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Exponentially more Succinct Test Suites

Adilson Luiz Bonifacio* Arnaldo Vieira Moura! Adenilso da Silva Siméao?

Abstract

We present a generalized test case generation method, or G-method, extending some
previous work [1]. Although inspired on the W-method [3], the G-method, in contrast,
allows for test case suite generation even in the absence of characterization sets for the
specification models. Instead, the G-method relies on knowledge about the index of cer-
tain equivalences induced in the implementation models. We show that the W-method
can be derived from the G-method as a particular case. Moreover, we discuss some
naturally occurring infinite classes of FSM models over which the G-method generates
test suites that are exponentially more compact than those produced by the W-method.
Proofs for important results are presented in detail.

1 Introduction

There are many approaches described in the literature for the automatic generation of
test case suites that can be used to verify the correctness of reactive and critical system
implementations. It is desirable that such techniques and methods be efficient and accurate
in terms of fault coverage. Many among such approaches use formal models as a foundation,
giving rise to model-based testing strategies that allow for the automatic generation of
efficient test case suites from mathematical models of system requirements, and formally
specified system functionalities.

In practice, the aim of system testing is not to demonstrate an equivalence between
a specification and a number of implementations [7, 20, 22]. Indeed, in the majority of
real application cases it is infeasible to establish equivalence using test generation methods.
As an alternative, one can substitute equivalence for a notion of conformance testing, a
more relaxed concept than full equivalence. Here, the aim is to demonstrate how to test
whether certain implementation behaviors conform to desired behaviors extracted from
specifications [22].

A number of model-based test generation methods for conformance testing of critical
and reactive systems have been proposed [4, 15, 23]. Many such methods use Finite State
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Machines (FSMs) [2, 5, 9, 10, 11, 13, 19, 24] as their basic foundations. One of the most
well-known of these test generation methods is the W-method [3], which uses the notion of
characterization sets. The W-method assumes deterministic, minimal and complete FSMs,
and many variations have been developed around its main ideas [11, 12, 14, 18|.

In this article, we generalize the W-method, deriving test suites which can be made m-
complete. A test suite is m-complete if it guarantees a complete fault coverage [17], while
considering deterministic FSM implementations with up to m states. The new algorithm,
here named the G-method, can generate test case suites even in the absence of characteri-
zation sets [1]. Further, the G-method can be specialized in a way so as to conform to the
original W-method, thus demonstrating that the latter is a particular case of the G-method.

The G-method constructs test case suites based on characteristics of the specification and
on information, supplied by the user, about the set of implementations targeted for testing,
information such as a lower bound on the number of certain equivalence classes induced in
the implementation models. This knowledge can be obtained from various sources, e.g., from
regression test suites, design standard enforcement, or from the tester’s expertise. Provided
that such information is available, compact test suites can be generated. Although stringent
values for such parameters will drive the G-method toward m-completeness, while lowering
its efficiency, other judicious choices might give rise to very compact test suites.

In fact, in this paper we show that the G-method can outperform the W-method in an
infinite class of naturally occurring FSM specification and implementation models. More
specifically, we show that the G-method generates test case suites that are exponentially
more succinct than those obtained with the original W-method, when applied over such
infinite families.

Given that the G-method can generate more efficient test suites, an alternative testing
strategy can be devised. First, we can generate compact test suites using the G-method,
with appropriate parameters. Then, we can apply such test suites to the set of implementa-
tion candidates, assuming a fixed upper bound on the number of states for the implementa-
tion models. If some target implementations pass this first testing stage, one could produce
more stringent test suites, and use them to test the remaining implementation models in a
second step. In this second step one could, with extra effort, construct complete test suites
using the same G-method with stronger parameters, or even using the original W-method,
or any other complete method.

The paper is organized as follows. We review some basic concepts in Section 2. In
Section 3 we introduce equivalence in FSMs and stratified families of sets. The generation
of complete test suites is presented in Section 4. In Section 5 we reconsider characterization
sets, in the sequel, show how to obtain the original W-method in Section 6. In Section 7 we
present the algorithm for the generalized method, and illustrate its usefulness by mean of an
example. In Section 8 we discuss infinite families of FSM models over which the G-method
outperforms the W-method. In Section 9 we describe related works. Finally, in Section 10,
we state some concluding remarks.
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2 Basic Concepts

This section reviews the FSM model, and some important related notions. Further we also
present the cover property essentially for test case generation based on FSMs.

2.1 Finite State Machines

The basic model used to capture a system behavior is the FSM. Formally, a FSM [8] is a
system M = (X,Y, S, sg,0,\) given by:

e a finite input alphabet, X;

e a finite output alphabet, Y

a finite set of states, .S;

an initial state so € S; and

output and transition functions, respectively, A: X x § - Y andd: X xS — S.

Note that such a machine is complete, i.e for each state s of M, there is a transition
from s with input symbol a, for every a € X, and deterministic, i.e. a FSM does not allow
two different transitions going out of the same state with identical input symbols.

Successive applications of the transition function § give rise to the extended transition
function 6 : X* x S — S, defined by

~

d(e,s) =
5

»

~

(ap.s) =

)

(p,d(a,s)),where a € X and p € X*.

(o9

Here, € will denote the empty word. For convenience, if S(p, s1) = s2 we also write s; LN S9.
We extend A to A: X* x S — Y™ thus

(e,5) = ¢
(ap,s) = X, s)\(p,0(a,s)),with a € X, p € X*.

Henceforth, unless mention to the contrary, we will assume that M and M’ denote FSMs
in the form M = (X,Y, S, s9,0,\) and M' = (X,Y’, 5", s, ¢’, \'). Note that M and M’ have
the same input alphabet.

The reachability notion expresses the idea of starting at the initial state, traversing some
transitions, and reaching a target state.

Definition 1 A state s in a FSM M is reachable if and only if there exists p € X* such

o~

that 6(p, sp) = s. |

We also say that X(p, s) is the behavior of M from state s over the input sequence
p. The behavior of M over p is simply the behavior of M from sy over p. A sequence p
distinguishes two states s; and so of M if p gives distinct behaviors for s; and so, that is,

if Mp, 51) # A(p, 52)-
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2.2 Cover sets

The notion of transition cover is an important concept needed in several methods for gen-
erating test sequences. A transition cover is given by a cover set over a FSM. Hence, let M
be a FSM. A cover set P C X™* is required to exercise every transition in M, i.e., for every
transition d(a,s) = r in M there must be p, pa € P such that §(p, so) = s. In this way, we
can obtain a behavior of M that reaches state s, and terminates by traversing the specific
edge from s to r, labeled by a.

The cover set notion is formalized next.

Definition 2 A set of input sequences C C X* is a cover set for a FSM M if for every
pair of states s,r € S and every input symbol a € X, with d(a,s) = r, there exist p,pa € C
such that 6(p, sp) = s. |

A cover set can be obtained by constructing a labeled tree for M. A labeled tree is a
system T = (N, A, l,,l.), where N is a set of nodes, A is the set of edges, and [, : N — S
and [, : A — X are labeling functions of nodes and edges, respectively. The nodes in the
tree will be labeled by states of M and edges will be labeled by symbols from X.

