i INSTITUTO DE COMPUTACAO
=N UNIVERSIDADE ESTADUAL DE CAMPINAS

Qualitative Analysis and Comparison of
Plagiarism-Detection Systems in Student

Programs
A. B. Kleiman T. Kowaltowski
Technical Report - 1C-09-08 - Relatério Técnico

March - 2009 - Marco

The contents of this report are the sole responsibility of the authors.
O contetido do presente relatério é de inica responsabilidade dos autores.

Qualitative Analysis and Comparison of Plagiarism-Detection
Systems in Student Programs

Alan Bustos Kleiman and Tomasz Kowaltowski*
Instituto de Computagao
Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176
13084-971 Campinas, SP, Brazil

Alan.Kleiman@students.ic.unicamp.br
Tomasz.Kowaltowski@ic.unicamp.br

Abstract. Plagiarism in student coursework has become increasingly common
and significant effort has been undertaken to face this problem. In this work
we focus on the plagiarism in computer programs. We implemented some of
the algorithms we discuss so that we could perform a direct and qualitative
comparison, with emphasis on the program pre-processing phase. Our main
conclusion is that pre-processing may be more important than the comparison
algorithm itself and we point to new directions for future work.

Resumo. Pldgio em tarefas de alunos é um problema que vem aumentando ao
longo do tempo e institui¢coes de ensino tém trabalho considerdvel para en-
frentd-lo. Neste trabalho, examinamos o problema do ponto de vista de pldgio
em tarefas de programacdo. Implementamos alguns dos algoritmos descritos
com a finalidade de efetuar uma comparagdo direta e qualitativa, com énfase
na fase de pré-processamento de programas. Nossa conclusdo principal é
que o pré-processamento pode ser até mais importante do que o algoritmo de
comparagdo em si, e apontamos novas direcoes para trabalhos futuros.

1. Introduction

Plagiarism in college courses is an increasingly common problem as described for in-
stance in [Maurer et al. 2006]. In our work, and particularly in our tests, we focused on
automating detection of plagiarism in computer programs, with emphasis on introduc-
tory courses such as basic programming, data structures and so on. This seems to limit
somewhat the scope of our work, as these programs are typically not very large and are
usually quite straightforward in design. Nonetheless, it is quite clear that our conclusions
are applicable to larger programs. We plan to continue this work, optimizing the detec-
tion mechanism and attempting to eliminate the weak spots we found. A more complete
description of this project can be found in [Kleiman 2007].

*The project described in this article was carried out as part of the first author’s Master program
under the supervision of the second author. The text of the dissertation may be downloaded from
http://www.ic.unicamp.br/ tomasz/misc/kleiman.pdf

We studied some of the plagiarism detection systems accessible online and de-
scribed in the literature. Among them, three systems turned out to be most interesting and
were studied in more detail:

e JPLAG developed mainly by Guido Malpohl at the University of Karlsruhe
[JPlag 2007]

e MOSS (Measure of Software Similarity) maintained by Alex Aiken at the
University of Stanford (formerly at the University of California in Berkeley)
[MOSS 2007]

e SID (Shared Information Distance) developed by the in Bioinformatics Groups
of the Universities of California in Santa Barbara and of Waterloo [SID 2007]

In order to carry out the comparison and to evaluate our improvements, we im-
plemented the same algorithms used by JPLAG, MOSS and SID as described in the
following sections. It should be noticed that the complete description of the details of the
three systems is not publicly available. However they can be used through Internet acces-
sible servers so that it is possible to get some conclusions about their implementation by
submitting test data.

2. Preliminaries

Most existing plagiarism detection systems are based on pairwise comparison of submit-
ted programs and involve basically three steps: (i) source program pre-processing result-
ing in program string representations; (ii) pairwise comparison between program strings
and calculation of similarity measures; and (iii) post-processing which maps comparison
results to the original programs.

Pre-processing. Pre-processing tries to reduce the “noise” in a given set of programs.
Among possible “attacks” by a plagiarist, some of the most common and obvious tech-
niques involve reformatting whitespace in a program (in languages where whitespace is
not significant), changing variable names and modifying comments. Thus most systems
will ignore variable names and whitespace, and eliminate comments so that such changes
do not influence the results. Besides this “noise” elimination the pre-processing phase
transforms the source program into a sequence of fokens so that the string manipulation
becomes simpler and more efficient. Usually this task can be realized by a lexical an-
alyzer but in some cases, including ours, a syntax analyzer may be required. It will be
shown further on that more elaborate pre-processing techniques can improve significantly
the quality of plagiarism detection.

