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Using Latin Squares to Color Split Graphs

Sheila Morais de Almeida∗ Célia Picinin de Mello∗ Aurora Morgana †

Abstract

An edge-coloring of a graph is an assignment of colors to its edges such that no
adjacent edges have the same color. A split graph is a graph whose vertex set admits a
partition into a stable set and a clique. Split graphs have been introduced by Földes and
Hammer [4] and it is a well-studied class of graphs. However, the problem of deciding
the chromatic index of any split graph remains unsolved. Chen, Fu, and Ko [1] use a
latin square to color any split graph with odd maximum degree. In this work, we also
use a latin square to color some split graphs with even maximum degree and we show
that these graphs are Class 1.

1 Introduction

An edge-coloring of G is an assignment of one color to each edge of G such that no adjacent
edges have the same color. The chromatic index , χ′(G), is the minimum number of colors
for which G has an edge-coloring.

An easy lower bound for the chromatic index is the maximum vertex degree ∆. A
celebrated theorem by Vizing [12] states that, for a simple graph, the chromatic index is at
most ∆+1. Graphs whose chromatic index equals the maximum degree are said to be Class
1; graphs whose chromatic index exceeds the maximum degree by one are said to be Class
2. Despite the restriction imposed by Vizing, it is NP-complete to determine, in general, if
a graph is Class 1 [7]. There are not many graph classes for which the problem is known to
be polynomial; see [6, 8, 10] for examples. The complexity of the problem is open for very
structured classes of graphs such as cographs, proper interval graphs and split graphs.

A graph G satisfying the inequality |E(G)| > ∆(G)
⌊
|V (G)|

2

⌋
, is said to be an overfull

graph. A graph G is subgraph-overfull when it has an overfull subgraph H with ∆(H) =
∆(G) [5]. When the overfull subgraph H can be chosen to be a neighborhood of a vertex
of degree ∆(G), we say that G is neighborhood-overfull [3]. Overfull, subgraph-overfull, and
neighborhood-overfull graphs are in Class 2.

A split graph is a graph whose vertex set admits a partition into a stable set and a
clique. Split graphs is a well-studied class of graphs for which most combinatorial problems
are solved [2, 9, 11]. It has been shown that every odd maximum degree split graph is
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Class 1 [1] and that every subgraph-overfull split graph is in fact neighborhood-overfull [3].
It has been conjectured that every Class 2 split graph is neighborhood-overfull [3]. The
validity of this conjecture implies that the edge-coloring problem for split graphs is in P.
The goal of this paper is to investigate this conjecture by giving another positive evidence
for its validity. We describe a new subset of split graphs with even maximum degree that
is Class 1. Using latin squares, we construct a polynomial edge-coloring for these graphs.

2 Theoretical framework

In this paper, G denotes a simple, finite, undirected and connected graph with vertex set
V (G) and edge set E(G). Write n = |V (G)| and m = |E(G)|. For any v in V (G), the set of
vertices adjacent to v is denoted by N(v) and N [v] = {v} ∪N(v). The degree of a vertex v
is dG(v) = |N(v)|. The maximum degree of G is, then, ∆(G) = max

v∈V (G)
{dG(v)}. When there

is no ambiguity, we remove the symbol G from the notations. A clique is a set of pairwise
adjacent vertices of a graph. A maximal clique is a clique that is not properly contained
in any other clique. A stable set is a set of pairwise non adjacent vertices. A subgraph of
G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G), denote by G[X]
the subgraph induced by X, that is, V (G[X]) = X and E(G[X]) consists of those edges of
E(G) having both ends in X. Let D ⊆ E(G). The subgraph induced by D is the subgraph
H with E(H) = D and V (H) is the set of vertices such that each one of them has at least
one edge of D incident to it.

In order to study edge-coloring of split graphs, the following results are useful tools. We
recall them from [1] for the reader’s convenience.