Construction 3 A labeled tree for M, T = (N, A,l,,l.), can be constructed as follows:

1. Initiate with N = {no}, A =10, l,(ng) = so and l. =0, where sq is the initial state of
M and ng is the root of T. We say that ng has level zero in T'.

2. Inductively, suppose T is already constructed up to level k > 0. Level k 4+ 1 is con-
structed by inspecting of nodes in level k from left to right:

(a) let n € N be the next node to be inspected.

(b) if there already exists m € N with l,(m) = l,(n), and m is at some level | < k in
T, then node n is ignored, and we take the next node at level k. Otherwise, for
every input a € X and every r € S with r = (a,l,(n)), we add a new node n’
to N, a new edge (n,n') to A, and define l,(n') = r and l.(n,n’) = a. We then
proceed to the next node in level k.

3. Step 2 is repeated if new nodes were added to T in the last iteration; otherwise, T is
completed. |

The process will always terminate since the set of states in M is finite. Depending
on how the symbols from X are selected, different trees can be obtained (see step (2b) in
Construction 3).

The next lemma expresses a simple fact.

Lemma 4 Let T = (N, A,ly,le) be a labeled tree for a FSM M. Letn € N and let « be the

~

sequence of edge labels in the simple path from the root to n in T. Then, 0(a, sg) = ly(n).
Proof By a simple induction on the level of n in 7' |

The next definition shows how to construct a required cover set.
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Definition 5 Let T be a labeled tree for M. The set Pr is defined by all words o € X*
which label paths in T, starting at the root. |

Note that € € Pr. When T is clear from the context, we will use the simplified notation P
instead of Pr.

We can now show that Pp, from Definition 5, is a cover set for machine M. Before that,
we need a property of labelled trees.

Lemma 6 Let T = (N, A, l,,l.) be a labeled tree for a FSM M, as given by Construction
3. Let Pr be the set obtained as in Definition 5. Let p € X* and s € S be such that

6(p,s0) = s. Then, there exists a node n € N with l,(n) = s. Furthermore, there ezists a
sequence ov € Pp with §(«, so) = s and such that for every edge 6(a, s) = r we have aa € Pr.

Proof By induction on |[p| = 0. If |p| = 0, then p = € and s = sp. Let n be the root of
T. Then lv(n)/\: so = s, by step (1) of Construction 3. Now, choosing o = €, we have
a € Pp, with 6(a, sg) = so = s. Moreover, if §(a,s) = r is an edge of M, then step (2b)
of Construction 3 will add a node m to N, at level 1, and an edge (n,m) to A, labeling
them [,(m) = r and l.(n,m) = a. This comes from the fact that n is at the level zero in
T (step (1) of Construction 3) and, obviously, there is no node at an inferior level. Clearly,
the sequence of edge labels in the path from the root n up to m in T is a. Then, a € Pr.
Hence, aa € Pr, because aa = a.

Assume such result holds for every p with lp| < k, where k > 0. Let p = ob, with
o€ Xk b e X and §(p,s0) = s. We have some s; € S such that §(c,s9) = s; and
d(b,s1) = s. By induction, there is a node n € N with [,(n) = s1. Let h > 0 be the level
of n in T. Without loss of generality, we can assume that A is minimal. In this way, when
n is examined during the step 2 in Construction 3, by using the minimality of h, given the
edge 0(b,s1) = s and knowing that l,(n) = s1, a new node n’ will be added to N, at level
h+1, with I,(n") = s. Therefore, n’ satisfies the first assertive of the lemma. Now we know
there is a node in N whose label is s. Again, let A’ > 0 be the lowest level of a node m € N
such that l,(m) = s. Let a be a sequence of edge labels in the path from the root up to
m in T. From Lemma 4 we have d(«, so) = l,(m) = s and, from the construction of Pr we
have o € Pp. Consider an edge d(a, s) = r. The minimality of ' guarantees that step (2b)
of Construction 3 will add a new node m’ to N, at level A’ + 1, and an edge (m,m’) to A,
with le(m,m’) = a. By construction of Pr, aa € Pp, thus proving the second assertive of
the lemma, and completing the proof. |

Now we can enunciate the cover set property.

Corollary 7 Let T = (N, A,l,,l) be the labeled tree for a FSM M, as given by Construc-
tion 3. Let Pr be the set obtained as in Definition 5. If every state of M is reachable, then
the set Pr C X™* is a cover set for M.

~

Proof Let d(a,r) = s be an edge. As r is reachable, we have 6(p, sg) = r, for some p € X*.

~

By Lemma 6, we have a, aa € Pp with 0(a, sg) = r, for some o € X*. Thus, Pr is a cover
set for M. |



6 Bonifacio, Moura e Simao

3 Equivalences and Stratified Families

This section deals with the concept of equivalence over machines, and also presents the
concept of stratified families used to obtain state partitions.

3.1 Equivalence relation over FSMs

The concept of equivalence starts with the notion of state equivalence relations induced by
the transition functions of FSMs. The next definition exposes those notions in a general
context.

Definition 8 Let M and M’ be two FSMs over the same input alphabet, X, and let s and
s’ be states of M and M’, respectively.

1. Let p € X*. We say that s is p-equivalent to s’ if /)\\(p, s) = )/\\’(p, s'). In this case, we
write s =, s'. Otherwise, s and s’ are p-distinguishable and we write s %, s'.

2. Let K C X*. We say that s is K-equivalent to s’ if s is p-equivalent to s', for every
p € K. In this case, we write s ~g s'. Otherwise, s and s' are K -distinguishable and
we write s %y s’

3. Let k > 0. We say that s is k-equivalent to s' if s is X*-equivalent to s'. Otherwise,
s and s' are k-distinguishable. We write, respectively, s ~ s' and s %y, s'.

4. State s is equivalent to s’ if s is k-equivalent to s', for every k > 0. Otherwise, s and
s' are distinguishable. We write, respectively, s ~ s’ and s # s'. |
We will avoid overloading the notation by indicating M and M’ explicitly, e.g., in the form
%,i\/[’M,, since both machines will always be clear from the context. Definition 8 also applies
when M and M’ are the same machine. In this case, it is easy to verify that all relations
defined above are, in fact, equivalence relations over the state set of the machine. Hence,
each such equivalence relation ~y gives rise to a partition [Z] of the state set S.

Definition 9 Let M be a FSM. The index of M, vy, is the number of equivalence classes
induced by the = relation over the states of M. |

Clearly, we will always have 1 < (j; < |S|, where S is the state set of M.
The next lemma gathers some simple observations.

Lemma 10 Let M and M’ be two FSMs with states s and s', respectively.

