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Reversal distane of signedirular hromosomesJ. Meidanis� M. E. M. T. Waltery Z. DiaszAbstratWe study the problem of omparing two irular hromosomes, evolved from a om-mon anestor by reversals, given the order of the orresponding genes and their orien-tations. Determining the minimum number of reversals between the hromosomes isequivalent to look for the minimum number of reversals that transforms a irular se-quene of signed integer numbers, de�ned in an appropriate manner, into another, wherea reversal ats on a subsequene, reversing its order and ipping the signs. We arefullyformalize the onepts of irular hromosome and irular reversal, and show that thisproblem is essentially equivalent to the analogous problem on linear hromosomes. Asa onsequene we derive polynomial time algorithms based on this observation. We alsoompute the reversal diameter for signed hromosomes, both linear and irular.1 IntrodutionThe huge amount of data resulting from genome sequening in Moleular Biology is givingrise to an inreasing interest in the development of algorithms for omparing genomes ofrelated speies. Partiularly these data allowed studies on mutational events ating onlarge portions of the hromosomes, that an be used to ompare genomes for whih thetraditional methods of omparing DNA sequenes are not onlusive. There are severalmutational events a�eting large fragments of genomes of organisms, and among them, thereversal seems to be one of the ommonest. A reversal replaes a sequene of an arbitraryregion of the hromosome with the reverse omplementary sequene. This reverses the geneorder within the region, and hanges the orientation of eah gene. In this paper we studythe omparison of two genomes, formed eah by a single irular hromosome, on the basisof the order and orientation of their ommon genes, and in terms of the mutational eventof reversal.A irular hromosome an be seen as a irular arrangement of bloks of genes, whereeah blok has an orientation. Figure 1 shows examples of irular hromosomes of twospeies of plants, where eah number represents a blok omposed by one or more genes,and the arrows indiate the orientations of the bloks of one speies relative to the other.�Institute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.yDepartment of Informatis, University of Brasilia, Brasilia, Brazil.zInstitute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.1
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3Figure 1: Examples of irular hromosomes of two speies of plants. (a) The arrowsindiate the orientations of a speies relative to the other. (b) These examples show di�erentrepresentations of the same hromosome. () These examples show the same hromosome,onsidering the two possible forms to view the gene bloks of a irular hromosome. Thesetwo forms are onsidered equivalent, and these two hromosomes are obtained from oneanother by reetion relative to the axis shown in the �gure.In a irular hromosome, a reversal is de�ned by �xing two ut points in this hro-mosome, and reversing the order of the genes in one of the two regions delimited by thesepoints (see Figure 2).In general terms, the problem of reversal distane of signed irular hromosomes isformulated as follows. Given two irular hromosomes A and B, we want the shortestseries of reversals that transforms A into B. This minimum number of reversals is alledreversal distane between A and B. Figure 3 shows an example of a irular hromossometransformed into another with the minimum number of reversals.Another version of this problem arises when the orientations of the genes on the hro-mosomes are not known. In that ase, we have the unsigned version of the problem, wherethe reversals only reverse gene order. There are other versions of the same problem on-sidering linear hromosomes, and other mutational events besides reversal. The literatureon problems originated by di�erent types of mutational events is growing very quikly inreent years. In the following, we briey review other works studying reversal, observingthat hromosomes are ommonly represented by permutations in this ontext.2
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Figure 2: This example shows the two possibilities for reversal in a irular hromosome,given two uts.
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Figure 3: This example shows a series of reversals that transforms B. oleraea (abbage)into B. ampestris (turnip). 3



