool.After ompleting the exeution of the relax-and-ut algorithm in this module, the �nal dualitygap is veri�ed. If the problem is not solved during the R&C run, some information are passed asthe input of the next phases. This inludes not only the ut pools, but also the best primal solutionand its ost, i.e., the best lower bound found so far.5.2 The remodelling phaseIn addition to CD and LD inequalities identi�ed in the previous phase, some onstraints may beadded or adapted to strengthen the original formulation presented in setion 2.The �rst onstraint onsidered omes from the observation that universal verties must belongto any separator. Thus, given the input graph G = (V;E) and U = fi 2 V : jAdj(i)j = jV j � 1g,the onstraint Pi2U (ui1 + ui2) = 0 is trivially valid for the problem. This onstraint was not usedduring the LR phase beause it resulted in some degradation of the R&C performane in terms ofdual and primal bounds yielded. Also, this onstraint is not taken into aount in [3℄. However,when dealing with high density graphs, the ourrene of universal verties is very frequent. Inpratie, the bene�ts with the addition of this onstraint to the IP model justi�ed its inlusion aspart of our remodelling phase.Now, we onentrate on how to use the lower bound yielded by the R&C module to tighten ourIP model. To this end, we fous on unit ost instanes, i.e., those for whih i = 1;8i 2 V . We doso beause these instanes often our in pratial appliations.Assume that zLB is the ost of the best known solution omputed in this ase. Sine u2(V ) �u1(V ), we an dedue that u2(V ) � � zLB2 �+1 must be satis�ed by any solution with ost higher than13



Separation Strategy(sep, CDP , LDP )/* all table look up routines to obtain Lagrangian uts */1. runLagrangianSeparation(CD,CDP); /* L-CD is always ran */2. if sep 2 fhL-CD,CD,L-LD,LDi ; hL-CD,CD,L-LDi ; hL-CD,L-LDig then2.a runLagrangianSeparation(LD,LDP); /* add L-LD uts *//* test and all de Souza and Balas' routines to generate uts */3 if sep =2 fhL-CD,L-LDig and there is no Lagrangian ut violated then3.a runCDSeparation(); /* all CD separation */3.b if sep = hL-CD,CD,L-LD,LDi then3. runLDSeparation(); /* all LD separation */Figure 7: The separation strategy exeuted in the L-B&C module.zLB . For any suh solution, it is also straightforward to onlude that if zLB� b > 1, onstraint (3)an be replaed by the stronger inequality u1(V ) � zLB � b.Although the previous modi�ations rely on rather simple arguments, in this phase we inorpo-rate them to the model. As a matter of fat, exept for the last hange, preliminary experiments wearried out with these modi�ations in the IP model revealed an improvement in the performaneof our modi�ed branh-and-ut algorithm.5.3 The LP phase.The LP phase has as its input the ut pools, the best solution and the best primal bound from theLR phase and the new IP model from the remodelling phase. It has two modules that we disussbelow.Linear Programming Solver (LP). This module solves the LP orresponding to the relaxationof the IP model oming from the remodelling phase, appended with the uts present in the utpool. This model is omputed only if the (relative) Lagrangian gap resulting from the R&C module,given by gap0 = 100 � (zUB � zLB)=zLB is lower than a threshold value �. The purpose here is touse linear programming to avoid running the B&C module unneessarily. It is well-known that, inpratie, omputing dual bounds within R&C algorithms ommonly produe meager values thanthe linear relaxation optimum value. Thus, this module is a possible workaround to bypass somenumerial diÆulty in losing the integrality gap.Branh-and-Cut with Lagrangian uts (L-B&C). This module runs only if the R&C (LRphase) and/or the LP solver fail to prove optimality (i.e., gap � 1). Reall that the preproessingphase yields as outputs the sets of (onditional) CD uts and/or LD inequalities whih are andi-dates to be added to the formulation given as input of L-B&C. Moreover, L-B&C is also given thevalues of zLB (best inumbent), whih may help to prune the enumeration earlier.Figure 7 shows the separation strategy adopted at eah node of the enumeration tree duringthe exeution of the L-B&C module. This strategy is �xed aording to the ontents of the orderedsequene denoted by sep. The elements of sep are taken in the set fCD, LD, L-CD, L-LDg. Themeanings of these strings are: CD and LD orrespond to the separation routines for CD and LD14



inequalities as implemented in [12℄, while L-CD and L-LD are the separation routines for Lagrangianuts implemented by a table look up sheme. This sheme onsists basially of algorithms that sanlinearly the ut pools, trying to identify (Lagrangian) inequalities that may uto� the urrent LPoptimal solution. As per this notation, sep=<L-CD,CD> means that the separation of a frationalsolution is �rst made by the table look up proedure for Lagrangian CD uts and then by de Souzaand Balas' routine for CD uts. Lagrangian CD and LD uts are stored in pools CDP and LDP,respetively.The alls to runCDSeparation and runLDSeparation in lines 3.a and 3. of the algorithmrefer to the separation routines from [3℄.It was experimentally observed that, L-B&C performane is very sensitive to the way in whihCD inequalities are added during the branh-and-ut exeution. Thus, several experiments wereperformed in order to determine the maximum amount of uts to be added per node. The mostpromising settings took into aount the density of the graphs underlying the instanes (see Table1 for details).6 Test Environment SetupThis setion desribes the setup of the environment under whih our tests were arried out. Thealgorithms were oded in C and C++, using resoures of the Standard Template Library and preparedto be exeuted under Linux OS. We used the free ompiler g++ (g version 4.0.3) with options-O3 and -lm seleted. Tests were ran on a Pentium IV mahine 2.66 GHz having 1GB of RAM andxpress Optimizer 17.01.02 was used as the IP solver.6.1 Data setsOur main experiments were made on a subset of instanes taken from [12℄ whih an be down-loaded from www.i.uniamp.br/~id/Problem-instanes/VSP.html. Additionally, hard in-stanes from the miplib [6℄ subset were used to perform further tests. Initially, from the morethan 140 instanes used in [12℄, we selet the ones that required more than a minute of CPU timeto be solved by the branh-and-bound (B&B) algorithm of xpress in its default on�guration. Atthis point, it is worth noting that xpress default on�guration implements ut separation routinesthat would permit us to lassify its default algorithm as a branh-and-ut algorithm, rather than asbranh-and-bound. However, to distinguish it more easily from the several algorithms we omparethroughout our experiments, we will refer to xpress default algorithm as being a branh-and-bound(B&B) one.We end up with 62 instanes for our tests, all of whih, with ost vetor equals to the sumvetor. The parameter b delimiting the maximum size of a shore is always set to d2n=3e but, forthe miplib instanes, that value is omputed as b1:05 � n=2.The majority of our reports relies on omparing results for instanes that were solved by at leastone of the algorithms used in our experiments. Thus, among the 62 instanes initially seleted,only 51 were broadly used in performane omparisons, sine 11 instanes were not solved by anyof the implemented algorithms within the time limit imposed of 30 minutes2.A ommon harateristi of the bulk of these 51 instanes is the mid-high (> 20%) density of thegraphs underlying them. As already mentioned in [12℄ and [8℄, utting-plane algorithms (espeially2Table 8, in appendix C, summarizes some omputational results for these 11 not solved instanes.15



