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Abstract

In this paper, we introduce a multiscale operator whichetogr with some morpholog-
ical tools, can be used to reconnect broken components ahage. This operator extracts
the orientation field from the image components and can bbegpi both binary and gray-
scale pictures. Although we illustrate its application lie fingerprint domain, the approach
described here can be easily extended to images whose centpa@xhibit well-defined direc-
tional information.

Key-words: Fingerprints, Multiscale Directional Information, Mathatical Morphology,
Watersheds.

1 Introduction

Nowadays, there is an increasing emphasis on the privacy and sedyégsonal information
and, therefore, the importance of accurate personal identificatiomsysigs also increased.

In order to satisfy this requirement, automatic fingerprint identification sys(amkss) were
created and became the most widely used biometric technology [1] due tdltdverig fingerprint
characteristics:

Universality: everyone has it;

Permanenceremains invariant over lifetime;

Collectability: easy to be collected;

Distinctivenessit is sufficiently different from one person to another, even in casédenf
tical twins [2].

Most automatic fingerprint identification systems are based in minutiae matchidg $3 6].
Minutiae are local discontinuities in the fingerprint pattern. The most important oreesdge
endingandridge bifurcation illustrated in figure 1.
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I

(a) Ridge ending (b) Ridge bifurcation

Figure 1: Examples of minutiae.

The main difficulty for minutiae extraction is that fingerprint quality is often too, libhwis noise
and contrast deficiency can produce false minutiae or hide valid ones.Hiyh quality images can
yield false minutiae, for example, when the person has cuts or scars imgerdi

To solve these problems, several approaches have been devetodewyérprint image en-
hancement, using Fourier transform [7, 8], Wavelet transform [@hd filters [5, 10, 11] etc, and
for minutiae filtering, applied to binary [12, 13, 14, 15] or gray-scale im§g&ks

This work considers the problem of reconnecting broken ridges in riimige: images based
on morphological operators and multiscale directional information, obtaipedebneighborhood
operator introduced here, which yield more accurate results than theltgppp@aches using image
gradient operator [3, 5, 11]. This reconnection method can be used tovenpidge following
algorithms [4, 17] and minutiae extraction steps. It also turns the minutiae fili@pginnecessary.

Although we focus this paper on the fingerprint domain, the method deddsbguite gen-
eral and can be easily extended to connect image components whosedeaztn be associated
with directional information. This is the case of applications concerningsaseah as medicine,
biometrics, metallurgy and geology.

2 Mathematical Morphology

Our approach for reconnecting fingerprint ridges is based mainly e snathematical mor-
phology transformations [18, 19, 20], briefly discussed in this sectiwhpa the gray-scale direc-
tional operator introduced in section 3.1.

2.1 Erosion and Dilation

Erosion and dilation constitute the basis for more complex morphologicaltopeend can be
defined as follows.

Let f : Z?> — Z be a gray-scale image amd: Z2> — Z a plain structuring element. The
gray-scale erosion of by b, denoted byf © b, is defined as

(f o b)(z,y) = min{f(x+ s,y +1) = b(s, 1)}, @)

where(x + s,y +t) € Dy, (s,t) € Dy andD represents the discrete domain of the images.
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The gray-scale dilation of by b, denoted byf @ b, is defined as
(f@b)(z,y) = maz{f(z — s,y —t) +b(s, 1)}, )
where(z — s,y — t) € Dy and(s,t) € D,

2.2 Closing and Opening

By iteratively applying erosion and dilation, one can eliminate image details, sritzdierthe
structuring element, without affecting its global geometric features.

Visually, closing smoothes the contours, fills narrow gulfs and eliminates smol@s.h The
gray-scale closing of by b, denoted byf e b, is defined as

(feb)=(fab)Ob ®3)

On the other hand, opening smoothes contours, break narrow isthrmegsesirainates small
islands. The gray-scale opening oby b, denoted byf o b, is defined as

(fob)=(fob) @b (4)

2.3 Watersheds

The watershed is a very important morphological tool used in image segmardatican intu-
itive definition of this transformation is given here. Formal definitions cafobed, for instance,
in [20, 21].

Let f be a gray-scale image amd;( f) its regional minima. Now, consideft as a topographic
surface where the gray value of each pixel represents the altitudeaghdn@nimumm(f) is
pierced. We will flood this topographic surface by submerging it into a lakeawconstant vertical
speed. During the flooding process, two or more floods coming fronrelifteninima may merge.
Every time it happens, we build a dam at the points where the floods woul@&m&trthe end of the
process, only the dams emerge. These dams define the watershed liresddhf, segmenting
the image in several basihg f). Each basi;(f) contains one and only one minimum; () and
corresponds to the influence zone of this minimum.