With respet to linear hromosomes, Aigner and West [1℄ had studied the problem ofsorting a permutation, onsidering the operation of reinsertion of the �rst element in thesequene of the permutation. The sorting diameter (the maximum distane between twopermutations) in this ase is n� 1, where n is the number of elements of the permutation.Keeioglu and Sanko� [7℄ had studied the problem of the reversal distane of unsigned lin-ear permutations, and developed the �rst approximation algorithm for the problem. Theiralgorithm runs in O(n2) time and is guaranteed to use no more than two times the reversaldistane. They also developed eÆient bounds, used on a branh-and-bound algorithm,that solved to optimality or almost optimality permutations ranging from 30 to 50 ele-ments. Bafna and Pevzner [2℄ afterwards introdued a new struture, the breakpoint graphof an initial permutation relative to a target permutation, that allowed to set up a morepreise lower bound to the reversal distane, onsidering another parameter, based on amaximum alternating yle deomposition, denoted by (�). Based on that graph, theydevised an approximation algorithm with a performane guarantee of 7=4, and introduedan approximation algorithm for signed permutations with a guarantee of 3=2.Hannenhalli and Pevzner [4℄ introdued two new parameters: the number of hurdles(h(�)) and an indiator of whether the breakpoint graph is a fortress, (f(�)). Togetherwith the maximum number of yles of the alternating yles deomposition ((�)) of thebreakpoint graph, these parameters allowed the authors to demonstrate a duality theorem.Based on this theorem, they presented the �rst polinomial algorithm for the problem of thereversal distane of the signed linear permutations, with time omplexity O(n4). Bermanand Hannenhalli [3℄ introdued new data strutures on that algorithm and lowered theomplexity to O(n2�(n)). Finally, Kaplan, Shamir and Tarjan [5℄, based on the Hannenhalliand Pevzner theory, and using part of the Berman and Hannenhalli algorithm, showed anew algorithm with O(n2) omplexity. We will all this last one KST algorithm.With respet to irular hromosomes, Watterson and other authors [10℄ showed an al-gorithm, very simple, to �nd out the reversal distane of irular permutations, establishinga lower bound (number of breakpoints=2), and an upper bound (n�2) for the reversal dis-tane. They presented also a stohasti algorithm for the problem. Keeioglu and Sanko�[6℄ presented an exat branh-and-bound algorithm for the problem of reversal distane ofsigned irular permutations. This algorithm, using simple methods to �nd the lower andupper bounds, found extremely preise values for the reversal distane in several experi-ments. The authors reported that they did not know reasons to justify the proximity ofthese limits. Now we know that the Hannenhalli and Pevzner theory justi�es these results,beause h(�) and f(�) are small for random permutations.In this paper we present a formalism for irular hromosomes and for reversals atingon them. As a onsequene we show polinomial algorithms for the problem of reversaldistane of signed irular hromosomes. These algorithms are based on the theory for thelinear problem given by Hannenhalli and Pevzner [4℄. Besides, we alulate the reversaldiameter for linear and irular hromosomes.In Setion 2 we �rst formalize a irular hromosome by an equivalene lass, and nextwe show that there is an isomorphism between reversals ating on irular hromosomesand reversals ating on linear hromosomes. This result allow us to ompute the reversaldistane of signed irular hromosomes by omputing the reversal distane of signed linear4



hromosomes with one less gene. In Setion 3 we show some results onerning the reversaldistanes of signed irular and linear permutations of the same size. In Setion 4 wealulate the reversal diameter of signed linear and irular permutations. Finally, the lastsetion brings onlusions of this work and indiates some future diretions.2 A formalization for the problem2.1 Linear ChromosomesWe begin by presenting a brief overview of some important results about signed linearhromosomes, due mainly to Bafna and Pevzner [2℄ and Hannenhalli and Pevzner [4℄. Asigned linear hromosome is represented by a signed permutation. A signed permutation isan ordinary permutation, exept that eah element has positive (+) or negative (�) sign,indiating the relative orientation of the blok. In this ase, a reversal % of the interval [i; j℄is denoted by %(i; j) and we have%(i; j) � � = (�1 : : : �i�1�j�j�1 : : : �i+1�i�j+1 : : : �n)where �k indiates the inversion of the sign of �k.The problem of the reversal distane of signed linear hromosomes is ommonly formal-ized as follows. Given two permutations � and � modeling two signed linear hromosomes,the reversal distane problem of � and � is to �nd a series of reversals %1; %2; : : : ; %t suhthat %t � %t�1 � : : : � %2 � %1 � � = � and t is minimum. We all t the reversal distane of �and �, denoted by d(�; �).The algorithms of Bafna and Pevzner [2℄ and of Hannenhalli and Pevzner [4℄ are basedon a struture alled breakpoint graph. This graph is onstruted from � and � as follows.Eah one of the signed integers is represented by an arrow, from left to right when thesign is +, and from right to left when the sign is �. The initial and �nal points of thesearrows are the verties of this graph. Besides, we add two referene points, one on the leftof the sequene (labelled by L) and the other on its right (labelled by R). After that, weput reality edges joining extreme points of adjaent arrows in �, and desire edges joiningextreme points of adjaent arrows in �. Important properties of this graph are:1. The resulting graph is formed by a olletion of even yles. When � = �, the numberof these yles gets its maximum value, n+ 1. For two di�erent permutations, thereare less than n+ 1 yles.2. Eah reality edge from a yle whose size is larger than 2 represents a breakpoint in thepermutation, that is, a point where a reversal will have to at in order to transform� into �. When two verties belong to a yle of size 2, that is, are joined by twoparallel edges, exatly one reality and one desire edge, we say that there is not a breakin that position.From this graph we an ompute three parameters that allow us to ompute the reversaldistane of � and �: the number of yles (�; �), the number of hurdles h(�; �) and a5
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(+1 -5 +4 -3 +2) (+2 +1 -5 +4 -3) (-3 +2 +1 -5 +4) (+4 -3 +2 +1 -5) (-5 +4 -3 +2 +1)Figure 4: In a irular hromosome we an hoose eah one of the genes blok as the �rstone. Then, all of these sequenes are onsidered equivalent, and they represent the irularhromosome of B. oleraea shown in the Figure 1 (a).parameter f(�; �) indiating whether the graph is a fortress, where this last value an beequal to 1 or 0 only. The reversal distane is then given by:d(�; �) = n+ 1� (�; �) + h(�; �) + f(�; �):We refer the readers to the important works [4, 3, 5℄ or to the introdutory text of Setubaland Meidanis [9℄ for a more detailed explanation on these parameters. We will not needdetails on hurdles and fortresses until Setion 4, where we will review these onepts.2.2 Cirular ChromosomesNow we give a formalization of a irular hromosome by an equivalene lass.Intuitively, a irular hromosome is a irular arrangement of signed bloks (see Fig-ure 1). A blok of genes of the hromosome will be modelled by a signed integer. Thesign \+" indiates an arrow in lokwise diretion in Figure 1, and the sign \�" indiatesan arrow in ounterlokwise diretion. Given an initial blok, we an represent a iru-lar hromosome by a sequene as follows. Through onvention, we always read the bloksin lokwise diretion. Walk around the hromosome in lokwise diretion, beginning atthe initial blok, and write down the signed integers orresponding to the bloks found.Then, � = (�1�2 : : : �n) will denote the irular hromosome, with n bloks of genes. As anexample, the hromosome of B. oleraea of Figure 1a an be represented by the sequene(+1 �5 +4 �3 +2).We an hoose eah one of the bloks as the �rst one, and therefore we an have manydi�erent sequenes representing the same hromosome (see Figure 4). All of these sequenesare onsidered equivalent. Besides, two sequenes where one of them is obtained by theother by reetion are onsidered equivalent, and in partiular � = (�1�2 : : : �n) and s �� =(�n�n�1 : : : �2�1) are onsidered equivalent sequenes (see Figure 5).This way, a sequene modeling a irular hromosome is a representative of an equiv-alene lass in the set of all sequenes. Below we de�ne the rotation and the reetionoperations, that will formalize the two harateristis desribed above. From these opera-tions we will de�ne an equivalene relation between two sequenes, and an equivalene lassthat will represent a irular hromosome. 6