based on CD inequalities) are likely to be more e�etive for mid-high density graphs. Nevertheless,a few VSP instanes arising from low density graphs were kept in our experiments. This allowedus to analyse the behavior of our approah for some hard instanes from the miplib benhmark.As for de Souza and Balas in [12℄, our results are reported by lasses of instanes: dimasgraphs, matrixmarket graphs { divided in three ategories, MM-I, MM-II and MM-HD, aordingto ommon harateristis used in their onstrution { and row intersetion graphs orrespondingto oeÆient matries of some of the miplib instanes. Moreover, within eah lass, the instanesare listed in inreasing order of graph density.6.2 Parameter settingsGeneral parameters. The following settings were used for the basi parameters of the subgra-dient algorithm: (a) the Lagrangian heuristi is alled at every SM iteration; (b) the loal searhheuristi is alled just after Lagrangian heuristi exeution. However, along the SM exeution, themaximum number of improvement trials for solutions with same ost (�) was limited to 5. Notiethat ost repetition is easily identi�ed in our ase sine there are only O(jV j) possible values forthe ost funtion; () the algorithm stops when the limit of 2000 SM iterations is reahed or when�k � 10�5 in equation (9), whatever ours �rst. Moreover, as in [12℄, the exeution time of anyalgorithm tested in our experiments was limited to 30 minutes.Algorithm dependent parameters. When the SM is alled inside the NDR&C algorithm, �,in equation (9), is initially set to 2 and multiplied by 0:5 eah 90 onseutive SM iterations withoutimprovement on the upper bound. Also, the routine responsible for the generation of onditionaluts is alled whenever a minimum amount of new CD uts are added to the pool. In our �nal teststhis upper bound orresponds to 10% of the maximum number of SM iterations. Anyway, providedthat a CD inequality is generated along the iterations, we ensure that the routine is alled at leastone.When running the PR&C algorithm, however, the Lagrangian dual problem is solved typiallyseveral times using SM. We all eah omplete exeution of SM a pass. The total number of passesis an input parameter for the postponed relax-and-ut algorithms, denoted by �. In our �nalexperiments we adopted � = 15. Now, let Æ be the number of the urrent pass. In equation (9),�0(Æ=1) is initially set to 2 and, for the other passes, �0(Æ>1) is omputed by the reurrene relation:�0(Æ) = �0(Æ�1) � f(Æ), where f(Æ) = 1 � (Æ � 1)=�2. Observe that �0 dereases monotoniallyand smoothly as Æ inreases. In our experiments, the small dereases in the initial values of � inequation (9) proved to be bene�ial for the omputation of tighter dual bounds.Moreover, along eah pass, the � value is update at eah 20 onseutive iterations withoutimprovement on the upper bound. Here, similarly to NDR&C strategy, the routine in harge of thegeneration of onditional uts is alled. In this ase, it is done every time a Lagrangian subproblemis solved. Nevertheless, the dualization of inequalities identi�ed along the exeution of a pass isdone only when the SM terminates.During L-B&C exeution, the amount of CD Lagrangian uts added at eah node is mainlydetermined by the input graph density. Also, it was experimentally observed that adding manyuts at the �rst node often speeds up the searh. Thus after some tuning we ended up with the�nal on�gurations displayed in Table 1. Essentially, the graphs were divided into three densityranges and, in eah of these groups, we �xed the number of uts at the root and at the remaining16



nodes of the searh tree. For instane, when dealing with graphs having density in (35:6%; 64:3%℄,in the �rst node we put up to 50% of the uts in the pool. After, for the other nodes, at most 10CD uts violated are added. In the ase of LD inequalities, the amount of Lagrangian uts addedat eah node followed the tuning used by de Souza and Balas in [12℄, i.e., 10 uts per node.Table 1: Number of Lagrangian CD uts added in the L-B&C algorithm.Density Maximum number of utsrange �rst node other nodes� 35:6% 10 2(35:6%; 64:3%℄ 0:5 � pool size 10> 64:3% 0:75 � pool size 10As a �nal remark, it is worth noting that to determine the settings disussed above, the tuningsof the parameter values were arefully performed with a representative subset of instanes ontainingat least one representative of eah lass.7 Computational resultsIn this setion we report the omputational tests arried out with the several on�gurations ofrelax-and-ut algorithms and hybridizations implemented for the VSP.7.1 Relax-and-ut algorithms: the preproessing phaseThe main results of the omputational experiments done with the relax-and-ut algorithms devel-oped are doumented in Table 2 for the 62 instanes seleted. Double horizontal lines in thesetables split instanes from lasses dimas, MM-I, MM-II, MM-HD and miplib. Also, these tablesare divided in �ve groups of olumns. The �rst group, relative to olumns 1{4, desribes the in-stane harateristis: name (label), number of nodes (n), graph densities (d) and the optimumvalue (Opt) or the best known solution value (when it appears underlined). The other four groupsof olumns report the results, respetively, onerning the non-delayed relax-and-ut (NDR&C) andpostponed (non-delayed) relax-and-ut (PR&C) algorithms developed. These groups have the fol-lowing format of olumns: ub, the upper bound obtained; the value of the best solution found(lb) and the total time, t(s), required to run eah algorithm. Additionally, although not detailedhere, some preliminary tests were performed with a delayed relax-and-ut algorithm. However, assuggested by a previous omparison arried out by Luena ([19℄) the results we obtained on�rmedthat, NDR&C strategies perform better than DR&C ones.Before analyzing the quality of the dual bounds produed by the Lagrangian methods, let usdisuss the linear relaxation bound. In fat, the linear relaxation of the IP model from Setion 2is rather weak. By setting all variables to 1=2 one an satisfy all the onstraints provided that bis suÆiently large (whih is the ase for all instanes in our data set). This gives the worst dualbound one ould ome up with: n ! Thus, poor dual bounds are expeted unless strong uts areadded to the formulation. Results reported in [12℄ show that CD inequalities ful�ll this requirement.However, a drawbak to use suh inequalities omes from the fat that the orresponding separationproblem is NP-hard in general. The authors had then to resort to a heuristi proedure to performthe task. Their heuristi is of quadrati-time omplexity and, in pratie, more expensive than17



the routine we use to separate integral points whih behaves more like a linear-time algorithm (seeSetion 4.1).Analyzing the results reported in Table 2 one an see that: (i) in terms of optimality, only fourinstanes (with results indiated in bold) have been solved to proven optimality when separatingCD inequalities. In this aspet, PR&C seems to have a better performane than NDR&C algorithm;(ii) onerning dual bounds we an highlight that: in most of the ases, the algorithms that embedCD inequalities separation produed muh stronger dual bounds than LP relaxation bound. Dualbounds produed by NDR&C(LD) and PR&C(LD) are very poor, with values typially near tothe linear programming bounds, and are not entered here; (iii) onsidering the primal boundsobtained by our heuristi (lb olumn), we notie that they have attained the optimum3 in 65 to71% of the instanes, depending on the relax-and-ut version. Alternatively, if we refer to the bestknown and extend our analysis to all the 62 instanes tested, the rate of suess inreases a bitfurther: from 66 to 71%. (iv) the algorithms NDR&C and PR&C annot be said to dominate oneanother.In addition, inspeting the olumns orresponding to the total time required by the variouson�gurations we see that, in general, the running times are quite aeptable. Also, in most ases,the use of LD inequalities led to marginal gains and only provoked an inrease in CPU time.As a general remark, ontrarily to what happened to other problems, these results do notenourage the appliation of pure relax-and-ut algorithms to solve VSP instanes exatly. However,as shown below, they an be ombined with other exat methods in a lever way to form new andeÆient algorithms to takle the problem.Primal bounds. Though our main fous with the relax-and-ut algorithms was to strengthenthe dual bounds, on the primal side, exellent results were ahieved. As seen in olumns lb ofTable 2, in about 70% of the ases our simple Lagrangian heuristi found an optimal solution, withslight variations, depending on the relax-and-ut version. To illustrate the quality of our primalheuristi, onsider the results obtained by PR&C(CD,LD) algorithm. In this ase, the averageerror of the heuristi was lower than 1.4% and only for 6 instanes this error was higher than 5%.However, the maximum error was 19.3% for miplib.noswot.p, the only instane for whih theerror exeeded 8.5%.For a better appreiation of the performane of the Lagrangian heuristi (LR-H), we omparethe exeution time it spent with the time needed by B&C(CD,LD) primal heuristi (LP-H) to �ndits best solution. This omparison an be visualized by inspeting the histogram in Figure 8 where,to be able to ompare proessing times, we restrited ourselves to the 35 ases for whih both, LR-Hand LP-H, reahed a proved optimum. This histogram reveals that LR-H �nds optimal solutionsmuh quiker than the LP based heuristi from de Souza and Balas. Besides, it shows that in 80%of the ases, the optimum was found in at most 0.01 seonds and, for all instanes, LR-H reahedthe optimum in at most one seond. On the other hand, in 80% (40%) of the ases, LP-H neededat least one (�ve) seond(s) to found an optimum.7.2 The hybrid algorithmsResults in Table 2 reveal the good performanes of our relax-and-ut algorithms that separate CDinequalities: they often produe good dual and primal bounds rapidly. However, they fail to solve3Entries in olumn Opt reveal that optimum values are known for 51 of the 62 instanes tested.18



