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Matching Signatures and Pfaffian Graphs

Alberto Alexandre Assis Miranda
∗

Cláudio Leonardo Lucchesi
†

Abstract

We prove that every 4-Pfaffian that is not Pfaffian essentially has a unique signature
matrix. We also give a simple composition Theorem of 2r-Pfaffian graphs from r Pfaffian
spanning subgraphs. We apply these results and exhibit a graph that is 6-Pfaffian but
not 4-Pfaffian. This is a counter-example to a conjecture of Norine [5], which states
that if a graph G is k-Pfaffian but not (k − 1)-Pfaffian then k is a power of four.

1 Introduction

Let G be a graph. Let {1, 2, . . . , n} be the set of vertices of G. For u and v adjacent
vertices of G, we denote the edge joining u and v by uv or vu. Let D be an orientation of
G. If D has an edge directed from u to v then we denote that directed edge by uv. Let
M := {u1v1, u2v2, . . . , ukvk} be a perfect matching of D. Then the sign of M in D, denoted
sgn(M,D), is the sign of the permutation

πD(M) :=

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)

.

A change in the order of the enumeration of the edges of the perfect matching changes the
number of inversions by an even number. Therefore, the sign of the permutation remains
unchanged. We conclude that the sign of a perfect matching is well-defined.

Let k be a positive integer, let D := (D1,D2, . . . ,Dk) be a k-tuple of orientations of G.
We say that D is a k-orientation of G. For each perfect matching M of G, we may consider
the k-tuple

sgn(M,D) := (sgn(M,D1), sgn(M,D2), . . . , sgn(M,Dk)),

called the signature vector of M relative to D. We denote by M(G), or simply M, if G is
understood, the set of perfect matchings of G. The signature matrix of M relative to D is
the matrix

sgn(M,D) := (sgn(M,D) : M ∈ M).

If the system sgn(M,D) x = 1 has a solution then we say that D is Pfaffian and, for
any solution α of that system, we say that (D,α) is a Pfaffian k-pair. We say that G

∗Institute of Computing, University of Campinas, 13084-971 Campinas, SP. Research supported by
Fapesp – Fundação de Amparo à Pesquisa do Estado de São Paulo, proc. #05/04426-6

†Institute of Computing, University of Campinas, 13084-971 Campinas, SP. Research supported in part
by CNPq — Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico, grant #306088/2005-3



2 Miranda, Lucchesi

is k-Pfaffian if it has a Pfaffian k-orientation. We remark that relabelling the vertices of
graph G either changes the signs of all perfect matchings relative to D or does not change
the sign of any perfect matching of G relative to D. Consequently, the property of G being
k-Pfaffian does not depend on the particular enumeration of the vertices of G. We define
the Pfaffian number of a graph G, denoted pf(G), to be the minimum k such that G is
k-Pfaffian. Galluccio and Loebl [1] and, independently, Tesler [6], proved the following
remarkable result:

Theorem 1.1
If G is embedable on an orientable surface of genus g then pf(G) ≤ 4g.

In 2008, Norine [5] stated the following conjecture:

Conjecture 1.2
The Pfaffian number of a graph is always a power of four.

In fact, in 1967, Kasteleyn [2, page 99] stated a similar belief: “If the genus of the graph
is g the number of Pfaffians required is 4g”.

Norine proved the following result:

Theorem 1.3 (Norine [5])
Every 3-Pfaffian graph is Pfaffian and every 5-Pfaffian graph is 4-Pfaffian.

By Theorem 1.3, a counter-example to Conjecture 1.2 must have Pfaffian number six or
more. In this paper we show that graph G19, depicted in Figure 1(a), is 6-Pfaffian, but not
4-Pfaffian.

X1

X2C19

(a) G19

X1

X2C21

(b) G21

Figure 1: Graphs G19 and G21.