A color diagram C is a sequence of color arrays (C1, . . . , Ck) , where each color array
Ci = [ci,1, . . . , ci,di

], 1 ≤ i ≤ k, consists of distinct colors. A color diagram C is monotonic
if the color ci,j occurs at most di − j times in C1, . . . , Ci−1 for all 1 ≤ i ≤ k and 1 ≤ j ≤ di.

A monotonic color diagram can be used to provide an edge-coloring for a bipartite graph.
Let B be a bipartite graph with bipartition {U, V }. Consider |U | = k and U =

{u1, u2, . . . , uk}. For each vertex ui ∈ U , let Cui be a set of dB(ui) distinct colors. Consider
the set C = (Cu1 , . . . , Cuk

) and suppose that C is a monotonic color diagram. In this case,
it is possible to color the edges of B using the set of colors Cui = [ci,1, . . . , ci,dB(ui)] to color
the edges incident to ui, for each ui ∈ U . The algorithm is a greedy one. It considers the
vertices of U ordered according to C and, for each ui, using consecutively the colors in Cui

it choose a neighbor of ui where does not incide an edge with color ci,j and colors this edge
with the color ci,j . Since C is a monotonic color diagram, when it is coloring an edge of ui

and is considering the color ci,j , this color has already occurred at most dB(ui)− j times in
Cu1 , . . . , Cui−1 . But there are at least dB(ui)− j+ 1 not colored edges incident to ui. Then
there is at least one edge incident to ui which can be colored with ci,j . This result is in the
following lemma and we use it in our study of edge-coloring of split graphs.

Lemma 1 [1] Let B be a bipartite graph with bipartition {U, V }. Let C = (Cu1 , . . . , Cuk
)

be a monotonic color diagram with each Cui defined as above, then B has an edge-coloring
that uses the colors of Cui, ui ∈ U .
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A k× k-matrix with entries from {0, . . . , k− 1} is called latin square of order k if every
element of {0, . . . , k − 1} appears in each row and column exactly once. A latin square
M = [mi,j ] is commutative if mi,j = mj,i for 0 ≤ i ≤ j ≤ k − 1 and it is idempotent if
mi,i = i, for 0 ≤ i ≤ k − 1.

Consider the k × k-matrix, M = [mi,j ], 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ k − 1, defined as
following.

mi,j = (i+ j) (mod k) (1)

Note that M is a commutative latin square and it is possible to construct monotonic
color diagrams, using the entries of the lines of M as a sequence of color arrays. For instance,
it is easy to see that, for a fixed j, 0 ≤ j ≤ k − 1, the sequence C = (C0, . . . , Cj), where
Ci = [mi,j ,mi,j+1, . . . ,mi,k−1], 0 ≤ i ≤ j, is a monotonic color diagram.

From now on, G is a split graph with a partition {Q,S}, where Q is a maximal clique
and S is a stable set. Note that Q is also a maximum clique of G. To every split graph
G we shall associate the bipartite graph B obtained from G by removing all edges of the
subgraph of G induced by Q. Let d(Q) be the maximum degree of vertices of Q in the
bipartite graph B, i.e., d(Q) = max

v∈Q
{dB(v)}. Then ∆(G) = |Q| − 1 + d(Q).

Chen, Fu and Ko [1], use an odd order idempotent commutative latin square to show
that an odd maximum degree split graph is Class 1. Since it is known that there is an
idempotent commutative latin square of order n if, only if, n is odd, this technique could
not be directly applied on split graphs with even maximum degree.

