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Creating a HasCASL Library
Glauber Módolo Cabral* Arnaldo Vieira Moura†

Abstract

The effective use of a specification language depends on the availability of
predefined specifications. Although the CASL specification has such a library,
that is not the case of the HasCASL language, one of the CASL’s extensions.
Here we start to specify such a library to the HasCASL language, based on the
Prelude library of the Haskell programming language. When completed this
approach would create a library that, after refinements, should lead to reusable
specifications for real Haskell programs. This technical report discusses the
specification and verification of a kernel library to the HasCASL language.

1 Introduction
In this report we show how to specify a library in the HasCASL specification language.
The intent it for this library to reuse previous specifications, as much as possible.

The practical use of a specification language requires that a default library exists.
This could be a small library, used to guide new specifications, or, preferably, a
predefined library that could be imported to construct other, larger, specifications.

The HasCASL specification language does not yet have such a library. The CASL
specification language, of which HasCASL is an extension, already has a default
library with lots of specifications covering topics from simple data types to complex
algebraic structures.

Here, we show how to construct a default library for the HasCASL language
based on the Prelude library, from the Haskell programming language. We describe
the specification and the verification of our library. We include proofs and comments
about the difficulties we faced.

This report is organized as follows. Section 2 introduces the languages involved in
this work and details our proposal. Section 3 describes our specifications, including
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their codes. Section 4 addresses the parsing and verification of the specifications.
Section 5 discusses some problems we faced during the specification of the library.
Section 6 comments on some related specification languages. Section 7 lists open
questions and topics for future work. Section 8 concludes the report. Appendix A
lists the proof scripts used to verify the specifications.

2 Languages
This section introduces the languages involved in our work. We start with a presen-
tation of the CASL specification language, briefly describing its syntax and semantic.
Next, we introduce the Haskell programming language, including some interesting
concepts that we had to deal latter in specification. Next, we describe the HasCASL
specification language, a CASL extension, which we used to write our specifications.
We presented some main concepts of HasCASL and a small example. Latter, we
introduce the HasCASL extension to the CASL language and its related tool, namely
Hets, which is responsible for parsing and translating our specifications to be used
with the theorem prover. Next, we introduce the Isabelle theorem prover with a brief
presentation of its main features. Finally, we describe our proposal for this work.

2.1 CASL
The Common Algebraic Specification Language (CASL) emerged as the product of
an international initiative to create an unified language for algebraic specifications
containing the largest possible set of known language constructions. This section
describes the CASL language [1].

With few exceptions, the characteristics of CASL are present in some form or
another in other specification languages. However, no previous single language had all
the desired characteristics. Some sophisticated features require specific programming
paradigms. On the other hand, methods for prototyping and specification generation
work only in the absence of certain characteristics. For example, term rewriting
requires specifications with equational or conditional equational axioms.

CASL was constructed to be the kernel of a family of languages. Sub-languages
are obtained through syntactic or semantic restrictions, while extensions are cre-
ated to support the various programming paradigms. The language definition took
into account previously planned extensions, such as the support to second order func-
tions. CASL is divided into several parts that can be understood and used separately,
namely:

• Basic Specifications: contain declarations (of types and operations), definitions
(of operations) and axioms (related operations);
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• Structured Specifications: allow Basic Specifications to be combined in larger
specifications;

• Architectural Specifications: define how specifications should be separated in
an implementation, allowing reuse of specifications with dependence relations;

• Specification libraries: similar specifications are joined together in these li-
braries; their syntax has facilities that allow version control and library dis-
tribution over the Internet.

Structured Specification language constructions are independent of the Basic Spec-
ifications. So, CASL sub-languages or extensions can be created by extending or re-
stricting Basic Specification language constructions, without the need to change any
of the other three language parts. We now briefly describe the most important Basic
Specification language constructions.

Basic Specification denotes a class of models which are many-sorted partial first
order structures, i.e., many-sorted algebras with total and partial functions and pred-
icates. These models are classified by signatures, which contain sort names, total and
partial function names, predicate names and definitions (or profiles) for functions and
predicates.

Specifications contain: declarations, which introduce components of the signature
(operations or functions, and predicates), and axioms, which define properties of the
structures that should be models of the specification. Operations may be declared
total (by using ‘->’) or partial (by using ‘->?’), and we can assign to this operations
some common properties, such as associativity, avoiding the need for axiomatizing
those properties for each different operation.

Partial operations are a simple way to treat errors (such as dividing by zero) and
these errors are propagated to callers directly. When an argument of an operation is
not defined, the operation result is also not defined. The errors and exceptions can
be treated by super-types and sub-types. The domain of a partial function can be
defined as a sub-type of that function’s argument type in order to make this partial
function a total function over the sub-type. Functions can be declared total rather
than making them total by axioms.

Predicates are similar to operations but have no return type; only parameter types
are declared. Predicates may be declared and defined at the same time, instead of
having their declarations and axioms in separate sections.

Axioms are written as atomic first-order formulas. Variables used in axioms may
be declared in three different ways: globally, before axiom declarations; locally to a
list of formulas; or individually for each formula, using explicit quantification.

Formulas are interpreted in two-valued first order logic (with values true and
false). Definedness assertions are used to indicate when a term is defined or not
defined. Assertions may be declared explicitly by a keyword or implicitly by means
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of an existential equation. An existential equation, declared by using ‘=e=’ between
two terms of the same type, is valid when both terms are defined and are equal. In
contrast, strong equations, declared by using ‘=’ between terms, are also valid when
both terms are undefined.

Sub-sort membership, indicated by ‘in’, creates a predicate asserting the mem-
bership of an element to a sort. It’s a good practice to use existential equations when
defining properties and strong equations when defining partial functions inductively.

CASL uses a loose semantic for Basic Specifications, i.e., all structures that meet
the axioms are selected as models. This semantic is interesting during requirement
analysis because it creates very restrictive specifications that may be refined later by
other axioms.

A data type can be declared as free, changing its loose semantic into an initial
semantic. Thus, values of the same type that differ only in the order of the type
constructor application are treated as different elements of that type.

The third semantic allowed in CASL forces data types to be generated only by
type constructor applications. This eliminates the confusion between terms, i.e.,
unless axioms force a term equality, all the terms of that type are different from each
other. When needed, axioms can be used to reintroduce term equality.

Linear visibility is used to control term declaration except for type declarations,
i.e., except in type declarations a term must be declared before its use.

2.2 Haskell
This section presents some general elements of the Haskell programming language.
Information provided here as well as further concepts can be found online [8] or in
books [22].

Haskell is a pure, strong typed functional programming language with lazy eval-
uation. It resulted from the need of standardization in the domain of functional
languages. The language is functional because it implements concepts of the λ −
Calculus. So, the programming is done through function and computation applica-
tions. The language is strongly typed, i.e., the types of functions and values must
be explicitly defined at compile time; otherwise, the compiler will try to bind those
types to the broadest possible ones in the current context.

Concepts of lazy evaluation and strict evaluation relate to the interpretation of
the parameters of a function. Languages with strict evaluation calculates all param-
eters of a function call before running its body. In the case of languages with lazy
evaluation, such as Haskell, parameters of a function are evaluated only when they
become necessary inside the function body.

The language is called purely functional because it does not allow a function
application to change the global state of the program. Only changes to variables and
values local to the function execution are allowed. Changing the global state of the
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program is a kind of side effect which is common in imperative languages. Functional
programming languages that allow side effects are called non-pure.

To allow operations that may cause side effects to be executed without causing
side effects to the whole program, Haskell performs side-effect actions through a
mathematical entity called a monad. Monads can sequence side-effect computations
passing a copy of the actual global state implicitly to those computations. They
prevent the side effects to change the real global state of the program.

Haskell functions can be declared just as in the λ − Calculus using Lambda Ab-
stractions, or the Haskell syntax can be used. In both styles we can name function
definitions for later reuse. If a function type is not defined, the compiler will com-
pute the broader type in the corresponding context. The Haskell syntax is preferred
because it’s easier and more practical for writing larger programs. Here, we show
the function add for summing two numbers, defined both using Lambda Abstrac-
tions and in the Haskell syntax, respectively. The compiler will append the type
Integer -> Integer to the functions, as we haven’t declared their type:

add = \x y -> x+y
add x y = x+y

It is necessary to differentiate functions, such as the previously defined function
add, from operators, such as the + operator. A function in Haskell is always defined
in a prefix way, while an operator uses infix definition. Besides these differences, it’s
possible to simulate a function with an operator and vice versa. Operators can be
used as functions if enclosed in parenthesis; a function can be used as an operator if
enclosed by back-quotes. We can use the operator + as a function like this: (+) x y
and the function add as an operator like this: x `add` y

Just as in other functional languages, the main data represented in Haskell are
lists. There can be lists of primitive types, lists of tuples, lists of lists, lists of functions,
etc.. The only requirement is that all elements of the list have the same type. The
order and the quantity of elements within a list are taken into account when comparing
them for equality.

Two basic operators to manipulate lists are “:” (list construction) and “++” (list
concatenation). A list is always constructed from an empty list and some element,
using the list construction operator. Two lists can be concatenated only if their
elements have the same type.

Another feature largely explored in Haskell programs is pattern matching. Func-
tions can be defined by pattern matching their parameters, as follows:

fat :: Int -> Int
fat 1 = 1
fat x = x * fat(x-1)
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Each call to the function fat will pattern match against each line of its definition,
from the first one to the last one, until the parameters of the function call match
parameters from one of the definitions. Thus, the more specific definitions must come
before the more generic ones. In the Haskell Source Code 2.2.1, on page 7, we can see
pattern matching applied in case expressions, list constructors and let expressions.

A fundamental tool in Haskell is the data type construction. A data type must
have at least one constructor that may be empty or may have type variables. Type
variables are used to construct polymorphic data types; the constructor and its type
variables may be enclosed by parenthesis in order to avoid ambiguity. In the Haskell
Source Code 2.2.1, on page 7, we define the polymorphic type Split a b with one
constructor (Split b [[a]]).

We can collect functions and data types from similar contexts into libraries.
Haskell libraries are called modules and can control which functions and data types
from that module should be exposed to users. We’ve created a module in the Haskell
Source Code 2.2.1, on page 7, where all functions are exposed to the users. There is
a standard Haskell library, called Prelude, which defines basic functions that operate
on primitive types, such as Bool, Char, List and String. Also, there are numeric types
and tuples involving those types. All Haskell compilers must implement the Prelude
library ,as this implementation is part for the language definition.

2.3 HasCASL
This section presents the language HasCASL[18]. The formal language definition can
be found in another document [19].

The language HasCASL is an extension of CASL with concepts of higher-order
logic such as high order types and functions, polymorphism and type constructors.
HasCASL was planned to have Haskell as its subset; this makes it possible to trans-
form a HasCASL specification in a Haskell program in a simple way.

Standard higher-order logic does not allow recursive types and functions widely
used in functional languages. HasCASL solves this problem without using denota-
tional semantic by creating an internal logic to λ-abstractions which is not a primitive
concept, but that emerges from the constructions. Thus, although higher-order prop-
erties can be obtained, HasCASL remains close to the CASL language.

The sentences in HasCASL differ from those in CASL in two respects:
• Quantifiers (universal, existential and unique existential) can be applied on type

variables and have restrictions related to sub-types;

• CASL predicates are replaced by terms of the type Unit.
Unlike in functional programming languages, polymorphic operators must be ex-

plicitly instantiated, since it is not yet clear, theoretically, how they relate to resolu-
tion of sub-type overloads and implicit instantiation.
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Haskell Source Code 2.2.1 Haskell source code for GenSort sorting program
module GenSort where
import Data.List
data Split a b = Split b [[a]]
genSort :: Ord a => ([a] -> Split a b) -> (Split a b -> [a]) -> [a] -> [a]
genSort split join l = case l of

_ : _ : _ -> let Split c ls = split l in
join $ Split c $ map (genSort split join) ls

_ -> l
splitInsertionSort :: [a] -> Split a a
splitInsertionSort (a : l) = Split a [l]
joinInsertionSort :: Ord a => Split a a -> [a]
joinInsertionSort (Split a [l]) = insert a l
insertionSort :: Ord a => [a] -> [a]
insertionSort = genSort splitInsertionSort joinInsertionSort
splitQuickSort :: Ord a => [a] -> Split a a
splitQuickSort (a : l) =

let (ls, gs) = partition (< a) l in Split a [ls, gs]
joinQuickSort :: Split a a -> [a]
joinQuickSort (Split a [ls, gs]) = ls ++ (a : gs)
quickSort :: Ord a => [a] -> [a]
quickSort = genSort splitQuickSort joinQuickSort
splitMergeSort :: [a] -> Split a ()
splitMergeSort l =

let (l1, l2) = splitAt (div (length l) 2) l in Split () [l1, l2]
joinMergeSort :: Ord a => Split a () -> [a]
joinMergeSort (Split _ [l1, l2]) = merge l1 l2
merge :: Ord a => [a] -> [a] -> [a]
merge l1 l2 = case l1 of

[] -> l2
x1 : r1 -> case l2 of

[] -> l1
x2 : r2 -> if x1 < x2

then x1 : merge r1 l2
else x2 : merge l1 r2

mergeSort :: Ord a => [a] -> [a]
mergeSort = genSort splitMergeSort joinMergeSort
splitSelectionSort :: Ord a => [a] -> Split a a
splitSelectionSort l =

let m = minimum l in Split m [delete m l]
joinSelectionSort :: Split a a -> [a]
joinSelectionSort (Split a [l]) = a : l
selectionSort :: Ord a => [a] -> [a]
selectionSort = genSort splitSelectionSort joinSelectionSort
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As HasCASL tries to keep as close as possible to CASL, its semantic is also based
on set theory. Intentional Henkin models are chosen to model higher-order signatures
in the HasCASL semantic. In this model, the types of functions are interpreted by
arbitrary sets equipped with an application function of the appropriate type (opposed
to a partial type s ->? t being interpreted by the complete set of all partial functions
from s to t). The interpretation of the λ-terms is part of the model structure rather
than just being an existential axiom.

The intensional Henkin model has some advantages, including: it eliminates the
completeness problem; allows initial models of signatures containing partial functions;
and allows the operational semantics of functional programming languages to be
applied, instead of directly using an higher-order logic operational semantic.

Unlike Haskell, in which function evaluation is lazy, the evaluation of functions in
HasCASL is strict, i.e., undefined arguments always result in undefined values. One
way to emulate the lazy evaluation is to move a parameter with type a to the unit
type Unit ->? a.

To illustrate the language syntax, we’ll take a look into Specification 2.3.1, on
page 9. Types are defined by the reserved word type, which may be preceded by the
qualifiers free and generated, as in CASL. Defining types which contain function
types as constructor parameters and recursion only on the right side of the arrow
should be done with the reserved word cofree; when recursion is present in both
sides of the arrow, the types must be defined with the reserved word free. Type
Bool was defined as a free type with two constructors (True and False).

Functions may be defined by the word fun, which differs from the command op in
relation to their behavior over sub-typing [20]. A lazy type differs from a strict one
by a question mark in front of the type, as in ?Bool. Functions in mixfix notation
have their parameters indicated by the placeholder __ and the parameter types must
be defined as tuples. Thus, the function __&&__ expects two elements of type Bool
(indicated by: ?Bool * ?Bool) and returns one element of that type (indicated by:
-> ?Bool). Curried functions are defined applying their names to the parameters in
opposite to using the placeholder. The types of the parameters should be separated
by -> instead of *.

Variables are introduced by the word var followed by a list of one or more variables,
followed by the type of these variables, separated from the list of variables by a colon.

Axioms and theorems are introduced by a final point. Annotations are included
in front of axioms and theorems to make it easier to reference them and to allow their
use by tools. The annotation should be a name between %( and )%.
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Specification 2.3.1 Initial Bool Specification from scratch
spec Bool = %mono

free type Bool ::= True | False
fun Not__: ?Bool -> ?Bool
fun __&&__: ?Bool * ?Bool -> ?Bool
fun __||__: ?Bool * ?Bool -> ?Bool
fun otherwise: ?Bool
vars x,y: ?Bool
. Not(False) = True %(Not_False)%
. Not(True) = False %(Not_True)%
. False && False = False %(And_def1)%
. False && True = False %(And_def2)%
. True && False = False %(And_def3)%
. True && True = True %(And_def4)%
. x || y = Not(Not(x) && Not(y)) %(Or_def)%
. otherwise = True %(Otherwise_def)%

end

2.4 Heterogeneous Specifications: HetCASL and Hets
Nowadays, in the formal method area, different logics and methods are used to spec-
ify large systems because there isn’t a single best solution to achieve all the desired
functionalities. These heterogeneous specifications must have a formal interoperabil-
ity between the languages involved in such a way that each language may have its
own proof method and all formal proofs must be consistent when viewed in terms of
the heterogeneous specification.

The various sub-languages and extensions of CASL may be linked by the language
Heterogeneous CASL (HetCASL) [14]. HetCASL extends the semantic properties of
the CASL language by defining the structural constructions for the CASL language.
Because the semantic of the CASL language and of its sub-languages are institution
independent, HetCASL can link together specifications written in different logics,
preserving the orthogonality between those logics.

The Heterogeneous Tool Set (Hets) [14] is a syntactic analyzer and a proof manager
for HetCASL specifications, implemented in Haskell, which combines the various proof
tools for each individual logic used in various sub-languages and extensions of CASL.
Hets is based on a graph of logics and languages, providing a clear semantic and a
proof calculus for heterogeneous specifications.

Each logic in the graph is represented by a set of types and functions in Haskell.
The syntax and semantics of the heterogeneous specifications in HetCASL and their
implementations are parametrized by an arbitrary graph of logics inside Hets. This



10 Cabral e Moura

allows easily management of each Hets module implementation using software engi-
neering techniques.

HasCASL specifications are translated to the Isar language, which is the lan-
guage used by the Isabelle theorem prover [15], a semi-automatic theorem prover for
higher-order logics. Hets supports other first-order theorem provers for proving CASL
specifications. Other CASL sub-languages or extensions maybe proved by translating
them to CASL or HasCASL.