3 Reconnecting fingerprint ridges

In this section, we introduce an approach for reconnecting fingempdges. Figure 2 shows a
general flowchart of the method which consists mainly of the following steps:

e Orientation field estimationthis step computes the most likely orientation of each pixel in
the fingerprint image.

e Image enhancement by watershett®e watershed transform gives the influence zone of all
regional minima of the image. Note that in the binary case, it defines the infueme of
each ridge.
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o Definition of markersa subset of the watershed lines, representing regions of brokes ridge
is obtained at this step.

e Estimation of the distance between broken ridgi& distance transform is applied to a set
defined from the difference between two orientation field scales whiciitsgs an estimate
of the distance between broken ridges.

e Directional opening by markergo reconnect the broken components, a directional morpho-
logical opening is executed in the regions defined by the markers, whemptning size
parameter is estimated from the distance between broken ridges.

Input image

I
v v

Orientation field Image enhancement
estimation ) by watersheds

-

Y - “_ A4
Distance between Definition of
broken ridges ) markers

| |
r :
Directional opening
by markers

Y
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Figure 2: General flowchart of the proposed method.

Next, we describe with some details each of these steps.

3.1 Orientation field estimation

In this section, we focus our discussion on the orientation field estimationrai/asgale finger-
print image, although the method introduced here can be applied to any kimd@é (even binary,
as we will see in section 3.3) whose components exhibit well-defined dirattidormation.

The following definitions are necessary for the method description./Lbe the number of
directions to be considered in a given neighborhoodratite number of pixels considered in each
of these directions. From now on, we refer to these pixelestspoints Note that to represent all
D directions in a two-dimensional grid, the numbeof test points has a minimum bound, that is,
for n test points, we can define up ®- n — 2) directions in ax x n neighborhood [20].
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By considering the origiri0, 0) of an image grid of sizéd/ x N as it upper left corner, we can
define the coordinatgs:, y) of a test points, in a given directian as follows:

T = Teenter — k - sen(a)
Y = Ycenter + k - COS(OZ),

for all k such that-5 < k < 5. Zcenter aNdYcenter are the coordinates of the center of the
considerech x n neighborhood.

This procedure is repeated for @lldirections(0.. D —1) by changing the value ef accordingly
(@ =0,1-180 2. 18 ... (D—1). 189 Figure 3 illustrates test points far= 45° andn = 9.

Figure 3: Test points for = 45° andn = 9.

Finally, our orientation field image can be defined by the following steps:

1. SetD to the number of directions to be considered and at Ieast%. Then, consider an
information parameter describing the homogeneity degree of the cordiagdast points for
each of theD directions. An example of such a parameter, used in this work, is the steindar
deviationo. In terms of implementation, one can store these data into an &gy where
ie{0,1,....,D —1}.

2. The standard deviation value of each considered direction is compéhetthe one in its per-
pendicular direction, that is, the vali$el[i] is compared wittd[i+ 2], i € {0, 1, ..., 2 — 1}
andi + % is the corresponding perpendicular direction.

3. The pair of directions andi + % exhibiting the highest information contrast, in a given pixel
(e.g., max{||Sd[i] — Sd[i + £]||}), define the new imageé as follows:

i, if Sd[i] < Sdfi+ 2]
dz,y) = { i+L2, if Sdi]> Sdi+ 3]
none, otherwise
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Imaged can be seen as a directional image having values in the discrete[fafiye 1] related
to a contrast measure defining the strength of the information parametetgtita deviation)
along a certain direction.

Figure 4 shows an idealized 3D representation of a fingerprint. Intuitivedycan see that
the standard deviation value along the ridges or valleys is smaller than theooypted in its
perpendicular direction.

Fingerprint ridges

\
\\‘\\

\\\\“ °’~“\$\\\\\\\\

\\w

R

Fingerprint valleys

Figure 4: Idealized 3D representation of a fingerprint.

The final result of the algorithm for orientation field estimation, when applieal fiagerprint
image (figure 5(a)), is shown in figure 5(b).

3.1.1 Filtering the orientation field image

The algorithm described above defines a directional image whose pixEatmthe orientation
of the image components with respect to a neighborhood ofisize. which is proportional to the
number of considered directior3. Due to the discrete domain of the image and its limitations in
accurately representing all the directions in a given neighborhood, pomks may have locally
uncorrelated values, thus yielding a noisy version of the directionalnrdtion.

A common solution to this problem consists in splitting the image into blocks ofigize W
and replacing each pixel of a block by the direction exhibiting the higheguénecy inside this
block.

This block-wise approach is coarse since it hides image details and calusgs direction
changes from one block to another. So, in order to obtain a finer oriemfigld information, we
consider a pixel-wise approach in which a block of diFex 1 is centered at a given pixel and the
direction exhibiting the highest frequency inside the block is attributed to tinisaigoixel. From
now on, we refer to the block used in our pixel-wise approachsmaothing window?.