In order to provide an edge-coloring with ∆(G) colors for some split graphs when ∆(G)
is even, we consider the matrix M defined in (1). From now on, the entries of a matrix are
called colors. The matrix M is a commutative latin square of order ∆(G) − 1, so we need
a new color. We replace some entries of M with the new color, as described in Algorithm
ColorDiagrams. (The effect of these replacements will be the coloring of a selected set of
independent edges of G[Q] with the new color.) Then, we consider a vertex v in S with
degree at least |Q|2 and we label the vertices of Q as u1, u2, . . . , u|Q| such that ui is adjacent
to v, 0 ≤ i ≤ dG(v). Hence, we use the color ai,i of the submatrix A = [ai,j ] formed by
the first |Q| rows and columns of M to color the edge (v, ui), 0 ≤ i ≤ dG(v). After, we use
the color ai,j to color the edge (ui, uj) of the subgraph of G induced by Q, 0 ≤ i, j ≤ |Q|.
Now, it remains to color at most d(Q) − 1 edges of B that are incident to ui, for each ui,
1 ≤ i ≤ dB(v), and at most d(Q) edges of B incident to ui, for each ui, dB(v) < ui ≤ |Q|.
We use the monotonic color diagram C produced by our algorithm to color these edges. The
constraints of Theorem 4 are given by this strategy. The algorithm used in our approach is
given in the next section.

3 A split graph subset that is not neighborhood-overfull

In this section we describe a subset of split graphs that is Class 1. For this, we present the
Algorithm ColorDiagrams that constructs a latin square M and derives from it a matrix
A and a sequence of colors arrays C. If a split graph G has some special conditions, the
sequence C is a color diagram. In this case, we can perform an edge-coloring of G with ∆
colors using the matrix A and the color diagram C returned by the algorithm.
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Algorithm ColorDiagrams(∆, |Q|, d(v))
Input: The positive integers ∆ ≥ 3, |Q| < ∆, and d(v) < |Q|.

Construct a (∆− 1)× (∆− 1)-matrix M where
mi,j = (i+ j) (mod ∆− 1).
Construct a sequence C = (C0, . . . , C|Q|−1), where
Ci = [mi,|Q|, . . . ,mi,∆−2], 0 ≤ i < |Q|.
Add mi,i of M as the first element of Ci, d(v) ≤ i < |Q|.
Add ∆− 1 as the first element of Ci, 0 ≤ i < |Q|.
Construct a matrix A|Q|,|Q|, where ai,j ← mi,j , 0 ≤ i, j < |Q|;
l← 0; l′ ← |Q| − 1; x← −1; c← |Q|+ x;
If c is odd count← b∆−|Q|−x−1

2 c;
If c is even count← b∆−|Q|−x−2

2 c;
While (l < l′) and (c < ∆− 2) do

Replace the color c from al,l′ and al′,l of A by ∆− 1;
Replace the color ∆− 1 of Cl and Cl′ by c;
l← l + 1; l′ ← l′ − 1; count← count− 1;
if count = 0 then

x← x+ 1; c← |Q|+ x;
if c is odd then count← b∆−|Q|−x−1

2 c;
if c is even then count← b∆−|Q|−x−2

2 c;
l← l + 1;

Return(A, C).

The following results will be used in Theorem 4. The Lemma 2 shows some proprerties
of the matrix A returned by the Algorithm ColorDiagrams and the Lemma 3 exhibits the
conditions on ∆, |Q|, and d(v) of a split graph G which are necessaries to get C as a color
diagram.

Lemma 2 The matrix A returned by Algorithm ColorDiagrams is commutative, its ele-
ments are from {0, ...,∆−1}, and it has pairwise distinct elements in each line and column.
Moreover, if ∆ is even, the elements of the main diagonal of A are pairwise distinct.

Proof. The algorithm constructs the matrix A using the first |Q| lines and the first |Q|
columns of matrix the M . This is possible, because |Q| ≤ ∆− 1. So, since M is a commu-
tative latin square, before the replacements, the matrix A is commutative and its elements
in any line or column are pairwise distinct. Since the matrix A, before the replacements,
is a submatrix of M , then its elements are in the set {0, 1, . . . ,∆ − 2}. (Note that A is
not a latin square.) The only color used for replacements on the cells of A is the color
∆−1. Therefore, the elements of matrix A returned by Algorithm ColorDiagrams are from
{0, ...,∆− 1}.