2 1

5

4

3

(+1 -5 +4 -3 +2)

4

5 3

21

(-2 +3 -4 +5 -1)Figure 5: In a irular hromosome two sequenes where one of them is obtained from theother by reetion are onsidered equivalent. The irular hromosome represented is B.oleraea shown in Figure 1 (a).We will all Sn the set of all possible sequenes of distint signed integers, where eahsequene has size n. These integers must belong to the interval [1::n℄. Observe that jSnj =2nn!. Let us take � = (�1�2 : : : �n), a sequene of Sn. We will de�ne two types of operationsating in � as follows:� Rotations. We will denote by r the basi rotation that moves the permutation elementsone position to the left: r � � = (�2�3 : : : �n�1):We will de�ne ri for every i 2 Z in the usual way: ri is the omposition of r i timesfor i > 0 and r�i is the inverse of ri. Besides, r0 is the identity. We have the followingimportant relations:rn = r0, or more generally, ri = rj if i � j (mod n) for all i; j 2 Z.rirj = ri+j for all i; j 2 Z.The operations ri are alled rotations.� Reetions. We will denote by s the basi reetion that inverses the order of thepermutation and also the signs. So,s � � = (�n�n�1 : : : �2�1):We will de�ne si for all i 2 Z as follows: si is the omposition of s i times for i > 0and s�i is the inverse of si. Note that s�i = si. Besides, s0 is the identity. We havethe following important relations:s2 = s0, or more generally, si = sj if i � j (mod 2) for all i; j 2 Z.sisj = si+j for all i; j 2 Z. 7