Let us describe how graph G19 may be obtained. Figure 1(b) shows graph G21. This graph
is obtained from two disjoint copies, G1 and G2, of K3,2, with sets of vertices X1 and X2,
by joining every vertex of the majority part of G1 to each vertex of the majority part of
G2. Those added edges span a K3,3 and constitute a tight cut of G21, which we denote by
C21. Graph G19 is obtained from G21 by removing two adjacent edges of C21: the resulting
tight cut is denoted C19.

We now give a brief description of the outline of the proof. For every graph G, let M(G)
denote the set of perfect matchings of G. Let r be a positive integer, G1, G2, . . . , Gr Pfaffian
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spanning subgraphs of G. We say that G1, G2, . . . , Gr is an r-decomposition of a graph G
if there are r sets S1, S2, . . . , Sr of edges of G such that:

• {M(Gi) : i = 1, 2, . . . r} is a partition of M(G), and

• for each perfect matching M of G, |M ∩ Si| is odd if and only if M ∈ M(Gi).

In Section 2 we prove that G21 is 6-Pfaffian and also that G19 − e is 4-Pfaffian, for every
edge e of G19. We do this by showing the following fundamental result:

Theorem 2.7 (Composition)
If a graph has an r-decomposition then it is 2r-Pfaffian.

We show that a graph obtained from G21 by removing six edges from C21 so that the
resulting tight cut spans a P4 is Pfaffian. From this and Theorem 2.7 it follows that G21 is
6-Pfaffian, because it is possible to cover the edges of K3,3 with three P4’s. It also follows
that for every edge e in C19, G19 − e is 4-Pfaffian, because it is possible to cover K3,3 minus
any three edges with two P4’s. We also show that G21 − e is 4-Pfaffian for any edge e not in
C21. This establishes the fact that G19 − e is 4-Pfaffian, for every edge e. In sum, we prove
that G19 is 6-Pfaffian, and if not 4-Pfaffian, then it is a minimal non-4-Pfaffian graph.

In Section 3 we prove that G19 is not 4-Pfaffian. For this, we derive the following
fundamental result, which says that the signature matrix associated with a normal Pfaffian
4-pair of a non-Pfaffian graph is essentially unique:

Theorem 3.2 (Uniqueness of Signature Matrices)
Let G be a non-Pfaffian graph, (D,α) a normal Pfaffian 4-pair of G. Then, α = 1/2.

We prove that G19 cannot possibly satisfy the property stated in Theorem 3.2. We deduce
that G19 is 6-Pfaffian and minimal non-4-Pfaffian. Indeed, we believe that G19 is the
smallest counter-example to Conjecture 1.2.

2 Composition of Pfaffian Graphs

In this section we prove that graph G21 is 6-Pfaffian. Consequently, G19 is also 6-Pfaffian.
We also prove that G19 − e is 4-Pfaffian, for every edge e. For this we need to establish
some pre-requisites. First we establish a relation involving the Pfaffian numbers of the two
C-contractions of a graph G and the Pfaffian number of G, where C is a tight cut of G. We
then prove the Composition Theorem. This is a fundamental result that is used to prove
that G21 is 6-Pfaffian and also that G19 − e is 4-Pfaffian.

2.1 Edge Cuts, Similarity, Normal Pairs

Let G be a graph, X a set of vertices of G. We denote by ∂(X) the (edge-)cut C consisting
of those edges having one end in X, the other end in X. The sets X and X are called shores
of C. We say that two orientations D and D′ of G are similar if the set of edges of G on
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which D and D′ disagree is a cut of G. We say that two k-orientations D and D′ of G
are similar if there is a permutation f on {1, 2, . . . , k} such that Di and Df(i) are similar,
for i = 1, 2, . . . , k. For a directed graph D and a subset S of E(D), let D ⊗ S denote the
directed graph obtained from D by the reversal of the edges of S. The proof of the following
result is straightforward:

Lemma 2.1
Let D be a directed graph, M a perfect matching of D, and C := ∂(X) a cut of D. Then,
sgn(M,D) = sgn(M,D ⊗ C) if and only if |X| is even.