The loop while of the algorithm considers each color that belongs to F = {|Q| −
1, |Q|, . . . ,∆ − 3} in increasing order. It starts with color c = |Q| − 1 and replaces it
by ∆ − 1 in the cells al,l′ = a0,|Q|−1 and al′,l = a|Q|−1,0. Note that when l′ is decreased by
one, l is increased by one or two and two cells receive the color ∆ − 1. This loop finishes
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when all the colors were used, i.e. when c = ∆ − 2, or when all lines of A were visited,
i.e. l ≥ l′. Note that when the loop finishes each line and column were considered by
the algorithm at most one time. Hence each line and each column receives at most one
color ∆− 1. Since the elements in each line and column of A, before the replacements, are
pairwise distinct and after each replacement the line l and column l′ are incremented and
decremented, respectively, the matrix A returned by the Algorithm ColorDiagrams has also
pairwise distinct elements in each line and column.

Since before the replacements the matrix A is commutative and each replacement is
performed at al,l′ and at al′,l, the matrix A returned by Algorithm ColorDiagrams is com-
mutative too.

By hypothesis, ∆ is even. Thus the matrix M that is used to construct A has odd order
(∆− 1). So, before the replacements, the elements of the main diagonal of A are pairwise
distinct. Since the algorithm does not perform any replacement in the main diagonal of A
(it stops when l ≥ l′), these elements remain pairwise distinct.

Lemma 3 Let d(v) ≥ |Q|2 and ∆ even. Suppose that (d(Q))2 ≥ 2|Q|+1. Then the sequence
C returned by the Algorithm ColorDiagrams is a monotonic color diagram.

Proof. First of all, the Algorithm ColorDiagrams uses a subset of the elements of line i of
matrix M to inicialize Ci, 0 ≤ i < |Q|. By construction, each Ci has size ∆ − |Q| − 1 =
d(Q)− 2. (Remember that ∆ = |Q|− 1 +d(Q).) Since M is a latin square, at this moment,
the colors in each Ci are pairwise distinct and, since 0 ≤ i < |Q|, the sequence C is a
monotonic color diagram. Hence, each color that belongs to C appears in this color diagram
at most |Ci| = d(Q)− 2 times.

The Algorithm ColorDiagrams includes the element mi,i of the main diagonal of M as
the first element of each sequence Ci, d(v) ≤ i < |Q|. We show that, after this operation,
the sequence C remains a monotonic color diagram. The colors that are in each new Ci =
{mi,i,mi,|Q|, . . . ,mi,∆−1} are pairwise distinct, since they belong to the line i of M and
M is a latin square. By hypothesis, ∆ is even, then M is a latin square with odd order
and, therefore, the elements of the main diagonal of M are pairwise distinct. So no color
is included twice in this step. Moreover, since d(v) ≥ |Q|

2 , then no Cj with j > i has the
color mi,i. Remember that before the inclusion of the elements of the main diagonal in Ci,
each color appeared in C at most d(Q) − 2 times. Since mi,i is the first element of each
Ci and the cardinality of each one of these Ci is d(Q) − 1, then each mi,i can appear in
C0, . . . , Cj , j < i, at most d(Q)− 2 times. Therefore, the sequence C remains a monotonic
color diagram.

In the last step, the Algorithm ColorDiagrams includes a new element at the first po-
sition of some Ci, 0 ≤ i ≤ |Q| − 1. It inicializes the first position of each Ci as ∆ − 1
and, after, replaces some of them by one color of the set F = {|Q| − 1, |Q|, . . . ,∆ − 3} =
{|Q|+x,−1 ≤ x ≤ ∆− |Q| − 3 = d(Q)− 4}. In order to guarantee the sequence C returned
by the Algorithm ColorDiagrams is a monotonic color diagram, the Algorithm replaces the
color ∆ − 1 of some sequences Ci by a color |Q| + x ∈ F such that the total number of
times that the color |Q| + x appears in C is at most ∆ − |Q| = d(Q) − 1. So, each color
|Q|+ x ∈ Ci appears at most d(Q)− 2 times in C0, . . . , Cj , j < i.
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Now we show how many times the color Q+ x ∈ F appears in C = Ci, 0 ≤ i ≤ |Q| − 1,
before of the execution of the loop while of the algorithm. There are two cases:

• if the color |Q|+ x is odd, it appears at most x+ 1 times.