1. Let K C X*. If s = s, then s ~p, ', for every L with L C K. On the other hand,
if s %K s, then s % s, for every L with K C L.

2. Letk > 0. If s = s’ then s ~; s’ for every | with I < k. On the other hand, if s %y, &',
then s %, s', for every | with 1 > k.

3. Let K,L C X*. If s#k s, then s %¢i s, for every L # ().

Proof Trivial.  |]
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3.2 Equivalence induced by Stratified Families

Now we present the notion of stratified families, sets of input sequences to induce state
partitions in FSM models. In the sequel, we will be considering such specific sets of input
sequences.

Definition 11 Let Z; C X*, i > 0, where X is an alphabet. We say that {Z;}i>o is a
stratified family over X if

1. Zy #0; and
2. (XU{e})Z; = Zit1, for everyi > 0. ]

It is easy to see that these properties are independent of each other.
Another characterization for stratification is given as follows.

Proposition 12 Let Z; C X*, i > 0, where X is an alphabet and with Zy # (). Then, the
family {Z;}i>o is stratified if and only if Z), = U?:o X727y for every k > 0.

Proof Assume that Z; = U?:o X7 Zy, for every k > 0. Then,

Xu{ehze = XZ|JZ

= X( U x2)J( U x7%)

0<j<k 0<j<k
= (U X¥2)U( U x'%)
1<j<k+1 0<;j<k
= U X2 =24
0<j<k+1

Since we have Zy # (), the stratification is established.

Now assume that {Z;};>¢ is a stratified family. When k = 0, it is immediate that
Zy = U?:o X7 Zy. Continuing by induction, we assume that the result holds for k — 1,
where k£ > 1, and show that Z, = U?:o X712Z,.

Let z € Z;. Then, from Definition 11, z € (X U {€})Zx_1. If z € Zy_; then the
induction hypothesis guarantees that z € U?;& X7 Zy, and then z € U?:o X7Zy. On the
other hand, if z € XZ;_1, then z = aw, with ¢ € X and w € Z;_1. From the induction
hypothesis, w € U;?;ol X7Zy, and then z € U;?:l X7 Zy, and so, z € U?:o X7 Zy. Therefore,
7y C U?:o X7Zy. Now let z € U;?:o XiZy. If z € U?;& X7 Zy, the induction hypothesis
gives z € Zj,_;. From Definition 11(2), we obtain z € Z. If z € X¥Z;, then z = aw with
a € X and w € X*1Z,. From the induction hypothesis, w € Z;_; and, consequently,
z € XZj_1. Again, from Definition 11(2) we obtain z € Zj. Therefore, U;‘?:OXjZO C Z.
We conclude that Z; = U;‘?ZOX 17y, extending the induction. [

The next result guarantees that certain sequences always have continuations in some of
the Z sets.
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Lemma 13 Let {Z;}i>0 be a stratified family over X and let k > 0. Then
1. Zy C Zj, for every j > k; and

2. For every o € X7, with 0 < j < k, there exists 3 € X* such that aff € Zy,.

Proof From Proposition 12, we deduce that Z; C Z; 4, for every i > 0. A simple induction
establishes item (1). For item (2), since Zy # (), we take v € Zy. Since j < k, we take
o € X*77. Hence, aoy € X*Z;. From Proposition 12 we conclude aoy € Z*. |

Let M be a FSM and let Z C X* be a set of input sequences. We indicate by [Z] the
partition induced by Z (see observation after Definition 8) over the states of M, i.e, s ~z r
if and only if s,r € w, for some w € [Z]. Let [Z;] and [Z5] be two partitions over S. Then
we say that [Za] refines [Z1] if and only if for all wy € [Z3] there exists some w; € [Z1] such
that wy C wi.

The next result expresses properties of these partitions.

Lemma 14 Let {Z;}i>0 be a stratified family over the alphabet X of a FSM M. Then
1. [Zit1] refines [Z;], for every i > 0; and

2. if |[Zk]] = |[Zks1]| for some k >0, then we must have [Zx| = [Zx11] = [Zks2].

Proof We show each item, in turn.

For item (1), assume that it does not hold for some ¢ > 0. Then we will have states s
and r such that s =z, , r and s %z, r. From Lemma 10(1) and Lemma 13(1) we deduce
s %z,,, T, a contradiction.

Now we verify item (2). From item (1), we know that [Zy1] refines [Zy]. Then [Z] =
[Zk+1], otherwise we would have |[Zx]| < |[Zg+1]|- Again continuing by contradiction,
assume that [Zyi1] # [Zkye]. Since [Zgio] refines [Zy11], we will have states r and s such
that s %z, , rand s ~z, , 7. Hence, we obtain p € Zj o, with p = a8 and a € X, and such
that s %,5 r. We also conclude that a3 ¢ Zj1, otherwise we would have the contradiction
5 %#z,., 7. Therefore, from Definition 11(2), we deduce a8 € X Zj1, and so, 8 € Zj41.

Let s1, 11 € S with 51 = d(a,s), r1 = d(a,r). If s1 %7, , m1 then 51 #z, r1, because we
already know that [Zy] = [Zk+1]. Hence, we would have v € Z; with X(y,sl) # X(%rl).
From Definition 11(1) we have X7y C Z11, and then ay € Zj11. But,

Mav.s) = Ma,$)A(7,51)
/\(a77 T) = /\(av T))‘(77 Tl)'
Then we have /)\\(a’y, s) # /)\\(a’y,r), thus forcing the contradiction s #z, ., r. We conclude
that S1 %Zk+1 1.

Since 3 € Zp41, we deduce s =g r;. Again,

(aB,s) = Aa,s)A(B,51)
a )

Nad, s
NaB,r) = Ma,r)
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and, since we already have A(p, s) # A(p, r), we conclude that A(a, s) # Aa, ). From a € X
and Lemma 13(2) we infer 0 € X* with ac € Z;11. Hence, we have s %, r, contradicting

S X Zii1 r. I
The next result gives the equality of successive partitions.

Corollary 15 Let {Z;};>0 be a stratified family over the input alphabet X of a FSM M. If
\[Zk]| = |[Zk+1]| for some k >0, then [Zy] = [Zy41] for every 1 > 0.

Proof When [ = 0, the result is immediate. When [ = 1 or [ = 2, the result follows
directly from Lemma 14(2). Assume the result holds for every j, 0 < j < [, with [ > 2.
We want to show that the result holds for I + 1. From the induction, we have [Zx] = [Zj+]
and [Zi] = [Zg41-1). Hence, [Ziyi—1] = [Zk+1). Using Lemma 14(2), we obtain [Zy4;—1] =
[Zk+1] = [Zk4141]- Hence, [Zk] = [Zky141], as required. [}

Now let M be a FSM with m states. Suppose we have a stratified family for X, {Z;}i>0,
in which Zy partitions the states of M in n < m equivalence classes. The next lemma

establishes the basic result about partitions over states of M induced by the Z; sets, for
i >0.