The block-wise and the pixel-wise filtering methods are illustrated in figuresas(d 5(d),
respectively, for the original fingerprint image in figure 5(a).



Reconnection of fingerprint ridges 7

(a) Original fingerprint image (b) Original orientation field image

(c) Orientation field after a block-wise filtering (d) Orientation field after a pixel-wise filtering

Figure 5: Orientation field estimation for a fingerprint image-£ 16, n = 15). For the purpose of
visualization, each direction in (b,c,d) is represented by a gray-scale kahging from0 to 150,
in steps ofl0, and defined in degrees 69) -11.25.

3.1.2 The orientation field of broken ridges

The algorithm described so far has proved to be very robust evers@s cd fingerprint image
problems involving noise, acquisition from dry or wet fingers, shadows flate fingerprints, etc.
Nevertheless, in cases of components with large regions of brokers ridgesed, for instance, by
cuts or scars (see figure 6(a)), the detected orientation corresjpeandsection perpendicular to the
actual ridge orientation. Thus, the regions associated with the discodn@lges are represented
in the directional imagé by an abrupt change of orientation, as shown in figure 6(b). Thefuse o
this information, together with the filtering operation by different smoothing auwveX2, will be
explored here to detect the pixels between disconnected ridges.
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Indeed, as we will see next, the filtering of the directional image by a smoottimdpw of
increasing size defines a multiscale representation of this image conveghgjinkrmation about
the components connectivity. In a general way (see figure 6 for illustjatice have that a filtering
of the directional image, by a small winddw (figure 6(b)), yields a finer representation of the
orientation field than the one obtained with larger windéwgigures 6(c) and (d)).

This multiple representation of the directional information can be used to di#éneegions
between disconnected components of an image as follows:

1. Define two imaged; andd; corresponding to the directional imagddiltered with a small
(25) and a large{;) smoothing window of size@s + 1) x (2s+1) and(2[ + 1) x (20 + 1),
respectively, where, [ € {1,2,...,mz’n(%, %)} ands < [. Imaged; is a finer smoothed
version of the directional information, whité is a coarser version. Note thatorresponds
to the finest representation of the directional image smoothed by a wifidavith s = 0.

2. Rectify the finer representation of the directional imagel,, by taking into account the
pixel-wise perpendicularity between imaggsndd, as follows:

! _ dl(ajvy)7 if dl(ZE,y)J_ds(fE,y)
ds(@,y) = { ds(z,y), otherwise

3. Consider a set X as the pixelsd@fupdated by the above operation, that is,

(z,y) € X, if ds # d,,Y(z,y) € Dy,

This set corresponds to the regions between broken ridges and wilidaefurther in the
reconnection procedure.

Note that this operation corrects the finer directional information along tivemt®cted com-
ponents of the original image by changing the value of the pixels not filtearadiaer scale and
represented by a local change of orientation along the image components.

Figure 6 illustrates the above steps for a fingerprint image with some brimgasr Figure 6(b)
shows the original orientation field of the image in figure 6(a) after a filteringgmss with a smooth-
ing window Q2 of sizel5 x 15. A coarser scale of this information, defined by a filtering with a
45 x 45 smoothing window2;, is shown in figure 6(d). Figure 6(e) corresponds to the orientation
field in figure 6(b) rectified according to step 2 above. The differemteden the rectified orien-
tation field (figure 6(e)) and its original finer version (figure 6(b)) deiees the seX shown in
figure 6(f) which represents the regions between the broken ridges.

3.2 Image enhancement by watersheds

As stated in section 2.3, the watershed algorithm constitutes a powerful ohogpdal tool used
for segmenting regions based on the set of image minima.

In a general way, the final result of the watershed transform applidgerprints should have
the following characteristics:
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i

(@) Original image with broken(b) Orientation field filtered with a(c) Orientation field filtered with a
ridges 15 x 15 smoothing window 31 x 31 smoothing window

(d) Orientation field filtered with a(e) Orientation field image with df) Set of rectified pixels given by the
45 x 45 smoothing window 15 x 15 smoothing window after recdifference between (e) and (b)
tification

Figure 6: Examples of different scales (b, c, d) of a directional imagetsmorientation field recti-

fication (e) based on a coarser directional image. The highlighted drea<ise broken ridges and
the directions unproperly defined with respect to this coarser directiofoaination (a directional

image filtered by a large smoothing window).

¢ |deally, each fingerprint ridge, considered here as the valleys ofrigmal image, should
define a basin surrounded by the corresponding watershed linestaMatthis is the case
for binary images since for gray-scale ones a single ridge can havetharene minimum
which, after the watershed transformation, relates one ridge to a dtasfins i > 1.