• if the color |Q| + x is even, it appears at most x + 1 or x + 2 times. In fact, when
|Q|
2 < d(v) < ∆

2 , the color |Q|+ x belongs to the main diagonal of M and it had been
included in C in the previous steps of the algorithm. So, in this case, it appears at
most x+ 2 times in C. Otherwise, the color |Q|+ x appears at most x+ 1 times.

So, if |Q|+x is odd, this color can be included in C at most d(Q)−1−(x+1) = d(Q)−2−x
times. Since the Algorithm ColorDiagrams performs the replacement of the color ∆ − 1
by the color |Q| + x in Cl and Cl′ at the same time, this pair of replacements occurs
exactly

⌊
d(Q)−2−x

2

⌋
=
⌊

∆−|Q|−x−1
2

⌋
times, unless l becomes greater than l′ and the algorithm

finishes.
Analogously, if |Q|+x is even, the color ∆−1 can be replaced at most d(Q)−1−(x+2) =

d(Q)− 3− x times by |Q|+ x and the pair of replacements (in Cl and Cl′) occurs exactly⌊
d(Q)−3−x

2

⌋
times, unless l becomes greater than l′ and the algorithm finishes.

Considere the sequences Cj that contain cj,k = |Q|+ x, k 6= 1. Note that each sequence
Ci that contains ci,1 = |Q|+ x has i > j.

Now we show that, after the last step of the algorithm, there is at most d(Q)− 1 colors
∆− 1 in C.

The algorithm uses at most |F | = d(Q)−2 distinct colors to perform these replacements.
For each distinct color used, the algorithm leaves a sequence with the color ∆ − 1. (This
occurs when count = 0.)

If the loop while finishes because l ≥ l′ but with c < ∆ − 2, then the number of times
that the color ∆ − 1 appears in C at the end of the algorithm is less than d(Q) − 2 plus
1 (a color ∆ − 1 that is left in Cl, when l = l′ =

⌊
|Q|
2

⌋
+ 1). Thus, the total number of

occorrences of the color ∆− 1 in C is less than d(Q)− 1.
If the loop while finishes because c = ∆− 2, then the number times that the color ∆− 1

appears in C is given bellow.
By hypothesis, (d(Q))2 ≥ 2|Q|+ 1. If |Q| is even, the first and the last elements of F is

odd. Therefore,

|Q| −
(
d(Q)− 1 + 2

(
(d(Q)− 3)

2
+

(d(Q)− 3)
2

+
(d(Q)− 5)

2
+ . . .+

2
2

))
=

|Q| − (d(Q)− 1 + 2(d(Q)− 3 + d(Q)− 5 + · · ·+ d(Q)− (d(Q)− 2))) =

|Q| −
(
d(Q)− 1 +

(d(Q)− 1)(d(Q)− 3)
2

)
=

|Q| − (d(Q)− 1)2

2
≤ (d(Q))2 − 1

2
− (d(Q)− 1)2

2
= d(Q)− 1
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If |Q| is odd, then (d(Q))2 is even and then (d(Q))2 ≥ 2|Q|+ 2. Hence,

|Q| − 2(d(Q)− 2 + d(Q)− 4 + · · ·+ d(Q)− (d(Q)− 2)) =

|Q| −
(
d(Q)(d(Q)− 2)

2

)
≤

(d(Q))2 − 2
2

− d(Q)(d(Q)− 2)
2

= d(Q)− 1

Remember that each color ∆−1 ∈ Ci appears in the first position of Ci. Since there is at
most d(Q)−1 colors ∆−1 in C, then there is at most d(Q)−2 colors ∆−1 in C0, . . . , Cj with
j < i. Therefore, the sequence C returned by the Algorithm ColorDiagrams is a monotonic
color diagram. This conclusion follows from the counting of the total number of each color
|Q|+ x and each color ∆− 1 that appears in C.

Now, we are ready to prove the Theorem 4.