Table 2: Results for VSP instanes: relax-and-ut algorithms NDR&C and PR&C.Instane NDR&C (CD) PR&C (CD) NDR&C (CD,LD) PR&C (CD,LD)label n d Opt ub lb t(s) ub lb t(s) ub lb t(s) ub lb t(s)dim.DSJC125.1 125 0.09 90 122 89 4.12 122 88 4.37 122 88 13.23 124 89 11.28dim.games120 120 0.09 102 121 99 2.14 120 99 1.67 120 99 2.79 120 99 4.64dim.myiel7 191 0.13 156 193 155 3.71 188 155 3.86 192 153 5.19 188 155 5.84dim.myiel6 95 0.17 76 90 75 1.43 89 75 1.18 92 73 2.05 89 75 2.59dim.queen12 12 144 0.25 97 131 97 6.69 131 97 7.57 133 97 21.71 132 97 25.83dim.queen11 11 121 0.27 81 109 81 5.56 108 81 5.97 110 81 17.76 109 81 20.23dim.queen10 10 100 0.30 67 88 67 4.04 88 67 4.47 89 67 12.28 89 67 16.74dim.queen8 12 96 0.30 65 85 65 4.02 85 65 3.69 86 65 13.26 86 65 18.30dim.queen9 9 81 0.33 55 69 55 2.73 70 55 3.21 70 55 8.84 71 55 13.57dim.queen8 8 64 0.36 43 53 43 1.67 53 43 2.10 54 43 7.28 54 43 9.53dim.miles1000 128 0.40 110 119 109 4.06 119 109 3.98 120 110 8.23 120 109 9.04dim.queen7 7 49 0.40 31 40 31 0.90 40 31 1.25 40 31 3.17 40 31 6.36dim.DSJC125.5 125 0.50 74 101 74 5.11 101 74 6.11 101 74 13.49 102 74 17.00dim.DSJC125.9 125 0.90 22 63 22 5.73 62 22 6.20 63 22 6.63 62 22 6.61mat.an96 96 0.20 72 89 72 1.78 87 72 2.33 89 72 6.52 89 72 9.09mat.an73 73 0.25 53 65 53 1.60 64 53 1.69 66 53 6.91 66 53 7.76mat.rw136 136 0.07 121 136 120 2.49 133 119 1.62 136 120 5.17 135 119 18.66mat.gre 115 115 0.09 95 114 91 2.98 113 93 3.45 114 90 9.01 114 91 9.82mat.L125.gre 185 125 0.15 104 120 104 4.64 119 104 4.19 120 104 20.01 122 104 22.37mat.an 144 144 0.16 126 136 126 5.60 138 126 5.75 138 126 24.88 140 126 24.48mat.L125.an 161 125 0.16 97 119 95 4.07 118 97 4.10 119 95 14.98 120 97 15.38mat.lund a 147 0.26 118 130 116 4.83 129 116 5.17 136 116 17.08 130 116 16.97mat.L125.bsstk05 125 0.35 101 108 101 3.48 104 101 3.68 116 101 8.35 107 101 10.30mat.L125.dwt 193 125 0.38 95 105 95 3.49 102 95 3.68 107 95 8.60 106 95 6.91mat.L125.fs 183 1 125 0.44 98 135 95 2.32 135 97 2.49 135 95 2.59 134 98 2.70mat.bsstk04 132 0.68 84 94 84 4.63 91 84 4.83 91 84 4.61 90 84 5.36mat.ar130 130 0.93 88 102 88 7.51 100 88 7.80 103 88 12.65 100 88 13.21mat.L100.steam2 100 0.36 76 82 76 2.85 82 76 2.84 83 76 9.43 83 76 10.76mat.L120.�dap025 120 0.39 102 110 102 2.57 111 102 2.76 108 102 4.49 110 102 6.08mat.L120.avity01 120 0.42 99 120 99 3.36 119 99 2.60 121 99 4.77 122 98 4.88mat.L120.�dap021 120 0.43 98 115 98 2.84 114 98 2.77 114 98 4.59 116 98 4.76mat.L120.rbs480a 120 0.46 88 95 88 3.40 96 88 3.60 97 88 6.44 96 88 5.72mat.L120.wm2 120 0.47 98 127 92 1.73 125 92 2.24 127 92 1.89 125 92 2.37mat.L100.rbs480a 100 0.52 73 82 73 2.26 82 73 2.46 81 73 2.74 82 73 2.70mat.L80.wm2 80 0.58 61 84 60 1.37 82 60 1.42 84 59 1.66 80 61 1.96mat.L100.wm3 100 0.59 77 100 77 2.43 99 74 1.87 103 71 1.96 99 76 2.64mat.L120.e05r0000 120 0.59 90 108 90 2.39 107 90 2.71 108 90 2.90 108 90 3.20mat.L100.wm1 100 0.60 74 102 71 2.23 90 73 2.30 102 71 2.39 95 73 3.42mat.L120.�dap022 120 0.60 84 91 84 3.87 90 84 4.10 92 84 4.70 91 84 4.20mat.L100.�dapm02 100 0.62 69 70 69 2.39 70 69 2.28 70 69 2.79 69 69 2.70mat.L120.�dap001 120 0.63 82 88 82 4.08 87 82 4.40 87 82 5.60 87 82 5.48mat.L100.e05r0000 100 0.64 70 84 70 1.92 85 70 1.99 84 70 2.10 85 70 2.19mat.L80.�dapm02 80 0.65 53 54 53 1.54 53 53 0.89 54 53 1.73 54 53 1.74mat.L120.�dapm02 120 0.65 86 94 86 3.44 92 86 3.50 93 86 4.94 93 86 4.37mat.L100.�dap001 100 0.68 64 71 64 2.76 69 64 2.87 73 64 3.06 70 64 3.20mat.L100.�dap022 100 0.68 62 71 62 2.83 71 62 2.91 71 62 3.12 71 62 3.34mat.L80.�dap001 80 0.72 54 62 54 1.40 62 54 1.52 62 54 1.47 62 54 1.75mat.L80.�dap022 80 0.76 41 53 41 1.65 52 41 1.85 53 41 1.95 51 41 2.00mat.L100.�dap027 100 0.81 69 70 69 2.48 69 69 1.60 69 69 1.94 69 69 2.12mat.L100.�dap002 100 0.82 66 86 66 1.91 85 66 2.21 86 66 2.05 85 66 2.45mat.L120.�dap002 120 0.82 68 91 68 3.09 89 68 3.15 88 68 3.41 89 68 3.37mat.L120.�dap027 120 0.85 83 84 83 3.51 83 83 3.02 84 83 3.83 83 83 2.33miplib.noswot.p 182 0.09 167 187 139 3.24 186 146 2.77 189 140 5.27 188 146 4.52miplib.khb05250.p 100 0.27 75 99 75 1.10 95 75 1.20 99 75 1.20 95 75 1.31miplib.stein27 r.p 118 0.32 62 116 62 3.78 106 62 4.20 118 62 18.84 110 62 23.56miplib.10teams.p 210 0.34 120 203 120 10.55 180 120 11.21 205 120 25.06 188 120 25.99miplib.mod010.p 146 0.38 90 145 88 3.99 126 86 5.26 149 85 6.74 131 85 19.19miplib.l152lav.p 97 0.40 61 97 60 1.73 79 60 2.34 95 58 2.60 83 60 6.47miplib.lp4l.p 85 0.46 50 80 47 1.87 63 48 1.95 81 48 1.82 70 49 4.32miplib.air03.p 124 0.61 75 124 73 3.45 107 73 4.64 123 74 5.83 109 73 7.90miplib.mis03.p 96 0.63 52 83 52 3.54 72 52 2.81 82 52 9.85 78 52 11.03miplib.mis07.p 212 0.80 116 218 113 12.64 212 114 11.80 214 115 20.19 212 114 13.92
19



8,5%

8,5%

3,0%

80,0%

8,5%

3,0%

17,0%

3,0%

20,0%

40,0%

8,5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[0,0.01]

(0.01,0.1]

(0.1,0.5]

(0.5,1]

(1,5]

(5,10]

(10,30]

(30,60]

T
im

e
R

a
n

g
e

(s
)

% of Instances

LP-H

LR-H

Figure 8: Time to optimum for Lagrangian (LR-H) and LP-based (LP-H) heuristis.to proven optimality the vast majority of the instanes. Moreover, inspeting the behavior of theB&C algorithm developed in [12℄, whih we had aess to, we notied that a ouple of CD inequalitiesneeded to be separated and added to the model before good dual bounds are omputed. Thus, itwould be very helpful if one ould quikly generate a set of initial CD uts.The hybrid algorithm disussed in Setion 5 appear as a possible option to handle this situation.Aording to the exeution ow depited in Figure 6, any of our relax-and-ut algorithms ould beused to generate uts that would allow the IP solver work on a tighter VSP formulation.Before we report on the results ahieved by the hybrid algorithms, we rede�ne our data set.Initially, from the 62 instanes originally seleted to be part of the benhmark, only the 58 notsolved to optimality by any relax-and-ut algorithms were kept. Later, we eliminate from ouranalysis the 11 instanes that were not solved by any of the algorithms used in the totality ofthe experiments. We did so beause they ould introdue spurious information that ould havedistorted our onlusions. Thus, unless stated otherwise, the next disussions apply only to the 47instanes that are left.Computational experiments were performed taking into aount a onsiderable variety of hy-brid on�gurations. The results revealed a oating performane of the algorithms, depending onthe density of the input graph. This observation on�rms the reports in [12℄. There, instanes arelassi�ed to be of high (� 35%) or low density aording to the density of the input graphs. We pro-eeded similarly in our preliminary tests. However, these initial tests led us to regroup the instanesin di�erent lassi�ation ranges: mid-high (> 20%) and low density instanes, orresponding to atotal of, respetively, 38 and 9 instanes. The results reported in this setion are organized in lightof this regrouping. Furthermore, for eah these new groups, the omparison measure used as a20