¢ Ideally, the watershed lines should be exclusively defined in the regitmsebn ridges (the
regional maxima) or, in cases of disconnectedness, in the regions bebra@en ridges.
However, since each ridge in the gray-scale case can have more &aggoomal minimum,
the corresponding watershed lines may also cross the ridges pergaryiaith respect to
their dominant direction.

Figure 7(b) illustrates a fingerprintimage segmentation by watershedsddnto reconnect the
broken ridges, we define a set of markers based on the original imageshed lines, as explained
next.
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(d) Distance transform image (e) Set of markers (f) Enhanced fingerprint image

Figure 7: Example of the operations used to reconnect the broken nfigdmgerprint image.

3.3 Definition of markers

Given the set of watershed lines of a fingerprintimage, no matter if it is in ga g&gmentation
case or not, we can combine this topographic information with the orientatiorirfialge (section
3.1.2) to define a subset of the watershed lines to be used as markersegjitms between broken
ridges.

Let M be this subset anfl = {l1,ls, ..., [, } the set of the original watershed lines. Informally,
each linel; is defined as the set of pixels between two bifurcations of the watershed(pinels
whose connectivity number equals 2 for an 8-connected neighbofRafd

Now, consider the orientation field estimation (section 3.1) of the watersheainhage that,
in such a case, we apply the algorithm described in section 3.1 on a binarg.ithte orientation
of alinel; of the setl is perpendicular to the ridge direction (a pixel-wise comparison between the
orientation fields of the watershed and the original images provides thisrafimm), then it is very
likely thati; belongs to a region between broken ridges or between regional minima efriigss
(see figure 7(b)). In such a cageshould be added to the set of markéfs Otherwise, ifl; has the
same ridge direction, then it is just defining the boundary between adjadges and, therefore,
should not be taken into account here.
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The definition of the subset of the watersheds, representing markettsefoegions between
broken ridges, can be summarized by the following pseudocode:

M=10
For all linel; € L do
If [; is perpendicular to the ridge directioio
M — MU [; [*Update the markers set */

3.4 Estimation of the distance between broken ridges

The next step of our approach consists in estimating the distance betvogen bidges in order
to reconnect them properly.

For this purpose, we apply the distance transform [23] to th&(sd¢fined from the difference
between the orientation field images at two different scales, as explainedtiars3.1.2. This set
corresponds to pixels between broken ridges whose directional vasieimproperly defined at a
finer scale (orientation field image filtered by a small smoothing win@gjv

Figure 7(d) shows the distance transform applied to the image in figureepf@senting the set
of rectified pixels of the image in figure 6(b). Finally, the distance betweealtisest broken ridge
to a given point of;, belonging to sefX, can be defined ag( dt + 1), wheredt is the distance
transform value at this point.

3.5 Directional opening by markers

The setM defined in section 3.3 marks the regions considered in our last step whanimects
ridges and enhances the whole fingerprint image. This procedureecaccbmplished by a mor-
phological directional opening taking into account the markeis set M/, the distance transform
of the components in set X, and the information at a certain scale of the dioerfiald image.

Shortly, the reconnection of the broken ridges can be obtained by implemgefotiegch point
of a markeri; belonging to the seX, a morphological opening on a line segment of len@td{+ 1)
by a linear structuring element of the same size, centered at this point. Emtation of this
opening corresponds to the ridge direction given by the orientation fieldemag

The same directional opening is defined for those markenselonging to regions between
broken ridges, whose directional information was properly definediaeascale. Note that these
regions are not included in s&t and, in such a case, the length of the considered linear structuring
element should be small (e.§),and proportional to the size of the winddw.

Figure 7 illustrates the main steps of our reconnection procedure foritfiradimage in Fig-
ure 7(a), and Figures 8(e)-(h) show the final results of the metholiedpp several fingerprint
images in Figures 8(a)-(d). All these results were obtained by consipmenfollowing parame-
ters: D = 16 directions,n = 9 test points and smoothing windows and(?; of sizesl5 x 15 and
45 x 45, respectively.

The fingerprint images used as examples were obtained from the FVCRO@2rprint Verifi-
cation Competition) databases [24].
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Figure 8: Other examples of our approach with= 16 directions,» = 9 test points and smoothing
windows(), and(; of sizesl5 x 15 and45 x 45, respectively. (a,b,c,d) Original fingerprint images.
(e,f,g,h) Enhanced images.

4 Conclusions

This work introduced a multiscale operator that extracts directional informdtiom image
components. This operator has proved to outperform the existing ayiyg®a its pixel-wise accu-
racy and can be used in binary and gray-scale images.

We also developed a morphological approach for reconnecting bradges of fingerprint im-
ages which can be easily extended to connect image components whasesfean be described by
directional information. This problem concerns many image processifgafpns, for example,
in medicine, biometrics, metallurgy and geology.

As future works, we intend to apply the proposed multiscale operator in ralgms including
image segmentation and classification.
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