Lemma 16 Let M be a FSM with index m. Let {Z;};>o be a stratified family for X such
that Zy partitions the states of M in at least n < m equivalence classes. Then |[Z;]| > n+1,
for every i, with 0 <i < m —n.

Proof When ¢ = 0 we have n+i = n and, from the hypothesis, |[Zy]| > n, establishing the
base. Assume the result for every j, 0 < j < i, with ¢ < m —n. We show that the result
holds for i + 1. If |[Z;]] > n+ i+ 1 then |[[Z;11]| > n+ i+ 1 (from Lemma 14(1)), and the
induction is extended in this case.

Now, let |[Z;]| < n+i+1. From the induction hypothesis we conclude that |[Z;]| = n+i.
Since m > n+ i+ 1 is the index of M, there exist nonequivalent states in M, r and s, with
r =~z s. Then, s &y« r, for some k > 0 (see Definition 8). From Lemma 13(2), we conclude
s %z, r. If k <4, Lemma 13(1) would force Z; C Z;. Using Lemma 10(1) we would have
s %z, r, a contradiction. Hence, k > i.

If |[Zi]| = |[Zi+1]] then, by Corollary 15, we get Z; = Zj,, forcing again the contradiction
s Bz, r. Since [Z;j41] refines [Z;], we can not have |[Z;11]| < |[Zi]|. We conclude that
\[Zi+1]| > |[Zi]|- But, since |[Z;]] = n + i, we deduce the result desired, that is, |[Zj11]| >
n+i+1. |

Using this result, it will be easy to confirm that some Z € {Z;};>o will distinguish every
pair of nonequivalent states.

Corollary 17 Let M be a FSM with index m. Let {Z;}i>0 be a stratified family for X such
that Zy partitions the states of M in at least n < m equivalence classes. Then Z,,_, will
distinguish every pair of nonequivalent states of M.

Proof From Lemma 16, it follows that |[Z,,—,]| > n + (m —n) = m. Since [Z,,_,] is the
partition induced by Z,,_,, we conclude that Z,,_, partitions states of M in m classes.

Since M has index m, we conclude that Z,,_,, will distinguish every pair of nonequivalent
states of M. |
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4 Generating a m-complete Test Suite

Based on previous sections we can now define the notion of m-complete test suites. Let
M and M’ be two FSMs operating over the same alphabet X. Machine M represents a
specification and M’ represents a possible implementation of M. We want to obtain a set
K C X* such that sg % s if and only if s %k s,. Such a set K is a m-complete test suite,
where m is an upper bound on the index of M’. Given K, if we want to test whether M
and M’ have distinct behaviors, it is enough to apply the sequences in K to both machines
and compare the corresponding output sequences.

We obtain the required set by combining a cover set for M with a stratified family for
M’. The next lemma establishes an auxiliary result.

Lemma 18 Let M and M’ be two FSMs operating over the same input alphabet, X. As-
sume that M’ has index m and that P is a cover set for M. Let Z C X* be nonempty and
such that Z partitions the states of M' in at least m equivalence classes. If so ~pz s, and
S0 % s, then there exist v € X*, s € S, s’ € S" such that g(’y, 50) = s, </5\’(’y, sp) = s’ and
sy s,

Proof Since sy % s, we obtain v € X*, a € X, s € S e s’ € 5 such that 3(7,30) = s,
5 (7,sh) = s" and A(a, s) # N(a,s'). Since P is a cover set for M, from edge d(a,s) = r we
obtain p € P e pa € P such that g(p, sp) = s. We also know there exists s” € S’ such that
d(p,sp) =s".

We show that s ~y s”. Otherwise we would have ¢ € Z with A(o,s) # N(o,s").
Hence, X(pa/,\so) = Xp, 50)A(o, s) and N (po, sp) = N(p, 36))7(0, s”) and we would obtain
A(po, so) # N(pa, s;), contradicting sg ~pyz s since po € PZ. We conclude s ~z s".

Now we show that s %z s’. Otherwise we would have s’ &~z s”, since we already know
that s &~z s”. Since M’ has index m and Z partitions the states of M’ in m equivalence
classes, we would obtain s’ ~ s”. But then,

~

Mpa,s0) = A(p.s0)A\(a.5)
)\/(pa,Sé]) = /\’(p,sé])/\(a,s”):)\’(p,sf)))\(a,sl).

Since we already have A(a,s) # X (a, ), we deduce A(pa,so) # N(pa, s}), which implies
that so #p s, because pa € P. Since Z is nonempty, Lemma 10(3) forces sy #pz S,
contradicting the hypothesis. We conclude that s % s'.

Putting together, we have v € X*, with 5(7, S0) = 8, g’(% sg) =5 esz#zgs. |

Now we are in a position to enunciate the result which will give us the capability of
testing two machines for equivalence.

Theorem 19 Let M and M' be two FSMs operating over the same input alphabet, X.
Assume that M' has index m and that P is a cover set for M. Let Z C X* be nonempty
and such that Z partitions states of M' in at least m equivalence classes. Then, sy = s if
and only if so =pz .



More Efficient Test Suites 11

Proof If sy = s{, then, trivially, so ~pz 5.

For the opposite direction, assume sg ~pz s. For the sake of contradiction, assume
sp # sp. From Lemma 18, we obtain § € X*, s € S and s € S’ with g(ﬁ, s0) = s,
& (8,s0) = ¢, and s %z s’. We can assume, without loss of generality, that |/3| is minimal.
If 3 = €, we would have s = sy and s’ = s, and then sg %z s(. But, since € € P, this would
force the contradiction sg $é pz Sy We conclude that 3 = aa, with a € X. Let r € S and
' € 8 with 8(a, so) =7, 9(a, so) =1, 8(a,r) = s and ¢'(a,r’) = s'. Using the minimality
of |3| we have r ~ 1.

On the other hand, since P is a cover set for M, from the edge d(a,r) = s we obtain
p € P and pa € P with g(p, sp) =r. Let v € S with <§7(p, sp) = r". If we had r #z 1", we
would obtain v € Z with A(y,7) # N(7,r”). But then

~

(p7 30) (’Y,T) and

~

(p7 SO))‘/(’% T”)'

Hence, X(p% s0) # X’(p%s{)), giving the contradiction sy #,, s, with py € PZ. We
conclude that r ~z .

Since we already have r ~z r’, we obtain r’ ~z r”. Since Z partitions the states of M’
in m classes and m is the index of M’, we conclude that " ~ r”. Now, from s %z s', we
obtain o € Z with \(o,s) # N (o,s’). But,

>)

(0, 50)
N(py,sq) =

>2)

Xpao,s0) = Ap,s0)A(a,r)A(o,s) and
N(pao,sy) = N(p,s r
.

/
0

37 /

= XN(p,so
/

0

Then, X(paa, s0) # )T’(paa, (). But pac € PZ and we would have so #pyz s, contradicting
the hypothesis. This concludes the proof. |

Combining the previous results, we have the following corollary, useful to determine
whether two FSMs have distinguishing behaviors.