String comparison and similarity measures. Both JPLAG and MOSS try to determine
a set of common substrings for the string representations of programs. There are several
algorithms described in the literature which can be used to determine a set of common
substrings for two given strings. The intuitive idea can be seen in Figure 1where «;’s are
the common substrings.

String comparison in JPLAG is based on the Greedy String Tiling (GST) algorithm
described in [Wise 1993]. The algorithm determines a set of substrings such that the sum
of their lengths is maximal. Its running time is given by O(n?) where n is the length of the
longer string. In practice the execution time is improved by using the Running Karp Rabin
(RKR) [Karp and Rabin 1987] algorithm to compute efficiently hashes of substrings; as a
result the tiling algorithm is also referred to as Running Karp Rabin Greedy String Tiling
(RKRGST). 1t determines an optimal set of common substrings when the minimal size of

2

Figure 1. Common substrings of two strings

Oy o) 02

a substring is allowed to be 1. In practice a larger value, typically 5, is adopted so that
optimality is not guaranteed, but the practical results are more satisfactory.

In MOSS string comparison is based on the winnowing algorithm described in
[Schleimer et al. 2003]. This method also takes advantage of the RKR algorithm to com-
pute its hashes but the number of hashes retained for each string is much smaller than
the computed one. The set of hashes is divided into a series of overlapping windows of
a certain size (typically 5 to 10) and, for each window, the hash with the lowest value is
selected as its representative (thus the term winnowing). This reduces the number of hash
values significantly and allows for more efficient similar substring detection. As a matter
of fact, the hash sets can be precomputed for each program separately and kept in a data
base instead of being recalculated for each pairwise comparison. Because of this fact the
method is particularly interesting when large numbers of programs should be checked.

The SID system described in [Li et al. 2000, Chen et al. 2003] operates in a dif-
ferent way and does not compute directly common substrings. A similarity measure of
two programs is computed by determining the amount of information they share. The
definition of shared information is based on Kolmogorov complexity (see for instance
[Li and Vitanyi 1997]) which is not computable. Instead a variant of the Lempel-Ziv
[Ziv and Lempel 1977] compression algorithm with a variable-length window and edit
distance is used. The authors prove that their shared information algorithm will produce
a similarity measure that is at least half of that of any other algorithm and thus theo-
retically optimal. In spite of its theoretical elegance the practical results are somewhat
disappointing in our context; we shall comment this fact further on.

Post-processing. In most systems the post-processing phase maps the common sub-
strings, i.e. token subsequences, to the original source programs and exhibits the results
in a visual form convinient for human inspection. It should be stressed that the final con-
clusion about occurrence or not of plagiarism must be reached through an examination
by a human reader. Because of that post-processing is very important in practice. JPLAG
and MOSS exhibit results using the same system which is very intuitive. For each pair of
suspicious programs, an HTML page is built in which the two source texts appear side by
side, with their parts which correspond to common substrings determined in the previous
phase highlighted in different colors. In the case of JPLAG this mapping is very precise.
In the case of MOSS, due to some loss of information during the winnowing process, the
mapping is less precise and some lines of the source programs may not be identified with
the right colors. Since the shared information algorithm used by the SID system does not

3

Figure 2. Example of a plagiarized program segment

’ Original program ‘ Plagiarized program ‘
if (a<b) {if (a>=b) {
bar(s); if ((!'t))
else { { s=foo(b); }
if (t) else
s=a; { s=(a); }
else } else {
s=foo(b); bar(s); }
} }

compute directly the set of common substrings, it must use a different approach, but the
details are not available.

3. Improved pre-processing

We mentioned already that our work focused on improving the pre-processing stage using
various string comparison techniques, but mainly RKRGST as described in [Wise 1993].
Our primary method of improvement involved a normalization of program trees built dur-
ing syntax analysis. Through this normalization in many cases we were able to achieve
more accurate results than the existing systems. This is because another common strategy
for plagiarists is to change the order of some statements and declarations, without chang-
ing the meaning of the program. They also can substitute one type of structure for another
equivalent one (such as the various loop statements in several programming language).
Yet another approach is to insert tokens that do not alter the program in any way (such as
extraneous parentheses and curly braces in C).

The normalization is achieved by building the program tree for a given program,
replacing some constructs by their equivalents and then recursively applying lexicograph-
ical reordering to the resulting structure. During the parsing process we remove elements
that serve no semantic purpose such as extra parentheses and braces. The lexicographical
reordering may change the meaning of the program but this is not important from our
point of view. It should be noticed that the comparison method used for ordering the sub-
trees of the program tree is not very relevant as long as it is applied in a consistent way. In
our case the representative strings (token sequences) are given by the preorder traversal
of the normalized trees.