basis for the majority of our onlusions was the total amount of time required and nodes exploredto solve all the instanes in eah group.7.2.1 Results for mid-high density graphsWe now report the main results obtained with mid-high density instanes whih orrespond to themajority of our �nal test set. Table 3 ompares the outomes of the most promising algorithms formid-high density instanes. A total of three postponed and non-delayed relax-and-ut on�gura-tions have their results reported. These on�gurations prioritize the separation of CD inequalities,in aordane to what is suggested in [12℄. Also, we display the results returned by two variationsof the B&C algorithms from [12℄ { to our knowledge, the best ones available in literature to solvethe VSP { and by xpress under default settings.The number of nodes and the time required for eah algorithm are reported. When the timeexeeds 1800 seonds, it means that the instane was not solved by the orresponding algorithmwithin that time bound. The main headings that identify the relax-and-ut on�gurations whoseresults are presented in Table 3 have the following meaning: (i) Only CD Cuts: orresponds to theusage of our NDR&C(CD) (or PR&C(CD)) algorithm followed by L-B&C, with sep =hL-CD,CDi.This on�guration is denoted later by ndhybrid(CD) (phybrid(CD)); (ii) CD Cuts and L-LDCuts: ombines the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-and-ut algorithm withL-B&C, with sep =hL-CD,CD,L-LDi. This on�guration is denoted later by ndhybrid(CD,L-LD)(phybrid(CD,L-LD)); (iii) CD and LD Cuts: refers to NDR&C(CD,LD) (or PR&C(CD,LD))preeding L-B&C, with sep =hL-CD,CD,L-LD,LDi. This on�guration is denoted later by nd-hybrid(CD,LD) (phybrid(CD,LD)). Also, olumns B&C(CD) and B&C(CD,LD) orrespond to thealgorithm desribed in [12℄ separating, respetively, only CD and both, CD and LD inequalities.Finally, xpress results are reported on the last two olumns.At the bottom of eah olumn and for eah algorithm, three summations are shown. The �rstof them orresponds to the total time (or total number of nodes explored in the searh trees) onlyfor those algorithms that solved to optimality the whole set of instanes listed in the table. Tounderstand the other summations, let S0 be the subset of instanes in Table 3 that are solved byany hybrid version and any B&C on�guration within 30 minutes, i.e., all of them exept instanemiplib.mis07.p. Likewise, let S00 be the subset of instanes in S0 also solved by xpress within thesame time limit. (i.e., S0nS00 = fdim.DSJC125.9, mat.lund a, mat.bsstk04, mat.L120.fidap001and miplib.air03.pg). The penultimate (last) line ontains the total number of nodes and timeneeded by eah approah to solve all the instanes in S0 (S00) subset. Unless stated otherwise, ouranalyses are restrited to instanes in S00 only when xpress results are also under onsideration.Entries with the symbol \�" orrespond to the instanes that were solved after the LP moduleexeution, i.e., before branhing. These entries permit us to onlude that, besides the four instanesalready solved during the Lagrangian phase, six more instanes were solved to optimality beforeentering the L-B&C module in Figure 6.Comparing the last three lines in Table 3, we an onlude that: (1) all the six hybridproposed outperform the B&C algorithm detailed in [12℄ over the S0 data set; (2) over the subsetS00 of instanes, the hybrid algorithms also performed better, in terms of time, than the otherthree approahes. However, the number of nodes of the searh tree explored by B&C(CD) isslightly smaller than that of our best hybrid on�gurations; (3) algorithms based hiey onCD inequalities seem to be the most promising approahes urrently available to takle mid-high21



Table 3: Results for VSP instanes using hybrid on�gurations, B&C algorithms from [12℄ and xpress.Mid-high density instane Only CD Cuts CD Cuts and L-LD Cuts CD and LD Cuts B&C [ref.[12℄℄ B&B (xpress)ndhybrid phybrid ndhybrid phybrid ndhybrid phybrid B&C(CD) B&C(CD,LD)label d(> 20%) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s)dim.queen8 8 0.36 1807 75.02 1707 90.22 1863 85.01 2283 136.40 2541 125.79 2283 136.03 4315 70.51 3143 58.27 23131 126.29dim.miles1000 0.40 17 12.97 13 11.62 7 10.82 9 14.05 9 11.52 9 14.65 11 18.37 35 26.22 287 83.96dim.queen7 7 0.40 391 14.11 313 16.73 403 16.56 243 20.48 253 17.13 243 20.89 431 10.77 265 9.93 27833 78.53dim.DSJC125.9 0.90 4275 596.45 4143 537.01 4229 532.45 6405 722.50 6375 743.80 6417 775.66 33833 1107.29 28475 1291.54 51261 1800.00mat.an73 0.25 5343 46.15 5505 50.57 4975 64.53 5157 59.63 5367 57.37 5195 59.35 5123 71.50 5615 46.44 33195 147.62mat.lund a 0.26 3145 401.39 2715 384.14 2033 454.57 3565 543.09 3345 479.10 3005 511.01 2231 462.03 2709 332.09 27506 1800.00mat.L125.bsstk05 0.35 709 85.65 - 4.53 - 7.25 - 8.02 - 7.25 - 8.02 1573 326.20 1625 196.01 1635 211.38mat.L125.dwt 193 0.38 21 23.11 27 25.07 21 34.49 39 40.78 41 45.06 39 40.66 131 97.31 721 134.80 17767 1301.43mat.L125.fs 183 1 0.44 29 28.11 21 26.16 29 32.82 746 69.37 29 43.27 27 41.02 25 35.45 29 31.74 1515 182.78mat.bsstk04 0.68 13 22.90 - 4.35 13 22.02 - 5.68 31 31.14 - 5.68 133 124.60 247 132.27 16572 1800.00mat.ar130 0.93 83 160.19 83 163.80 103 186.66 73 231.78 75 246.58 73 235.17 101 370.67 101 329.59 957 926.12mat.L100.steam2 0.36 45 21.02 41 20.67 45 25.73 79 38.06 77 34.79 69 35.92 149 40.83 241 37.98 11577 229.98mat.L120.�dap025 0.39 - 2.50 - 2.59 - 3.58 - 4.75 - 3.58 - 4.75 13 12.00 49 17.67 889 107.73mat.L120.avity01 0.42 13 9.13 15 10.50 11 9.62 35 18.35 35 14.87 15 11.83 13 16.88 41 21.52 813 91.69mat.L120.�dap021 0.43 5 5.63 7 5.88 3 7.14 3 6.98 3 7.34 3 7.00 35 24.74 67 36.63 1031 150.22mat.L120.rbs480a 0.46 125 64.01 141 67.75 123 71.81 75 59.20 75 60.34 75 61.14 367 218.67 3007 249.27 15619 1308.79mat.L120.wm2 0.47 33 28.04 35 36.68 75 19.47 73 26.55 75 20.25 33 38.57 33 47.82 33 45.71 351 88.71mat.L100.rbs480a 0.52 59 11.90 67 15.60 61 18.18 45 15.44 49 17.81 45 16.76 63 21.33 91 21.34 2951 189.73mat.L80.wm2 0.58 9 3.28 11 4.31 13 4.82 51 6.07 13 5.90 13 6.53 13 4.90 15 5.65 379 67.22mat.L100.wm3 0.59 11 7.63 13 10.48 17 12.00 61 16.24 19 18.64 13 10.66 17 13.26 15 13.34 379 65.70mat.L120.e05r0000 0.59 5 7.05 3 7.63 7 7.70 7 7.74 5 8.51 7 7.82 9 11.49 43 25.31 2703 543.05mat.L100.wm1 0.60 19 10.74 13 9.18 17 9.59 71 18.40 27 14.35 17 12.00 25 15.67 35 24.36 877 94.07mat.L120.�dap022 0.60 77 22.53 17 13.75 81 27.72 43 20.60 41 20.28 43 21.22 53 38.17 81 53.04 13319 1522.86mat.L120.�dap001 0.63 - 4.94 - 5.07 - 6.71 - 6.66 - 6.71 - 6.66 31 32.57 189 84.70 33120 1800.00mat.L100.e05r0000 0.64 15 8.39 17 8.17 15 8.75 19 6.46 33 8.50 19 6.59 19 11.19 39 12.49 3559 284.25mat.L120.�dapm02 0.65 - 2.87 - 2.91 - 4.28 - 3.65 - 4.28 - 3.65 17 24.52 57 55.66 4457 552.37mat.L100.�dap001 0.68 35 7.10 35 7.54 33 9.00 29 9.87 35 11.46 29 9.82 49 15.96 73 23.21 34321 950.38mat.L100.�dap022 0.68 109 22.66 105 22.36 99 23.75 54 16.17 63 18.00 54 17.19 171 52.20 93 27.31 57415 1594.48mat.L80.�dap001 0.72 - 1.55 - 1.55 - 1.61 - 1.75 - 1.61 - 1.75 1 1.76 33 5.20 3523 101.25mat.L80.�dap022 0.76 197 14.25 159 11.90 135 11.92 57 7.18 55 7.89 57 7.68 173 15.28 45 5.51 19279 308.05mat.L100.�dap002 0.82 5 3.22 3 3.52 5 3.48 5 4.00 3 3.10 5 4.05 7 4.75 29 10.19 2111 240.58mat.L120.�dap002 0.82 5 6.88 1 5.73 5 6.60 3 5.56 3 6.72 3 5.58 73 41.59 93 48.59 10415 1284.46miplib.khb05250.p 0.27 119 3.94 121 5.26 119 4.28 121 5.16 119 4.48 121 5.43 91 3.21 111 4.84 3641 66.37miplib.l152lav.p 0.40 213 46.27 185 54.66 245 64.35 611 72.76 749 103.57 129 60.48 283 70.12 853 101.98 22885 567.68miplib.lp4l.p 0.46 275 34.27 271 33.10 321 37.02 2083 93.82 1295 69.37 265 50.19 551 50.10 5965 151.72 27523 409.73miplib.air03.p 0.61 115 111.94 117 119.98 117 111.50 135 139.86 119 146.10 111 163.87 135 167.35 135 180.01 14215 1800.00miplib.mis03.p 0.63 2993 111.95 2717 121.67 3293 138.31 2589 168.23 2785 178.78 2225 173.42 4819 138.07 3947 155.22 53417 1794.42miplib.mis07.p 0.80 173 1280.36 177 1519.38 169 1162.75 1102 1809.86 117 1402.40 147 1704.75 125 1800.00 78 1800.00 2243 1800.00sum total of S 20480 3320.10 18789 3442.02 18685 3258.85 - - 23861 4007.64 20789 4303.45 - - - - - -sum total of S0 20315 2039.74 18621 1922.64 18516 2096.10 24769 2631.29 23744 2605.24 20642 2598.70 47706 3286.19 58345 4007.35 - -sum total of S00 15912 1303.51 14361 1256.23 14157 1423.42 18229 1756.59 17219 1677.49 14114 1646.83 13574 1854.38 29299 2318.83 427260 17471.88
22