Corollary 20 Let M and M’ two FSMs operating over the same input alphabet, X. As-
sume that M’ has index m. Assume also that P is a cover set for M, that R C X* 1is
nonempty and that it partitions the states of M’ in at least n < m equivalence classes. Then,
so and sg, are equivalent if and only if so and s;, are PZ-equivalent, where Z = J"" X'R.

Proof Let Z;, = Uf:o X'R, k > 0. From Proposition 12 we have that such family {Z }x>0
is stratified. From Corollary 17 we conclude that Z distinguishes every pair of nonequivalent
states of M'. Then the result follows directly from Theorem 19. |

5 The Concept of Characterization

In this section we revisit the notion of characterization sets, and following we show the
relation of FSM indexes to such sets.
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5.1 Characterization sets

From the previous Corollary 20, it might appear that Z and M are independent, since the
only hypothesis involving M, in that corollary, is that P is a cover set for M. But, in fact,
there is a relationship between Z and M. Before we expose the relationship between Z and
M, we need another auxiliary result.

Lemma 21 Let M and M’ be two FSMs operating over the same input alphabet, X. As-
sume that all states of M are reachable and that so ~ sj,. Let Z C X* be a set partitioning
the states of M’ in m equivalence classes, where m is the index of M'. Then Z distinguishes
every pair of nonequivalent states of M.

Proof Let s1, so € S with s1 % s5 and assume s1 ~z so. Since all states of M are reachable,
we have p1,py € X* such that S(Pi,so) = s;, with 4 = 1,2. In M’ we would have some
sy, sh € 8" and with & (p;, si) = s, where i = 1,2.

Now let § € Z. We have,

~

5(/725730) = 5(02780) A(5732)
N(pafB,sp) = N(pa,sp)N(B,s5)

and, since sy &~ s{,, we obtain X(ﬁ, S9) = )T’(ﬁ, sh) and X(pg,so) = )T’(pg,s{)). Since (3 is
arbitrary, we conclude that sy ~7 s.

Similarly,
ApiB,50) = Ap1,50)A(B,51)
N(p1B,sy) = N(p1,sp)N(B,57),

and we conclude that s; ~z s}, together with /)\\(pl, s0) = )/\\’(pl, 50)-
Putting it together, and knowing that s; &~z s2, we obtain s; ~z s, and also sy =z s].
Hence, ] ~z s,. But s} and s} are states of M’ and so the hypothesis over Z gives s =~ sh.
On the other hand, since s; % s9, we obtain o € X* such that A(o,s1) # A(o, s2). Now,

~ ~

X(,OlO',SQ) = )\(plysO) (0781)
N(p1o,s5) = N(p1,s0)N(0,81).
Hence, from X(pla, s0) = X’(mff, sq) and X(01750) = X’(pl,sé), we deduce X(J’ s1) =
N (o, s).
Similarly,
Np20,50) = A(p2,50)A(0,52)
N(p20,55) = N(p2,50)N (0, 53),

and then X(J, S9) = N (0, s5). However, since we already know that s} & s}, this leads to the
contradiction A(o,s1) = A(o, s2). This shows that the initial hypothesis was false. Hence,
whenever s1 % sy holds we must also have s1 %7 so, establishing the result. |
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A set in these conditions is called a characterization set of M.

Definition 22 Let M be a FSM and W a set of input sequences. W is a characterization
set for M if W distinguishes any pair of nonequivalent states of M. |

The required relation between M and Z says that Z is a characterization set of M,
under certain hypothesis.

Theorem 23 Let M and M' be two FSMs operating over the same input alphabet, X.
Assume that M’ has index m and that P is a cover set for M. Assume also that W C X* is
nonempty and partitions the states of M’ in at least n < m equivalence classes. If so =pyz s,
then Z = I, X'W is a characterization set for M.

Proof From Proposition 12 and from Corollary 17 we conclude that Z distinguishes every
pair of nonequivalent states of M’. Since P is cover set for M, we conclude that every state
of M is reachable. From sy ~pyz s, together with Corollary 20, we deduce sy ~ s;. Now
we can use Lemma 21 and obtain that Z distinguishes every pair of nonequivalent states of
M. From Definition 22, Z is a characterization set for M. [ |

It is also easy to see that the reverse does not hold. For that, let M and M’ be two
FSMs. It is clear that W = X* partitions the states of M and M’ in the maximum number
of equivalence classes. In this case, we will have Z = W = X* and, obviously, Z is a
characterization set for M and M’. But it is not the case that we will always have sy ~ s,
as it is easy to construct a counter-example.

5.2 FSM Indexes

The index of FSMs has a strict relation with the notion of equivalence induced by char-
acterization sets. Next result shows that, under relaxed conditions, when two FSMs are
equivalent both must have the same index.

Theorem 24 Let M and M’ be two FSMs operating over the same input alphabet, X. Let
n and n' be the index of M and M’, respectively. Assume that all states from both FSMs
are reachable. If sy =~ s{, then n =n/'.

Proof For the sake of contradiction, and without loss generality, we will assume n < n’.

Let s, € S/, 1 <1i < n/, be states from each one of n’ equivalence classes induced by ~ in
S’. Since all states of M’ are reachable, we obtain p; € X* with g’(ﬂi, sp) = sk, 1<i<n.
In M, we will have some s; € S such that g(pi, s0) = 8;, 1 <i <n'. Since n < n/, without
loss generality, we can say that s; = so.

Take any z € X*. We have

Np1z,5) = Mp1,s0)A(z,s1) and
)‘/(plzvsg)) = /(plyslo))‘/(zvsll)'

~ ~

Since sg ~ s, it follows that Mz, s1) = N(z,,). Similarly, Az, s2) = N(z, s}).
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But since s, & s9, we obtain A(z, s1) = A(z,s2). Therefore, )T’(z,s’l) = )7(2,3’2). Since
z € X* is arbitrary, we conclude that s} ~ s}, a contradiction given that s} and s/, are in
distinct classes in M.

Hence, we must have n > n’. Similarly, n’ > n, and then n = n/. |

The same result indicates that when the & relation induces a different number of equiv-
alence classes in two FSMs, these machines can not be equivalent to each other (under the
weak hypothesis of Theorem 24). On the other hand, it is simple to obtain two nonequiv-
alent FSMs, in a such way that the ~ relation induces the same number of equivalence
classes in both machines.

6 Refining W-method as a particular case

In this section we show how to refine the W-method from our proposed method. Considering
the hypothesis of Theorem 23 we can show that W is a characterization set of M if n is the
index of M and the behaviors of both machines must match. From that we have conditions
to show that W-method is a particular case of the generalization.