The following two figures illustrate possible results of this improved pre-
processing. Figure 2 shows an original program segment in C and its plagiarized copy
in which there was an obvious attempt to change the program by switching the order of
the conditional statement clauses and by adding unnecessary braces and parentheses.

Figure 3 shows the results without and with reordering of the trees (we assume
that in both cases unnecessary parentheses and braces were removed). We exhibit both the
trees and the resulting token sequences. In this figure & denotes any binary operator, /A
any unary operator, 1d any variable identifier and £n any function name. In each case we
also show a set of common substrings as determined by RKRGST when the minimum size
of a substring is set to 3. The tree elements corresponding to these common substrings are
highlighted with one color each; those in black do not belong to any common substring.

4

Unordered

Ordered

Figure 3. Program trees and common substrings

Original program \ Plagiarized program
it if \
]
/ | \ 3] if fn

fn if

id/@\id idid/i\— id/ \idA/Z\\: id
A fasia /|

idid

id id

if®ididfnidifid=idid=idfnid |if®ididifAid=idfnid=1did fnid

ifd idid
=idid
=id fn id

if if
@/if\fn @/if\fn
/
id/ \idid//\\: id id/ \idA :\: id

ata Jasatn ||

|id id |id id
id id

if®ididifid=idfnid=1idid fnid | if® ididifAid=id fnid=idid fn id

if ®id id
id=id fnid=1id id fn id

A natural measure of similarity is given by the expression 2 * s/(p; + p2) in which
s is the sum of the lengths of the common substrings and p; and p, are the lengths of the
two strings. In this example, when no ordering is applied, the total length of the common
substrings is 11 whereas with ordering this length is 14. Lengths of program strings are
15 and 16, and the resulting similarity measures for the unordered and ordered trees result
in 0.71 and 0.90; the difference is thus quite significant.

Another plagiarism technique which can fool a detection tool is replacing expres-
sions by their equivalents which are not simply unnecessary parentheses. Simple cases
like ‘(a+b)+c’ and ‘a+(b+c)’ could be handled transforming conveniently the tree for ex-
pressions. However the details can become quite complicated if many different ways to
express equivalent expressions exist; consider for instance ‘(a+b)/2.0” and ‘0.5x(a+b)’.
An alternative to this approach, apparently also adopted by JPLAG, is to ignore simple
expressions in most contexts and replace them by a unique token.

5

Unordered

Ordered

Figure 4. Program trees and common substrings with simplified expressions

] Original program \ Plagiarized program
if it
T
ex /fn\ if ex if £n

2 SN T

Jps Nl

idex | lidex
eXx eX
ifex fnexifex=1idex =1id fnex ifexifex=1idfnex=idex fnex
=idex
=id fn id

e T P A
SNT TN
D) D

|idex [idex
eX eX
ifexifex=1id fnex=idex fnex ifexifex=1id fnex=idex fnex

ifexifex=1id fnex=1idex fnex

Figure 4 shows the results of applying this idea to our previous example (we do
keep the expressions that are function calls; simple expressions are represented by ex).
Performing the same calculations we get similarity measures of 0.54 and 1.00 for the
unordered and ordered trees (the two bottom trees and their strings are identical).

It should be noticed that even without reordering the RKRGST algorithm should
match the program segments which changed positions. However the fact that we use
minimal size greater than 1 for substrings hampers this possibility. On the other hand,
using size 1 would point to trivial one token common sequences “polluting” the results.

4. Implementation and experimental results

We implemented an experimental system, named PyPlag, built of two parts. The
parser/lexer, which produces a string of character tokens for a given C input program,
was written as a combination of the Bison and flex tools and a C compiler. The front-

6

Figure 5. Comparative results
GST | GST-E | JPLAG | MOSS | SID
01 | 1.00 1.00 — —
02 | 1.00 1.00 1.00 0.98 0.75
03 | 0.98 1.00 1.00 0.23 0.21
041094 | 095 0.50 0.38 0.11
05| 0.93 0.95 0.25 — 0.00
06 | 090 | 091 0.97 0.98 0.66
071072 | 0.61 1.00 0.23 0.15
08 | 1.00 1.00 0.35 0.98 0.60
09079 | 0.69 0.25 0.27 0.05
10| 0.87 | 0.84 0.81 0.69 0.26
11 1 0.82 | 0.84 0.88 0.29 0.12
12 1 0.99 | 0.97 0.81 0.51 0.41
13 | 0.88 0.86 0.65 — 0.19

end was written in Python and runs some of the comparison methods we studied, and
calculates similarities for each pair of programs. Even though the system was aimed at
programs in C, it is enough to replace the parser/lexer part in order to adapt it to a differ-
ent programming language. Since our main interest was to study improved pre-processing
we did not include some important usual features such as instructor base code and visual
display of results, necessary in a production system.