density instanes. This observation reinfores the onlusions reported in [12℄ about the use andthe strength of CD inequalities to solve high (� 35%) density instanes. Nevertheless, the outomesfrom our experiments showed that, for instanes mat.an73, mat.lund a and miplib.khb05250.p,both hybrid and branh-and-ut algorithms outperform xpress. Hene, one ould push the frontierof the onlusions of de Souza and Balas to inlude mid-high density (over 20%) graphs.Besides, we notie that �ve out of our six on�gurations were able to solve the instanemiplib.mis07.p whereas no other approah tested solved it within 30 minutes. Diret om-parison of these �ve algorithms over the whole set of instanes in Table 3 allows us to onludethat our three best on�gurations ome from using only CD uts and from using NDR&C(CD,LD)as relax-and-ut algorithm ombined with L-B&C, with sep =hL-CD,CD,L-LDi denoted, as saidbefore, by ndhybrid(CD,L-LD).In addition to that onlusion, for a fairer omparison of the entire set of algorithms, we restritourselves to instanes in S00 (last row of Table 3). One an see that phybrid(CD) is the fastestalgorithm. Figure 9 highlights the results obtained with phybrid(CD) and B&C(CD), the bestbranh-and-ut version from [12℄. The performane of these algorithms is measured as a perentageof the time required by xpress B&B to solve the instanes in S00. First, notie that, in general, bothalgorithms are muh faster than xpress B&B under default settings. Atually, only for instanemat.L125.bsstk05 xpress surpassed B&C(CD). Also, on average, phybrid(CD) is about twotimes faster than B&C(CD): the former requires, on average, about 10.6% of the omputation timeused by xpress to solve the instanes while the latter needs approximately 19.3% of that time.
PHYBRID(CD) and B&C(CD) comparative time performance over B&B
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Figure 9: Time performane: phybrid and B&C(CD) against xpress (default) B&B.Figure 10 exhibits a graphial omparison of the omputation times among the six ombinedapproahes reported in Table 3 against the two best B&C versions. It highlights the big savingsobtained by the hybrid algorithms with respet to the B&C algorithms. For instane, the e�etof replaing B&C(CD,LD) by phybrid(CD) would be a CPU time redution of 52%. Also, onaverage, onsidering the results for the six variations of our hybrid approah, time savings overB&C(CD,LD) and B&C(CD) are, respetively, of about 42% and 30%.23



Bak to Table 3, one may argue that instane dim.DSJ125.9 may have distorted a little theanalysis to the detriment of the B&C algorithms. In fat, it had ontributed with high amountsto both the total number of nodes and the running time. However, it should be notied that thisinstane does not belong to S00 and the superiority of the hybrid algorithms over this set is alsonotieable. For this set, the redution in time by using phybrid(CD) in plae of B&C(CD) was of32.3% (ompared to 41.5% for S0). Moreover, phybrid(CD) ran faster than B&C(CD) in 92% ofthe ases, namely, in 35 out of the 38 mid-high density instanes tested. This an be easily seemwith the help of Figure 12 where the time performane of the two odes are ompared with respetto graph densities.
HYBRID: percentage of time savings over B&C
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Figure 10: Time performane: hybrid variants � B&C algorithms desribed in [12℄.Consolidated � instane-based analysis. Although usual in literature, analyses of omputa-tional results foused on the total time spent in solving the entire data set may mislead the onlu-sions. Driven by this observation, we onstruted the graphi in Figure 11 that shows an alternativeway of omposing results on time performane. There, for eah hybrid algorithm, the perentage ofB&C(CD) CPU time onsumed to solve eah instane in S0 is omputed and an arithmeti mean istaken. Basially, the average expression is given by AV G(a) = 100� 1jS0j�Pi2S0( t(i;hybrid(a))t(i;B&C(CD)) ); a 2f1; :::; 6g, where a are labels orresponding to the hybrid algorithms tested and t(i; A) refers tothe CPU time algorithm labeled as A takes to solve instane i. Hene, those values refer to theperentage of B&C(CD) exeution time one should expet to be spent, on average, by eah one ofour algorithms. The premise adopted is that, under disrepanies of running times, replaing totaltime by perentage may lead to a more suitable analysis.Comparing graphis in Figures 10 and 11 we see, however, that quite similar values were gen-erated, presenting deviation inferior to 4%. For example, the time redution with ndhybrid(CD)in Figure 10 is of 37.9% while in Figure 11 it is of 41.3%. Notie that, rather than unexpeted,the similarities between both results reinfore what is shown in Figure 10. Taking into aountthese omputational results onerning time performane we an onlude that ndhybrid(CD) and24