We an apply r and s to a sequene, using the above de�nitions. Then, rs� = r(s�) =r(�n�n�1 : : : �2�1) = (�n�1�n�2 : : : �2�1�n).We have the following relation: rs = sr�1: (1)Generially, the operations sri are alled reetions. Eah reetion is equal to itsown inverse.Now we will de�ne an equivalene relation between two sequenes � and .De�nition 2.1 Given two sequenes � and , we de�ne� � if and only if there are i; j 2 Z suh that  = risj � �.The above relation is an equivalene relation. The proof of this result is simple. Equa-tion (1) an be used in this proof.From this equivalene relation, we an de�ne an equivalene lass of the sequene �,denoted by [�℄, whih represents a signed irular hromosome, as follows[�℄ = f 2 Snj� � gThis formalization is interesting biologially, beause it does not �x the �rst element ofthe sequene, and then eah one of the genes blok an be the �rst, it is suÆient to applyrotation. Besides, two sequenes where one of them is obtained from the other by reetionan be produed applying the s operator.2.3 Cirular ReversalsWe model now how a reversal will at in a lass A representing a irular hromosome.First we note that there are two possibilities for a reversal ating on a irular hromosome,given the two points where the uts have ourred (see Figure 6).Suppose the two uts our between i 	 1; i and j; j � 1, with 1 � i � j � n. Here 	and � are the usual operations of subtration and addition, respetively, exept that wetake the result modulo n and hoose n rather than zero as the representative of the lassof multiples of n. We will assume that these uts are distint, therefore i 6= (j � 1).Also if we hoose i and j suh that i > j, we an hange i and j without problemsbeause both are just pointers to the uts.Then we have the following lemma.Lemma 2.1 Given a sequene � from an equivalene lass A whih models a irular hro-mosome, and two integers i and j with 1 � i � j � n and i 6= (j � 1) suh that these utsour between i 	 1; i, and j; j � 1, the sequenes resulting from the two possible ways ofreversing the irular hromosome between these uts belong to the same equivalene lass.8
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Figure 6: This �gure shows that the two irular hromosomes resulting from the reversalare represented by two sequenes that belong to the same equivalene lass. Note thatthe arrow, before the reversion, indiates the �rst blok of the sequene hosen from theequivalene lass whih represents the irular hromosome. The portion of the hromosomesu�ering the reversal an inlude or not the arrow. (a) In this ase, the reversal does notinlude the arrow. The sequene resulting from the reversal is shown. (b) In that ase, thereversal inludes the arrow. We an apply reetion and rotation in the sequene resultingfrom the reversal in order to obtain the same sequene as in ase (a). The sequenes resultingfrom eah operation are shown.Proof:We will denote by P and Q the two possible ways of reversing the irular hromosome(see Figure 6). Taking sequene � = (�1 : : : �i�1�i : : : �j�j+1 : : : �n) from lass A, andapplying P on A we haveP � [(�1 : : : �i�1�i : : : �j�j+1 : : : �n)℄ = [(�1 : : : �i�1�j : : : �i�j+1 : : : �n)℄Applying Q on A we haveQ � [(�1 : : : �i�1�i : : : �j�j+1 : : : �n)℄ = [(�1�n : : : �j+1�i : : : �j�i�1 : : : �2)℄But applying r�1 and s on (�1 : : : �i�1�j : : : �i�j+1 : : : �n) we haver�1s � (�1 : : : �i�1�j : : : �i�j+1 : : : �n) = (�1�n : : : �j+1�i : : : �j�i�1 : : : �2)So [P � A℄ = [Q � A℄9



 
[π] = {(+1 −5 +4 −3 +2) (−5 +4 −3 +2 +1) (+4 −3 +2 +1 −5)

(−3 +2 +1 −5 +4) (+2 +1 −5 +4 −3)

(−2 +3 −4 +5 −1) (+3 −4 +5 −1 −2) (−4 +5 −1 −2 +3)

 (+5 −1 −2 +3 −4) (−1 −2 +3 −4 +5)}

can ([π]) = (+1 −5 +4 −3 +2)Figure 7: Example of an equivalene lass [�℄ and its anonial representative an([�℄).2Now we an enuniate the problem of �nding the minimal number of reversals atingon irular hromosomes with known relative orientations.Given two equivalene lasses A and B, representing two irular hromosomes withknown relative orientations, the problem of reversal distane of signed irular hro-mosomes is to �nd a series of reversals P1; P2; : : : ; Pu suh that Pu �Pu�1 � : : : �P2 �P1 �A = Band u is minimum. We all u the reversal distane of A and B, denoted by d(A;B).2.4 Relating Cirular Chromosomes to Linear ChromosomesIn the formalization of irular hromosomes, we would like to use some results from thelinear ase. A linear reversal %(i; j) ats as desribed in Setion 2.1. It would be temptingto de�ne a orresponding irular reversal %(i; j) by%(i; j) � [�℄ = [%(i; j) � �℄However this de�nition does not make sense, beause di�erent hoies of sequenes � in-side an equivalene lass A lead to non-equivalent right-hand members. So, it will not bepermitted a random hoie of the sequene in A in whih the reversal will at.We will de�ne a anonial representative of A, denoted by an(A), with the hara-teristis of having the 1 blok �xed as the �rst element of the sequene, and with the +orientation (see Figure 7). Note that eah equivalene lass has a unique anonial repre-sentative. For the formalism, a reversal will be applied only in the anonial representative.Thus, given a linear reversal %(i; j) with 1 � i � j � n, we de�ne a irular reversal %(i; j)by the formula %(i; j) �A = [%(i; j) � an(A)℄Notie that the ase (i; j) = (1; n) is exluded from onsideration as mentioned inSetion 2.3. 10