Corollary 25 Let M and M’ be two FSMs operating over the same input alphabet, X, and
assume that all states in M' are reachable. Assume further that M’ has index m, that P
is a cover set for M and that M has index n. Assume also that W C X* is nonempty
and partitions the states of M’ in at least n < m equivalence classes. If so ~pyz s(,, where
Z=UX"X'W, thenn=m, Z=W and W is a characterization set for M.

Proof Since sg ~pyz s, together with Corollary 20, we conclude that sy ~ s;. Next, we
infer that n = m, from Theorem 24. Hence, Z = W. Therefore, by Theorem 23, W is a
characterization set for M. [ |

When W is a characterization set for M we can guarantee the partitioning of M’ in a
number of classes at least equal to the index of M, if the machines are to be PZ-equivalent.

Lemma 26 Let M and M’ be two FSMs operating over the same input alphabet, X. As-
sume that M’ has index m, that M has index n and that P is a cover set for M, with
n < m. Assume also that W C X* is a characterization set for M and that sy ~pz s,
where Z = J;2 )" X'W. Then W partitions M' in at least n equivalence classes.

Proof We know that M has n equivalence classes: Let C1,...,C, be these classes. Let
si € C; and s; € U, where 1 <4 < j < n. Then since W is a characterization set for

~

M, we have s; #w s;j. Since P is cover set of M, we have §(p,sy) = s;, for some p € P.
We also know that ¢'(p, s;) = s, for some s, of M'. Since sy ~pz s, we get s; =z s,.
Since W C Z, then s; ~w s;. In the same way, we have s, of M’ with s; ~p s;. Then we
obtain s #w s;-, otherwise s; =~y sj. We conclude that W partitions M’ in at least n < m
equivalence classes. |

Now we can use Lemma 26 to show another version of Corollary 20, under the hypothesis
that the basic set of input sequences is a characterization set for the specification.
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Theorem 27 Let M and M’ be two FSMs operating over the same input alphabet, X.
Assume that M’ has index m, that P is a cover set for M and that M has index n, with
n < m. Assume also that W C X* is a characterization set for M and that sg ~pyz 8’0,

where Z = 12" X'W. Then so ~ s

Proof Assume sy ~pz 36. Use Lemma 26 to show that W partitions M’ in at least n
classes. Now use Corollary 17 to show that Z partitions M’ in m classes. Finally, use
Theorem 19. [ |

The next result is the main postulate of the basic W-method, as given in [3].

Theorem 28 Let M and M' be two FSMs operating over the same input alphabet, X.
Assume that M’ has index m, that P is a cover set for M and that M has index n, with

n < m. Assume also that W C X* is a characterization set for M. Then sg = 86 if and
only if so ~pz s, where Z = J;-," X'"W.

Proof If sy ~ s{,, then sy ~pyz s, trivially. For the other direction, use Theorem 27. |

In general, W does not need to be a characterization set for M (see Corollary 20).
For the method to work, we need only guarantee that M’ will be partitioned in at least n
equivalence classes with n < m, where m is the index of M’. No relationship between W
and M is needed. On the other hand, when using the basic W-method directly, we need to
obtain a characterization set W for M, we need to know the index of M, and we also need
to secure the relationship n < m. When W is not a characterization set for M, the method
may fail, as shown by the following example.

Example 29 Let M and M’ be two FSMs. The alphabet of M and M’ is X = {a,b,c}.
See Figures 1 and 2. It is easy to see that M has index n = 3. The index of M’ is m = 3
since s} &~ s5. Hence m = n, and we would be left with Z = W (see Theorem 28). Now
take W = {a}. A cover set can be given by P = {e, aa,ab,ac,ba,bb,be, ca,cb, cc}. Then,
PZ = PW = {aaa, aba, aca, baa, bba, bea, caa, cba, cca}.

It is easy to see that M and M’ are PZ-equivalent. But so & s{, is not true. To see that,
take a = bab. We have X(a, s0) = 110 and )T’(oz, sp) = 111. Note how W induces only two
equivalence classes in M’. Therefore, clearly, W is not a characterization set for M. |

In general, it would be important to devise a mechanism by which we could obtain
the number of classes induced by W in M’. First, because in this case we might avoid
calculating a characterization set for M when using our more general method. Secondly, we
could potentially reduce the size of the sequences in Z, when W partitions M’ in k classes,
with k > n, given that Z = |JI2," X'W.

7 The Generalized Test Generation Method

In this section we present Algorithm 1 of the generalized model-based test generation
method. The input parameters are: M represents a system specification, R is any set
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b,e/1 a/0

a/1;b,¢/0 a,b,c/1

Figure 1: Specification M.

of input sequences, n is a lower bound on the number of classes induced by R in an imple-
mentation candidate, and m is an upper bound on the index of implementation candidates.
Thus the method requires knowledge of a lower bound on the number n of equivalence
classes induced by R in the implementation candidate, as well as an upper bound on the
index m of such implementation candidates. In an extreme case, one can set n = 1 and
m = |S’|, that is, set m to the number of states in implementation candidates. Note that
an implementation candidate is given as a black box. So, we do not have access to its
internal structure, and the parameters n and m must be estimated. As for the specification
M, R may partition it in any number k of classes. Of course, if M and an implementation
candidate turn out to be equivalent, then they will have the same index and Z will, in fact,
be a characterization set for both M and the implementation candidate as seen before. The
result is the set of test sequences given by PZ which can be empty if the basic condition
n < m is not secured.

After the Algorithm 2 presents the application of the generalized method. The input
parameters are: M represents a system specification, M’ is an implementation candidate
for the specification M, and PZ is the set of test sequences. The result is the verdict if M
and M’ are not equivalent, then the algorithm produces a particular input sequence o that
is a witness to this fact, that is, M and M’ display distinct behaviors over . On the other
hand, M and M’ are equivalent.

In order to apply the basic W-method (see Theorem 28) some extra effort must be
applied to compute the index of M as well as a characterization set for M. Algorithm 3
presents the basic W-method for the test case generation. The application is similar to the
Algorithm 2.

Note that in our proposal, we do not need characterization sets, nor is it necessary to
inform the index of the specification machine M. On the other hand, practical information
about M can aid in obtaining a good candidate for R. For example, based on the number
of symbols in the input alphabet and on the number of states and transitions in M, some
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Figure 2: Implementation candidate M.

distinguishing sequences can be inserted into R (see Section 8). Then, it is easy to obtain the
set Z using the notion of stratification. Clearly, after obtaining the concatenation PZ, we
can use this product to verify conformance between the specification and several proposed
implementations.

Note that the size of the PZ set depends on the algorithm used to obtain the cover set
P. In fact, this algorithm is polynomial in the size of M (see Section 2.2). Furthermore, it
depends on the choice of the set R and the bound m.

Next, we apply the generalized algorithm to a simple and general example.

Example 30 Let M be a specification given as in Figure 3. Then M has k = 4 states, its
input alphabet is X = {a, b}, its output alphabet is Y = {0, 1}, and its transition function
is as depicted in the figure.