phybrid(CD) are the best algorithms we developed. To better illustrate that in details, graphiin Figure 12 arries out a omparison between both approahes. Similarly to what happened inFigure 11, we adopted perentages over B&C(CD) running times. The results are presented ininreasing order of graph density. One an see that, in general, for instanes having input graphdensity below to 60%, ndhybrid(CD) outperforms the postponed version. On the other hand,phybrid(CD) shows to be more suitable to solve higher density instanes.
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Time Performance of Non-Delayed and Delayed HYBRID: global density.
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signi�ane level.7.2.2 hybrid algorithms and sparse graphsComputational results reported in [12℄ disourage the use of utting planes orresponding to CDor LD inequalities when the input graph is sparse. There, in general, the inrease in omputingtime per searh tree node resulted in an inrease of total omputing time. In other words, usingxpress with default settings was, normally, more advantageous for instanes assoiated to low-density graphs. Despite these reports, we deided to investigate if that onlusion goes on beingtrue when using a more reent xpress solver version. Thus, some variations of our hybrid approahwere tested, as well as the two best branh-and-ut on�gurations from [12℄. Tables 4 and 5 andFigure 13 doument the main results obtained with these omputational experiments.Table 4 shows, essentially, four on�gurations of our hybrid algorithms: two postponed andtwo non-delayed relax-and-ut were used as preproessing. The number of nodes and the totalCPU time required are reported for eah algorithm. When the time is � 1800 seonds, it meansthat the instane was not solved by the orresponding algorithm. The main headings that iden-tify the relax-and-ut on�gurations whose results are presented in Table 4 have the followingmeaning: (i) Only CD Cuts: orresponds to the usage of our NDR&C(CD) (or PR&C(CD)) fol-lowed by L-B&C, with sep =hL-CD,CDi; (ii) L-CD Cuts and L-LD Cuts: ombines the usageof NDR&C(CD,LD) (or PR&C(CD,LD)) preeding L-B&C, with sep =hL-CD,L-LDi. (iii) CDCuts and L-LD Cuts: regards to the usage of NDR&C(CD,LD) (or PR&C(CD,LD)) as relax-and-ut algorithm with L-B&C, having sep =hL-CD,CD,L-LDi; (iv) CD and LD Cuts: refers toNDR&C(CD,LD) (or PR&C(CD,LD)) preeding L-B&C, with sep =hL-CD,CD,L-LD,LDi.Complementary, in Table 5, olumns B&C(CD) and B&C(CD,LD) orrespond to the algorithmdesribed in [12℄ separating, respetively, only CD and both, CD and LD inequalities. Also, theresults returned by xpress under default settings are shown. In both tables, at the bottom ofeah olumn, two summations are shown for eah algorithm. To understand them, let _S be thesubset of instanes with sparse graphs that are solved by any hybrid and any B&C on�gurationwithin 30 CPU minutes, i.e., we exlude instanes mat.an96, mat.rw136 and mat.an 144. Inaddition, let �S � _S be the subset of instanes in _S also solved by xpress within that time limit.The penultimate (last) line ontains the total number of nodes and time needed by eah approahto solve all the instanes in _S ( �S) subset.Examining the values orresponding to the variants of our ombined approah (Table 4, sub-set _S) we an dedue that our best performanes were attained by ndhybrid(L-CD,L-LD) andphybrid(L-CD,L-LD). This observation lead us to infer that, in this ase, uts disovered duringthe Lagrangian phase were helpful.Comparing B&C algorithms via results in Table 5 we an onlude that separating both, CDand LD uts, is better than identifying only CD inequalities. So, as opposed to what has been seento mid-high density instanes, B&C(CD,LD) outperforms B&C(CD).Inspeting the behavior of xpress in Table 5, we an see that it was the only algorithm to solveinstanes mat.an96 and mat.rw136. Also, together with ndhybrid(CD,L-CD), they were the onlyones to solve instane mat.an 144. On the other hand, xpress was the single approah to failwhen trying to solve dim.myiel7. Now, restriting ourselves to the other �ve instanes (i.e., �S set),results suggest that our three best hybrid algorithms, ndhybrid(L-CD,L-LD), phybrid(L-CD,L-LD) and phybrid(CD,L-LD), outperform both, B&C from [12℄ and xpress, when the riterion is27



Table 4: Computational results for VSP low density (� 20%) instanes: NDR&C and PR&C.Low density instane Only CD Cuts L-CD Cuts and L-LD Cuts CD Cuts and L-LD Cuts CD and LD Cutsndhybrid phybrid ndhybrid phybrid ndhybrid phybrid ndhybrid phybridlabel d nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s) nodes t(s)dim.games120 0.09 84625 789.82 86767 978.87 96985 740.16 97349 754.08 82677 1066.70 85615 869.15 87667 1071.31 85787 1026.52dim.myiel7 0.13 1823 304.02 2493 383.73 2499 287.90 2799 270.30 2251 374.36 1991 269.26 2779 442.20 2491 429.75dim.myiel6 0.17 323 9.32 333 10.86 415 10.30 395 10.03 373 13.44 385 11.03 409 14.47 319 13.15mat.an96 0.20 191769 1801.32 162842 1801.58 192310 1803.07 157351 1803.77 131426 1803.07 134256 1803.77 159271 1803.07 129012 1803.77mat.rw136 0.07 72063 1802.28 80603 1801.70 345446 1803.05 155538 1812.90 367218 1803.05 88741 1812.90 334492 1803.05 71316 1812.90mat.gre 115 0.09 7185 92.91 6471 92.90 6393 93.32 6371 89.77 6623 129.86 6047 111.01 6939 127.35 5993 113.05mat.L125.gre 185 0.15 1169 94.53 1089 92.68 1655 83.39 1639 77.56 1139 105.65 1255 106.63 1191 105.05 1255 111.04mat.an 144 0.16 38265 1500.97 39849 1807.43 29193 1818.34 24692 1818.96 26048 1818.34 21465 1818.96 24977 1818.34 21666 1818.96miplib.noswot.p 0.09 27697 1265.17 27759 1351.65 29227 687.80 29219 715.29 27833 1342.92 17853 740.22 18879 882.22 17783 1012.83sum total of _S 122822 2555.77 124912 2910.69 137174 1902.87 137772 1917.03 120896 3032.93 113146 2107.30 117864 2642.60 113628 2706.34sum total of �S 120999 2251.75 122419 2526.96 134675 1614.97 134973 1646.73 118645 2658.57 111155 1838.04 115085 2200.40 111137 2276.59Table 5: Computational results for VSP low density (� 20%) instanes: B&C and B&B.Low density instane B&C B&B (XP)B&C(CD) B&C(CD,LD)label d nodes t(s) nodes t(s) nodes t(s)dim.games120 0.09 82963 886.29 85051 980.73 161485 1077.10dim.myiel7 0.13 3009 562.94 2033 328.17 28881 1800.00dim.myiel6 0.17 377 14.60 423 11.69 5243 62.32mat.an96 0.20 107849 1800.00 167804 1800.00 177163 1569.57mat.rw136 0.07 62049 1800.00 82714 1800.00 10083 81.55mat.gre 115 0.09 6517 103.87 6539 83.22 37177 295.66mat.L125.gre 185 0.15 1205 131.53 1603 71.00 15795 273.68mat.an 144 0.16 19742 1800.00 27700 1800.00 12683 339.10miplib.noswot.p 0.09 27891 1343.88 17763 845.51 34719 849.71sum total of _S 121962 3043.11 113412 2320.32 � �sum total of �S 118953 2480.17 111379 1992.15 254419 2558.47
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proessing time. These results an be more learly visualized in Figure 13 that ompile the resultsof all approahes, onfronting them to xpress B&B results. Observe that xpress standard B&Bode is by far the worst algorithm with respet to the number of nodes explored by the searh tree.Similarly, in terms of proessing time, it is worse than all approahes, exept ndhybrid(CD,L-LD)version.
HYBRID and B&C approaches against B&B
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The seletion of hybrid implementations to test these hard miplib instanes was based on theresults reported in the previous setions. Aordingly, to test mid-high and low density instanes wehoose, respetively, ndhybrid(CD) and phybrid(L-CD,L-LD) versions. The hoie onerningmid-high density instanes was immediate from the previous analyses on the results reported inTable 3 and Figure 11. However, due to the very similar performane between ndhybrid(L-CD,L-LD) and phybrid(L-CD,L-LD) reported in Table 4, no natural hoie omes out. However, a quikinstane-based analysis deided in favor of phybrid(L-CD,L-LD).Results in Table 6 on�rm the diÆulty found by the various algorithms we tested to solvethose instanes within the time limit of 30 minutes. However, regarding �nal gaps (entered asperentages), they reveal that our hybrid algorithm outperforms the other ones in 4 out of the 7instanes. Also, it was able to solve p0282 in less than 30% of the time needed by the seond bestalgorithm.Final gaps reported in Table 7 show that, in 12 out of the 14 instanes, our ombined approahis at least as good as the other algorithms. Notie that our algorithm and the B&C desribed in[12℄ were apable to solve the same subset of instanes. However, our algorithm did it faster thanthe latter. On the other hand, the number of nodes yielded by our searh trees were usually higherthan the amount of nodes generated when applying de Souza and Balas' algorithm.Table 6: Computational results for miplib open problems: mid-high density (> 20%) instanes.Instane ndhybrid(CD) B&C(CD) B&B B&C[6℄label d(> 20%) n R&C total t(s) nodes gap(%) t(s) nodes gap(%) t(s) nodes gap(%) gap(%)fast0507 20.82 484 24.57 1824.57 134 57.20 1800.00 194 68.49 1800.00 1188 86.39 59.14stein27 r 32.20 118 4.06 1804.06 22930 34.21 1800.00 20577 36.42 1800.00 89909 32.64 38.71air05 34.37 408 39.03 1839.03 173 75.76 1800.00 233 83.43 1800.00 317 88.19 77.6310teams 34.45 210 10.36 1810.36 1937 57.29 1800.00 3450 35.43 1800.00 13827 48.10 39.17mod010 37.97 146 5.04 1805.04 12336 3.58 1800.00 10146 13.69 1800.00 39346 27.82 13.79mis05 40.09 266 13.61 1813.61 246 55.57 1800.00 129 70.54 1800.00 5467 60.13 58.67p0282 40.89 161 4.43 31.58 23 0.00 114.99 73 0.00 1112.33 2399 0.00 10.40Table 7: Computational results for miplib open problems: low density (� 20%) VSP instanes.Instane phybrid(L-CD,L-LD) B&C(CD,LD) B&B B&C[6℄label d n R&C total t(s) nodes gap t(s) nodes gap t(s) nodes gap gapset1al 0.78 492 11.98 162.30 13567 0.00 471.28 11439 0.00 1695.38 39175 0.00 1.25set1l 0.78 492 11.98 165.72 13567 0.00 464.22 11439 0.00 1731.34 39175 0.00 1.25set1h 0.81 477 10.80 153.31 13512 0.00 430.26 11373 0.00 1800.00 30008 0.36 1.08�xnet3 r 1.10 478 12.91 20.73 77 0.00 21.24 71 0.00 406.00 5399 0.00 0.22mis06 1.21 696 18.07 1818.07 12426 5.52 1800.00 7363 5.60 1800.00 13862 15.63 10.54qnet1 o 3.59 369 7.64 60.03 677 0.00 215.86 497 0.00 1800.00 16989 2.38 4.69qnet1 3.60 407 10.57 212.52 1085 0.00 532.12 1115 0.00 1800.00 19023 8.32 7.26danoint 4.49 664 52.14 1852.14 130 27.11 1800.00 1513 29.04 1800.00 5114 70.70 38.66gams 5.13 291 8.42 373.46 5235 0.00 419.52 4869 0.00 1800.00 22587 1.52 2.22adrud 5.50 795 43.40 1254.74 193 0.00 1325.10 205 0.00 1800.00 1110 2.76 2.88p0548 7.82 257 5.57 1805.57 125611 18.28 1800.00 24086 10.69 1800.00 41048 13.62 11.54air04 16.67 782 71.29 1871.29 17 73.54 1800.00 220 87.29 1800.00 18 89.67 82.44air06 16.82 570 51.00 1851.00 67 70.42 1800.00 184 85.51 1800.00 710 83.49 162.50stein45 r 19.59 331 30.83 1830.83 88 79.95 1800.00 723 84.61 1800.00 7253 73.29 80.79Notie that twelve miplib instanes remained unsolved after our experiments with our ombinedapproah. For these problems, we kept our fous on the primal side. Thus, we deided to run againone of our relax-and-ut algorithms to attempt to obtain better primal bounds. In order to doit, we rerun PR&C(CD,LD) with di�erent settings of parameters. Thus, we adopted: � = 25represent the size of the union of the shores in eah instane. Therefore they are the omplements (with respet tothe number of verties) of the separator size, whih are the values reported in [6℄.30