The next theorem tells us that every irular reversal is of the form %(i; j) for some i; j.Moreover, we an always hoose the indies from 2 to n.Theorem 2.1 For any irular reversal P , there are integers i and j with 2 � i � j � nsuh that P �A = [%(i; j) � an(A)℄:Proof:A irular reversal P must be applied only in the anonial representative of the equiv-alene lass A representing the irular hromosome. There are two possible forms for areversal ating on any sequene of A, but both of them produe sequenes that belong tothe same equivalene lass (Lemma 2.1). As we an hoose any of these forms we will pikthe form not inluding �1 = +1. This way P � A will produe a sequene whih is also aanonial representative. In other words, the anonial representative of the equivalenelass whih models the irular hromosome before the reversal is arried to a anonialrepresentative of the equivalene lass whih represents the irular hromosome after thereversal. In this ase, in terms of the linear representation, the reversal ats in the anonialrepresentative like a linear reversal %(i; j). Then,%(i; j) � (+1 �2 : : : �i : : : �j : : : �n) = (+1 �2 : : : �j : : : �i : : : �n)with 2 � i � j � n. This omes from the de�nition of linear reversal. As the right sequeneis anonial we have %(i; j) � an(A) = an(P �A)from where [%(i; j) � an(A)℄ = [an(P � A)℄ = P �A: 2We will see now that there is an isomorphism between reversals ating on irularhromosomes and reversals ating on linear hromosomes. To prove this, we will initiallyde�ne two bijetions. Reall that Sn is the set of all signed linear permutations on nelements. Let Rn be the set of all linear reversals on n elements, and Sn, Rn the analogoussets for the irular ase. De�ne ' : Sn �! Sn�1so that '(A) = take an(A), remove + 1, subtrat 1 from the othersand � : Rn �! Rn�1so that �(P ) = %(i� 1; j � 1)where P = %(i; j), 2 � i � j � n.We enuniate the result. 11



Theorem 2.2 Given the two bijetions ' and � de�ned above, we have'(P � A) = �(P ) � '(A)Proof:First we have'(P � A) = take an(P � A), remove + 1, subtrat 1 from the othersLet (by Theorem 2.1) P = %(i; j), with 2 � i � j � n, and A = [�℄, where �1 = +1. Then'(P �A) = take %(i; j) � �, remove + 1, subtrat 1 from the othersOn the other side, sine an(A) = �, we have'(A) = take �, remove + 1, subtrat 1 from the othersand �(P ) = %(i� 1; j � 1)Then we have the result, beause �(P ) will at on the same elements as %(i; j). 2Note that j Sn j=j Sn�1 j= 2n�1(n� 1)! and j Rn j=j Rn�1 j= ((n� 1)n)=2.From Theorem 2.2 we have immediatelyCorollary 2.1 Given any two lasses A and B modeling two irular hromosomes, andthe bijetion ' de�ned above, d(A;B) = d('(A); '(B))From Corollary 2.1 we an derive an algorithm to the problem of signed irular hromo-somes. Basially it onsists in running any algorithm solving the problem of signed linearhromosomes, taking as inputs two permutations, obtained from applying the bijetion 'in the two lasses representing the irular hromosomes.In partiular, if we take the KST algorithm, the omplexity of the algorithm is O(n2)(to �nd out the input sequenes osts O(n) and the KST algorithm has omplexity O(n2)),where n is the number of genes bloks of the irular hromosomes.We an also obtain the irular reversals used, just applying the inverse of � on eahstep of the algorithm for the linear hromosome. It does not a�et the omplexity of theabove algorithm beause it takes O(1).3 Relating irular hromosomes to linear hromosomes ofthe same sizeIn the previous setion we saw that there is a distane preserving orrespondene betweenirular hromosomes and linear hromosomes of size one unit smaller. Here we will derivesimilar results for irular and linear hromosomes of the same size.12



First of all, we would like to know what is the relation between d(�; �) and d([�℄; [�℄)for any � and �. As we will see in Theorem 3.1, d([�℄; [�℄) � d(�; �). Before this, we needthree tehnial lemmas.Lemma 3.1 Given two linear permutations � and �, suh that � = q � � where q = r or s,then for every reversal % there is a reversal %0 suh that % � � � %0 � �.Proof:Let � = (�1 : : : �n).We have two possibilities for q.� Suppose � = r � � = (�2�3 : : : �n�1) and % = %(i; j) so that%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)We have three ases.1. i = 1; j = n: %(1; n) � � = (�n : : : �1)In this ase % = s. Take %0 = s also. We have% � � = s � � � � � � � s � � = %0 � �2. i = 1; j < n: In this ase%(1; j) � � = (�j : : : �1�j+1 : : : �n):Then: %(j; n� 1) � � = (�2�3 : : : �j�1�j�n : : : �j+1�1)s � %(j; n� 1) � � = (�1�j+1 : : : �n�j : : : �3�2)rn�j+1 � s � %(j; n� 1) � � = (�j : : : �3�2�1�j+1 : : : �n)%(1; j) � � = rn�j+1 � s � %(j; n� 1) � �Therefore, taking %0 = %(j; n � 1) we have% � � � %0 � �:3. i > 1; j � n: In this ase%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n):Then: %(i� 1; j � 1) � � = (�2�3 : : : �j : : : �i : : : �n�1)r�1 � %(i� 1; j � 1) � � = (�1�2�3 : : : �i�1�j : : : �i : : : �n)%(i; j) � � = r�1 � %(i� 1; j � 1) � �Therefore, taking %0 = %(i� 1; j � 1) we have% � � � %0 � �:13