As we can see, some transitions over the input a produce either the output 0 or the
output 1. Hence, there are at least two distinct classes. Now, if we use the sequences aa
and ba there is a good chance that such sequences can distinguish other states as well.
Therefore, we take R = {aa,ba} and assume that R partitions M’, an implementation
candidate, in at least n = 3 equivalence classes. If we accept m = 5 as a maximum on the
number of states in M’, we have all input conditions for Algorithm 1 secured. Note that R
is not a characterization set for M because we have states sy and s; in the same equivalence
class induced by R.

Next we calculate a cover set P for M. In the example, using the labeled tree construc-
tion (see Section 2.2) we get P = {¢, a,b,aa,ab,ba,bb, aab, aaa}.

Now, with m =5, n = 3 and R = {aa, ba}, we compute Z = |JI* ;" X*R and obtain

Z = {aa, ba, aaa, aba, baa, bba, aaaa, abaa, baaa, bbaa, aaba, abba, baba, bbba}.

Taking Z as a prefix-free (see Section 8), and also for the concatenation PZ, then PZ
will count 40 sequences.
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Algorithm 1: Generalized test generation method.

1 Input: M, R, m, n

2 Output: PZ

3 begin

4 Obtain a cover set P for M;
5 if n < m then

6 Compute Z = JI2," X' R;
7 Compute PZ;

8 return PZ;

9 else
10 mesg: M and M’ could not be equivalent since m < n;
11 return PZ = ();
12 end
13 end

b/0

b/0

Figure 3: Machine specification M.

8 Special Families of FSMs

In this section we compare the W-method against the G-method over some infinite families
of models. We show that there exist infinite families of FSMs such that the application
of the G-method produces test suites of much smaller length than those produced by the
W-method.

Consider an alphabet X and a test suite V' C X*. Testing using V' would require
observing the behavior of both the specification and the implementation models over all
elements of V. Therefore, it is not necessary to consider any proper prefix in V, since
testing over a longer sequence will already reveal behaviors over any shorter prefix.

Definition 31 Let X be an alphabet and let V' C X*. Define pfi(V') as the set of prefiz-free
elements of V, i.e.,

plE(V)={p e V|pd &V for all ¥ € X* with ¥ # ¢}.
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Algorithm 2: The application of the generalized test generation method.

1 Input: M, M', PZ

2 Output: ¢

3 begin

4 foreach 0 € PZ do

5 Apply o to M and to M’;

6 Obtain a = A(o, 50) and o/ = N (0, s));
7 if o # o/ then

8 mesg: M and M’ are not equivalent;
9 return ¢ is an input witness;

10 end

11 end

12 mesg: M and M’ are equivalent;

13 return o = ¢;

14 end

The efficiency of a test suite V' C X* will be measured as the sum of the lengths of all
elements in pff(V).

Definition 32 Let X be an alphabet and let V C X*. We define

Vil=">"lol.

cepff(V)
The next result is useful in calculations.
Lemma 33 Let Vi, Vo C X*, with Vs finite. Then pfi(V1Va) = pff(V; - pff(V3)).

Proof First, let o € pfi(V1V3). Then 0 = ajas with a1 € V; and ag € Vi, If ay & pff(V3),
then asf3 € Vo with 3 # €. But this gives o8 € V1 V5, contradicting o € pff(V1V3). Thus,
ay € pif(Va), and so o € Vi - pff(Va). If o & pfi(V; - pff(V2)), then oy € Vi - pff(Va) with
v # €. But then, again, oy € V1 V5 contradicting o € pff(V1V2). Thus, o € pff(V; - pff(12))
and we conclude that pff(V1Va) C pff(V; - pff(132)).

Now, assume that we have 0 € X* with o € pffi(V; - pfi(V2)) and o ¢ pff(V1V5). Then,
o € Vi -pff(Vz) and so 0 = ajae, with ag € V] and as € pff(Va). We get as € V5 and
o € V1Va. Clearly, the hypothesis gives some § € X* such that o8 € V1V, with 8 # e.
Therefore, ayas8 € V1V5 and we may write ayas 8 = p1p2 with p1 € Vi and ps € Vs, Hence,
there are two cases:
Case 1: py € pff(V2). We obtain p1py € Vi - pff(V2) and so ajasf € Vi - pff(V2). But then
of € Vi - pff(V2), contradicting o € pff(V; - pff(V3)).
Case 2: po & pff(V3). Then py € V5 and, since Vs is finite, we get some longest v € X*
such that pyy € pff(V2). Again, p1poy € Vi - pff(Va). But now pip2y = a1y = o8y,
contradicting o € pff(V; - pff(V2)). Therefore, if o € pff(V; - pff(V2)) we must have o €
pff(V1V2), showing that pff(V1 - pff(V2)) C pft(V1V2).
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Algorithm 3: The basic W-method.
1 Input: M, M', m

2 Output: PZ

3 begin

4 Obtain a cover set P;

5 Obtain a characterization set W for M;
6 Obtain the index n of M;

7 if n < m then

8 Compute Z = | JI2," X'W;

9 Compute PZ;
10 return PZ;
11 else
12 mesg: M and M’ could not be equivalent since m < n;
13 return PZ = ();

14 end

15 end

We conclude that pff(V;Va) = pff(V; - pf(V2)), as desired. |

Clearly, all practical test suites are finite, thus satisfying the conditions of lemma and
allowing one to compute pff(V;V2) by calculating pff(V; -pff(V3)) which is potentially simpler.
That notwithstanding, the next example shows that the finitude condition on V5 can not
be relaxed.

Example 34 Let V; = {ab,a} and let Vo = {c} U {bca’ |i > 0}.

Then ViVo = {ac,abc} U {ab*ca’,abca’ |i > 0}, and we get pff(V1Va) = {ac}. Also,
pff(Va) = {c} and so V; - pff(Va) = {abc, ac} = pff(V; - pft(V3)).

Taking o = abc we get o € pfi(Vy - pfi(V2)) and o & pff(V1Va). This shows that pff(V; -
pft(V2)) € pfi(V1Va) when Va is not finite. |

Now, consider the specification model depicted in Figure 4, where n > 0 and X = {a,b}.
Clearly, the machine has n + 1 states. Let p = a™tt. We get A(p,s;) = 0" 141 for all 4,
0 < < n. Hence, A(p,si) # A(p,s;) if i # j, and we may conclude that s; % s; in this
model, for all 7,5, ¢ # j, and 0 < 4,j < n. This shows that M, is a minimal FSM with
index n + 1.

We may take W = {a"*!} as a characterization set for M,,. Note that, in addition, |||
is minimal among all characterization sets for M,,. A simple application of Construction 3
(see subsection 2.2) gives a transition cover for M,:

P ={e}U{d'a,a'b|0 <i<n}.