In order to test our ideas we produced a set of 12 programs plagiarized by our-
selves from an original base one. Each program in this set was produced with some
changes of the base program. These programs are numbered for reference: (01) the base
program; (02) copy of the base program; (03) rearrangement of expressions; (04) replace-
ment of some statements by equivalent ones or changing the order of conditional clauses;
(05) both changes in 03 and 04; (06) repeating a segment of the program in another place;
(07) replacing expressions by other ones, not equivalent; (08) unnecessary braces around
statements; (09) to (13) several changes introduced by students who participated in a “pla-
giarism competition”, keeping the programs equivalent. (Notice that 06 and 07 produce
syntactically valid but not equivalent programs).

Figure 5 exhibits the results of our implementation when using the RKRGST al-
gorithm with minimal substring size of 5, both with and without expression simplification
(columns GST and GST-E, respectively) compared to those resulting from submissions
to the JPLAG, MOSS and SID systems for the same set of programs. The first row
(base program compared with itself) is exhibited because of the way our system was im-
plemented to check its own results. Empty entries in other rows correspond to MOSS
similarity measures below its limit, i.e. are considered very different.

5. Conclusions

Improving pre-processing seems fruitful, and our system achieves results that often appear
better than those of other systems. More importantly, our focus is algorithm agnostic: with
improved substrings algorithms we can expect to achieve even better results. Furthermore,
we believe it is possible to optimize the pre-processing stage further, removing extraneous
information and achieving better normalization. One obvious aspect to be considered are
expressions which as we mentioned already are more difficult to treat in a systematic way.

7

Obviously there is a price to be paid for our improvements which is additional
processing time and space used to perform more sofisticated pre-processing. However
depending on the context in which the processing is carried out it may well be worthwhile.

An interesting aspect of this research was testing the ideas of the SID system.
Due to its theoretical foundations it seemed that it should outperform other methods but
in practice it did not happen. One problem is that the programs used in our tests were
rather short (about 100 lines base program including some comments) and the approxi-
mate method used to compute shared information tends to be less reliable in this case.
As a result, even for identical programs the similarity indices are less than 1. However
the main reason for poor results seems to be that some kinds of transformations used by
plagiarists do change the information contents of the corresponding string. For instance,
changing the order of two declarations in general does not change the meaning of the
program; on the other hand the order of declarations is part of the information contents of
each string and thus affects the results. Our reordering could partly improve the results in
this case.

References

Chen, X., Francia, B., Li, M., McKinnon, B., and Seker, A. (2003). Shared Information
and Program Plagiarism Detection. IEEE Transactions on Information Theory, 50(7).

JPlag (2007). https://www.ipd.uni-karlsruhe.de/jplag/. Visited on
04/09/2007.

Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2).

Kleiman, A. B. (2007). Andlise e comparacdo qualitativa de sistemas de
deteccio de plagio em tarefas de programacao. Master’s thesis, Insti-
tuto de Computacdo da Universidade Estadual de Campinas. In Portuguese:
http://www.ic.unicamp.br/ tomasz/misc/kleiman.pdf.

Li, M., Badger, J. H., Chen, X., Kwong, S., Kearney, P., and Zhang, H. (2000).
An information-based sequence distance and its application to whole mitochondrial
genome phylogeny. Bioinformatics, 17(2).

Li, M. and Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer Verlag.

Maurer, H., Kappa, F., and Zaka, B. (2006). Plagiarism - A Survey. Journal of Universal
Computer Science, 12(8).

MOSS (2007). http://theory.stanford.edu/ " aiken/moss/. Visited on
04/09/2007.

Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Winnowing: Local Algorithms for
Document Fingerprinting. In SIGMOD 2003.

SID (2007). http://genome.math.uwaterloo.ca/SID/. Visited on
04/09/2007.

Wise, M. J. (1993). String Similarity via Greedy String Tiling and Running Karp-Rabin
Matching. Unpublished.

Ziv, J. and Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 23(3):337-343.