� Suppose � = s � � = (�n : : : �1) and % = %(i; j) so that%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)Then: %(n+ 1� j; n+ 1� i) � � = (�n : : : �j+1�i : : : �j�i�1 : : : �1)s � %(n+ 1� j; n+ 1� i) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)%(i; j) � � = s � %(n+ 1� j; n+ 1� i) � �Therefore, taking %0 = %(n+ 1� j; n+ 1� i), we have% � � � %0 � �: 2Lemma 3.2 Given two linear permutations � and �, suh that � � � then for every reversal% there is a reversal %0 suh that % � � � %0 � �.Proof:Take � = qv � qv�1 � : : : � q1 � �, where v � 0, and qi = r or s, for 1 � i � v.This proof will be made by indution on v.� v = 0: just make %0 = %� v > 0: Take �0 = qv�1 � : : : � q1 � �Given %, we want to obtain %0 suh that% � � � %0 � �By the indution hiphotesis, we have% � � � %00 � �0But, � = qv � �0 and then, using Lemma 3.1, there is %0 suh that%00 � �0 � %0 � �Then, % � � � %0 � � 2Lemma 3.3 Given a permutation � and a reversal %, then[% � �℄ = P � [�℄where P = I, the identity transformation, or P is a irular reversal.14



Proof:Let � be the anonial representative of [�℄:� � � = an([�℄)Lemma 3.2 says that given % there is %0 suh that% � � � %0 � �;hene [% � �℄ = [%0 � �℄But %0 = %(i; j) with 1 � i � j � n. Then we have two ases:1. i = j � 1. Then, %0 = s and [% � �℄ = [s � �℄ = [�℄ = [�℄;so P = I works in this ase.2. i 6= j � 1. Beause � is anonial,[%(i; j) � [�℄℄ = %(i; j) � [�℄hene P = %(i; j) works in this ase. 2Now we show that there are fewer reversals in the irular ase than in the linear asewhen both hromosomes have the same size.Theorem 3.1 Given any two permutations � and �,d(�; �) � d([�℄; [�℄)Proof:Take t = d(�; �). Then, %t � %t�1 � : : : � %1 � � = �[%t � %t�1 � : : : � %1 � �℄ = [�℄Using Lemma 3.3 we have P 0t � P 0t�1 � : : : � P 01 � [�℄ = [�℄where P 0i is either a irular reversal or the identity. Then,d([�℄; [�℄) � t = d(�; �) 2We note that it is not true that d(�; �) = d([�℄; [�℄), for any � and �. It is enough totake � = (�2 + 3 + 1) and � = (+1 + 2 + 3). We have d([�℄; [�℄) = 1 beause d([�℄; [�℄) =d(an([�℄); an([�℄)) = 1, where an([�℄) = (+1 � 2 + 3). But d(�; �) = 3. To make thisomputation, it is suÆient to onstrut the breakpoint graphs of � and �, and use theformula presented by Hannenhalli and Pevzner [4℄.Following we demonstrate another theorem that solves the problem of reversal distanefor signed irular hromosomes. 15



Theorem 3.2 Given two irular hromosomes represented by lasses A and B we haved(A;B) = d(an(A); an(B))Proof:First we will show that d(A;B) � d(an(A); an(B))By Theorem 3.1 we know that d(�; �) � d([�℄; [�℄). In partiular, taking � = an(A)and � = an(B), we immediately have the result.Seondly, we will show thatd(A;B) � d(an(A); an(B))To solve the problem of the reversal distane of signed irular hromosome, we usereversals in the interval [2; n℄, that at always in the anonial representative sequene.Considering the linear hromosome an(A), initially, �1 = +1 is in its orret position,and this is not modi�ed throughout the proess. Thus, these reversals supply a series ofreversals for the linear ase too. 2From Theorem 3.2 we an derive another algorithm for the problem of signed irularhromosomes that onsists in running any algorithm solving the problem of signed linearhromosomes giving as input the anonial representatives of A and B.Let us take the two input permutations � and �, where � is a permutation of the Alass whih represents one of the irular hromosomes, and � a permutation of the B lasswih represents the other irular hromosome. The anonial representatives are obtainedtraversing the two permutations � and � �nding the position k of the 1 blok. If it has sign+ we just apply rk�1, and if it has sign � we apply rk�n followed by s.In partiular, if we take the KST algorithm, the omplexity of the algorithm is O(n2)(to �nd out the anonial representatives osts O(n) and the KST algorithm has omplexityO(n2)), where n is the number of gene bloks of the irular hromosomes.Finally we prove a theorem that allow us to say that the anonial representatives ofthe lasses modeling the irular hromosomes provide a minimum distane, among allpermutations belonging to those two lasses.Theorem 3.3 Given any two lasses A and B modeling irular hromosomes, we haved(an(A); an(B)) = min�2A�2B fd(�; �)g:Proof:To begin with, notie that we have d(A;B) = d(an(A); an(B)) (from Theorem 3.2).From Theorem 3.1, we have eah value d(�; �) greater than or equal to d([�℄; [�℄). 2A question arises here. Whih sequenes, from the two equivalene lasses modeling theirular hromosomes, lead to a minimum reversal distane? Our results showed that the16