Corollary 2.2
Let D and D′ be two similar k-orientations of G. Then, D is Pfaffian if and only if D′ is
Pfaffian.

Corollary 2.3
Let (D,α) be a Pfaffian k-pair of a graph G. Then, G has a Pfaffian k-pair (D′,α′) such
that D and D′ are similar and α′

i = |αi| for i = 1, 2, . . . , k.

A Pfaffian k-pair (D,α) of G is normal if α > 0.

Corollary 2.4
Every graph G has a normal Pfaffian pf(G)-pair.

2.2 Cut Contractions and Tight Cuts

The graph obtained from X by contracting X to a single new vertex x and by removing
any resulting loops is denoted G/X → x. The graphs G/X → x and G/X → x are called
C-contractions of G. Assume further that G has a perfect matching. Cut C is tight in G if
every perfect matching of G has precisely one edge in C. Little and Rendl [3] proved the
following important result:

Theorem 2.5
Let C be a tight cut of a graph G. Then, G is Pfaffian if and only if both C-contractions
of G are Pfaffian.

From Theorem 2.5 we deduce that if both C-contractions of G are Pfaffian and C is a tight
cut then G is also Pfaffian, We need a generalization of this result for k-Pfaffian graphs.
Theorem 2.5 does not extend naturally to k-Pfaffian graphs. Indeed, G21 is not 4-Pfaffian,
yet both C21-contractions of G21 are equal to K3,3 up to multiple edges, whence 4-Pfaffian.

Theorem 2.6
Let C be a tight cut of a graph G, let G′ and G′′ denote the two C-contractions of G. Then,
pf(G) ≤ pf(G′) · pf(G′′).
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Proof: Let X denote the shore of C such that G′ = G/X → x and G′′ := G/X → x.
Let (D′,α′) be a Pfaffian pf(G′)-pair of G′. Adjust notation so that contraction vertex x
has the highest label. Likewise, let (D′′,α′′) be a Pfaffian pf(G′′)-pair of G′′, and adjust
notation so that contraction vertex x has minimum label, equal to 1.

Let e1 and e2 denote any two multiple edges of G′. Denote by D′ − e2 the pf(G′)-
orientation of G′ − e2 obtained by deleting the edge e2 from each orientation of D′. The
pair (D′ − e2,α

′) is also a Pfaffian pf(G′)-pair. Therefore, an extension of this pair to G′,
obtained by orienting e2 in the same direction of e1 in D′

i − e2, for i = 1, 2, . . . ,pf(G′), is
also a Pfaffian pf(G′)-pair. So, we may choose (D′,α′) such that every pair of multiple
edges of G′ has the same direction in each orientation of D′. These observations imply
that, for an orientation D′

i of D′, the set S of edges of C directed away from contraction
vertex x are part of a cut C ′ disjoint with C − S. We reverse the orientation of the edges
of cut C ′ in D′

i , thereby obtaining a similar orientation. We may thus assume that in D′

i

all the edges of C enter contraction vertex x. This conclusion holds for i = 1, 2, . . . ,pf(G′).
Likewise, we may assume that each edge of cut C leaves x in D′′

j , for j = 1, 2, . . . ,pf(G′′).
Define

Dij := D′

i ∪ D′′

j and αij := α′

iα
′′

j for i = 1, 2, . . . ,pf(G′) and j = 1, 2, . . . ,pf(G′′).