The structure of proofs in Hets is based on the formalism of development graphs
[13], widely used for specifications of industrial systems. The graph structure allows
for a direct visualization of the specification structure and facilitates the management
of specifications with many sub-specifications.

A development graph consists of a number of nodes (corresponding to complete
specifications or parts of specifications) and a set of edges, called definition links, that
indicate dependency between the various specifications and their sub-specifications.
Each node is associated with a signature and a local set of axioms. These axioms are
inherited by other nodes which depend on this node through definition links. Different
types of edges are used to indicate when the logic is changed between two nodes.

A second type of edge, a theorem link, is used to indicate relations between dif-
ferent theories, serving to represent proof needs that arise during the specification
development. Theorem links can be global or local (represented by edges with dif-
ferent shapes in the graph): global links indicate that all valid axioms in the source
node are valid in the target node; local links indicate that only axioms defined in the
source node are valid in target node.

Global theory links are broken down into simpler links (global or local) using proof
calculus for development graphs. Local links may be proved by transforming them
into local proof goals. This transformation marks the node corresponding to that
goal to be proved using the theorem prover for the logic represented on this node.

2.5 Isabelle
This section describes the theorem prover Isabelle [10]; a full description can be found
in the tool manual [15].

Isabelle is a generic theorem prover that allows the use of several logics as formal
calculus that can assist in theorem proofs. Hets uses Isabelle to prove theorems in
higher-order logic. The prover allows, for example, the use of axiomatized set theory,
among other logics. Support for multiple logic is one of the prominent features of the
tool.

The prover has an excellent support for mathematical notation: new symbols
may be included using common mathematical syntax and proofs can be described in
a structured way or as a sequence of proof commands. Proofs may include TEX codes
so that formatted documents can be generated directly from the proof source text.
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Among the major limitations of theorem provers is the usual need for an extensive
previous experience from the users. In order to facilitate the process of proof con-
struction, Isabelle has tools that automate some proof contents, such as equations,
basic arithmetic and mathematical formulas.

The Higher-Order Language (HOL) is used to write theories. Its syntax is very
similar to those of functional programming languages because it is based on the typed
λ-calculus. This language allows construction of data types, types with functions as
parameters and other common constructions in functional languages. Translation of
HasCASL specifications to HOL theories are automatically done by the Hets tool.

Isabelle has an extension, called Isar, which allows one to describe proofs that can
be read by humans and can be easily interpreted by computers. It has an extensive
library of mathematical theories already proved (for example, in topics like algebra
and set theory), and also many examples of proofs carried out in a formal verification
context. In this work, proofs were written using proof commands, although they are
less powerful than the notation used in Isar.

2.6 Proposal
A prerequisite for the practical use of a specification language is the availability of a
set of previously defined standard specifications [17]. The CASL language has such
set of specifications defined in “CASL Basic Datatypes” [16]. Instead of providing
common blocks for reuse as programming languages usually do, this document pro-
vides complete specification examples that illustrate the use of CASL both in terms
of Basic Specifications and Structured Specifications. There are two groups of exam-
ples: one with basic data types and one with specifications that express properties of
complex structures. In the first case, we can find simple data types, such as numbers
and characters, as well as structured data types, such as lists, vectors and matri-
ces. The second group contains algebraic structures such as rings and monoids, and
mathematical entities such as equivalence relations and partial orders.

Currently, the HasCASL language does not have a library along the lines of the
CASL library. According to Scröder [17], data types described in “CASL Basic
Datatypes” can serve as a basis for building a standard library to each CASL ex-
tension. In the case of HasCASL, it is suggested the inclusion of new specifications
that involve higher order features, such as completeness of partial orders, as well as
the extension of data types and the change parametrization for real type dependences.
As an example, higher order functions operating on lists, such as map, filter and fold,
can be specified after importing functions already defined on the List data type from
the CASL library, in order to improve reuse.

Based on these suggestions, we propose to build a library for HasCASL based
on the CASL library and the Haskell Prelude library. Creating such a library can
contribute to increase HasCASL usage in real projects, once predefined specifications
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for reuse are provided. As the Prelude library must be implemented by all Haskell
compilers, having its data types already specified in HasCASL can contribute to
automatic code generation in the future as, once these data types are already specified,
verified and refined to Haskell code, larger specifications using them can be created
and translated to Haskell in an easier way.

Creation of such a library required studying how Haskell functions and types
operate and finding solutions to include these elements on our library with a maximum
reuse of CASL library data types. Learning CASL, HasCASL and Isabelle and dealing
with their peculiarities were the center of the project difficulties.

All generated specifications were verified by the Hets tool and most of them were
proved using Isabelle to ensure their correctness.

3 Specifying the library
In this section we start by discussing the choices we’d to make at the beginning.
Later, for each specification, we list its source and explain some issues we faced and
the corresponding choices that were made when writing that specification.

3.1 Initial choices
To fully capture Haskell features, our library should use laziness, be refined to use
continuous functions, thus allowing infinite data types. Since starting with all these
functionalities would require using the most advanced constructions of the HasCASL
language and would also require deep knowledge of Isabelle proof scripts, it would
not be the best first approach to use as an algebraic specification methodology. Thus,
we decided that the library should be specified using strict types and more advanced
Haskell features should be left for a latter refinement.

Differently from Haskell, HasCASL doesn’t allow the same function to be used
both in prefix and infix notation. Thus, all functions from the CASL library which
were defined in a mixfix way (and thus expected tuples as parameters) wouldn’t
be compatible with Haskell curried functions. To solve this problem, we redefined
functions from the CASL library in a mixfix way and, for each mixfix definition, we
created a curried version whose name would be formed by enclosing the name of the
mixfix function between brackets. This solution created a pattern for naming curried
functions that was easy to remember and allowed all of our functions to be curried
with other functions.

To write our library, we used names from Prelude functions and types. When
importing, we changed the imported name to the one used by the Prelude version
using the CASL renaming syntax. When there was any function in Prelude that had
no equivalent CASL specification, we included that function in our HasCASL type to
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match Prelude types and functions as much as possible.

3.2 Our first specification: Bool
We started our library by importing type Boolean from the CASL library, like shown
in Specification 3.2.1, on page 13.

Specification 3.2.1 Initial Bool Specification importing CASL type
from Basic/SimpleDatatypes get Boolean
spec Bool = {Boolean with

Boolean |-> Bool,
Not__ |-> not__,
__And__ |-> __&&__,
__Or__ |-> __||__

}
then
op otherwise: Bool

. otherwise = True

As we were still pondering about using laziness, we decided that it should be
better to specify Boolean from scratch, since the one imported from CASL had only
total functions. This tentative is shown in Specification 2.3.1, on page 9.

Specification 3.2.2 Initial Bool Specification from scratch
spec Bool = %mono

free type Bool ::= True | False
fun Not__: ?Bool ->? ?Bool
fun __&&__: ?Bool * ?Bool ->? ?Bool
fun __||__: ?Bool * ?Bool ->? ?Bool
fun otherwise: ?Bool
vars x,y: ?Bool
. Not(False) = True %(Not_False)%
. Not(True) = False %(Not_True)%
. False && False = False %(And_def1)%
. False && True = False %(And_def2)%
. True && False = False %(And_def3)%
. True && True = True %(And_def4)%
. x || y = Not(Not(x) && Not(y)) %(Or_def)%
. otherwise = True %(Otherwise_def)%

end
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Next, we decided to use only strict types, as we could, later, refine our speci-
fications to use laziness. We have also included curried versions for both boolean
operations that are mixfix in the CASL version, as well as some axioms that would
be needed later in Isabelle proofs that couldn’t be concluded automatically. As “oth-
erwise” is an Isabelle reserved word, we appended an H, from Haskell, to its name.
We thus achieved Specification 3.2.3, on page 14.

Specification 3.2.3 Boolean Specification
spec Bool = %mono
free type Bool ::= True | False
fun Not__ : Bool -> Bool
fun __&&__ : Bool * Bool -> Bool
fun <&&> : Bool -> Bool -> Bool
fun __||__ : Bool * Bool -> Bool
fun <||> : Bool -> Bool -> Bool
fun otherwiseH: Bool
vars x,y: Bool
. Not(False) = True %(NotFalse)%
. Not(True) = False %(NotTrue)%
. False && x = False %(AndFalse)%
. True && x = x %(AndTrue)%
. x && y = y && x %(AndSym)%
. x || y = Not(Not(x) && Not(y)) %(OrDef)%
. otherwiseH = True %(OtherwiseDef)%
. <&&> x y = x && y %(AndPrefixDef)%
. <||> x y = x || y %(OrPrefixDef)%
%%
. Not x = True <=> x = False %(NotFalse1)% %implied
. Not x = False <=> x = True %(NotTrue1)% %implied
. not (x = True) <=> Not x = True %(notNot1)% %implied
. not (x = False) <=> Not x = False %(notNot2)% %implied
end

3.3 The Specification for Equality
After defining the Bool type, the next step was to specify equality functions. As
we were working over Bool, we could not use HasCASL predicates and their related
operations. We thus had to redefine all functions and operations related to element
comparison to use our Bool type. As in the Haskell Prelude, equality functions were
grouped in a class named Eq, giving us Specification 3.3.1, on page 15.



A HasCASL Library 15

Specification 3.3.1 Equality specification
spec Eq = Bool then
class Eq {
var a: Eq
fun __==__ : a * a -> Bool
fun <==> : a -> a -> Bool
fun __/=__ : a * a -> Bool
fun </=> : a-> a-> Bool
vars x,y,z: a
. x = y => (x == y) = True %(EqualTDef)%
. x == y = y == x %(EqualSymDef)%
. (x == x) = True %(EqualReflex)%
. (x == y) = True /\ (y == z) = True => (x == z) = True %(EqualTransT)%
. (x /= y) = Not (x == y) %(DiffDef)%
. <==> x y = x == y %(EqualPrefixDef)%
. </=> x y = x /= y %(DiffPrefixDef)%
. (x /= y) = (y /= x) %(DiffSymDef)% %implied
. (x /= y) = True <=> Not (x == y) = True %(DiffTDef)% %implied
. (x /= y) = False <=> (x == y) = True %(DiffFDef)% %implied
. (x == y) = False => not (x = y) %(TE1)% %implied
. Not (x == y) = True <=> (x == y) = False %(TE2)% %implied
. Not (x == y) = False <=> (x == y) = True %(TE3)% %implied
. not ((x == y) = True) <=> (x == y) = False %(TE4)% %implied
}
type instance Bool: Eq
. (True == True) = True %(IBE1)% %implied
. (False == False) = True %(IBE2)% %implied
. (False == True) = False %(IBE3)%
. (True == False) = False %(IBE4)% %implied
. (True /= False) = True %(IBE5)% %implied
. (False /= True) = True %(IBE6)% %implied
. Not (True == False) = True %(IBE7)% %implied
. Not (Not (True == False)) = False %(IBE8)% %implied
type instance Unit: Eq
. (() == ()) = True %(IUE1)% %implied
. (() /= ()) = False %(IUE2)% %implied
end
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Equality was defined including axioms for symmetry, reflexivity and transitiv-
ity. An axiom mapping HasCASL equality to our equality was created, namely,
%(EqualTDef)%, since the opposite map cannot be created because it would be too
restrictive. Negation was defined by negating equality, as any equation involving
negation could be translated to a negated equality and thus proved using the equal-
ity axioms. Curried versions for both functions were also defined. Seven auxiliary
theorems were created and proved, and could be used by Isabelle, if needed.

Type instances were declared, as it’s done in Prelude, for Bool and Unit data
types. In the first case, although Bool is a free data type and, hence, True is different
from False, this difference had to be axiomatized by the axiom %(IBE3)% because
our equality is not mapped to the HasCASL equality. All the other theorems for Bool
instance declarations should follow from %(IBE3)% and the other Eq axioms. In the
second case, as () is the only element from type Unit, instance definitions should be
theorems as they follow from the Eq axioms.

3.4 The Specification for Ordering
The next specification we defined was Ord, for Ordering relations. Our first approach
was to import the partial order defined by the Ord specification inside the library
HasCASL/Metatheory/Ord. As importing this library would cause problems to our
strict library, because the imported one uses lazy types, we decided to specify our
own version.

To create the Ord specification we defined the Ordering data type and declared
this type as an instance of the Eq class. Three axioms relate the three constructors and
the other theorems follow from them. See Specification 3.4.1, on page 18, for details.
As in Haskell, we defined the Ord class to be a subclass of class Eq. We specified
a total order function __<__ and all the other ordering functions were defined using
this function. Irreflexivity, asymmetry, transitivity and totality properties appear as
theorems over the ordering functions plus __<__.

Next, four axioms defining equality in function of functions, four axioms to swap
equal variables in the __<__ function, and two axioms relating total and partial order-
ing involving equality were defined. Twenty one theorems relating ordering functions
guarantee that these functions work as expected. Curried version for ordering func-
tions were defined, followed by the definition of the compare, min and max functions.
Next, two theorems relating min and max functions were specified and proved. Seven
auxiliary theorems were included, as some of them were needed in Isabelle proofs
later, specially %(T06)%, which relates ordering functions and the function Not__.

The following types were declared as instances of the Ord class: Ordering, Bool,
Nat and Unit. For the first two data types we needed to axiomatically define how
__<__ works because they have more than one type constructor. For the type Nat
we only declared the type to be an instance of Ord, but we didn’t define the axioms.
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For the type Unit all functions can be proved because there is only one member of
this type.

3.5 Maybe, Either, MaybeMonad and EitherFunctor Speci-
fications

The data type Maybe a, where a is a type variable, has constructors Just a and
Nothing, as shown in Specification 3.5.1, on page 22. It has an associated maybe
function that applies a function to the value x of a constructor Just x, and returns
this application’s result or returns a default value, received as a parameter.

We declare the type Maybe to be an instance of the class Eq by defining how
equality works on two elements of the Just constructor. Next, we prove that it works
as expected on two Nothing constructors and then define the result of comparing
both Just and Nothing constructors.

The type instance declaration for class Ord defines how function __<__ compares
Just and Nothing constructors, and how it compares two different Just elements.
Comparing two elements of the Nothing constructor doesn’t need to be defined be-
cause they always compare two equal elements (two copies of the Nothing construc-
tor). The theorems prove that the other comparing functions work as expected when
comparing Just and Nothing constructors. More theorems involving two elements of
the Just constructor could be proved just as we did for Just and Nothing. We de-
cided not to write them because all of them should follow from the ordering theorems
after applying some comparing axioms and the axioms %(IMO12)% and %(IME03)%.
Unless Isabelle needs them later, writing these theorems would only take a lot of time
and wouldn’t change the way the specification is defined.

Data type Either a b, where a and b are types, has constructors Left a and
Right b, as shown in Specification 3.5.2, on page 23. The associated function either
receives as parameters two functions and an Either a b element. Then function
either applies the first function received to the element in case its constructor is the
Left a constructor. The second functions is applied to the same element in case the
constructor is Right b.

Either was declared an an instance of the class Eq by three equality comparisons:
first, between two elements with the constructor Left a; next, between two elements
with the constructor Right b; and last, between one element with each of those
constructors.

The type declaration for class Ord defines how the function __<__ works with two
different constructors and with two elements of each constructor. The theorems were,
again, defined by relating two elements of distinct constructors with the ordering
relations, as done in the Maybe data type specification.