The implementation model, M, is obtained by changing the output of just one transition
at the last state in M,,. See Figure 5. We take m + 1 = [a - (n + 1)], for some parameter
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ga/O'a/Og Ea/()‘
b/0

Figure 4: Specification model M,.

a > 1. That is, the implementation model has up to 100(«a — 1)% more states than the
specification M,,. Then, if we want to test implementations with up to 5% more states, we
let & = 1.05. As before, one can easily see that M) is a minimal FSM with index m + 1.

a/l

8 a/0 8 a/0 8 a/0 a/0 8 a/0
b/0 b/0 b/0 b/0 g

Figure 5: Implementation model M.

Consider the set of input sequences R = {a"b}. Then )T’(amb,rj) = 0m~I19*L for all
J, 0 < j < m. Hence, r; #pr r; in the implementation model M), for all ¢, j with ¢ # j and
0 <i,7 <m. Thus, R partitions the states of M, in k = m + 1 equivalence classes.

Now, we can compare the test suites that are obtained using the G-method and the
W-method. We indicate the Z sets constructed by the G-method and the W-method by
Zr and Zy, respectively. We will show that the ratio ||||I;ZZ‘;’|||| grows exponentially fast, as
n increases!.

We get

(m+1)—k
ZRr = U X'R=1{e} -R={amb}

PZr = ({e} U{d'a,a’b|0 <i < n})-{a™b} = {a"b} U {a'aa™b,a’ba™b|0 < i < n}.

Therefore, even counting all sequences in PZg, we have

IPZr| < (m+1)+2(m+2)) i=(m+1)* < (a(n+1)+1)* < 8a’n?
=0

'"We use the standard big-Oh and big-Omega notation from complexity theory [21].
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assuming n > 2 and noting that o > 1.
Over the specification model M,, we compute
(m+1)—(n+1) Y

Zw = |J X'w=[JX{a"},
=0 =0

where £ = [(n + 1)(a — 1)]. So, all sequences in the form a”bpa"*! are in pff(PZy), for
all p € X*. Note that a™b is in P and has maximum length among all such sequences.
Thus, a"bpa™t! has maximum length among all sequences in PZy. Hence, we may write
|PZw| > (2n + 2 + £)2¢ > n2me=1),

Now, consider the ratio Q,(n) = ||||];ZZV;’||||. Clearly, we have that Q,(n) is ©(2°") for all
¢ such that n(a — 1) — ne > 0, that is, for all ¢ such that ¢ < a — 1.

We conclude that the family of specification and implementation pairs M, and M),
respectively, is such that the G-method generates test suites that are exponentially more
effective than those generated using the W-method, provided that the fixed parameter «
satisfies o > 1.

Note that this condition can, potentially, arise when models M,, and M), occur as sub-
models in other specifications and implementations, respectively. Also, note that we can
freely change the target of all b in the implementation M), and the result will still hold. That
is, the G-method generates exponentially shorter test suites that can be used to test a whole
class of implementations. Similarly, one can freely change the target of all b transitions in
the specification model M,, and still obtain the same result.

This suggests an alternative testing strategy as follows. Using short effective test suites
produced by the G-method, with a judicious choice of parameters, we can test a large
number of models from the set of implementation candidates, assuming a fixed upper bound
on the number of states for the implementation models. In case some implementation
models pass this first test suite, one could produce more stringent test suites, and test the
remaining implementation models in a second pass. For this second pass one could, with
extra effort, construct complete test suites using the G-method with stronger parameters,
using the original W-method, or any other complete method.

9 Related Works

In this section we summarize the W-method and briefly describe other model-based test
generation methods, such as the W, and the HSI methods.

9.1 The W-method

In this method, the aim is to verify whether an implementation conforms to a specification,
as characterized by the behavior responses generated by external stimuli [3].

Basically, the application of this method consists in two steps, given a specification FSM
M and an implementation FSM M’: (i) test sequences generation, based on M; and (ii)
application of each test sequence to M and M’, followed by a comparison of their respective
behaviors.
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The technique uses characterization sets of M in order to obtain a complete set of
test case sequences. A characterization set, loosely speaking, can distinguish every pair of
machine states (see Section 5). Let W be a characterization set for M. In order to obtain
test sequences, the W-method prefixes the sequences in W with certain sequences of input
symbols, thus obtaining a set Z containing extended sequences. Furthermore, the method
also computes a cover set P for M. A cover set, basically, contains sequences that traverse
any edge of M, starting from the initial state. The desired set of test sequences is the
product PZ.

9.2 The W,-method

A related method, the so called W)-method [6], can potentially reduce the total length of
the test sequences generated by the basic W-method. Again, let W be a characterization
set for the specification model, M. For each state s; of M, a so called identification subset
W; € W is obtained. The idea is that for each state s; of M, with s; # s;, there exists
an input sequence p; € W; such that s; and s; are p;-distinguishable, and no other proper
subset of W; has this property.

Then, a checking sequence for each state is prefixed to all sequences in the corresponding
identification set. A checking sequence for a given state is simply an input sequence that
reaches that state, when starting at the initial state. It can be shown [6] that the length
of the resulting test sequences may be shorter, when compared to those sequences obtained
using the complete PZ concatenation set of the basic W-method.

9.3 The HSI-method

The HSI-method [16] uses the notion of trace-inclusion and a quasi-equivalence relation to
verify conformance between partial non-deterministic FSM implementations and a given
FSM specification. For that, so called harmonized sate identification sets are used instead
of the identification subsets used in the W)-method. Whereas identification sets fixed the
sequences associated with a specific state s;, a harmonized state identification set D;, is
constructed by taking prefixes of a characterization set W, but now allowing the reuse of
a same prefix for different states. Distinguishing sequences for states are then taken from
the intersection of D;-sets. It is argued that shorter sequences can be found to distinguish
every pair of states in M [16].

10 Concluding Remarks

The Finite State Machine (FSM) model is well established and has been intensively inves-
tigated as a foundation for the automatic generation of test cases. The W-method is a well
known technique used to compute test sequences having FSMs as its basic formal model.
In this work, we generalize the basic W-method, thus obtaining the G-method, which
altogether avoids the computation of characteristic sets and indexes for the specification
models. We also demonstrated in a clear way how the basic W-method follows from the
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proposed G-method. We presented detailed proofs of correctness for both the main algo-
rithm in the G-method, as well as for the main tenets of the basic W-method, the latter
being absent in the original work where it was introduced.

We also showed some infinite families of FSM models where G-method obtains exponen-
tially more succinct test case suites than does the W-method. This suggested alternative
testing strategies, where a compact test suite, generated using the G-method, is first applied
to the target implementations followed, if necessary, by a second step were more complete
suites are constructed and subsequently applied to the remaining implementations.

Some more recent test generation methods, such as those presented in Section 9, also
need to extract characterization sets and indices from the specification models, as in the ba-
sic W-method, in order to properly construct test suites. On the other hand, the G-method
does not need such characterization sets or indices in order to generate test cases. We
envisage that similar ideas can be used to extend and generalize other test case generation
techniques, such as the W), and HSI methods.
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