Theorem 4 Let G be a split graph with even maximum degree. If G has a vertex v in S
with degree at least |Q|2 and (d(Q))2 ≥ 2|Q|+ 1, then G is Class 1.

Proof. Let G be a split graph with ∆ = ∆(G) even. Let {Q,S} be a partition of the vertex
set of G, where Q is a maximal clique and S is a stable set. Note that removing edges from
a graph cannot increase its chromatic index, so it suffices to show that χ′(G) = ∆ when all
vertices of Q has degree equal to ∆. Remember that BG is the bipartite graph obtained
from G by removing all edges of G[Q], d(Q) = max

v∈Q
{dB(v)}, and ∆(G) = |Q| − 1 + d(Q).

Suppose that G has a vertex v in S with d(v) ≥ |Q|2 and (d(Q))2 ≥ 2|Q|+ 1.
We order the vertices in S = {v0, . . . , v|S|−1} such that v0 = v and we order the vertices

in Q = {w0, . . . , w|Q|} such that the d(v0) first vertices in Q are adjacent to v0.
Let A be the matrix returned by Algorithm ColorDiagrams. For 0 ≤ i, j ≤ |Q| − 1,

we use the color ai,j to color the edge {wi, wj}. By Lemma 2, the elements of any line of
matrix A are pairwise distinct and A is commutative. Hence, this is an edge-coloring of
G[Q]. Then it remains to color the edges of BG.

Now we color the edges of BG that are incident to v0 = v. By hypothesis, d(v0) ≥ |Q|2 .
We use the color ai,i of the main diagonal of A to color the edge {v0, wi}, 0 ≤ i < d(v0).
Since ∆ is even, by Lemma 2, the elements of the main diagonal of A are pairwise distinct.
Hence the edges incident to v0 have distinct colors. Since G is a simple graph, only colors
ai,j with i 6= j are used to color the edges of G[Q]. Then each color ai,i differs of all the other
colors that are in edges incident to wi. Therefore, we have an edge-coloring of G[Q∪ {v0}].

Let B′ the bipartite graph induced by the edges with a vertex in Q and another one
in S\{v0}. Consider now the color diagram C returned by the Algorithm ColorDiagrams.
The first d(v) sequences of C have size d(Q) − 1 and the other ones have size d(Q). In
fact, Ci = [c,mi,|Q|, . . . ,mi,∆−2], for 0 ≤ i < d(v), and Ci = [c,mi,i,mi,|Q|, . . . ,mi,∆−2], for
d(v) ≤ i < |Q|, where c ∈ F = {|Q| − 1, |Q|, . . . ,∆− 3,∆− 1}.
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Remember that dBG
(wi) ≤ d(Q), 0 ≤ i ≤ |Q| − 1. Since we label the vertices of Q such

that the first d(v0) vertices are the neighbors of v0, then these vertices have degree at most
d(Q)− 1 in B′. The size of a sequence Ci is at least dB′(wi), 0 ≤ i < |Q|. By Lemma 3, C
is a monotonic color diagram. Thus, by Lemma 1, we can color the edges of B′ using the
elements of the color diagram C and we have an edge-coloring of B′.

Now, we have to show that the colors of the edges incident to wi in G are pairwise
distinct, for 0 ≤ i < |Q|. To see this, remember that for each i, 0 ≤ i < |Q|, the colors of
{wi, wj} belong to line i of A, the colors of {wi, vj}, vj ∈ S, belong to Ci, and each Ci has
at most one color ∆− 1. Remember, also, that the elements of line i of matrix A and the
elements of Ci, except ∆− 1, belong to line i of M (the matrix defined in (1)). Since M is
a latin square, the colors of the edges incident to each wi, 0 ≤ i < |Q|, are pairwise distinct.
Then we have a an edge-coloring with ∆ colors for G. Therefore, G is Class 1.

A split graph satisfying the conditions of Theorem 4 is not neighborhood-overfull. So,
our result gives a positive evidence to the conjecture that for any split graph neighborhood-
overfullness is equivalent to being Class 2.
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