We separated the functor and monadic functions for Maybe and Either data types
in different specifications, as shown in Specification 3.5.3, on page 24, and in Specifi-
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Specification 3.4.1 Ord Specification - Part 1
spec Ord = Eq and Bool then
free type Ordering ::= LT | EQ | GT
type instance Ordering: Eq
. (LT == LT) = True %(IOE01)% %implied
. (EQ == EQ) = True %(IOE02)% %implied
. (GT == GT) = True %(IOE03)% %implied
. (LT == EQ) = False %(IOE04)%
. (LT == GT) = False %(IOE05)%
. (EQ == GT) = False %(IOE06)%
. (LT /= EQ) = True %(IOE07)% %implied
. (LT /= GT) = True %(IOE08)% %implied
. (EQ /= GT) = True %(IOE09)% %implied
class Ord < Eq {
var a: Ord
fun compare: a -> a -> Ordering
fun __<__ : a * a -> Bool
fun <<> : a -> a -> Bool
fun __>__ : a * a -> Bool
fun <>> : a -> a -> Bool
fun __<=__ : a * a -> Bool
fun <<=> : a -> a -> Bool
fun __>=__ : a * a -> Bool
fun <>=> : a -> a -> Bool
fun min: a -> a -> a
fun max: a -> a -> a
var x, y, z, w: a
. (x == y) = True => (x < y) = False %(LeIrreflexivity)%
. (x < y) = True => y < x = False %(LeTAsymmetry)% %implied
. (x < y) = True /\ (y < z) = True => (x < z) = True %(LeTTransitive)%
. (x < y) = True \/ (y < x) = True
\/ (x == y) = True %(LeTTotal)%
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Specification 3.4.1 Ord Specification - Part 2
. (x > y) = (y < x) %(GeDef)%
. (x == y) = True => (x > y) = False %(GeIrreflexivity)% %implied
. (x > y) = True => (y > x) = False %(GeTAsymmetry)% %implied
. ((x > y) && (y > z)) = True
=> (x > z) = True %(GeTTransitive)% %implied
. (((x > y) || (y > x)) || (x == y)) = True %(GeTTotal)% %implied
. (x <= y) = (x < y) || (x == y) %(LeqDef)%
. (x <= x) = True %(LeqReflexivity)% %implied
. ((x <= y) && (y <= z)) = True
=> (x <= z) = True %(LeqTTransitive)% %implied
. (x <= y) && (y <= x) = (x == y) %(LeqTTotal)% %implied
. (x >= y) = ((x > y) || (x == y)) %(GeqDef)%
. (x >= x) = True %(GeqReflexivity)% %implied
. ((x >= y) && (y >= z)) = True
=> (x >= z) = True %(GeqTTransitive)% %implied
. (x >= y) && (y >= x) = (x == y) %(GeqTTotal)% %implied
. (x == y) = True <=> (x < y) = False /\ (x > y) = False %(EqTSOrdRel)%
. (x == y) = False <=> (x < y) = True \/ (x > y) = True %(EqFSOrdRel)%
. (x == y) = True <=> (x <= y) = True /\ (x >= y) = True %(EqTOrdRel)%
. (x == y) = False <=> (x <= y) = True \/ (x >= y) = True %(EqFOrdRel)%
. (x == y) = True /\ (y < z) = True => (x < z) = True %(EqTOrdTSubstE)%
. (x == y) = True /\ (y < z) = False => (x < z) = False %(EqTOrdFSubstE)%
. (x == y) = True /\ (z < y) = True => (z < x) = True %(EqTOrdTSubstD)%
. (x == y) = True /\ (z < y) = False => (z < x) = False %(EqTOrdFSubstD)%
. (x < y) = True
<=> (x > y) = False /\ (x == y) = False %(LeTGeFEqFRel)%
. (x < y) = False
<=> (x > y) = True \/ (x == y) = True %(LeFGeTEqTRel)%
. (x < y) = True <=> (y > x) = True %(LeTGeTRel)% %implied
. (x < y) = False <=> (y > x) = False %(LeFGeFRel)% %implied
. (x <= y) = True <=> (y >= x) = True %(LeqTGetTRel)% %implied
. (x <= y) = False <=> (y >= x) = False %(LeqFGetFRel)% %implied
. (x > y) = True <=> (y < x) = True %(GeTLeTRel)% %implied
. (x > y) = False <=> (y < x) = False %(GeFLeFRel)% %implied
. (x >= y) = True <=> (y <= x) = True %(GeqTLeqTRel)% %implied
. (x >= y) = False <=> (y <= x) = False %(GeqFLeqFRel)% %implied
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Specification 3.4.1 Ord Specification - Part 3
. (x <= y) = True <=> (x > y) = False %(LeqTGeFRel)% %implied
. (x <= y) = False <=> (x > y) = True %(LeqFGeTRel)% %implied
. (x > y) = True
<=> (x < y) = False /\ (x == y) = False %(GeTLeFEqFRel)% %implied
. (x > y) = False
<=> (x < y) = True \/ (x == y) = True %(GeFLeTEqTRel)% %implied
. (x >= y) = True <=> (x < y) = False %(GeqTLeFRel)% %implied
. (x >= y) = False <=> (x < y) = True %(GeqFLeTRel)% %implied
. (x <= y) = True
<=> (x < y) = True \/ (x == y) = True %(LeqTLeTEqTRel)% %implied
. (x <= y) = False
<=> (x < y) = False /\ (x == y) = False %(LeqFLeFEqFRel)% %implied
. (x >= y) = True
<=> (x > y) = True \/ (x == y) = True %(GeqTGeTEqTRel)% %implied
. (x >= y) = False
<=> (x > y) = False /\ (x == y) = False %(GeqFGeFEqFRel)% %implied
. (x < y) = True <=> (x >= y) = False %(LeTGeqFRel)% %implied
. (x > y) = True <=> (x <= y) = False %(GeTLeqFRel)% %implied
. (x < y) = (x <= y) && (x /= y) %(LeLeqDiff)% %implied
. <<> x y = x < y %(LePrefixDef)%
. <<=> x y = x <= y %(LeqPrefixDef)%
. <>> x y = x > y %(GePrefixDef)%
. <>=> x y = x >= y %(GeqPrefixDef)%
. (compare x y == LT) = (x < y) %(CmpLTDef)%
. (compare x y == EQ) = (x == y) %(CmpEQDef)%
. (compare x y == GT) = (x > y) %(CmpGTDef)%
. (max x y == y) = (x <= y) %(MaxYDef)%
. (max x y == x) = (y <= x) %(MaxXDef)%
. (min x y == x) = (x <= y) %(MinXDef)%
. (min x y == y) = (y <= x) %(MinYDef)%
. (max x y == y) = (max y x == y) %(MaxSym)% %implied
. (min x y == y) = (min y x == y) %(MinSym)% %implied

}
. (x == y) = True \/ (x < y) = True <=> (x <= y) = True %(TO1)% %implied
. (x == y) = True => (x < y) = False %(TO2)% %implied
. Not (Not (x < y)) = True \/ Not (x < y) = True %(TO3)% %implied
. (x < y) = True => Not (x == y) = True %(TO4)% %implied
. (x < y) = True /\ (y < z) = True /\ (z < w) = True
=> (x < w) = True %(TO5)% %implied
. (z < x) = True => Not (x < z) = True %(TO6)% %implied
. (x < y) = True <=> (y > x) = True %(TO7)% %implied
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Specification 3.4.1 Ord Specification - Part 4
type instance Ordering: Ord
. (LT < EQ) = True %(IOO13)%
. (EQ < GT) = True %(IOO14)%
. (LT < GT) = True %(IOO15)%
. (LT <= EQ) = True %(IOO16)% %implied
. (EQ <= GT) = True %(IOO17)% %implied
. (LT <= GT) = True %(IOO18)% %implied
. (EQ >= LT) = True %(IOO19)% %implied
. (GT >= EQ) = True %(IOO20)% %implied
. (GT >= LT) = True %(IOO21)% %implied
. (EQ > LT) = True %(IOO22)% %implied
. (GT > EQ) = True %(IOO23)% %implied
. (GT > LT) = True %(IOO24)% %implied
. (max LT EQ == EQ) = True %(IOO25)% %implied
. (max EQ GT == GT) = True %(IOO26)% %implied
. (max LT GT == GT) = True %(IOO27)% %implied
. (min LT EQ == LT) = True %(IOO28)% %implied
. (min EQ GT == EQ) = True %(IOO29)% %implied
. (min LT GT == LT) = True %(IOO30)% %implied
. (compare LT LT == EQ) = True %(IOO31)% %implied
. (compare EQ EQ == EQ) = True %(IOO32)% %implied
. (compare GT GT == EQ) = True %(IOO33)% %implied
type instance Bool: Ord
. (False < True) = True %(IBO5)%
. (False >= True) = False %(IBO6)% %implied
. (True >= False) = True %(IBO7)% %implied
. (True < False) = False %(IBO8)% %implied
. (max False True == True) = True %(IBO9)% %implied
. (min False True == False) = True %(IBO10)% %implied
. (compare True True == EQ) = True %(IBO11)% %implied
. (compare False False == EQ) = True %(IBO12)% %implied
type instance Nat: Ord
type instance Unit: Ord
. (() <= ()) = True %(IUO01)% %implied
. (() < ()) = False %(IUO02)% %implied
. (() >= ()) = True %(IUO03)% %implied
. (() > ()) = False %(IUO04)% %implied
. (max () () == ()) = True %(IUO05)% %implied
. (min () () == ()) = True %(IUO06)% %implied
. (compare () () == EQ) = True %(IUO07)% %implied
end
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Specification 3.5.1 Maybe Specification
spec Maybe = Eq and Ord then
var a,b,c : Type;

e : Eq;
o : Ord;

free type Maybe a ::= Just a | Nothing
var x : a;

y : b;
ma : Maybe a;
f : a -> b

fun maybe : b -> (a -> b) -> Maybe a -> b
. maybe y f (Just x: Maybe a) = f x %(MaybeJustDef)%
. maybe y f (Nothing: Maybe a) = y %(MaybeNothingDef)%
type instance Maybe e: Eq
var x,y : e;
. (Just x == Just y) = True <=> (x == y) = True %(IME01)%
. ((Nothing : Maybe e) == (Nothing: Maybe e)) = True %(IME02)% %implied
. Just x == Nothing = False %(IME03)%
type instance Maybe o: Ord
var x,y : o;
. (Nothing < Just x) = True %(IMO01)%
. (Just x < Just y) = (x < y) %(IMO02)%
. (Nothing >= Just x) = False %(IMO03)% %implied
. (Just x >= Nothing) = True %(IMO04)% %implied
. (Just x < Nothing) = False %(IMO05)% %implied
. (compare Nothing (Just x) == EQ)

= (Nothing == (Just x)) %(IMO06)% %implied
. (compare Nothing (Just x) == LT)

= (Nothing < (Just x)) %(IMO07)% %implied
. (compare Nothing (Just x) == GT)

= (Nothing > (Just x)) %(IMO08)% %implied
. (Nothing <= (Just x))

= (max Nothing (Just x) == (Just x)) %(IMO09)% %implied
. ((Just x) <= Nothing)

= (max Nothing (Just x) == Nothing) %(IMO10)% %implied
. (Nothing <= (Just x))

= (min Nothing (Just x) == Nothing) %(IMO11)% %implied
. ((Just x) <= Nothing)

= (min Nothing (Just x) == (Just x)) %(IMO12)% %implied
end
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Specification 3.5.2 Either Specification
spec Either = Eq and Ord then
var a, b, c : Type; e, ee : Eq; o, oo : Ord;
free type Either a b ::= Left a | Right b
var x : a; y : b; z : c; eab : Either a b; f : a -> c; g : b -> c
fun either : (a -> c) -> (b -> c) -> Either a b -> c
. either f g (Left x: Either a b) = f x %(EitherLeftDef)%
. either f g (Right y: Either a b) = g y %(EitherRightDef)%
type instance Either e ee: Eq
var x,y : e; z,w : ee;
. ((Left x : Either e ee) ==

(Left y : Either e ee)) = (x == y) %(IEE01)%
. ((Right z : Either e ee) ==

(Right w : Either e ee)) = (z == w) %(IEE02)%
. ((Left x : Either e ee) ==

(Right z : Either e ee)) = False %(IEE03)%
type instance Either o oo: Ord
var x,y : o; z,w : oo;
. ((Left x : Either o oo) < (Right z : Either o oo)) = True %(IEO01)%
. ((Left x : Either o oo) < (Left y : Either o oo)) = (x < y) %(IEO02)%
. ((Right z : Either o oo) < (Right w : Either o oo)) = (z < w) %(IEO03)%
. ((Left x : Either o oo) >= (Right z : Either o oo))

= False %(IEO04)% %implied
. ((Right z : Either o oo) >= (Left x : Either o oo))

= True %(IEO05)% %implied
. ((Right z : Either o oo) < (Left x : Either o oo))

= False %(IEO06)% %implied
. (compare (Left x : Either o oo) (Right z : Either o oo) == EQ)

= ((Left x) == (Right z)) %(IEO07)% %implied
. (compare (Left x : Either o oo) (Right z : Either o oo) == LT)

= ((Left x) < (Right z)) %(IEO08)% %implied
. (compare (Left x : Either o oo) (Right z : Either o oo) == GT)

= ((Left x) > (Right z)) %(IEO09)% %implied
. ((Left x : Either o oo) <= (Right z : Either o oo))

= (max (Left x) (Right z) == (Right z)) %(IEO10)% %implied
. ((Right z : Either o oo) <= (Left x : Either o oo))

= (max (Left x) (Right z) == (Left x)) %(IEO11)% %implied
. ((Left x : Either o oo) <= (Right z : Either o oo))

= (min (Left x) (Right z) == (Left x)) %(IEO12)% %implied
. ((Right z : Either o oo) <= (Left x : Either o oo))

= (min (Left x) (Right z) == (Right z)) %(IEO13)% %implied
end
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cation 3.5.4, on page 24, respectively. At this time, Hets cannot translate functions
from constructor classes, as the Monad class. Thus, these specifications can only be
syntactically checked by Hets, but not translated to and neither proved by Isabelle.
Our approach was to declare all functions from the Functor and Monad classes as
theorems, so that, if some of them must be later redefined as axioms, we can remove
the %implied directive and change the theorems into axioms.

Specification 3.5.3 MaybeMonad Specification
from HasCASL/Metatheory/Monad get Functor, Monad
spec MaybeMonad = Maybe and Monad then
var a,b,c : Type; e : Eq; o : Ord;
type instance Maybe: Functor
vars x: Maybe a; f: a -> b; g: b -> c
. map (\ y: a .! y) x = x %(IMF01)% %implied
. map (\ y: a .! g (f y)) x = map g (map f x) %(IMF02)% %implied
type instance Maybe: Monad
vars x, y: a; f: a ->? b; p: Maybe a

q: a ->? Maybe b; r: b ->? Maybe c;
. def q x => ret x >>= q = q x %(IMM01)% %implied
. p >>= (\ x: a . ret (f x) >>= r)

= p >>= \ x: a . r (f x) %(IMM02)% %implied
. p >>= ret = p %(IMM03)% %implied
. (p >>= q) >>= r = p >>= \ x: a . q x >>= r %(IMM04)% %implied
. (ret x : Maybe a) = ret y => x = y %(IMM05)% %implied
var x : Maybe a; f : a -> b;
. map f x = x >>= (\ y:a . ret (f y)) %(T01)% %implied
end

Specification 3.5.4 EitherFunctor Specification
from HasCASL/Metatheory/Monad get Functor, Monad
spec EitherFunctor = Either and Functor then
var a, b, c : Type; e, ee : Eq; o, oo : Ord;
type instance Either a: Functor
vars x: Either c a; f: a -> b; g: b -> c
. map (\ y: a .! y) x = x %(IEF01)% %implied
. map (\ y: a .! g (f y)) x = map g (map f x) %(IEF02)% %implied
end
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3.6 Composition and Function Specifications
To define Haskell functions, we had to define or import function composition. We
preferred to define then, because the available definition used λ-expressions. Later,
we defined some auxiliary functions present in Prelude, such as the identity function
id, and functions to swap between curried and uncurried versions of other functions.
These specifications can be seen on Specification 3.6.1, on page 25.

Specification 3.6.1 Composition and Function Specifications
spec Composition =
vars a,b,c : Type
fun __o__ : (b -> c) * (a -> b) -> (a -> c);
vars a,b,c : Type; y:a;

f : b -> c;
g : a -> b

. ((f o g) y) = f (g y) %(Comp1)%
end

spec Function = Composition then
var a,b,c: Type;

x: a;
y: b;
f: a -> b -> c;
g: (a * b) -> c

fun id: a -> a
fun flip: (a -> b -> c) -> b -> a -> c
fun fst: (a * b) -> a
fun snd: (a * b) -> b
fun curry: ((a * b) -> c) -> a -> b -> c
fun uncurry: (a -> b -> c) -> (a * b) -> c
. id x = x %(IdDef)%
. flip f y x = f x y %(FlipDef)%
. fst (x, y) = x %(FstDef)%
. snd (x, y) = y %(SndDef)%
. curry g x y = g (x, y) %(CurryDef)%
. uncurry f (x,y) = f x y %(UncurryDef)%
end
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3.7 List Specification
The list specification was the largest one and it still doesn’t aggregate all the functions
that the Haskell Prelude defines, specially those involving numeric types. Once again,
we had to redefine our specification to remove laziness. We divided this specification
in six parts in order to bring related functions together, in almost the same way as
the Haskell Prelude does. See Specification 3.7.1, on page 27.

The first step was to define the free type List a, depending on a type a, with
constructors Nil and Cons a (List a). The next step was to redefine basic functions
to work without laziness. Two of these functions, head and tail, must be partial, as
they are not defined when applied on an empty list.

The second part of the specification contains the type instance declarations. To
declare List as an instance of the class Eq we had to define how equality should
work and to prove that comparing Nil lists worked as expected. To instantiate the
declaration to class Ord, we proved that comparing Nil lists worked correctly. Next,
we defined how the function __<__ compares two lists and, finally, we proved that all
the other ordering functions obeyed their respective specifications.

The third part contains eight theorems involving some functions of the first part of
the specification. These theorems are needed in order to specify how those functions
interact. They should not be axioms because they must follow from the function
definitions. As can be seen, we used the %implies directive after the then keyword
in order to mark all the equations in this part as theorems.