anonial representatives from the lasses ertainly do. But they are not the only ones. Anexample found in an artile of Palmer and o-authors [8℄ did not have the harateristisof our anonial representatives, but led to a minimum distane. The sequenes in thatase were (�8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 � 11 � 10 � 9C � 9B � 9A) and(�4 + 3 � 2 + 8 + 7 � 1 � 5 � 6 � 11 + 10 + 9A � 9B + 9C). If we alloptimal representatives of two lasses modeling irular hromosomes, two permutations,one for eah lass, that lead to a minimum reversal distane, we would like to know how toharaterize this set of optimal representatives.From the above results, it an be shown that Corollary 2.1 and Theorem 3.2 are equiv-alent, in the following sense:Theorem 3.4 Given two lasses A and B modeling two linear hromosomes and the bije-tion ' de�ned above, then d('(A); '(B)) = d(an(A); an(B))4 The reversal diameter of signed hromosomesThe irular reversal diameter, denoted by D(n), of the equivalene lasses on Sn, withrespet to the irular reversal distane, is the maximum distane between two equivalenelasses. Similarly, the linear reversal diameter, denoted by D(n), of the n elementpermutations of the set Sn, with respet to the linear reversal distane, is the maximumdistane between two permutations. We show now that the reversal diameter for signedlinear and irular hromosomes are respetively n+ 1 and n (exept in a few ases). Thisorrets a statement from Keeioglu and Sanko� [6℄ that said that n� 2 � D(n) � n� 1.Now we need some de�nitions and fats about hurdles and fortresses, as mentionedearlier. A yle C is bad when for any reversal % ating on two reality edges of C we have(�; �) = (% � �; �):Otherwise, the yle is good.Two yles are interleaving when there are two desire edges, one from eah yle, thatross. A yle C is ontained in another yle D when C and D are not interleaving andC is ontained in at least one desire edge of D.The following fats will be important in this setion:� If a bad yle C does not interleave with and does not ontain any other yle, then Cforms a hurdle just by itself. We should point out that these are not the only typesof hurdles that an exist in a breakpoint graph, but this will suÆe for our purposes.� In a fortress there is at least one yle that does not belong to a hurdle. Again, wepoint out that this ondition is not suÆient to de�ne fortresses.Theorem 4.1 The reversal diameter of linear hromosomes isD(n) = max�2Sn�2Sn fd(�; �)g = ( n if n = 1 or n = 3n+ 1 otherwise17
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Figure 8: The breakpoint graph for n = 2 e 4 with respet to �n.Proof:We will show two sequenes, �n and �n, that give d(�n; �n) = n + 1, for eah n. Theonstrution depends on n being even or odd. All the integers will have + sign in ourexamples, so we omit them in the proof.� For n even, n � 2, onsider�n = (2 1 4 3 6 5 : : : n� 4 n� 5 n� 2 n� 3 n n� 1)and �n = �n = (1 2 3 4 : : : n� 1 n)The breakpoint graph for �n with respet to �n is formed by exatly one yle, of sizen+1, involving all labels. This is a bad yle and therefore a hurdle. Figure 8 showsexamples of breakpoint graphs for n = 2 and 4 with respet to �n.In this ase, using the Hannenhalli and Pevzner formula [4℄, and by onstrution ofthe breakpoint graph G(�n; �n) of the sequene �n with respet to �n,d(�n; �n) = (n+ 1) � 1 + 1 + 0 = n+ 1� For n odd, n = 2 � k + 1 with k � 0Initially we observe that for n = 1 we have just two permutations with distane 1between them, so D(1) = 1.For n = 3 we have from a theorem of Keeioglu and Sanko� [6℄ that the greedyalgorithm sorts any permutation � with at least one negative element in at most n�118
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RFigure 9: The breakpoint graphs for n = 5; 7 and 9 with respet to �n.steps. Then, only the permutations with all elements positive are andidates to haveD(n) = n+1. Using this fat and onstruting the breakpoint graphs for all possiblesequenes with all their elements positive for n = 3, we onlude that d(�3; �3) � 3.On the other hand, �3 = (3 2 1) and �3 = (1 2 3) give d(�3; �3) = 3, so D(3) = 3.Now we will present sequenes �n suh that d(�n; �n) = n+ 1 for the other ases of nodd, n = 2 �k+1 with k � 2, that is, n � 5. We onsider now the remainder betweenn+ 1 and 3. We have three ases:{ remainder = 0: Consider the sequene(2 1 3 5 4 6 8 7 9 � � � n� 6 n� 7 n� 5 n� 3 n� 4 n� 2 n n� 1)The breakpoint graph for �n with respet to �n with n � 5 is formed by exatly(n + 1)=3 yles of size 3, with n � 5, onstruted one beside the other. Theseare bad yles and therefore hurdles. Figure 9 shows an example of a breakpointgraph for n = 5 with respet to �5.In this ase, using Hannenhalli and Pevzner formula [4℄, and by onstrution ofthe breakpoint graph G(�n; �n) of �n with respet to �n,d(�n; �n) = (n+ 1) � (n+ 1)=3 + (n+ 1)=3 + 0 = n+ 119