Label the vertices of G as follows: the vertices of X inherit their labels from G′; the vertices
of X inherit their labels from G′′, but are increased by |X| − 1. This clearly produces
a labeling 1, 2, . . . , |V (G)| of G. We assert that under this labeling, (D,α) is a Pfaffian
pf(G′)·pf(G′′)-pair of G. For this, let M be a perfect matching of G. Then, M ′ := M∩E(G′)
is a perfect matching of G′ and M ′′ := M ∩ E(G′′) is a perfect matching of G′′. The
number of inversions of the permutation associated with M in Dij is equal to the sum of
the number of inversions of the permutations associated with M ′ in D′

i and M ′′ in D′′

j , for
i = 1, 2, . . . ,pf(G′) and j = 1, 2, . . . ,pf(G′′). Thus, sgn(M,Dij) = sgn(M,D′

i)·sgn(M,D′′

j ).
Consequently,

∑

i,j

αij sgn(M,Dij) =
∑

i

α′

i sgn(M ′,D′

i)
∑

j

α′′

j sgn(M ′′,D′′

j ) =
∑

i

α′

i sgn(M ′,D′

i) = 1.

This conclusion holds for each perfect matching M of G. We deduce that, as asserted,
(D,α) is a Pfaffian pf(G′) · pf(G′′)-pair of G. 2

2.3 Composition of Pfaffian Orientations

Theorem 2.7 (Composition)
If a graph has an r-decomposition then it is 2r-Pfaffian.

Proof: Let G be a graph, assume that G has an r-decomposition. Let G1, G2, . . . , Gr be
Pfaffian spanning subgraphs of G, let S1, S2, . . . , Sr be sets of edges of G such that:

• {M(Gi) : i = 1, 2, . . . r} is a partition of M(G), and

• for each perfect matching M of G, |M ∩ Si| is odd if and only if M ∈ M(Gi).
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Let us use the same labeling for each graph Gi and also for graph G. For i = 1, 2, . . . , r,
let Di be a Pfaffian orientation of Gi. Adjust notation, by replacing Di, if necessary, by
Di⊗∂(v), for some vertex v of G, so that every perfect matching of Gi has sign equal to one
in Di. Let D′

i be an arbitrary extension of Di to an orientation of G. Let D′′
i := D′

i ⊗ Si.
Let

D := (D′
1,D

′
2, . . . ,D

′
r,D

′′
1 ,D′′

2 , . . . ,D′′
r ),

α1 := α2 := . . . := αr = 1/2 and αr+1 := αr+2 := . . . := α2r = −1/2.

We assert that (D,α) is a Pfaffian 2r-pair of G. For this, let M be a perfect matching of
G. By hypothesis, M is a perfect matching of precisely one of the graphs Gi, say Gk. By
hypothesis, |M ∩Si| is odd if and only if i = k. For i 6= k, as |M ∩Si| is even, it follows that
M has equal signs in D′

i and in D′′
i . Consequently, D ·α = 1/2[sgn(M,D′

k)− sgn(M,D′′
k)].

As |M ∩ Sk| is odd, we have that

sgn(M,D′
k) = sgn(M,Dk) = 1 and sgn(M,D′′

k) = −sgn(M,Dk) = −1.

Consequently, D · α = 1. This conclusion holds for each perfect matching M of G. As
asserted, G is 2r-Pfaffian. 2

Corollary 2.8
Let C be a tight cut of a graph G. Let {C1, C2, . . . , Cr} be a partition of C. Assume that
Gi := G − (C − Ci) is Pfaffian, for i = 1, 2, . . . , r. Then, G is 2r-Pfaffian.

2.4 Graph G21 is 6-Pfaffian and graph G19 − e is 4-Pfaffian

We now derive the next result as a straightforward consequence of Corollary 2.8.

Theorem 2.9
Let R be a (possibly empty) subset of tight cut C21 of G21. If C21 − R may be covered by
r edge-disjoint P4’s then G21 − R is 2r-Pfaffian.