The forth part contains five functions that are listed in the Haskell Prelude as
List operations. They complete the function operations from the first part. Again,
some of these functions had to be partial as they are not defined on empty lists. The
fifth part aggregates some special folding functions or functions that create sublists.
The last part of this specification brings in functions related to Lists and that are
not defined in the Haskell Prelude, but are implemented on every compiler and are
necessary even to write basic programs.
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Specification 3.7.1 List Specification - Part 1
spec List = Nat and Function and Ord then
var a : Type
free type List a ::= Nil | Cons a (List a)
var a,b : Type
fun length : List a -> Nat;
fun head : List a ->? a;
fun tail : List a ->? List a;
fun foldr : (a -> b -> b) -> b -> List a -> b;
fun foldl : (a -> b -> a) -> a -> List b -> a;
fun map : (a -> b) -> List a -> List b;
fun filter : (a -> Bool) -> List a -> List a;
fun __++__ : List a * List a -> List a;
fun <++> : List a -> List a -> List a;
fun zip : List a -> List b -> List (a * b);
fun unzip : List (a * b) -> (List a * List b)
vars a,b : Type;

f : a -> b -> b;
g : a -> b -> a;
h : a -> b;
p : a -> Bool;
x,y,t : a;
xs,ys,l : List a;
z,s : b;
zs : List b;
ps : List (a * b)

. length (Nil : List a) = 0 %(LengthNil)%

. length (Cons x xs) = suc(length xs) %(LengthCons)%

. not def head (Nil : List a) %(NotDefHead)%

. head (Cons x xs) = x %(HeadDef)%

. not def tail (Nil : List a) %(NotDefTail)%

. tail (Cons x xs) = xs %(TailDef)%

. foldr f s Nil = s %(FoldrNil)%

. foldr f s (Cons x xs)
= f x (foldr f s xs) %(FoldrCons)%

. foldl g t Nil = t %(FoldlNil)%

. foldl g t (Cons z zs)
= foldl g (g t z) zs %(FoldlCons)%

. map h Nil = Nil %(MapNil)%

. map h (Cons x xs)
= (Cons (h x) (map h xs)) %(MapCons)%

. Nil ++ l = l %(++Nil)%

. (Cons x xs) ++ l = Cons x (xs ++ l) %(++Cons)%

. <++> xs ys = xs ++ ys %(++PrefixDef)%
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Specification 3.7.1 List Specification - Part 2
. filter p Nil = Nil %(FilterNil)%
. p x = True

=> filter p (Cons x xs) = Cons x (filter p xs) %(FilterConsT)%
. p x = False

=> filter p (Cons x xs) = filter p xs %(FilterConsF)%
. zip (Nil : List a) l = Nil %(ZipNil)%
. l = Nil

=> zip (Cons x xs) l = Nil %(ZipConsNil)%
. l = (Cons y ys)

=> zip (Cons x xs) l = Cons (x,y) (zip xs ys) %(ZipConsCons)%
. unzip (Nil : List (a * b)) = (Nil, Nil) %(UnzipNil)%
. unzip (Cons (x,z) ps) = let (ys, zs) = unzip ps in

(Cons x ys, Cons z zs) %(UnzipCons)%
then
var a : Eq; x,y: a; xs, ys: List a
type instance List a: Eq
. ((Nil: List a) == (Nil: List a)) = True %(ILE01)% %implied
. ((Cons x xs) == (Cons y ys)) = ((x == y) && (xs == ys)) %(ILE02)%
var b : Ord; z,w: b; zs, ws: List b
type instance List b: Ord
. ((Nil: List b) < (Nil: List b)) = False %(ILO01)% %implied
. ((Nil: List b) <= (Nil: List b)) = True %(ILO02)% %implied
. ((Nil: List b) > (Nil: List b)) = False %(ILO03)% %implied
. ((Nil: List b) >= (Nil: List b)) = True %(ILO04)% %implied
. (z < w) = True => ((Cons z zs) < (Cons w ws)) = True %(ILO05)%
. (z == w) = True => ((Cons z zs) < (Cons w ws)) = (zs < ws) %(ILO06)%
. (z < w) = False /\ (z == w) = False

=> ((Cons z zs) < (Cons w ws)) = False %(ILO07)%
. ((Cons z zs) <= (Cons w ws)) = ((Cons z zs) < (Cons w ws))

|| ((Cons z zs) == (Cons w ws)) %(ILO08)% %implied
. ((Cons z zs) > (Cons w ws))

= ((Cons w ws) < (Cons z zs)) %(ILO09)% %implied
. ((Cons z zs) >= (Cons w ws)) = ((Cons z zs) > (Cons w ws))

|| ((Cons z zs) == (Cons w ws)) %(ILO10)% %implied
. (compare (Nil: List b) (Nil: List b) == EQ)

= ((Nil: List b) == (Nil: List b)) %(ILO11)% %implied
. (compare (Nil: List b) (Nil: List b) == LT)

= ((Nil: List b) < (Nil: List b)) %(ILO12)% %implied
. (compare (Nil: List b) (Nil: List b) == GT)

= ((Nil: List b) > (Nil: List b)) %(ILO13)% %implied
. (compare (Cons z zs) (Cons w ws) == EQ)

= ((Cons z zs) == (Cons w ws)) %(ILO14)% %implied
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Specification 3.7.1 List Specification - Part 3
. (compare (Cons z zs) (Cons w ws) == LT)

= ((Cons z zs) < (Cons w ws)) %(ILO15)% %implied
. (compare (Cons z zs) (Cons w ws) == GT)

= ((Cons z zs) > (Cons w ws)) %(ILO16)% %implied
. (max (Nil: List b) (Nil: List b) == (Nil: List b))

= ((Nil: List b) <= (Nil: List b)) %(ILO17)% %implied
. (min (Nil: List b) (Nil: List b) == (Nil: List b))

= ((Nil: List b) <= (Nil: List b)) %(ILO18)% %implied
. ((Cons z zs) <= (Cons w ws))

= (max (Cons z zs) (Cons w ws) == (Cons w ws)) %(ILO19)% %implied
. ((Cons w ws) <= (Cons z zs))

= (max (Cons z zs) (Cons w ws) == (Cons z zs)) %(ILO20)% %implied
. ((Cons z zs) <= (Cons w ws))

= (min (Cons z zs) (Cons w ws) == (Cons z zs)) %(ILO21)% %implied
. ((Cons w ws) <= (Cons z zs))

= (min (Cons z zs) (Cons w ws) == (Cons w ws)) %(ILO22)% %implied
then %implies
vars a,b,c : Ord;

f : a -> b;
g : b -> c;
h : a -> a -> a;
i : a -> b -> a;
p : b -> Bool;
x:a;
y:b;
xs,zs : List a;
ys,ts : List b;
z,e : a;
xxs : List (List a)

. foldl i e (ys ++ ts)
= foldl i (foldl i e ys) ts %(FoldlDecomp)%

. map f (xs ++ zs)
= (map f xs) ++ (map f zs) %(MapDecomp)%

. map (g o f) xs = map g (map f xs) %(MapFunctor)%

. filter p (map f xs)
= map f (filter (p o f) xs) %(FilterProm)%

. length (xs) = 0 <=> xs = Nil %(LengthNil1)%

. length (Nil : List a) = length ys
=> ys = (Nil : List b) %(LengthEqualNil)%

. length (Cons x xs) = length (Cons y ys) =>
length xs = length ys %(LengthEqualCons)%

. length xs = length ys
=> unzip (zip xs ys) = (xs, ys) %(ZipSpec)%
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Specification 3.7.1 List Specification - Part 4
then
vars a,b : Type;

x : a;
xs : List a;
f: a -> a -> a;

fun init: List a ->? List a;
fun last: List a ->? a;
fun null: List a -> Bool;
fun reverse: List a -> List a;
fun foldr1: (a -> a -> a) -> List a ->? a;
fun foldl1: (a -> a -> a) -> List a ->? a;
. not def init (Nil: List a) %(InitNil)%
. init (Cons x (Nil: List a)) = (Nil:List a) %(InitConsNil)%
. init (Cons x xs) = Cons x (init xs) %(InitConsCons)%
. not def last (Nil: List a) %(LastNil)%
. last (Cons x (Nil: List a)) = x %(LastConsNil)%
. last (Cons x xs) = last xs %(LastConsCons)%
. null (Nil:List a) = True %(NullNil)%
. null (Cons x xs) = False %(NullCons)%
. reverse (Nil: List a) = (Nil: List a) %(ReverseNil)%
. reverse (Cons x xs)

= (reverse xs) ++ (Cons x (Nil: List a)) %(ReverseCons)%
. not def foldr1 f (Nil: List a) %(Foldr1Nil)%
. foldr1 f (Cons x (Nil: List a)) = x %(Foldr1ConsNil)%
. foldr1 f (Cons x xs) = f x (foldr1 f xs) %(Foldr1ConsCons)%
. not def foldl1 f (Nil: List a) %(Foldl1Nil)%
. foldl1 f (Cons x (Nil: List a)) = x %(Foldl1ConsNil)%
. foldl1 f (Cons x xs) = f x (foldr1 f xs) %(Foldl1ConsCons)%
then
vars a,b,c : Type;

d : Ord;
x, y : a;
xs, ys, zs : List a;
xxs : List (List a);
r, s : d;
ds : List d;
bs : List Bool;
f : a -> a -> a;
p, q : a -> Bool;
g : a -> List b;
n,nx: Nat;
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Specification 3.7.1 List Specification - Part 5
fun andL : List Bool -> Bool;
fun orL : List Bool -> Bool;
fun any : (a -> Bool) -> List a -> Bool;
fun all : (a -> Bool) -> List a -> Bool;
fun concatMap : (a -> List b) -> List a -> List b;
fun concat : List (List a) -> List a;
fun maximum : List d -> d;
fun minimum : List d -> d;
fun takeWhile : (a -> Bool) -> List a -> List a
fun dropWhile : (a -> Bool) -> List a -> List a
fun span : (a -> Bool) -> List a -> (List a * List a)
fun break : (a -> Bool) -> List a -> (List a * List a)
fun splitAt: Nat -> List a -> (List a * List a)
. andL bs = foldr <&&> True bs %(AndLDef)%
. orL bs = foldr <||> False bs %(OrLDef)%
. any p xs = orL (map p xs) %(AnyDef)%
. all p xs = andL (map p xs) %(AllDef)%
. concat xxs = foldr <++> (Nil: List a) xxs %(ConcatDef)%
. concatMap g xs = concat (map g xs) %(ConcatMapDef)%
. maximum ds = foldl1 max ds %(MaximumDef)%
. minimum ds = foldl1 min ds %(MinimumDef)%
. takeWhile p (Nil: List a) = Nil: List a %(TakeWhileNil)%
. p x = True => takeWhile p (Cons x xs)

= Cons x (takeWhile p xs) %(TakeWhileConsT)%
. p x = False => takeWhile p (Cons x xs) = Nil: List a %(TakeWhileConsF)%
. dropWhile p (Nil: List a) = Nil: List a %(DropWhileNil)%
. p x = True => dropWhile p (Cons x xs) = dropWhile p xs %(DropWhileConsT)%
. p x = False => dropWhile p (Cons x xs) = Cons x xs %(DropWhileConsF)%
. span p (Nil: List a) = ((Nil: List a), (Nil: List a)) %(SpanNil)%
. p x = True => span p (Cons x xs)

= let (ys, zs) = span p xs in
((Cons x ys), zs) %(SpanConsT)%

. p x = False => span p (Cons x xs)
= let (ys, zs) = span p xs in

((Nil: List a), (Cons x xs)) %(SpanConsF)%
. span p xs = (takeWhile p xs, dropWhile p xs) %(SpanThm)% %implied
. break p xs = let q = (Not__ o p) in span q xs %(BreakDef)%
. break p xs = span (Not__ o p) xs %(BreakThm)% %implied
. splitAt 0 xs = ((Nil: List a), xs) %(SplitAtZero)%
. splitAt n (Nil: List a) = ((Nil: List a), Nil) %(SplitAtNil)%
. def(pre(n)) /\ nx = pre(n) => splitAt n (Cons x xs)

= let (ys,zs) = splitAt (nx) xs in (Cons x ys, zs) %(SplitAt)%
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Specification 3.7.1 List Specification - Part 6
then
vars a,b,c : Type;

d : Ord;
e: Eq;
x, y : a;
xs, ys : List a;
q, r : d;
qs, rs : List d;
s,t: e;
ss,ts: List e;
p: a -> Bool

fun insert: d -> List d -> List d
fun delete: e -> List e -> List e
fun select: (a -> Bool) -> a -> (List a * List a) -> (List a * List a)
fun partition: (a -> Bool) -> List a -> (List a * List a)
. insert q (Nil: List d) = Cons q Nil %(InsertNil)%
. (q <= r) = True => insert q (Cons r rs)

= (Cons q (Cons r rs)) %(InsertCons1)%
. (q > r) = True => insert q (Cons r rs)

= (Cons r (insert q rs)) %(InsertCons2)%
. delete s (Nil: List e) = Nil %(DeleteNil)%
. (s == t) = True => delete s (Cons t ts) = ts %(DeleteConsT)%
. (s == t) = False => delete s (Cons t ts)

= (Cons t (delete s ts)) %(DeleteConsF)%
. (p x) = True => select p x (xs, ys) = ((Cons x xs), ys) %(SelectT)%
. (p x) = False => select p x (xs, ys) = (xs, (Cons x ys)) %(SelectF)%
. partition p xs = foldr (select p) ((Nil: List a),(Nil)) xs %(Partition)%
. partition p xs

= (filter p xs, filter (Not__ o p) xs) %(PartitionProp)% %implied
end
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3.8 Char and String Specifications

In order to create Char specification, we imported the CASL Char specification and
then declared the Char type as an instance of classes Eq and Ord. See Specifica-
tion 3.8.1, on page 33. We defined, respectively for each of those type instances, the
equality and the __<__ function. Other theorems were proved just as in the previous
specifications.

Specification 3.8.1 Char Specification
from Basic/CharactersAndStrings get Char |-> IChar
spec Char = IChar and Eq and Ord then
vars x, y: Char
type instance Char: Eq
. (ord(x) == ord(y)) = (x == y) %(ICE01)%
. Not(ord(x) == ord(y)) = (x /= y) %(ICE02)% %implied
type instance Char: Ord
. (ord(x) < ord(y)) = (x < y) %(ICO04)%
. (ord(x) <= ord(y)) = (x <= y) %(ICO05)% %implied
. (ord(x) > ord(y)) = (x > y) %(ICO06)% %implied
. (ord(x) >= ord(y)) = (x >= y) %(ICO07)% %implied
. (compare x y == EQ) = (ord(x) == ord(y)) %(ICO01)% %implied
. (compare x y == LT) = (ord(x) < ord(y)) %(ICO02)% %implied
. (compare x y == GT) = (ord(x) > ord(y)) %(ICO03)% %implied
. (ord(x) <= ord(y)) = (max x y == y) %(ICO08)% %implied
. (ord(y) <= ord(x)) = (max x y == x) %(ICO09)% %implied
. (ord(x) <= ord(y)) = (min x y == x) %(ICO10)% %implied
. (ord(y) <= ord(x)) = (min x y == y) %(ICO11)% %implied
end

The String specification was created by importing our Char and List specifica-
tions. We defined String as a list of characters, just as the Haskell Prelude library
does. We declared String as an instance of the classes Eq and Ord. Because Char
and List are also instances of those classes, we didn’t define axioms to instantiate
declarations. To prove this fact, we wrote five theorems involving the equality and
ordering functions.
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Specification 3.8.2 String Specification
spec String = %mono

List and Char then
type String := List Char
type instance String: Eq
type instance String: Ord
vars a,b: String; x,y,z: Char; xs, ys: String
. x == y = True => ((Cons x xs) == (Cons y xs)) = True %(StringT1)% %implied
. xs /= ys = True => ((Cons x ys) == (Cons y xs)) = False %(StringT2)% %implied
. (a /= b) = True => (a == b) = False %(StringT3)% %implied
. (x < y) = True => ((Cons x xs) < (Cons y xs)) = True %(StringT4)% %implied
. (x < y) = True /\ (y < z) = True => ((Cons x (Cons z Nil))

< (Cons x (Cons y Nil))) = False %(StringT5)% %implied
end

3.9 Example Specifications
To exemplify the use of our library, we created two example specifications involving
ordering algorithms. In the first specification, seen at Specification 3.9.1, on page 35,
we used two sorting algorithms: Quick Sort and Insertion Sort. They were defined
using functions from our library (filter, __++__ and insert) and total lambda
expressions as parameters for the filter functions. The λ-expressions were made
total by using ! just after the final point that separates variables from expressions. In
order to prove the correctness of the specification, we created four theorems involving
the sorting functions.

The second specification uses a new data type (Split a b), as an internal repre-
sentation for the sorting functions. See Specification 3.9.2, on page 38. We used the
idea that we can split a list and then rejoin their elements, following each algorithm.
We defined a general sorting function, GenSort, which is responsible for applying the
splitting and the joining functions over a list.

The Insertion Sort algorithm in implemented by a joining function that uses the
insert function to insert split elements into the list. The Quick Sort algorithm
uses a splitting function that separates the list in two new lists: the first containing
elements smaller than the first element of the original list and the second with the
other elements. The joining function inserts an element in the middle of two lists.

The Selection Sort algorithm uses a splitting function that relies on the minimum
function to extract the smaller element from the rest of the list. The joining function
just joins two lists. The Merge Sort algorithm is implemented by splitting the initial
list in the middle, using the splitting function, and then merging the elements using
a joining function. The latter takes the smaller head of both lists and then merges
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Specification 3.9.1 ExamplePrograms Specification
spec ExamplePrograms = List then
var a: Ord;

x,y: a;
xs,ys: List a

fun quickSort: List a -> List a
fun insertionSort: List a -> List a
. quickSort (Nil: List a) = Nil %(QuickSortNil)%
. quickSort (Cons x xs)

= ((quickSort (filter (\ y:a .! y < x) xs))
++ (Cons x Nil))
++ (quickSort (filter (\ y:a .! y >= x) xs)) %(QuickSortCons)%

. insertionSort (Nil: List a) = Nil %(InsertionSortNil)%

. insertionSort (Cons x Nil) = (Cons x Nil) %(InsertionSortConsNil)%

. insertionSort (Cons x xs) = insert x (insertionSort xs)
%(InsertionSortConsCons)%

then %implies
var a: Ord;

x,y: a;
xs,ys: List a

. andL (Cons True (Cons True (Cons True Nil))) = True %(Program01)%

. quickSort (Cons True (Cons False (Nil: List Bool)))
= Cons False (Cons True Nil) %(Program02)%

. insertionSort (Cons True (Cons False (Nil: List Bool)))
= Cons False (Cons True Nil) %(Program03)%

end

the other list and the remaining elements of the list from which the head was taken.
We specified two predicates found in the CASL library repository (but not in

the CASL Library itself). isOrdered guarantees that a list is correctly ordered;
permutation guarantees that one list is a permutation of the other, i.e., both lists
have the same elements. Finally, we created theorems to verify that the application
of the algorithms, in pairs, resulted in the same list; to verify that applying each
algorithm to a list results in an ordered list; and to verify that a list is a permutation
of the list returned by the application of each algorithm.
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Specification 3.9.2 SortingPrograms Specification - Part 1
spec SortingPrograms = List then
var a,b : Ord;
free type Split a b ::= Split b (List (List a))
var x,y,z,v,w: a;

r,t: b;
xs,ys,zs,vs,ws: List a;
rs,ts: List b;
xxs: List (List a);
split: List a -> Split a b;
join: Split a b -> List a;
n: Nat

fun genSort: (List a -> Split a b) -> (Split a b -> List a) -> List a -> List a
fun splitInsertionSort: List b -> Split b b
fun joinInsertionSort: Split a a -> List a
fun insertionSort: List a -> List a
fun splitQuickSort: List a -> Split a a
fun joinQuickSort: Split b b -> List b
fun quickSort: List a -> List a
fun splitSelectionSort: List a -> Split a a
fun joinSelectionSort: Split b b -> List b
fun selectionSort: List a -> List a
fun splitMergeSort: List b -> Split b Unit
fun joinMergeSort: Split a Unit -> List a
fun merge: List a -> List a -> List a
fun mergeSort: List a -> List a
. xs = (Cons x (Cons y ys)) /\ split xs = Split r xxs

=> genSort split join xs
= join (Split r (map (genSort split join) xxs)) %(GenSortT1)%