(number of passes of the PR&C algorithm) and �k (see 9) was updated at eah 50 onseutiveiterations without improvement on the upper bound and the maximum number of iterations waslimited to 5000. Besides, at eah SM iteration, the primal heuristi was alled at most four times,stopping at the �rst all with suess in obtaining an improvement on the best primal boundknown so far. At eah all, a distint hoie of the parameter �� (see Figure 4) that ontrols theweighting method is performed. After some preliminary tests, the �nal sequene of alls adoptedwas: �� = h1; 0i ; �� = h0; 1i ; �� = h1; 1i and �� = h0; 0i. The results obtained are shown in Figures 14and 15.The graphi in Figure 14 ompares the results produed by our heuristi against de Souza andBalas' primal results reported in [12℄. Sine the running times of PR&C(CD,LD) remained below90 seonds for all instanes used in this test, we imposed this time limit to the exeution of deSouza and Balas' algorithm. The graphi shows, for eah instane, how muh better/worse is thebest solution found by both approahes when ompared to the bounds reported in [6℄. Thus, apoint above x axis represents a better solution than the best we know from literature. Observethat, for this subset of instanes, the solutions orresponding to our Lagrangian heuristi are, ingeneral, muh better and almost dominate those from the heuristi embedded in de Souza andBalas' algorithm. It is worth noting that in 83% of the ases our heuristi produed results as goodas the best VSP solution already reported.
Primal Bound Improvements
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Figure 14: Performane of the heuristis embedded in phybrid(CD,LD) and B&C from [12℄ forhard miplib instanes within a 90 seonds running time limit.Now, regarding the exeution time to reah the best solution, we build up the graphi shownin Figure 15. Observe that for all instanes but two, air04 and air05, our Lagrangian heuristineeded less time than de Souza and Balas' heuristi to yield their best solutions.31



Primal Bound Improvements: time to best bounds
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Figure 15: Computation times required by phybrid(CD,LD) and by B&C(CD,LD) to produetheir best primal bounds.8 Conlusions and future worksIn this paper we investigated the ombined usage of Lagrangian relaxation and utting planes inthe development of exat algorithms for the vertex separator problem. Though the pure relax-and-ut algorithms resulting from this ombination are usually not strong enough to reah thisgoal, they proved to be a very e�etive preproessing tool for a hybrid exat algorithm. In thisalgorithmi framework, generially named here as hybrid, the Lagrangian algorithms are sueededby a branh-and-ut algorithm. The latter is fed by invaluable outomes from the (Lagrangian)preproessing phase. This inludes strong primal bounds and utting planes separated during therelax-and-ut algorithms and orresponding to valid inequalities for the VSP presented in [3℄.Computational results were obtained for benhmarks from the literature and ompared withthe best known results published so far. These experiments show that the best variants of thehybrid method we developed outperform the pure B&C algorithm introdued by de Souza andBalas in [12℄, to our knowledge the best exat algorithm available for the VSP. For mid-high densityinstanes, the most diÆult ones for the VSP, our algorithms beat the best branh-and-bound odein 92% of the ases tested.Besides, we show that the Lagrangian phase is a very e�etive heuristi for the VSP, oftenproduing optimal solutions extremely fast. Moreover, for the miplib instanes whose optimal stillremains unknown to date, our Lagrangian heuristi in most ases obtained stronger primal boundsthan those reported earlier in the literature.Further developments and implementation issues should be onsidered to possibly improve theperformane of our urrent framework. This inludes the study of di�erent relaxations, the designof more sophistiated primal heuristis and the identi�ation of new valid inequalities for the VSPpolytope disussed in [3℄ to be used as utting planes in the relax-and-ut algorithms.Aknowledgements. The �rst author was supported by a dotoral fellowship from apes (Brazil-ian Ministry of Eduation). The seond author was partially supported by grants 301732/2007-8,32
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A The omplexity of the separation of CD inequalitiesLet LRP be the Lagrangian subproblem resulting from the relaxation of the set of onstraints (2).Proposition A.1 Let G = (V;E) be the input graph for a VSP instane and �u an optimal valuesolution to LRP. Further, let S � V be the set of verties i 2 V suh as �ui1+ �ui2 = 1 and G[S℄ thesubgraph indued by S in G. Then, there exists W � V whose CD inequality is violated by �u if andonly if S is a dominator and G[S℄ is onneted.Proof: ()) Suppose that there exists a CD inequality violated by �u. Let W be the onneteddominator assoiated to this inequality. Then, �ui1 + �ui2 = 1 must hold for every i 2 W . Thus,u(W ) = jW j and, by onstrution of S, every vertex in W is also in S. Hene, W � S and S is adominator too.Let us suppose that S is disonneted. Indeed, given that W � S and W is onneted, thereis v 2 SnW with no adjaent vertex in W . Hene, we arrive to a ontradition beause W is adominator.(() Do W = S �Corollary A.1 The separation of CD inequalities over G[S℄ has polynomial time omplexity whenthe onstraints ui1 + ui2 � 1;8 i 2 V are kept in LRP.Notie that, if onstraints (1) are relaxed, an optimal solution �u of LRP may assign the samevertex i in two distint sets. Figure 16 depits a ounterexample for Proposition A.1 in this ase.In this piture if i is gray then �ui1 = �ui2 = 1, otherwise, �ui1 = �ui2 = 0. Observe that, together,gray and blak verties form a onneted dominator whose orresponding CD inequality is violatedalthough G[S℄ is disonneted.
(1,1) (1,1)Figure 16: Counterexample for Proposition A.1 when onstraints (1) are relaxed.Appendix B presents a desription of a polynomial time dynami programming algorithm thatsolves the separation problem of CD inequalities in polynomial time when the onstraints ui1+ui2 �1;8i 2 V are satis�ed.Corollary A.2 Let S be the set of verties suh that �ui1+�ui2 � 1; i 2 V , and G[S℄ be the subgraphindued by S in G. Then, if S is a dominator and G[S℄ is onneted, the CD inequality assoiatedto S is violated by �u.This result shows that our separation routine, desribed in Setion 4.1.1 an only be viewedas an heuristi to separate CD inequalities. In order to analyse the omplexity of the separationproblem, let us rewrite the CD inequality assoiated to a onneted dominator W of G as follows:u(W ) � jW j � 1 � u(W ) < jW j � Xi2W(ui1 + ui2) < jW j:35