Proof: Assume that C21 − R is covered by r P4’s. Let C1, . . . , Cr denote the set of edges
of the r P4’s. By Corollary 2.8, it suffices to show that Gi := G21 − (C − Ci) is Pfaffian,
for i = 1, . . . , r. For this, note that the Ci-contractions of Gi are equal to K3,3 − e, up to
multiple edges. As K3,3 − e is planar, it is Pfaffian. Therefore, both Ci-contractions of Gi

are Pfaffian. Moreover, Ci is tight in Gi. We deduce that Gi is Pfaffian. The assertion
holds. 2

Theorem 2.10
Graph G21 is 6-Pfaffian and graph G19 − e is 4-Pfaffian.

Proof: Note that G21[C21] is K3,3 (see Figure 1(b)). Let R be any set of three edges of K3,3.
As indicated in Figure 2, K3,3 − R is the union of two P4’s.



Matching Signatures and Pfaffian Graphs 7

(a) R is a matching (b) precisely two edges of
R are adjacent

(c) R spans P4 (d) R spans a star

Figure 2: Decomposition of K3,3 − R in two P4’s, where R is a set of three edges.

In particular, if R is the set of edges of a P4 of K3,3, we deduce that K3,3 is the union
of three P4’s. By Theorem 2.9, graph G21 is 6-Pfaffian. For any edge e of C19, the cut
C19 − e spans a K3,3 minus three edges. In this case, G19 − e is 4-Pfaffian, by Theorem 2.9.
Finally, if e is an edge of G21 that does not lie in C21, then, up to multiple edges, one of the
C21-contractions of G21−e is K3,3−e, the other C-contraction is K3,3. As K3,3 is 4-Pfaffian
and K3,3 − e is Pfaffian, it follows that G21 − e is 4-Pfaffian. We deduce that G19 − e is also
4-Pfaffian. This conclusion holds for each edge e of G19. The assertion holds. 2

3 4-Pfaffian Graphs

In this section we prove that graph G19 is not 4-Pfaffian. We do this by proving Theorem 3.2,
and then applying it to G19 to show, by contradiction, that it is not 4-Pfaffian.

3.1 Uniqueness of Signature Matrices

In order to prove Theorem 3.2, we need the following result, due to Norine [5]:

Lemma 3.1
Let G be a graph, (D1,D2, . . . ,Dr) a family of orientations of G, r odd. Then, there is an
orientation D of G such that the inequality below holds for every perfect matching M of G:

sgn(M,D) = sgn(M,D1) sgn(M,D2) . . . sgn(M,Dr).

Theorem 3.2 (Uniqueness of Signature Matrices)
Let G be a non-Pfaffian graph, (D,α) a normal Pfaffian 4-pair of G. Then, α = 1/2.

Proof: Consider the signature matrix S := sgn(M,D) of D. Then, S · α = 1.
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Lemma 3.3
For any two distinct rows Si and Sj of S, there is a column Sℓ and a column Sm of S such
that Siℓ = 1, Sim = −1, Sjℓ = 1 and Sjm = 1.

Proof: Clearly, (Si + Sj) · α = 2. By hypothesis, α > 0. Therefore, Si + Sj must have a
positive entry. We deduce that there is a column ℓ such that Siℓ = 1 and Sjℓ = 1. Likewise,
(Si − Sj) · α = 0. By hypothesis, Si and Sj are distinct. Therefore, Si − Sj must have a
negative entry. We deduce that there is a column m such that Sim = −1 and Sjm = 1. 2

By hypothesis, G is not Pfaffian. Therefore, S must have two distinct rows. By Lemma 3.3,
every row of S must have two entries equal to 1 and at least one entry equal to -1. We may
thus call a row of S single if it has precisely one entry equal to -1, double otherwise.