. xs = (Cons x (Cons y Nil)) /\ split xs = Split r xxs
=> genSort split join xs

= join (Split r (map (genSort split join) xxs)) %(GenSortT2)%
. xs = (Cons x Nil) \/ xs = Nil

=> genSort split join xs = xs %(GenSortF)%
. splitInsertionSort (Cons x xs)

= Split x (Cons xs (Nil: List (List a))) %(SplitInsertionSort)%
. joinInsertionSort (Split x (Cons xs (Nil: List (List a))))

= insert x xs %(JoinInsertionSort)%
. insertionSort xs

= genSort splitInsertionSort joinInsertionSort xs %(InsertionSort)%
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Specification 3.9.2 SortingPrograms Specification - Part 2
. splitQuickSort (Cons x xs)

= let (ys, zs) = partition (<<> x) xs
in Split x (Cons ys (Cons zs Nil)) %(SplitQuickSort)%

. joinQuickSort (Split x (Cons ys (Cons zs Nil)))
= ys ++ (Cons x zs) %(JoinQuickSort)%

. quickSort xs = genSort splitQuickSort joinQuickSort xs %(QuickSort)%
=> unzip (zip xs ys) = (xs, ys) %(ZipSpec)%

. splitSelectionSort xs = let x = minimum xs
in Split x (Cons (delete x xs) (Nil: List(List a))) %(SplitSelectionSort)%

. joinSelectionSort (Split x (Cons xs Nil)) = (Cons x xs) %(JoinSelectionSort)%

. selectionSort xs
= genSort splitSelectionSort joinSelectionSort xs %(SelectionSort)%

. def((length xs) div 2) /\ n = ((length xs) div 2)
=> splitMergeSort xs = let (ys,zs) = splitAt n xs
in Split () (Cons ys (Cons zs Nil)) %(SplitMergeSort)%

. xs = (Nil: List a) => merge xs ys = ys %(MergeNil)%

. xs = (Cons v vs) /\ ys = (Nil: List a)
=> merge xs ys = xs %(MergeConsNil)%

. xs = (Cons v vs) /\ ys = (Cons w ws) /\ (v < w) = True
=> merge xs ys = Cons v (merge vs ys) %(MergeConsConsT)%

. xs = (Cons v vs) /\ ys = (Cons w ws) /\ (v < w) = False
=> merge xs ys = Cons w (merge xs ws) %(MergeConsConsF)%

. joinMergeSort (Split () (Cons ys (Cons zs Nil)))
= merge ys zs %(JoinMergeSort)%

. mergeSort xs = genSort splitMergeSort joinMergeSort xs %(MergeSort)%
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Specification 3.9.2 SortingPrograms Specification - Part 3

then
vars a: Ord;

x,y: a;
xs,ys: List a

preds isOrdered: List a;
permutation: List a * List a

. isOrdered (Nil: List a) %(IsOrderedNil)%

. isOrdered (Cons x (Nil: List a)) %(IsOrderedCons)%

. isOrdered (Cons x (Cons y ys))
<=> (x <= y) = True /\ isOrdered(Cons y ys) %(IsOrderedConsCons)%

. permutation ((Nil: List a), Nil) %(PermutationNil)%

. permutation (Cons x (Nil: List a), Cons y (Nil: List a))
<=> (x==y) = True %(PermutationCons)%

. permutation (Cons x xs, Cons y ys) <=>
((x==y) = True /\ permutation (xs, ys))
\/ (permutation(xs, Cons y (delete x ys))) %(PermutationConsCons)%

then %implies
var a,b : Ord;

xs, ys : List a;
. insertionSort xs = quickSort xs %(Theorem01)%
. insertionSort xs = mergeSort xs %(Theorem02)%
. insertionSort xs = selectionSort xs %(Theorem03)%
. quickSort xs = mergeSort xs %(Theorem04)%
. quickSort xs = selectionSort xs %(Theorem05)%
. mergeSort xs = selectionSort xs %(Theorem06)%
. isOrdered(insertionSort xs) %(Theorem07)%
. isOrdered(quickSort xs) %(Theorem08)%
. isOrdered(mergeSort xs) %(Theorem09)%
. isOrdered(selectionSort xs) %(Theorem10)%
. permutation(xs, insertionSort xs) %(Theorem11)%
. permutation(xs, quickSort xs) %(Theorem12)%
. permutation(xs, mergeSort xs) %(Theorem13)%
. permutation(xs, selectionSort xs) %(Theorem14)%
end
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4 Parsing and verifying the specifications
In this section we comment on the use of Hets and Isabelle. We start by describing
how the specifications were grouped to be parsed by Hets. Next, we describe how the
parsing was done and show the resulting graph or theories. Finally, we described how
we made proofs with Isabelle and list which proofs could not yet be finished.

4.1 Parsing specifications with Hets
All the specifications from the previous section were placed together in a single file.
As the specification growed, we could separate the full specification in smaller sets of
related specifications or even write one specification per file. Hets can deal with all
these scenarios.

Although Hets is a command line program, it has also a mode integrated with
the Emacs text editor, which can also be used to interact with Isabelle using the
ProofGeneral interface. In that way, we could edit specifications in Emacs and parse
them with Hets using the CMD + r keyboard shortcut. Another option is to parse
the specifications with the CMD + g keyboard shortcut, which can generate the graph
of theories based on the syntactic analysis. Parsing our specifications generated the
graph shown in Figure 4.1.1, on page 40.

As can be seen, all the red (dark gray) nodes indicate specifications that have
one or more theorems. The green (light gray) ones don’t have theorems or, either,
their proofs are already done. The rectangular nodes indicate imported specifications
and the elliptical ones indicate specifications taken from our file. Some nodes, such
as ExamplePrograms and SortingPrograms, do have theorems but are marked green
because the theorems are inserted in sub-specifications.

We started our proofs by using the automatic proof mode of Hets (menu: Edit
-> Proofs -> Automatic). This method analyzed the theories and directives (%mono,
%implies, etc) and then revealed the nodes from sub-specifications that created
theorems, for example, by the %implied directive.

The next step was to prove each red node. To do so, we did a right click on a
node and chose the option Prove from the node menu. This opened the Emacs text
editor. After Isabelle had parsed the full theory file (and proved it or not, according to
Isabelle rules), we closed the Emacs window and thus the proof status for that theory
was reported back to Hets by Isabelle. If the node was proved, its color changed to
green; otherwise, it kept the red color. If sub-nodes were proved, they were omitted
again by Hets. At this point, we could not yet prove all the theorems we had created.
Most of the unproved nodes had yet one or two theorems to be proved. The actual
status of our proofs can be seen in Figure 4.1.2, on page 41.
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Figure 4.1.1 Initial state of the proof graph.
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Figure 4.1.2 Actual state of the proof graph.
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4.2 Verifying specifications with Isabelle
As part of specifying our library, the task of proving its theorems were a major
undertaking. Although some theorems remained unproved, we verified almost all of
them. Next, we indicate how we constructed our proofs using excerpts from interesting
proofs. Our full proof scripts can be found in Appendix A, on page 54.

The four theorems from Specification 3.2.3, on page 14, were translated by Hets
to Isabelle theorems like the one shown by Isabelle Proof Script Excerpt 4.2.1, on
page 42.

Isabelle Proof Script Excerpt 4.2.1 Proof for theorem NotFalse1 from Bool spec-
ification
theorem NotFalse1 : "ALL x. Not' x = True' = (x = False')"
apply auto
apply (case_tac x)
apply auto
done

All the proofs for the theorems of the Bool specification followed this pattern:

• apply (auto):
This command tries to simplify the actual goal automatically, and as deep as
it can. In this case, the command could only eliminate the universal quantifier,
getting the result:

goal (1 subgoal):
1. !!x. Not' x = True' ==> x = False'

• apply (case_tac x):
case_tac method executes a case distinction over all constructors of the data
type of variable x. In this case, because the type of x is Bool, x was instantiated
to True and False:

goal (2 subgoals):
1. !!x. [| Not' x = True'; x = False' |]

==> x = False'
2. !!x. [| Not' x = True'; x = True' |]

==> x = False'

• apply (auto):
At this time, this command could finalize all the proof automatically.
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goal:
No subgoals!

One example of a proof for an Eq theorem is shown in the Isabelle Proof Script
Excerpt 4.2.2, on page 43. In this proof, we used a new command: simp add:. This
command expects a list of axioms and previously proved theorems as parameters to
be used in an automatic tentative of proving the actual goal. This command uses
other axioms from the theory, together with the theorems passed as parameters, when
trying to simplify the goal. If the goal cannot be reduced, the command produces an
error; otherwise, a new goal is received.

Isabelle Proof Script Excerpt 4.2.2 Equality proof
theorem DiffTDef :
"ALL x. ALL y. x /= y = True' = (Not' (x ==' y) = True')"
apply(auto)
apply(simp add: DiffDef)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: DiffDef)
done

Almost all Ord theorem proofs used the same commands and tactics from the
previous proofs. One interesting proof was the one for the axiom %(LeTAsymmetry)%,
presented in the Isabelle Proof Script Excerpt 4.2.3, on page 44. Sometimes, Isabelle
expected us to rewrite axioms to match goals because it cannot change the axioms
to all their equivalent forms. We applied the command rule ccontr to start a proof
by contradiction. After some simplification, Isabelle was not able to use the axiom
%(LeIrreflexivity)% to simplify the goal:

goal (1 subgoal):
1. !!x y. [| x <' y = True'; y <' x = True' |] ==> False

We needed to define an auxiliary lemma, LeIrreflContra, which Isabelle auto-
matically proved. This theorem is interpreted internally by Isabelle as:

?x <' ?x = True' ==> False

Hence, we could tell Isabelle to use this lemma, thus forcing it to attribute the
variable x to each ?x variable in the lemma using the command rule_tac x="x"
in LeIrreflContra. The same tactic was used to force the use of the axiom
%(LeTTransitive)%. The command by auto was used to finalize the proof.
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Isabelle Proof Script Excerpt 4.2.3 Proof for the axiom LeTAsymmetry from
specification Ord.
lemma LeIrreflContra : " x <' x = True' ==> False"
by auto

theorem LeTAsymmetry :
"ALL x. ALL y. x <' y = True' --> y <' x = False'"
apply(auto)
apply(rule ccontr)
apply(simp add: notNot2 NotTrue1)
apply(rule_tac x="x" in LeIrreflContra)
apply(rule_tac y="y" in LeTTransitive)
by auto

We started most of our proofs by applying the command apply(auto), as we
wanted Isabelle to act automatically as much as possible. Sometimes this command
could do some reductions. Sometimes it could only remove HOL universal quantifiers.
Sometimes it got into a loop.

An example of a loop occurred when proving theorems from the Maybe and Either
specifications. To avoid the loop, we applied the universal quantifier rule directly,
using the command apply(rule allI). The command rule applies the specified
theorem directly. When there were more then one quantified variable, we could use
the + sign after the rule, in order to tell Isabelle to apply the command as many times
as it could.

After we removed the quantifiers, we could use the command simp only: to do
some simplification. Differently from simp add:, the command simp only: rewrites
only the rules passed as parameters when simplifying the actual goal. Most of the
time they could be used interchangeably. Sometimes, however, simp add: got into
a loop and simp only: had to be used with other proof commands. Two theorems
from theMaybe specification exemplify the use of the previous commands, as shown
in the Isabelle Proof Script Excerpt 4.2.4, on page 45.

The List specification still had unproved theorems (FoldlDecomp and ZipSpec)
inside one of its sub-nodes. The other nodes could have all its theorems proved.
Almost all theorems in this specification needed induction to be proved. Isabelle exe-
cutes induction over a specified variable using the command induct_tac. it expects
as parameter an expression or a variable over which to execute the induction. In the
Isabelle Proof Script Excerpt 4.2.5, on page 45, we can see one example of proof by
induction for a List theorem.

The specification Char was another case where we had to use the rule command to
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Isabelle Proof Script Excerpt 4.2.4 Proof for theorems IMO05 and IMO08 from
specification Maybe.
theorem IMO05 : "ALL x. Just(x) <' Nothing = False'"
apply(rule allI)
apply(case_tac "Just(x) <' Nothing")
apply(auto)
done

theorem IMO08 :
"ALL x. compare Nothing (Just(x)) ==' GT = Nothing >' Just(x)"
apply(rule allI)+
apply(simp add: GeDef)
done

Isabelle Proof Script Excerpt 4.2.5 Proof for theorem FilterProm from specifi-
cation List.
theorem FilterProm :
"ALL f.
ALL p.
ALL xs.
X_filter p (X_map f xs) = X_map f (X_filter (X__o__X (p, f)) xs)"

apply(auto)
apply(induct_tac xs)
apply(auto)
apply(case_tac "p(f a)")
apply(auto)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
done
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remove universal quantification by hand in order to avoid loops. Besides this problem,
all theorems needed only one or two applications of the command simp add: to be
proved. An example can be seen in the Isabelle Proof Script Excerpt 4.2.6, on page 46.

Isabelle Proof Script Excerpt 4.2.6 Proof for theorem ICO07 from specification
Char.
theorem ICO07 : "ALL x. ALL y. ord'(x) >='' ord'(y) = x >='' y"
apply(rule allI)+
apply(simp only: GeqDef)
apply(simp add: GeDef)
done

The specification for String also used few commands in order to have its theorems
proved. Almost all proofs were done with combinations of the auto and the simp add:
commands. the In Isabelle Proof Script Excerpt 4.2.7, on page 46, we show the largest
proof in the String theory.

Isabelle Proof Script Excerpt 4.2.7 Proof for theorem StringT2 from specification
String.
theorem StringT2 :
"ALL x.
ALL xs.
ALL y.
ALL ys. xs /= ys = True' --> X_Cons x ys ==' X_Cons y xs = False'"

apply(auto)
apply(simp add: ILE02)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: DiffDef)
apply(simp add: NotFalse1)
done

Proofs of the ExamplePrograms theorems were very long. They were done using
basically three commands: simp only:, case_tac and simp add:. The latter was
used as the last command to allow Isabelle finish the proofs with fewer commands.
Before the simp only: applications, we tried the simp add: command without
success. We then used the simp only: command directly when the theorem used
previously as a parameter failed when using the simp add: command. In the Isabelle
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Proof Script Excerpt 4.2.8, on page 47, we show the proof for an insertionSort
function application.

Isabelle Proof Script Excerpt 4.2.8 Proof for theorem Program03, an example
of insertionSort function application from specification ExamplePrograms.
theorem Program03 :
"insertionSort(X_Cons True' (X_Cons False' Nil')) =
X_Cons False' (X_Cons True' Nil')"

apply(simp only: InsertionSortConsCons)
apply(simp only: InsertionSortNil)
apply(simp only: InsertNil)
apply(case_tac "True' >'' False'")
apply(simp only: GeFLeTEqTRel)
apply(simp add: LeqTLeTEqTRel)
apply(simp only: InsertCons2)
apply(simp only: InsertNil)
done

All the theorems from our last proof, SortingPrograms, still couldn’t be proved.
Although for all of them we could prove some goals, the last one, representing the
general case, is yet unproved. To show our progress in the proofs, we present an
example in the Isabelle Proof Script Excerpt 4.2.9, on page 48, with some comments
inserted. The command prefer is used to choose which goal to prove in Isabelle
interactive mode, and the command oops indicates that we could not prove the
theorem, and that we gave up the proof.

5 Discussion and difficulties
We faced some interesting difficulties that we will briefly discuss here. The first prob-
lem was dealing with the HasCASL and CASL languages. Although both languages
can be used together, we intended to use the HasCASL features, but separating both
syntax were a little troublesome. The HasCASL language doesn’t yet have a definitive
and complete manual as does the CASL language. So, we started reading the CASL
manual and then the HasCASL definitions. This created some difficulties when using
the HasCASL syntax because some of the constructions may be used interchangeably
between both languages.

Another difficulty was when distinguishing between the logic relations of the Has-
CASL language and our functions. This relates to the logical equivalence between
some axioms. Although these axioms were equivalent, their uses as rewriting rules
were different. Axioms could be defined by equality, as in
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Isabelle Proof Script Excerpt 4.2.9 Actual status of the proof for theorem The-
orem07 of specification SortingPrograms.
theorem Theorem07 : "ALL xs. isOrdered(insertionSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: InsertionSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: InsertionSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitInsertionSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

. (x > y) = (y < x)

or by HasCASL equivalence, as in

. (x > y) = True <=> (y < x) = True

The first case is a better choice when using axioms and theorems to refine rewrite
rules into basic axioms. The second case must be used then defining basic axioms.
Otherwise, Isabelle will never be able to use these axioms. This relates to the fact
that axioms defining relations should use the Bool type to allow Isabelle to conclude
that rules are true or false and, then, proceed to prove goals.

We had some problems dealing with Isabelle itself. We started using HOL in place
of Isar and this seems to have complicated some proof scripts of larger proofs. We
also had to get used to the way Isabelle uses axioms as rewriting rules. If a predicate
P implies a predicate Q (P ==> Q), Isabelle matches the predicate Q with the actual
goal, constructing the proof in a bottom up manner that is not usual.
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As HasCASL is a work-in-progress project, the tool is not fully implemented and
we got some errors because the tool could not translate some specifications to HOL.
Solutions to those errors were kindly proposed by the HasCASL research team, thus
minimizing our difficulties.

6 Related Frameworks

There are other formal specification frameworks available. All of them include exam-
ple libraries, to serve as a basis for new specifications, or predefined libraries, to be
imported by larger specifications.

Larch [6] and VSE-2 [9] are two examples of specification languages based on
first-order logic. VDM [11] and Z [21] are model-oriented specification languages,
i.e., their specifications model a single input-output behavior. HasCASL, in contrast,
contains loose specifications that can model a variety of similar behaviors in an ab-
stract manner, allowing them to be refined later. CafeOBJ [4] and Maude [3] are
specification languages that are directly executable; the price paid for this property
is the reduced expressiveness of their logic in comparison with HasCASL.