Therefore, if �u violates the CD inequality to W , we must have Pi2W (ui1 + ui2) � jW j.Now, onsider the following minimum weighted onneted dominator problem of a graph G:INSTANCE: Undireted graph G = (V;E) and weight wi 2 Z for all vertex i 2 V .PROBLEM mWCD (Minimum Weighted Conneted Dominator): Find a onneted dominator Wwhose weight, given by Pi2W wi, is minimum.Taking wi = �ui1 + �ui2 for all i 2 V , we have that the separation problem of CD inequalities an besolved through the optimization problem just desribed. If the optimal value is equal to or largerthan jW j, a CD inequality violated is found. Otherwise, all the CD inequalities are satis�ed by �u.From now on, we fous on the deision version of mWCD where the additional integer value kis given as input and the problem is to deide if there exists a onneted dominator weighting atmost k in G. Besides, restriting the possible values of wi to the subset f0; 1; 2g, we obtain exatlythe ase orresponding to the separation of CD inequalities.Consider the deision problem below.INSTANCE: Undireted graph G = (V;E), jV j = n and a positive integer k.PROBLEM MLST (Maximum Leaf Spanning Tree): Find a spanning tree T for G suh as at leastk0 verties of T have degree one, i.e., are leaves ?Fat A.1 MLST is NP-omplete (see [ND2℄ in [14℄).Proposition A.2 mWCD is NP-omplete. Proof: It is easy to see that mWCD is in NP. Now,we show that MLST �p mWCD.Take k = n � k0 in mWCD and set wi = 1 for all i 2 V . So, in mWCD, we look for aonneted dominator with no more than n � k0 verties. Notie that, by removing the leaves fromany spanning tree T , the remaining verties form a set that is a onneted dominator of G. Hene,if T is a solution to MLST, at least k0 verties are leaves in T and the remaining verties form aonneted dominator of size at most n� k0 = k. On the other hand, if W is a solution to mWCD,than, there is a spanning tree T 0 in G[W ℄. Sine W is a dominator, any of the n� jW j verties inV nW is linked to W through at least one edge. By adding to T 0 one of these edges for eah of then� jW j verties , we obtain a spanning tree for G with at least n� jW j � n� k = k0 leaves. Thisompletes the proof. �This proof shows that, in general, mWCD is NP-omplete, suggesting that the separationproblem is equally hard. However, we saw previously that the separation problem may be solvedin polynomial time when the orresponding mWCD has binary vertex weights and k = jW j. Also,the latter proof does not permit us to onlude that mWCD remains hard to solve when the vertexweights are in f0; 1; 2g and k is equal to jW j. This is preisely the ase of the separation problemrelative to the solution �u of the Lagrangian relaxation when the inequalities �ui1 + �ui2 � 1, i 2 V ,are dualized.Denote by mCD the speial ase of mWCD where wi = 1 for all i 2 V . Aording to the proofof Proposition A.2, mCD is NP-omplete. Furthermore, observe that, when G has a onneteddominator of size p � k, G also has a onneted dominator of size l, where p � l � n. Hene, the36



problem of determining if there is a onneted dominator of size k, named mCD= below, is alsoNP-omplete.INSTANCE: Undireted graph G = (V;E) and a positive integer k.PROBLEM mCD=(Minimum Conneted Dominator): Find a onneted dominator W � V in Gof size k?Now, onsider the separation of CD inequalities over a graph G with weights on the vertiesrestrited to f0; 1; 2g and k = jW j. This problem an be solved by the optimization problemassoiated to the following deision problem:INSTANCE: Undireted graph G = (V;E), jV j = n, weight wi 2 f0; 1; 2g for all verties i 2 V anda positive integer t � n.PROBLEM SEP: Find a onneted dominator W in G satisfying Pi2W wi = t � jW j?Fat A.2 mCD= is NP-omplete.Proposition A.3 SEP is NP-omplete.Proof: It is not diÆult to see that SEP belongs to NP. We now show that mCD= �P SEP,whih proves that mCD= is also NP-hard.Figure 17 illustrates a polynomial time transformation of an arbitrary instane I(mCD=) ofmCD= into an instane I(SEP) of SEP. The �gure shows details onerning the graph verties,edges and weights besides the expression that de�nes the input parameter t.(I): mCD= YES ) SEP YES. Let W � V be a onneted dominator of G suh that jW j = k.Without loss in generality, we an suppose that W = fv1; v2; : : : ; vkg (blak verties in Figure17). Further, let W 0 � V 0 be given by W 0 = W [ A [ fb1; 1g [ fk+1; : : : ; ng [ fdg and denotep(W 0) =Pi2W 0 wi. Thus, based on the transformation of I(mCD=) into I(SEP) we an onludethat:Fat A.3 Sine G[W ℄ is a onneted graph, G0[W 0℄ is also a onneted graph.Fat A.4 W 0 is a dominator beause: (i) all the verties of V are overed by W ; (ii) d is in W 0;(iii) every vertex i 2 A[fk+1; : : : ; ng is in W 0; (iv) b1 and 1 are both in W 0; (v) fb2; : : : ; bkg areovered by W while fbk+1; : : : ; bng are overed by fk+1; : : : ; ng; (vi) f2; : : : ; kg are overed by dand (vii) feg is overed by an�k+2.Fat A.5 t � jW 0j is satis�ed sine:p(W 0) = Wz}|{k + Az }| {2(n� k + 2)+ fb1gz}|{0 + f1gz}|{0 + fk+1;:::;ngz}|{0 + fdgz}|{1 = 2n� k + 5;jW 0j = k|{z}W + (n� k + 2)| {z }A + 1|{z}fb1g + 1|{z}f1g + n� k| {z }fk+1;:::;ng+ 1|{z}fdg = 2n� k + 5;and, therefore, t = p(w0) = Xi2W 0wi = jW 0j = 2n� k + 5:37
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B A Dynami Programming to CD inequalitiesThe dynami programming algorithm desribed in Figure 18 solves the separation problem of CDinequalities under the irumstanes announed in orollary A.1.DP Desription (LRP 0) /* LRP 0 � LRP , where (1) is satis�ed */1. De�nitions:z: matrix (n+ 1)� (b+ 1)� (b+ 1), n = jV j, keeping the subproblem solutions.z[k; p; q℄ : stores the objetive funtion maximum value onsidering that verties k + 1 to n belong toseparator C and that exatly p verties are in subset A and that q verties are in subset B.k1; k2: osts for adding vertex k to A and B, respetively.2. Initializations: suppose that, for all j = 1; 2, '(i)j � '(i+1)j , for all i in V , i.e., f'(1); '(2); : : : ; '(n)gorresponds to the sequene of verties non-inreasingly sorted by the osts :j .z[0; 0; 0℄ = z[k; 0; 0℄ � 0, 8k.z[k; p; 0℄ = � 0; if p > kPminfp;kgi=1 '(i)1; otherwise.z[k; 0; q℄ = � 0; if q > kPminfq;kgi=1 '(i)2; otherwise.z[k; p; q℄ � �1, when p < 0 or q < 0 or p+ q > k.3. Reurrene (subproblem solutions):z[k; p; q℄ � maxfz[k � 1; p; q℄; k1 + z[k � 1; p� 1; q℄; k2 + z[k � 1; p; q � 1℄g;8k; p; q.4. Optimal solution value:z� = maxfz[jV j; p; q℄g, 1 � p � b e 1 � q � b.Figure 18: Dynami Programming desription.C Computational results on unsolved instanesTable 8 shows some results obtained with two of our best versions of relax-and-ut frameworks overthe set of 11 instanes not solved by any of the implemented algorithms within the time limit of30 minutes. In order to make possible performane omparisons with possible future algorithms tothe VSP the table shows �nal upper bounds, lower bounds and values orresponding to the numberof nodes produed by the B&C enumeration tree.Table 8: Results for VSP unsolved instanes.Instane NDHYBRID(CD) PHYBRID(CD)label n d Opt ub lb nodes ub lb nodesdim.DSJC125.1 125 0.09 90 102.26 89 143809 102.38 88 124345dim.queen12 12 144 0.25 97 113.69 97 19518 114.12 97 16062dim.queen11 11 121 0.27 81 91.64 81 37586 91.76 81 32499dim.queen10 10 100 0.30 67 72.29 67 88727 72.28 67 81052dim.queen8 12 96 0.30 65 69.56 65 96996 69.60 65 84300dim.queen9 9 81 0.33 55 56.49 55 231242 56.44 55 202559dim.DSJC125.5 125 0.50 74 88.91 74 6208 87.65 74 5329mat.L125.an 161 125 0.16 97 105.37 95 73721 105.37 97 52825miplib.stein27 r.p 118 0.32 62 82.00 62 18801 83.21 62 22951miplib.10teams.p 210 0.34 120 188.67 120 1824 190.38 120 1768miplib.mod010.p 146 0.38 90 97.29 88 16171 96.21 86 1096539