We assert that S has at least one single row. For this, note first that there are at most
(4
2

)

= 6 distinct double rows. But those six types appear in three complementary pairs. By
Lemma 3.3, no two members of a complementary pair may occur in S. We deduce that S
has at most three distinct double rows. By hypothesis, G is not Pfaffian (and consequently
not 3-Pfaffian, by Theorem 1.3), therefore for every solution x of Sx = 1, no entry of x is
equal to zero. Thus, the rank of matrix S is equal to four. We deduce that S must have at
least one single row, as asserted. Adjust notation so that (i) row S1 is single and (ii) S11 is
its single entry equal to -1. By Lemma 3.3, for every row Si distinct from S1, its entry Si1

is equal to 1.
We now prove that S must have two distinct single rows. For this, assume, to the

contrary, that any single row of S is equal to S1. Then, for any row Si we have Pi :=
Si2Si3Si4 = 1. By Lemma 3.1, G has an orientation D that is Pfaffian, a contradiction. As
asserted, S has two distinct single rows. Adjust notation so that (i) row S2 is single and
(ii) S22 is its single entry equal to -1. By Lemma 3.3, for every row Si distinct from S2, its
entry Si2 is equal to 1.

We now prove that S has three distinct single rows. For this, note that any double row
of S must have the two negative entries in columns 3 and 4 and is thus unique. The rank
of S is equal to four. Therefore, S must have a single row distinct from both S1 and S2.
Adjust notation so that (i) row S3 is single and (ii) S33 is its single entry equal to -1. By
Lemma 3.3, for every row Si distinct from S3, its entry Si3 is equal to 1.

The rank of S is equal to four. Therefore, S must have rows distinct from S1, S2 and S3.
Let R be one such row of S. By Lemma 3.3, R1 = R2 = R3 = 1 and R4 = −1. We conclude
that S has four distinct rows, each of which is single. The submatrix of S consisting of
those four rows is a permutation of J − 2I, where J denotes the 4 × 4 matrix consisting
solely of entries equal to 1 and I denotes the 4 × 4 identity matrix. The determinant of
matrix J − 2I is non-null. This implies that α = 1/2, as asserted. Consequently, every
row of S is single. 2

3.2 Graph G19 is not 4-Pfaffian

For directed graph D, a cycle Q of even length of D is evenly oriented if the number of
forward edges of Q is even, oddly oriented otherwise. The following result appears in the
book by Lovász and Plummer [4, Lemma 8.3.1]:
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Lemma 3.4
Let M1 and M2 be two perfect matchings of a directed graph D, and let k denote the number

of evenly oriented M1,M2-alternating cycles. Then, sgn(M1,D) · sgn(M2,D) = (−1)k.

Theorem 3.5
Graph G19 is not 4-Pfaffian.

Proof: Refer to Figure 1 on page 2. Let us first prove that G19 is not Pfaffian. For this,
note that C19 is tight and each C19-contraction of G19 is, up to multiple edges, equal to
K3,3, in turn non-Pfaffian. Therefore, by Theorem 2.5, G19 is not Pfaffian.

Assume, to the contrary, that G19 is 4-Pfaffian. Let (D,α) be a normal Pfaffian 4-pair
of G. Let S be the signature matrix sgn(M(G),D). By the Theorem on the Uniqueness of
Signature Matrices, we have that α = 1/2, whence every row of S contains precisely one
entry equal to -1. Moreover, every column of S contains one entry equal to -1. The set M
of the perfect matchings of G is thus partitioned in four non-null classes, Mi, i = 1, 2, 3, 4,
such that Mi is the set of those perfect matchings of G that have sign -1 in Di (and sign
1 in all the other three orientations in D − Di). Let us now derive some properties of D.
Recall first that G19 − C19 is the union of two disjoint K3,2’s, Gi := G19[Xi], i = 1, 2 (see
Figure 1). The proof of the following auxiliary result is easily done by induction:

Lemma 3.6
In every orientation of K3,2, the number of evenly oriented cycles is odd.

Lemma 3.7
Let Q be a quadrilateral in G19−C19 that is evenly oriented in Di. Then, Q is evenly oriented
in precisely one more orientation Dj of G, j 6= i. Moreover, every perfect matching of G
that contains two edges in Q lies in Mi ∪Mj .