Extended ML [12] creates a higher order specification language on top of the
programming language ML. This approach resulted in a large language that is very
difficult to manage. Similar approach was taken by the Programatica framework [7],
which provides a specification logic for the Haskell language, called P-logic. The
similarities between HasCASL and P-logic includes the support for polymorphism
and recursion based on an axiomatic treatment of complete partial orders. Because
P-logic is built directly on top of Haskell, it is less general than HasCASL. This means
that one HasCASL specification can be loosely specified with generic higher order logic
in mind and later refined to the logic of Haskell programs. In opposite, P-logic can
only specify objects in the logic of Haskell programs, including all its specialities,
such as laziness. HasCASL also includes support for class based overloading and
constructor classes, needed for the specification of monads, and the Hoare logic for
imperative (monad-based) programs.

Other higher order frameworks for software specification include Spectrum [2] and
RAISE [5]. The first is considered a precursor of HasCASL and differs from it by using
a three-valued logic and by limiting higher order mechanisms to continuous functions,
as it doesn’t have a proper higher-order specification language. The language of the
RAISE framework differs from HasCASL because of the three-valued logic and the
lack of support for polymorphism.
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7 Future Works
As presented before, our library still has some incomplete proofs and some Haskell
Prelude functions still need to be specified. Presently, we are trying to finish the open
proofs in order to get a fully verified subset of the Haskell Prelude functions.

An open question is how to deal with numbers. The alternative of recreating all
the lemmas needed by Isabelle, which are already written in HOL, definitely is not a
good approach. One solution could be to create an isomorphism between the builtin
Isabelle numeric types and the types specified in the CASL library. If we call this
isomorphism h, we could prove a goal like t1 = t2 by injecting the isomorphism using
the rule h x = h y ==> x = y. This axiom would give us a new goal, h t1 = h t2,
that would be written in terms of builtin Isabelle types and, thus, could be proved
with the Isabelle axioms and builtin auxiliary lemmas. This isomorphism could be
extended to the specification List, as most Haskell data types and functions rely on
lists.

After solving the problem with numeric specifications, we could specify the Haskell
Prelude functions that involve numbers. Many functions that should have been speci-
fied on the specification List, for example, are absent because importing the numeric
specifications wouldn’t allow their proofs to be constructed.

The next natural stage would be to use laziness in our library. This would re-
quire a rewrite of almost all the specifications. An alternative would be to study
transformations that could help us to reuse the proofs we have already written.

Another point of interest would be to refine our library in order to use the Has-
CASL language subset. This subset contains structures like infinite data types and
allows specifications to be converted to Haskell programs. This last step could also
be used to verify existing Haskell Prelude implementations or to serve as a guide for
new ones.

8 Conclusions
In this report, we described some first steps towards specifying a library for the
HasCASL language. The specification was based on the Prelude library, from the
Haskell language. We focused on describing our technical choices and on discussing
implementation details.

We specified a major part of the Prelude library, including almost all the data types
and various functions. We decided to use strict types because a future refinement can
modify the library to include laziness. We proved almost all the proposed theorems
from our specifications using the Isabelle tool.

Although we didn’t use the HasCASL’s subset that can be translated to Haskell
programs, our specification can be used to specify small programs involving basic
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data types and structures. To exemplify, we presented two specifications involving
sorting algorithms over lists.

An open issue is how to deal with numbers. Although numeric specifications can
be imported from the CASL library to write specifications, this libraries cannot be
used to write proofs in Isabelle because they lack auxiliary theorems that the prover
needs to use as rewrite rules. The solution we found to circumvent to this problem
involved the rewriting of large pieces of code in order for it to be used in the present
stage of the tools.

Future steps could involve the the study of rules to refine the specifications in
order to include laziness and infinite data types. Another point of interest would be
to use the subset of the HasCASL language that can generate Haskell programs.
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Appendices
A Isabelle Proof Scripts
We transcribed here the proof contents of each theory file generated by Hets. For
a question of readability, we didn’t transcribed the automatic generated sections of
each theory, as they can be regenerated with our previous listed specifications.

Isabelle Proof Script A.1
Prelude_Bool.thy
theorem NotFalse1 : "ALL x. Not' x = True' = (x = False')"
apply auto
apply(case_tac x)
apply auto
done

ML "Header.record \"NotFalse1\""

theorem NotTrue1 : "ALL x. Not' x = False' = (x = True')"
apply auto
apply(case_tac x)
apply auto
done

ML "Header.record \"NotTrue1\""

theorem notNot1 : "ALL x. (~ x = True') = (Not' x = True')"
apply(auto)
apply(case_tac x)
apply(auto)
done

ML "Header.record \"notNot1\""

theorem notNot2 : "ALL x. (~ x = False') = (Not' x = False')"
apply(auto)
apply(case_tac x)
apply(auto)
done

ML "Header.record \"notNot2\""

end

Isabelle Proof Script A.2
Prelude_Eq.thy
theorem DiffSymDef : "ALL x. ALL y. x /= y = y /= x"
apply(auto)
apply(simp add: DiffDef)
apply(simp add: EqualSymDef)
done

ML "Header.record \"DiffSymDef\""

theorem DiffTDef :
"ALL x. ALL y. x /= y = True' = (Not' (x ==' y) = True')"
apply(auto)
apply(simp add: DiffDef)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: DiffDef)
done

ML "Header.record \"DiffTDef\""

theorem DiffFDef :
"ALL x. ALL y. x /= y = False' = (x ==' y = True')"
apply(auto)
apply(simp add: DiffDef)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: DiffDef)
done

ML "Header.record \"DiffFDef\""

theorem TE1 : "ALL x. ALL y. x ==' y = False' --> ~ x = y"
by auto

ML "Header.record \"TE1\""

theorem TE2 :
"ALL x. ALL y. Not' (x ==' y) = True' = (x ==' y = False')"
apply auto
apply(case_tac "x ==' y")
apply auto

done

ML "Header.record \"TE2\""

theorem TE3 :
"ALL x. ALL y. Not' (x ==' y) = False' = (x ==' y = True')"
apply(auto)
apply(case_tac "x ==' y")
apply auto
done

ML "Header.record \"TE3\""

theorem TE4 :
"ALL x. ALL y. (~ x ==' y = True') = (x ==' y = False')"
apply auto
apply(case_tac "x ==' y")
apply auto
done

ML "Header.record \"TE4\""

theorem IBE1 : "True' ==' True' = True'"
by auto

ML "Header.record \"IBE1\""

theorem IBE2 : "False' ==' False' = True'"
by auto

ML "Header.record \"IBE2\""

theorem IBE4 : "True' ==' False' = False'"
apply(simp add: EqualSymDef)
done

ML "Header.record \"IBE4\""

theorem IBE5 : "True' /= False' = True'"
apply(simp add: DiffDef)
apply(simp add: IBE4)
done
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ML "Header.record \"IBE5\""

theorem IBE6 : "False' /= True' = True'"
apply(simp add: DiffDef)
done

ML "Header.record \"IBE6\""

theorem IBE7 : "Not' (True' ==' False') = True'"
apply(simp add: IBE4)
done

ML "Header.record \"IBE7\""

theorem IBE8 : "Not' Not' (True' ==' False') = False'"
apply(simp add: IBE4)

done

ML "Header.record \"IBE8\""

theorem IUE1 : "() ==' () = True'"
by auto

ML "Header.record \"IUE1\""

theorem IUE2 : "() /= () = False'"
apply(simp add: DiffDef)
done

ML "Header.record \"IUE2\""

end

Isabelle Proof Script A.3
Prelude_Ord.thy
theorem IOE01 : "LT ==' LT = True'"
by auto

ML "Header.record \"IOE01\""

theorem IOE02 : "EQ ==' EQ = True'"
by auto

ML "Header.record \"IOE02\""

theorem IOE03 : "GT ==' GT = True'"
by auto

ML "Header.record \"IOE03\""

theorem IOE07 : "LT /= EQ = True'"
apply(simp add: DiffDef)
done

ML "Header.record \"IOE07\""

theorem IOE08 : "LT /= GT = True'"
apply(simp add: DiffDef)
done

ML "Header.record \"IOE08\""

theorem IOE09 : "EQ /= GT = True'"
apply(simp add: DiffDef)
done

ML "Header.record \"IOE09\""

lemma LeIrreflContra : " x <' x = True' ==> False"
by auto

theorem LeTAsymmetry :
"ALL x. ALL y. x <' y = True' --> y <' x = False'"
apply(auto)
apply(rule ccontr)
apply(simp add: notNot2 NotTrue1)
thm LeIrreflContra
apply(rule_tac x="x" in LeIrreflContra)
apply(rule_tac y = "y" in LeTTransitive)
by auto

ML "Header.record \"LeTAsymmetry\""

theorem GeIrreflexivity :
"ALL x. ALL y. x ==' y = True' --> x >' y = False'"
apply(auto)
apply(simp add: GeDef)
apply(simp add: EqualSymDef LeIrreflexivity)
done

ML "Header.record \"GeIrreflexivity\""

theorem GeTAsymmetry :
"ALL x. ALL y. x >' y = True' --> y >' x = False'"
apply(auto)
apply(simp add: GeDef)

apply(simp add: LeTAsymmetry)
done

ML "Header.record \"GeTAsymmetry\""

theorem GeTTransitive :
"ALL x.
ALL y. ALL z. (x >' y) && (y >' z) = True' --> x >' z = True'"

apply(auto)
apply(simp add: GeDef)
apply(rule_tac x="z" and y="y" and z="x" in LeTTransitive)
apply(auto)
apply(case_tac "z <' y")
apply(auto)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y <' x")
apply(auto)
done

ML "Header.record \"GeTTransitive\""

theorem GeTTotal :
"ALL x. ALL y. ((x >' y) || (y >' x)) || (x ==' y) = True'"
apply(auto)
apply(simp add: OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeFGeTEqTRel)
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry)
apply(simp add: EqualSymDef)
done

ML "Header.record \"GeTTotal\""

theorem LeqReflexivity : "ALL x. x <=' x = True'"
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
done

ML "Header.record \"LeqReflexivity\""

lemma EqualL1 [rule_format]:
"ALL x z.
((x ==' z) = True') & ((x ==' z) = False') \<longrightarrow> False"
by auto

lemma EqualL2 [rule_format]:
"ALL x. ALL y. ALL z.
((x ==' y) = True') & ((y ==' z) = True') \<longrightarrow>
((x ==' z) = False')\<longrightarrow> False"
apply(simp add: EqualL1)
apply(simp add: notNot2 NotTrue1)
apply(auto)
apply(rule EqualTransT)
apply(auto)
done
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lemma Le1E [rule_format]:
"ALL x y z.
(y ==' x) = True' & (x <' z) = True' \<longrightarrow> (y <' z) = True'"
apply (auto)
apply(rule EqTOrdTSubstE)
apply(auto)
done

lemma Le2 [rule_format]:
"ALL x y.
(x <' y) = True' \<longrightarrow> (x <' y) = False'
\<longrightarrow> False"
by auto

lemma Le3E [rule_format]:
"ALL x y z.
(y ==' x) = True' & (x <' z) = True' \<longrightarrow> (y <' z) = False'
\<longrightarrow> False"
apply (auto)
apply(rule Le2)
apply(rule EqTOrdTSubstE)
apply(auto)
done

lemma Le3D [rule_format]:
"ALL x y z.
(y ==' x) = True' & (z <' x) = True' \<longrightarrow> (z <' y) = False'
\<longrightarrow> False"
apply (auto)
apply(rule Le2)
apply(rule EqTOrdTSubstD)
apply(auto)
done

lemma Le4E [rule_format]:
"ALL x y z.
(y ==' x) = True' & (x <' z) = False' \<longrightarrow> (y <' z) = False'"
apply (auto)
apply(rule EqTOrdFSubstE)
apply(auto)
done

lemma Le4D [rule_format]:
"ALL x y z.
(y ==' x) = True' & (z <' x) = False' \<longrightarrow> (z <' y) = False'"
apply (auto)
apply(rule EqTOrdFSubstD)
apply(auto)
done

lemma Le5 [rule_format]:
"ALL x y.
(x <' y) = False' \<longrightarrow> (x <' y) = True'
\<longrightarrow> False"
by auto

lemma Le6E [rule_format]:
"ALL x y z.
(y ==' x) = True' & (x <' z) = False' \<longrightarrow> (y <' z) = True'
\<longrightarrow> False"
apply (auto)
apply(rule Le5)
apply(rule EqTOrdFSubstE)
apply(auto)
done

lemma Le7 [rule_format]:
"ALL x y.
x <' y = True' & x <' y = False' \<longrightarrow> False"
by auto

theorem LeqTTransitive :
"ALL x.
ALL y. ALL z. (x <=' y) && (y <=' z) = True' --> x <=' z = True'"
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y <' z")
apply(auto)

apply(case_tac "y ==' z")
apply(auto)
apply(case_tac "x <' z")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
(*Here we needed the first aux lemma*)
apply(rule EqualL2)
apply(auto)
apply(simp add: NotFalse1 NotTrue1)
apply(case_tac "Not' (x <' z)")
apply(simp add: AndFalse)
apply(simp add: NotFalse1 NotTrue1)
apply(rule ccontr)
apply(simp add: notNot1 NotFalse1)
apply(erule Le2)
apply(rule Le4E)
apply(auto)
apply(simp add: EqualSymDef)
(*End of the proof of the first thm that needed an aux lemma*)
apply(case_tac "y <' z")
apply(auto)
apply(case_tac "y ==' z")
apply(auto)
apply(case_tac "x <' z")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
(*From now on I guess the proof must be verified. It seems that I
inserted some loops in the proof. *)
apply(simp add: LeTGeFEqFRel)
apply(auto)
apply(simp add: LeFGeTEqTRel)
apply(simp add: EqTSOrdRel)
apply(simp add: EqFSOrdRel)
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTGeFEqFRel LeFGeTEqTRel)
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry LeIrreflexivity LeTTotal)
apply(simp add: GeDef)+
(*
apply(simp add: GeDef)
apply(simp add: GeDef)
*)
apply(simp add: EqualSymDef LeTGeFEqFRel LeFGeTEqTRel )
apply(simp add: GeDef)
(*The real proof seems to be in the next 3 lines.*)
apply(rule Le3E)
apply(auto)
apply(simp add: EqualSymDef)+
(*
apply(simp add: EqualSymDef)
apply(simp add: EqualSymDef)
apply(simp add: EqualSymDef)
*)
(*Verify until here.*)
(*The proof for the last goal.*)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x <' z")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
apply(drule Le5)
apply(rule LeTTransitive)
apply(auto)
done

ML "Header.record \"LeqTTransitive\""

theorem LeqTTotal :
"ALL x. ALL y. (x <=' y) && (y <=' x) = x ==' y"
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y <' x")
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apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: EqualSymDef)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: LeTAsymmetry)
done

ML "Header.record \"LeqTTotal\""

theorem GeqReflexivity : "ALL x. x >=' x = True'"
apply(auto)
apply(simp add: GeqDef)
apply(simp add: GeDef)
apply(simp add: OrDef)
done

ML "Header.record \"GeqReflexivity\""

theorem GeqTTransitive :
"ALL x.
ALL y. ALL z. (x >=' y) && (y >=' z) = True' --> x >=' z = True'"
apply(auto)
apply(simp add: GeqDef)
apply(simp add: OrDef GeDef)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "z <' y")
apply(auto)
apply(case_tac "y ==' z")
apply(auto)
apply(case_tac "z <' x")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
(*Here we needed the first aux lemma*)
apply(rule EqualL2)
apply(auto)
apply(simp add: NotFalse1 NotTrue1)
apply(case_tac "Not' (z <' x)")
apply(simp add: AndFalse)
apply(simp add: NotFalse1 NotTrue1)
apply(rule ccontr)
apply(simp add: notNot1 NotFalse1)
apply(erule Le2)
apply(rule EqTOrdFSubstD)
apply(auto)
apply(simp add: EqualSymDef)
(*End of the proof of the first thm that needed an aux lemma*)
apply(case_tac "z <' y")
apply(auto)
apply(case_tac "y ==' z")
apply(auto)
apply(case_tac "z <' x")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
(*From now on I guess the proof must be verified. It seems that I
inserted some loops in the proof. *)
apply(simp add: LeTGeFEqFRel)
apply(auto)
apply(simp add: LeFGeTEqTRel)
apply(simp add: EqTSOrdRel)
apply(simp add: EqFSOrdRel)
apply(auto)
apply(simp add: GeDef)+
apply(simp add: LeFGeTEqTRel LeTGeFEqFRel)
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry LeIrreflexivity LeTTotal)

apply(simp add: GeDef)+
apply(simp add: EqualSymDef LeTGeFEqFRel LeFGeTEqTRel )
apply(simp add: GeDef)
(*The real proof seems to be in the next 3 lines.*)
apply(rule Le3D)
apply(auto)
apply(simp add: EqualSymDef)+
(*Verify until here.*)
apply(simp add: GeDef)+
apply(simp add: LeTAsymmetry)
apply(simp add: GeDef)+
(*The proof for the last goal.*)
apply(case_tac "z <' x")
apply(auto)
apply(case_tac "x ==' z")
apply(auto)
apply(drule Le5)
apply(rule LeTTransitive)
apply(auto)
done

ML "Header.record \"GeqTTransitive\""

theorem GeqTTotal :
"ALL x. ALL y. (x >=' y) && (y >=' x) = x ==' y"
apply(auto)
apply(simp add: GeqDef)
apply(simp add: OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: EqualSymDef)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry)
apply(simp add: EqualSymDef)
apply(case_tac "y >' x")
apply(auto)
done

ML "Header.record \"GeqTTotal\""

theorem LeTGeTRel :
"ALL x. ALL y. x <' y = True' = (y >' x = True')"
apply(auto)
apply(simp add: GeDef)
apply(simp add: GeDef)
done

ML "Header.record \"LeTGeTRel\""

theorem LeFGeFRel :
"ALL x. ALL y. x <' y = False' = (y >' x = False')"
apply(auto)
apply(simp add: GeDef)
apply(simp add: GeDef)
done

ML "Header.record \"LeFGeFRel\""

theorem LeqTGetTRel :
"ALL x. ALL y. x <=' y = True' = (y >=' x = True')"
apply(auto)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
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apply(auto)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: GeDef)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
done

ML "Header.record \"LeqTGetTRel\""

theorem LeqFGetFRel :
"ALL x. ALL y. x <=' y = False' = (y >=' x = False')"
apply(auto)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: GeDef)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "y >' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: GeDef)
done

ML "Header.record \"LeqFGetFRel\""

theorem GeTLeTRel :
"ALL x. ALL y. x >' y = True' = (y <' x = True')"
apply(auto)
apply(simp add: GeDef)
apply(simp add: GeDef)
done

ML "Header.record \"GeTLeTRel\""

theorem GeFLeFRel :
"ALL x. ALL y. x >' y = False' = (y <' x = False')"
apply(auto)
apply(simp add: GeDef)
apply(simp add: GeDef)
done

ML "Header.record \"GeFLeFRel\""

theorem GeqTLeqTRel :
"ALL x. ALL y. x >=' y = True' = (y <=' x = True')"
apply(auto)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")

apply(auto)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: EqualSymDef)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: GeDef)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
done

ML "Header.record \"GeqTLeqTRel\""

theorem GeqFLeqFRel :
"ALL x. ALL y. x >=' y = False' = (y <=' x = False')"
apply(auto)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: GeDef)
apply(simp add: GeqDef LeqDef)
apply(simp add: OrDef)
apply(case_tac "y <' x")
apply(auto)
apply(case_tac "y ==' x")
apply(auto)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: GeDef)
done

ML "Header.record \"GeqFLeqFRel\""

theorem LeqTGeFRel :
"ALL x. ALL y. x <=' y = True' = (x >' y = False')"
apply(auto)
apply(simp add: GeDef LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef LeIrreflexivity)
apply(simp add: LeTAsymmetry)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqFSOrdRel)
done

ML "Header.record \"LeqTGeFRel\""

theorem LeqFGeTRel :
"ALL x. ALL y. x <=' y = False' = (x >' y = True')"
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apply(auto)
apply(simp add: GeDef LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqFSOrdRel)
apply(simp add: GeDef)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqTSOrdRel)
apply(simp add: GeDef LeTAsymmetry)
done

ML "Header.record \"LeqFGeTRel\""

theorem GeTLeFEqFRel :
"ALL x.
ALL y. x >' y = True' = (x <' y = False' & x ==' y = False')"
apply(auto)
apply(simp add: GeDef LeTAsymmetry)
apply(simp add: GeDef)
apply(simp add: EqFSOrdRel)
apply(auto)
apply(simp add: GeDef)
apply(simp add: EqFSOrdRel)
done

ML "Header.record \"GeTLeFEqFRel\""

theorem GeFLeTEqTRel :
"ALL x.
ALL y. x >' y = False' = (x <' y = True' | x ==' y = True')"
apply(auto)
apply(simp add: LeTGeFEqFRel)
apply(simp add: notNot1)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry)
apply(simp add: GeDef)
apply(simp add: EqualSymDef LeIrreflexivity)
done

ML "Header.record \"GeFLeTEqTRel\""

theorem GeqTLeFRel :
"ALL x. ALL y. x >=' y = True' = (x <' y = False')"
apply(auto)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: EqFSOrdRel)
apply(simp add: GeDef)
done

ML "Header.record \"GeqTLeFRel\""

theorem GeqFLeTRel :
"ALL x. ALL y. x >=' y = False' = (x <' y = True')"
apply(auto)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: EqFSOrdRel)
apply(simp add: GeDef)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")

apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeDef)
apply(simp add: LeTAsymmetry)
done

ML "Header.record \"GeqFLeTRel\""

theorem LeqTLeTEqTRel :
"ALL x.
ALL y. x <=' y = True' = (x <' y = True' | x ==' y = True')"

apply(auto)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: LeqDef OrDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"LeqTLeTEqTRel\""

theorem LeqFLeFEqFRel :
"ALL x.
ALL y. x <=' y = False' = (x <' y = False' & x ==' y = False')"

apply(auto)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"LeqFLeFEqFRel\""

theorem GeqTGeTEqTRel :
"ALL x.
ALL y. x >=' y = True' = (x >' y = True' | x ==' y = True')"

apply(auto)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeqDef OrDef)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
done

ML "Header.record \"GeqTGeTEqTRel\""

theorem GeqFGeFEqFRel :
"ALL x.
ALL y. x >=' y = False' = (x >' y = False' & x ==' y = False')"

apply(auto)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(simp add: GeqDef OrDef)
apply(case_tac "x >' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: GeqDef OrDef)
done

ML "Header.record \"GeqFGeFEqFRel\""

theorem LeTGeqFRel :
"ALL x. ALL y. x <' y = True' = (x >=' y = False')"
apply(auto)
apply(simp add: LeTGeFEqFRel)
apply(simp add: GeqDef)
apply(simp add: OrDef)
apply(simp add: GeqFGeFEqFRel)
apply(simp add: LeTGeFEqFRel)
done
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ML "Header.record \"LeTGeqFRel\""

theorem GeTLeqFRel :
"ALL x. ALL y. x >' y = True' = (x <=' y = False')"
apply(auto)
apply(simp add: GeTLeFEqFRel)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(simp add: LeqFLeFEqFRel)
apply(simp add: GeTLeFEqFRel)
done

ML "Header.record \"GeTLeqFRel\""

theorem LeLeqDiff : "ALL x. ALL y. x <' y = (x <=' y) && (x /= y)"
apply(auto)
apply(simp add: LeqDef OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
apply(case_tac "x /= y")
apply(auto)
apply(simp add: DiffDef)
apply(simp add: LeTGeFEqFRel)
apply(simp add: DiffDef)
done

ML "Header.record \"LeLeqDiff\""

theorem MaxSym : "ALL x. ALL y. X_max x y ==' y = X_max y x ==' y"
by auto

ML "Header.record \"MaxSym\""

theorem MinSym : "ALL x. ALL y. X_min x y ==' y = X_min y x ==' y"
by auto

ML "Header.record \"MinSym\""

theorem TO1 :
"ALL x.
ALL y. (x ==' y = True' | x <' y = True') = (x <=' y = True')"
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(case_tac "x <' y")
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: LeqDef)
apply(simp add: OrDef)
apply(case_tac "x <' y")
apply(auto)
done

ML "Header.record \"TO1\""

theorem TO2 : "ALL x. ALL y. x ==' y = True' --> x <' y = False'"
by auto

ML "Header.record \"TO2\""

theorem TO3 :
"ALL x. ALL y. Not' Not' (x <' y) = True' | Not' (x <' y) = True'"
apply(auto)
apply(case_tac "x <' y")
apply(auto)
done

ML "Header.record \"TO3\""

theorem TO4 :
"ALL x. ALL y. x <' y = True' --> Not' (x ==' y) = True'"
apply(auto)
apply(case_tac "x ==' y")
apply(auto)
done

ML "Header.record \"TO4\""

theorem TO5 :
"ALL w.
ALL x.
ALL y.
ALL z.
(x <' y = True' & y <' z = True') & z <' w = True' -->
x <' w = True'"

apply auto
apply(rule_tac y="y" in LeTTransitive)
apply auto
apply(rule_tac y="z" in LeTTransitive)
by auto

ML "Header.record \"TO5\""

theorem TO6 :
"ALL x. ALL z. z <' x = True' --> Not' (x <' z) = True'"
apply auto
apply(case_tac "x <' z")
apply auto
apply (simp add: LeTAsymmetry)
done

ML "Header.record \"TO6\""

theorem TO7 : "ALL x. ALL y. x <' y = True' = (y >' x = True')"
apply auto
apply(simp add: GeDef)+
done

ML "Header.record \"TO7\""

theorem IOO16 : "LT <=' EQ = True'"
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO16\""

theorem IOO17 : "EQ <=' GT = True'"
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO17\""

theorem IOO18 : "LT <=' GT = True'"
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO18\""

theorem IOO19 : "EQ >=' LT = True'"
apply(simp add: GeqDef OrDef GeDef)
done

ML "Header.record \"IOO19\""

theorem IOO20 : "GT >=' EQ = True'"
apply(simp add: GeqDef OrDef GeDef)
done

ML "Header.record \"IOO20\""

theorem IOO21 : "GT >=' LT = True'"
apply(simp add: GeqDef OrDef GeDef)
done

ML "Header.record \"IOO21\""

theorem IOO22 : "EQ >' LT = True'"
apply(simp add: GeDef OrDef)
done

ML "Header.record \"IOO22\""

theorem IOO23 : "GT >' EQ = True'"
apply(simp add: GeDef OrDef)
done

ML "Header.record \"IOO23\""

theorem IOO24 : "GT >' LT = True'"
apply(simp add: GeDef OrDef)
done
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ML "Header.record \"IOO24\""

theorem IOO25 : "X_max LT EQ ==' EQ = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO25\""

theorem IOO26 : "X_max EQ GT ==' GT = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO26\""

theorem IOO27 : "X_max LT GT ==' GT = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO27\""

theorem IOO28 : "X_min LT EQ ==' LT = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO28\""

theorem IOO29 : "X_min EQ GT ==' EQ = True'"
apply(simp add: MinXDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO29\""

theorem IOO30 : "X_min LT GT ==' LT = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IOO30\""

theorem IOO31 : "compare LT LT ==' EQ = True'"
by auto

ML "Header.record \"IOO31\""

theorem IOO32 : "compare EQ EQ ==' EQ = True'"
by auto

ML "Header.record \"IOO32\""

theorem IOO33 : "compare GT GT ==' EQ = True'"
by auto

ML "Header.record \"IOO33\""

theorem IBO6 : "False' >=' True' = False'"
apply(simp add: GeqDef OrDef GeDef)
apply (case_tac "True' <' False'")
apply(auto)
apply(simp add: LeTGeFEqFRel)
apply(simp add: GeDef)
done

ML "Header.record \"IBO6\""

theorem IBO7 : "True' >=' False' = True'"
apply(simp add: GeqDef OrDef GeDef)
done

ML "Header.record \"IBO7\""

theorem IBO8 : "True' <' False' = False'"
apply(simp add: LeFGeTEqTRel)
apply(simp add: GeDef)
done

ML "Header.record \"IBO8\""

theorem IBO9 : "X_max False' True' ==' True' = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IBO9\""

theorem IBO10 : "X_min False' True' ==' False' = True'"
apply(simp add: MaxYDef)
apply(simp add: LeqDef OrDef)
done

ML "Header.record \"IBO10\""

theorem IBO11 : "compare True' True' ==' EQ = True'"
by auto

ML "Header.record \"IBO11\""

theorem IBO12 : "compare False' False' ==' EQ = True'"
by auto

ML "Header.record \"IBO12\""

theorem IUO01 : "() <=' () = True'"
apply (simp add: LeqDef OrDef)
done

ML "Header.record \"IUO01\""

theorem IUO02 : "() <' () = False'"
by auto

ML "Header.record \"IUO02\""

theorem IUO03 : "() >=' () = True'"
apply(simp add: GeqDef GeDef OrDef)
done

ML "Header.record \"IUO03\""

theorem IUO04 : "() >' () = False'"
apply(simp add: GeDef)
done

ML "Header.record \"IUO04\""

theorem IUO05 : "X_max () () ==' () = True'"
by auto

ML "Header.record \"IUO05\""

theorem IUO06 : "X_min () () ==' () = True'"
by auto

ML "Header.record \"IUO06\""

theorem IUO07 : "compare () () ==' EQ = True'"
by auto

ML "Header.record \"IUO07\""

end

Isabelle Proof Script A.4
Prelude_Maybe.thy
theorem IME02 : "Nothing ==' Nothing = True'"
by auto

ML "Header.record \"IME02\""

theorem IMO03 : "ALL x. Nothing >=' Just(x) = False'"
apply(rule allI)
apply(simp only: GeqDef)
apply(simp only: GeDef OrDef)
apply(case_tac "Just(x) <' Nothing")
apply(auto)
done
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ML "Header.record \"IMO03\""

theorem IMO04 : "ALL x. Just(x) >=' Nothing = True'"
apply(rule allI)
apply(simp only: GeqDef)
apply(simp only: GeDef OrDef)
apply(case_tac "Nothing <' Just(x)")
apply(auto)
done

ML "Header.record \"IMO04\""

theorem IMO05 : "ALL x. Just(x) <' Nothing = False'"
apply(rule allI)
apply(case_tac "Just(x) <' Nothing")
apply(auto)
done

ML "Header.record \"IMO05\""

theorem IMO06 :
"ALL x. compare Nothing (Just(x)) ==' EQ = Nothing ==' Just(x)"
by auto

ML "Header.record \"IMO06\""

theorem IMO07 :
"ALL x. compare Nothing (Just(x)) ==' LT = Nothing <' Just(x)"
by auto

ML "Header.record \"IMO07\""

theorem IMO08 :
"ALL x. compare Nothing (Just(x)) ==' GT = Nothing >' Just(x)"
apply(rule allI)+
apply(simp add: GeDef)

done

ML "Header.record \"IMO08\""

theorem IMO09 :
"ALL x. Nothing <=' Just(x) = X_max Nothing (Just(x)) ==' Just(x)"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IMO09\""

theorem IMO10 :
"ALL x. Just(x) <=' Nothing = X_max Nothing (Just(x)) ==' Nothing"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IMO10\""

theorem IMO11 :
"ALL x. Nothing <=' Just(x) = X_min Nothing (Just(x)) ==' Nothing"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IMO11\""

theorem IMO12 :
"ALL x. Just(x) <=' Nothing = X_min Nothing (Just(x)) ==' Just(x)"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IMO12\""

end

Isabelle Proof Script A.5
Prelude_Either.thy
theorem IEO04 : "ALL x. ALL z. Left'(x) >=' Right'(z) = False'"
apply(rule allI)
apply(simp only: GeqDef)
apply(simp only: GeDef OrDef)
apply(case_tac "Right'(y) <' Left'(x)")
apply(auto)
done

ML "Header.record \"IEO04\""

theorem IEO05 : "ALL x. ALL z. Right'(z) >=' Left'(x) = True'"
apply(rule allI)
apply(simp only: GeqDef)
apply(simp only: GeDef OrDef)
apply(case_tac "Left'(x) <' Right'(y)")
apply(auto)
done

ML "Header.record \"IEO05\""

theorem IEO06 : "ALL x. ALL z. Right'(z) <' Left'(x) = False'"
apply(rule allI)
apply(case_tac "Right'(y) <' Left'(x)")
apply(auto)
done

ML "Header.record \"IEO06\""

theorem IEO07 :
"ALL x.
ALL z.
compare (Left'(x)) (Right'(z)) ==' EQ = Left'(x) ==' Right'(z)"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IEO07\""

theorem IEO08 :
"ALL x.

ALL z.
compare (Left'(x)) (Right'(z)) ==' LT = Left'(x) <' Right'(z)"

apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IEO08\""

theorem IEO09 :
"ALL x.
ALL z.
compare (Left'(x)) (Right'(z)) ==' GT = Left'(x) >' Right'(z)"

apply(rule allI)+
apply(simp add: GeDef)
done

ML "Header.record \"IEO09\""

theorem IEO10 :
"ALL x.
ALL z.
Left'(x) <=' Right'(z) =
X_max (Left'(x)) (Right'(z)) ==' Right'(z)"

apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IEO10\""

theorem IEO11 :
"ALL x.
ALL z.
Right'(z) <=' Left'(x) = X_max (Left'(x)) (Right'(z)) ==' Left'(x)"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IEO11\""

theorem IEO12 :
"ALL x.
ALL z.
Left'(x) <=' Right'(z) = X_min (Left'(x)) (Right'(z)) ==' Left'(x)"
apply(rule allI)+
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apply(simp add: LeqDef)
done

ML "Header.record \"IEO12\""

theorem IEO13 :
"ALL x.
ALL z.
Right'(z) <=' Left'(x) =

X_min (Left'(x)) (Right'(z)) ==' Right'(z)"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"IEO13\""

end

Isabelle Proof Script A.6
Prelude_List.thy
theorem PartitionProp :
"ALL p.
ALL xs.
partition p xs =
(X_filter p xs, X_filter (X__o__X (Not__X, p)) xs)"
apply(auto)
apply(simp only: Partition)
apply(induct_tac xs)

apply(case_tac "p a")
apply(simp only: FoldrCons)
apply(simp only: FilterConsF)
apply(auto)
apply(simp add: FilterConsT)
apply(simp add: FoldrCons)
apply(simp only: FilterConsT)
done

ML "Header.record \"PartitionProp\""

end

Isabelle Proof Script A.7
Prelude_List_ E1.thy
theorem SpanThm :
"ALL p. ALL xs. span p xs = (X_takeWhile p xs, X_dropWhile p xs)"
apply(auto)
apply(case_tac xs)
apply(auto)
apply(induct_tac List)
apply(case_tac "p a")
apply(simp add: TakeWhileConsF DropWhileConsF SpanConsF)
apply(case_tac "p aa")
apply(simp add: TakeWhileConsT DropWhileConsT SpanConsT TakeWhileConsF
DropWhileConsF SpanConsF TakeWhileNil DropWhileNil SpanNil)+
apply(simp only: Let_def)
apply(simp add: split_def)
apply(case_tac "p a")
apply(simp add: TakeWhileConsT DropWhileConsT SpanConsT TakeWhileConsF

DropWhileConsF SpanConsF TakeWhileNil DropWhileNil SpanNil)+
done

ML "Header.record \"SpanThm\""

theorem BreakThm :
"ALL p. ALL xs. break p xs = span (X__o__X (Not__X, p)) xs"
apply(auto)
apply(case_tac xs)
apply(auto)
apply(simp add: BreakDef)
apply(simp add: Let_def)
apply(simp add: BreakDef)
done

ML "Header.record \"BreakThm\""

end

Isabelle Proof Script A.8
Prelude_List_ E4.thy
theorem ILE01 : "Nil' ==' Nil' = True'"
by auto