Proof: Let M be a perfect matching of G that contains two edges in Q. Let N := M△Q.
The signs of M and N in Di are distinct. Therefore, one of M and N has sign -1 in Di,
the other has sign 1 in Di. Consequently, there exists an integer j distinct from i such that
one of M and N has sign -1 in Di and sign 1 in Dj , the other has sign 1 in Di and sign
-1 in Dj . We deduce that Q is evenly oriented in Dj as well. For any orientation Dk in
D − Di − Dj , the signs of M and N in Dk are both equal to 1. Therefore, Q is oddly
oriented in Dk. We deduce that Q is oddly oriented in the two orientations of D−Di −Dj

and evenly oriented in Di and in Dj . Finally, we have already seen that M lies in Mi∪Mj.
This conclusion holds for each perfect matching M of G that contains two edges in Q. 2

Corollary 3.8
For each shore Xi of C, at most one of the three cycles in G19[Xi] is oddly oriented in every
orientation in D.

Proof: Let r denote the number of cycles of G19[Xi] that are evenly oriented in some orien-
tation in D. By Lemma 3.7, each such cycle is evenly oriented in precisely two orientations.
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A simple counting argument then shows that the number of pairs (Q,Dj) such that Q is
a cycle of G19[Xi] that is evenly oriented in Dj is equal to 2r. Every orientation contains
at least one evenly oriented cycle in G19[Xi]. We deduce that 2r ≥ 4, whence r ≥ 2.
As asserted, at most one of the three quadrilaterals of G19[Xi] is oddly oriented in every
orientation in D. 2

Let x1 and x2 denote the two universal vertices of X1, that is, the two vertices of degree
five in G19 that lie in X1. For i = 1, 2, subgraph G19[X1] of G19 has two cycles, Q1 and Q2,
such that Qi contains xi but does not contain both x1 and x2. By the Corollary, at least
one of Q1 and Q2 is evenly oriented in some orientation in D. Adjust notation so that x is
a universal vertex of X1, Q is a cycle of G19[X1] − x that is evenly oriented in D1. Adjust
notation so that Q is evenly oriented in D2 as well. Then, Q is oddly oriented in D3 and
in D4.

Let Q′ denote a cycle in G19[X2] that is evenly oriented in D3. Then, Q′ is also evenly
oriented in Dj , for some j in {1, 2, 4}, but oddly oriented in the two orientations in D −
D3 − Dj .

Let e be the edge of G19 − V (Q) − V (Q′). That edge exists, because the vertex x in
X1 − V (Q) is universal. Let M be a perfect matching of G19 that contains edge e. Then,
M contains two edges in Q and two edges in Q′. Let N := M△E(Q). By the Lemma,
{M,N} ⊂ M1 ∪M2. Again, by the Lemma, {M,N} ⊂ M3 ∪Mj, which implies that M
and N lie both in Mj. But M and N have distinct signs in D1, whence cannot both lie
in the same class Mj . We have deduced a contradiction from the hypothesis that G19 is
4-Pfaffian. 2

4 Remarks

Norine has shown that for every graph G, if pf(G) ≤ 5 then pf(G) ∈ {1, 4}. We have
shown that G19 is a graph that is 6-Pfaffian but not 4-Pfaffian. This is a counter-example
to Conjecture 1.2. We believe it to be a minimum counter-example. We would like to pose
two Conjectures:

Conjecture 4.1
For every graph G, if pf(G) > 1 then pf(G) is even and pf(G) ≥ 4. Moreover, for every
even integer k ≥ 4 there exists a graph G whose Pfaffian number is k.

Conjecture 4.2
Let G be a graph, (D,α) a normal Pfaffian pf(G)-pair of G. If pf(G) is even then α = 1/2.

It is not difficult to show that the smallest counter-example G to Conjecture 4.2 is minimal
pf(G)-Pfaffian.

Conjecture 4.3
Let G be a graph. If G is minimal pf(G)-Pfaffian and pf(G) is even then graph G has a
pf(G)

2 -decomposition.
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