ML "Header.record \"ILE01\""

theorem ILO01 : "Nil' <'' Nil' = False'"
by auto

ML "Header.record \"ILO01\""

theorem ILO02 : "Nil' <='' Nil' = True'"
by auto

ML "Header.record \"ILO02\""

theorem ILO03 : "Nil' >'' Nil' = False'"
by auto

ML "Header.record \"ILO03\""

theorem ILO04 : "Nil' >='' Nil' = True'"
by auto

ML "Header.record \"ILO04\""

theorem ILO08 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons z zs <='' X_Cons w ws =
(X_Cons z zs <'' X_Cons w ws) || (X_Cons z zs ==' X_Cons w ws)"

apply(rule allI)+
apply(simp only: LeqDef)
done

ML "Header.record \"ILO08\""

theorem ILO09 :
"ALL w.
ALL ws.
ALL z.
ALL zs. X_Cons z zs >'' X_Cons w ws = X_Cons w ws <'' X_Cons z zs"
apply(rule allI)+
apply(case_tac "X_Cons z zs >'' X_Cons w ws")
apply(simp only: GeFLeFRel)
apply(simp only: GeTLeTRel)
done

ML "Header.record \"ILO09\""

theorem ILO10 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons z zs >='' X_Cons w ws =
(X_Cons z zs >'' X_Cons w ws) || (X_Cons z zs ==' X_Cons w ws)"

apply(rule allI)+
apply(simp only: GeqDef)
done

ML "Header.record \"ILO10\""

theorem ILO11 : "compare Nil' Nil' ==' EQ = Nil' ==' Nil'"
by auto

ML "Header.record \"ILO11\""
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theorem ILO12 : "compare Nil' Nil' ==' LT = Nil' <'' Nil'"
by auto

ML "Header.record \"ILO12\""

theorem ILO13 : "compare Nil' Nil' ==' GT = Nil' >'' Nil'"
by auto

ML "Header.record \"ILO13\""

theorem ILO14 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
compare (X_Cons z zs) (X_Cons w ws) ==' EQ =
X_Cons z zs ==' X_Cons w ws"
apply(rule allI)+
apply(simp only: CmpEQDef)
done

ML "Header.record \"ILO14\""

theorem ILO15 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
compare (X_Cons z zs) (X_Cons w ws) ==' LT =
X_Cons z zs <'' X_Cons w ws"
apply(rule allI)+
apply(simp only: CmpLTDef)
done

ML "Header.record \"ILO15\""

theorem ILO16 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
compare (X_Cons z zs) (X_Cons w ws) ==' GT =
X_Cons z zs >'' X_Cons w ws"
apply(rule allI)+
apply(simp only: CmpGTDef)
done

ML "Header.record \"ILO16\""

theorem ILO17 : "X_maxX2 Nil' Nil' ==' Nil' = Nil' <='' Nil'"
by auto

ML "Header.record \"ILO17\""

theorem ILO18 : "X_minX2 Nil' Nil' ==' Nil' = Nil' <='' Nil'"
by auto

ML "Header.record \"ILO18\""

theorem ILO19 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons z zs <='' X_Cons w ws =
X_maxX2 (X_Cons z zs) (X_Cons w ws) ==' X_Cons w ws"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ILO19\""

theorem ILO20 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons w ws <='' X_Cons z zs =
X_maxX2 (X_Cons z zs) (X_Cons w ws) ==' X_Cons z zs"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ILO20\""

theorem ILO21 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons z zs <='' X_Cons w ws =
X_minX2 (X_Cons z zs) (X_Cons w ws) ==' X_Cons z zs"

apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ILO21\""

theorem ILO22 :
"ALL w.
ALL ws.
ALL z.
ALL zs.
X_Cons w ws <='' X_Cons z zs =
X_minX2 (X_Cons z zs) (X_Cons w ws) ==' X_Cons w ws"

apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ILO22\""

theorem FoldlDecomp :
"ALL e.
ALL i.
ALL ts.
ALL ys. X_foldl i e (ys ++' ts) = X_foldl i (X_foldl i e ys) ts"

apply(auto)
apply(case_tac "ys ++' ts")
apply(auto)
apply(simp add: FoldlCons)
apply(induct_tac List)
apply(simp add: FoldlCons)
oops

ML "Header.record \"FoldlDecomp\""

theorem MapDecomp :
"ALL f.
ALL xs. ALL zs. X_map f (xs ++' zs) = X_map f xs ++' X_map f zs"

apply(auto)
apply(induct_tac xs)
apply(auto)
apply(simp add: MapCons XPlusXPlusCons)
done

ML "Header.record \"MapDecomp\""

theorem MapFunctor :
"ALL f.
ALL g. ALL xs. X_map (X__o__X (g, f)) xs = X_map g (X_map f xs)"

apply(auto)
apply(induct_tac xs)
apply(auto)
apply(simp add: MapNil MapCons Comp1)
done

ML "Header.record \"MapFunctor\""

theorem FilterProm :
"ALL f.
ALL p.
ALL xs.
X_filter p (X_map f xs) = X_map f (X_filter (X__o__X (p, f)) xs)"

apply(auto)
apply(induct_tac xs)
apply(auto)
apply(case_tac "p(f a)")
apply(auto)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
apply(simp add: MapCons)
apply(simp add: FilterConsT)
done

ML "Header.record \"FilterProm\""
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theorem LengthNil1 : "ALL xs. length'(xs) = 0' = (xs = Nil')"
apply(auto)
apply(case_tac xs)
apply(auto)
done

ML "Header.record \"LengthNil1\""

theorem LengthEqualNil :
"ALL ys. length'(Nil') = length'(ys) --> ys = Nil'"
apply(auto)
apply(case_tac ys)
apply(auto)
done

ML "Header.record \"LengthEqualNil\""

theorem LengthEqualCons :
"ALL x.
ALL xs.
ALL y.
ALL ys.
length'(X_Cons x xs) = length'(X_Cons y ys) -->
length'(xs) = length'(ys)"
by auto

ML "Header.record \"LengthEqualCons\""

theorem ZipSpec :
"ALL xs.
ALL ys.
length'(xs) = length'(ys) --> unzip(X_zip xs ys) = (xs, ys)"
oops
(*

theorem ZipSpec:
assumes "length'(xs) = length'(ys)"
shows "unzip(X_zip xs ys) = (xs, ys)"

using assms proof (induct xs arbitrary: ys)
fix ys
assume "length'(Nil') = length'(ys)"
then have "ys = Nil'" by (simp add: LengthEqualNil)
then show "unzip(X_zip Nil' ys) = (Nil', ys)" by (simp add: ZipNil UnzipNil)
next
fix x
fix xs::"'a List"
fix ys::"'b List"
assume 1: "!!ys::'b List. length'(xs) = length'(ys) ==>
unzip(X_zip xs ys) = (xs, ys)"

assume 2: "length'(X_Cons x xs) = length'(ys)"
then obtain z zs where ys: "ys = X_Cons z zs" and
length: "length'(xs) = length'(zs)"
sorry

hence H: "unzip(X_zip xs zs) = (xs, zs)" using 1 by simp
have "unzip(X_zip (X_Cons x xs) ys) = unzip(X_zip (X_Cons x xs) (X_Cons z zs))"

using ys by simp
also have "... = unzip(X_Cons (x, z) (X_zip xs zs))"
by (metis ZipConsCons ys)

also have "... = (X_Cons x xs, X_Cons z zs)"
using H by (simp add: UnzipCons Let_def)

also have "... = (X_Cons x xs, ys)" using ys by simp
finally show "unzip(X_zip (X_Cons x xs) ys) = (X_Cons x xs, ys)" .
qed
*)

ML "Header.record \"ZipSpec\""

end

Isabelle Proof Script A.9
Prelude_Char.thy
theorem ICE02 : "ALL x. ALL y. Not' (ord'(x) ==' ord'(y)) = x /= y"
apply(auto)
apply(simp add: DiffDef)
done

ML "Header.record \"ICE02\""

theorem ICO05 : "ALL x. ALL y. ord'(x) <='' ord'(y) = x <='' y"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ICO05\""

theorem ICO06 : "ALL x. ALL y. ord'(x) >'' ord'(y) = x >'' y"
apply(rule allI)+
apply(simp add: GeDef)
done

ML "Header.record \"ICO06\""

theorem ICO07 : "ALL x. ALL y. ord'(x) >='' ord'(y) = x >='' y"
apply(rule allI)+
apply(simp only: GeqDef)
apply(simp add: GeDef)
done

ML "Header.record \"ICO07\""

theorem ICO01 :
"ALL x. ALL y. compare x y ==' EQ = ord'(x) ==' ord'(y)"
by auto

ML "Header.record \"ICO01\""

theorem ICO02 :
"ALL x. ALL y. compare x y ==' LT = ord'(x) <'' ord'(y)"
by auto

ML "Header.record \"ICO02\""

theorem ICO03 :
"ALL x. ALL y. compare x y ==' GT = ord'(x) >'' ord'(y)"
apply(rule allI)+
apply(simp add: GeDef)
done

ML "Header.record \"ICO03\""

theorem ICO08 :
"ALL x. ALL y. ord'(x) <='' ord'(y) = X_maxX2 x y ==' y"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ICO08\""

theorem ICO09 :
"ALL x. ALL y. ord'(y) <='' ord'(x) = X_maxX2 x y ==' x"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ICO09\""

theorem ICO10 :
"ALL x. ALL y. ord'(x) <='' ord'(y) = X_minX2 x y ==' x"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ICO10\""

theorem ICO11 :
"ALL x. ALL y. ord'(y) <='' ord'(x) = X_minX2 x y ==' y"
apply(rule allI)+
apply(simp add: LeqDef)
done

ML "Header.record \"ICO11\""

end
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Isabelle Proof Script A.10
Prelude_String.thy
theorem StringT1 :
"ALL x.
ALL xs.
ALL y. x ==' y = True' --> X_Cons x xs ==' X_Cons y xs = True'"
apply(auto)
apply(simp add: ILE02)
done

ML "Header.record \"StringT1\""

theorem StringT2 :
"ALL x.
ALL xs.
ALL y.
ALL ys. xs /= ys = True' --> X_Cons x ys ==' X_Cons y xs = False'"
apply(auto)
apply(simp add: ILE02)
apply(case_tac "x ==' y")
apply(auto)
apply(simp add: EqualSymDef)
apply(simp add: DiffDef)
apply(simp add: NotFalse1)
done

ML "Header.record \"StringT2\""

theorem StringT3 :
"ALL a. ALL b. a /= b = True' --> a ==' b = False'"
apply(auto)
apply(simp add: DiffDef)
apply(simp add: NotFalse1)
done

ML "Header.record \"StringT3\""

theorem StringT4 :
"ALL x.
ALL xs.
ALL y. x <'' y = True' --> X_Cons x xs <'' X_Cons y xs = True'"

by auto

ML "Header.record \"StringT4\""

theorem StringT5 :
"ALL x.
ALL y.
ALL z.
x <'' y = True' & y <'' z = True' -->
X_Cons x (X_Cons z Nil') <'' X_Cons x (X_Cons y Nil') = False'"

by auto

ML "Header.record \"StringT5\""

end

Isabelle Proof Script A.11
Prelude_ExamplePrograms_E1.thy

theorem Program01 :
"andL(X_Cons True' (X_Cons True' (X_Cons True' Nil'))) = True'"
apply(simp only: AndLDef)
apply(simp only: FoldrCons)
apply(simp only: FoldrNil)
apply(simp add: AndPrefixDef)
done

ML "Header.record \"Program01\""

theorem Program02 :
"quickSort(X_Cons True' (X_Cons False' Nil')) =
X_Cons False' (X_Cons True' Nil')"
apply(simp only: QuickSortCons)
apply(case_tac "(%y. y <'' True') False'")
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp only: XPlusXPlusNil)
apply(simp only: XPlusXPlusCons)
apply(simp only: XPlusXPlusNil)
apply(case_tac "(%y. y >='' True') False'")
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp add: LeFGeTEqTRel)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortCons)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp only: XPlusXPlusNil)
apply(simp only: XPlusXPlusCons)
apply(simp only: XPlusXPlusNil)
apply(simp only: IBO5)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortCons)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp only: XPlusXPlusNil)
apply(simp only: XPlusXPlusCons)
apply(simp only: XPlusXPlusNil)
apply(case_tac "(%y. y >='' True') False'")
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp only: XPlusXPlusCons)

apply(simp only: XPlusXPlusNil)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortCons)
apply(simp only: FilterNil FilterConsT FilterConsF)
apply(simp only: QuickSortNil)
apply(simp only: XPlusXPlusNil)
apply(simp only: XPlusXPlusCons)
apply(simp only: XPlusXPlusNil)
apply(simp add: LeFGeTEqTRel)
done

ML "Header.record \"Program02\""

theorem Program03 :
"insertionSort(X_Cons True' (X_Cons False' Nil')) =
X_Cons False' (X_Cons True' Nil')"

apply(simp only: InsertionSortConsCons)
apply(simp only: InsertionSortNil)
apply(simp only: InsertNil)
apply(case_tac "True' >'' False'")
apply(simp only: GeFLeTEqTRel)
apply(simp add: LeqTLeTEqTRel)
apply(simp only: InsertCons2)
apply(simp only: InsertNil)
done

ML "Header.record \"Program03\""

theorem Program04 : "ALL xs. insertionSort(xs) = quickSort(xs)"
apply(auto)
apply(induct_tac xs)
prefer 2
apply(simp only: InsertionSortNil QuickSortNil)
(* general case*)
apply(induct_tac List)
apply(simp only: InsertionSortConsCons)
apply(simp only: QuickSortCons)
apply(case_tac "aa <'' a")
apply(simp only: FilterConsF)
apply(case_tac "aa >='' a")
apply(simp only: FilterConsF)
apply(simp only: LeFGeTEqTRel)
apply(simp only: GeqFGeFEqFRel)
apply (erule disjE)
oops
ML "Header.record \"Program04\""
end
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Isabelle Proof Script A.12
Prelude_SortingPrograms_E1.thy
theorem Theorem01 : "ALL xs. insertionSort(xs) = quickSort(xs)"
apply(auto)
apply(case_tac xs)
apply(case_tac List)
apply(auto)

prefer 3
apply(simp add: InsertionSort QuickSort)
apply(simp add: GenSortF)

prefer 2
apply(simp add: InsertionSort QuickSort)
apply(simp add: GenSortF)

(* The first one*)

apply(simp add: InsertionSort QuickSort)
apply(case_tac "X_splitQuickSort (X_Cons a (X_Cons aa Lista))")
apply(case_tac "X_splitInsertionSort (X_Cons a (X_Cons aa Lista))")
oops

ML "Header.record \"Theorem01\""

theorem Theorem02 : "ALL xs. insertionSort(xs) = mergeSort(xs)"
oops

ML "Header.record \"Theorem02\""

theorem Theorem03 : "ALL xs. insertionSort(xs) = selectionSort(xs)"
oops

ML "Header.record \"Theorem03\""

theorem Theorem04 : "ALL xs. quickSort(xs) = mergeSort(xs)"
apply(auto)
apply(case_tac xs)
apply(case_tac List)
apply(auto)

prefer 3
apply(simp add: MergeSort QuickSort)
apply(simp add: GenSortF)

prefer 2
apply(simp add: MergeSort QuickSort)
apply(simp add: GenSortF)

(* The first one*)

apply(simp add: MergeSort QuickSort)
apply(case_tac "X_splitQuickSort (X_Cons a (X_Cons aa Lista))")
apply(case_tac "X_splitMergeSort (X_Cons a (X_Cons aa Lista))")
oops

ML "Header.record \"Theorem04\""

theorem Theorem05 : "ALL xs. quickSort(xs) = selectionSort(xs)"
oops

ML "Header.record \"Theorem05\""

theorem Theorem06 : "ALL xs. mergeSort(xs) = selectionSort(xs)"
apply(auto)
apply(case_tac xs)
apply(case_tac List)
apply(auto)

prefer 3
apply(simp add: MergeSort SelectionSort)
apply(simp add: GenSortF)

prefer 2
apply(simp add: MergeSort SelectionSort)
apply(simp add: GenSortF)

(* The first one*)

apply(simp add: MergeSort SelectionSort)
apply(case_tac "X_splitSelectionSort (X_Cons a (X_Cons aa Lista))")

apply(case_tac "X_splitMergeSort (X_Cons a (X_Cons aa Lista))")
oops

ML "Header.record \"Theorem06\""

theorem Theorem07 : "ALL xs. isOrdered(insertionSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: InsertionSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: InsertionSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitInsertionSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem07\""

theorem Theorem08 : "ALL xs. isOrdered(quickSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: QuickSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: QuickSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitQuickSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem08\""

theorem Theorem09 : "ALL xs. isOrdered(mergeSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: MergeSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: MergeSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitMergeSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem09\""

theorem Theorem10 : "ALL xs. isOrdered(selectionSort(xs))"
oops

ML "Header.record \"Theorem10\""

theorem Theorem11 : "ALL xs. permutation(xs, insertionSort(xs))"
apply(auto)
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apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: InsertionSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: InsertionSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitInsertionSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
apply(simp add: PermutationCons)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem11\""

theorem Theorem12 : "ALL xs. permutation(xs, quickSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: QuickSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: QuickSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitQuickSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
apply(simp add: PermutationCons)
(* Proof for xs=Cons a as*)

apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem12\""

theorem Theorem13 : "ALL xs. permutation(xs, mergeSort(xs))"
apply(auto)
apply(case_tac xs)
(* Proof for xs=Nil *)
prefer 2
apply(simp only: MergeSort)
apply(simp add: GenSortF)
(* Proof for general case *)
apply(simp only: MergeSort)
apply(case_tac List)
apply(auto)
apply(case_tac "X_splitQuickSort (X_Cons a (X_Cons aa Lista))")
(* Proof for xs= Cons a Nil *)
prefer 2
apply(simp add: GenSortF)
apply(simp add: PermutationCons)
(* Proof for xs=Cons a as*)
apply(case_tac Lista)
apply(auto)
prefer 2
(* Proof for xs = Cons a (Cons b Nil)*)
oops

ML "Header.record \"Theorem13\""

theorem Theorem14 : "ALL xs. permutation(xs, selectionSort(xs))"
oops

ML "Header.record \"Theorem14\""

end
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