{ remainder = 1: Consider the sequene(2 1 3 5 4 6 � � � n� 15 n� 13 n� 14 n� 12 n� 10 n� 11n� 9 n� 7 n� 8 n� 5 n� 6 n� 4 n� 2 n� 3 n n� 1)The breakpoint graph for �n with respet to �n with n � 9 is formed by exatly(n � 9)=3 yles of size 3, and 2 yles of size 5, with n � 9, onstruted onebeside the other. These are bad yles, and therefore hurdles. We note thatthe restrition n � 9 does not eliminate any n suh that (n + 1) mod 3 = 1,beause n = 9 is the �rst odd number satisfying this ondition. Figure 9 showsan example of a breakpoint graph for n = 9 with respet to �9.In this ase, using the Hannenhalli and Pevzner formula [4℄, and by onstrutionof the breakpoint graph G(�n; �n) of �n with respet to �n,d(�n; �n) = (n+ 1) � ((n� 9)=3 + 2) + ((n� 9)=3 + 2) + 0 = n+ 1{ remainder = 2: Consider the sequene(2 1 3 5 4 6 � � � n� 11 n� 12 n� 10 n� 8 n� 9 n� 7 n� 5 n� 6n� 4 n� 2 n� 3 n n� 1)The breakpoint graph for �n with respet to �n with n � 5 is formed by exatly(n�4)=3 yles of size 3, and 1 yle of size 5, with n � 5, onstruted one besidethe other. These are bad yles, and so hurdles. We note that the restritionn � 5 does not eliminate any n suh that (n + 1) mod 3 = 2, beause n = 7 isthe �rst odd number satisfying this ondition. Figure 9 shows an example of abreakpoint graph for n = 7 with respet to �7.In this ase, using the Hannenhalli and Pevner formula [4℄, and by onstrutionof the breakpoint graph G(�n; �n) of �n with respet to �n,d(�n; �n) = (n+ 1) � ((n� 4)=3 + 1) + ((n� 4)=3 + 1) + 0 = n+ 1Then, we proved that D(n) � n+1. We yet have to prove that D(n) < n+2, to obtainthe wanted result.We have, by the Hannenhalli and Pevner formula [4℄,d(�n; �n) = (n+ 1)� (�n; �n) + h(�n; �n) + f(�n; �n)First, we have h(�n; �n) � (�n; �n), by de�nition of h(�n; �n). So, if h(�n; �n) = (�n; �n),then we have d(�n; �n) � (n + 1) + 1, that is, d(�n; �n) � n+ 2. But if f(�n; �n) = 1, thenneessarily h(�n; �n) < (�n; �n), and then d(�n; �n) < n+ 2.This proves the linear ase. 2From the bijetions de�ned earlier, we have the following result.20



Lemma 4.1 D(n) = D(n� 1)From this lemma, we have the following theorem showing the irular reversal diameterof the equivalene lasses on Sn.Theorem 4.2 The reversal diameter of irular hromosomes isD(n) = maxA 2 SnB 2 Sn fd(A;B)g = ( n� 1 if n = 1, n = 2 or n = 4n otherwise5 ConlusionsIn this work, we attempted to start a systemati study of the theory of the reversal dis-tane problem for signed irular hromosomes. To do this, we gave some ontributions,desribed as follows. First we formalized irular hromosomes by equivalene lasses. Thisis interesting beause it inludes the di�erent forms to visualize a signed irular hromo-some, obtained by rotations and reetions. We also de�ned irular reversals using theknown de�nitions of linear reversals, whih allowed to solve the reversal distane problemof signed irular hromosomes by using polinomial algorithms that solve the reversal dis-tane problem of signed linear hromosome, giving as input suitable sequenes from theequivalene lasses. Besides, we presented some results onerning the linear and irularhromosomes of the same size. Finally, we determined the signed reversal diameter for lin-ear (D(n) = n+1) and irular hromosomes (D(n) = n), orreting a result of Keeiogluand Sanko� [6℄ on the linear reversal diameter D(n).To �nish, a question arising from these studies is whih permutations from the equiv-alene lasses lead to a minimum reversal distane, that is, we would like to know how toharaterize preisely the set of optimal representatives.AknowledgmentsThis work was partially funded by Brazilian agenies CAPES and FAPESP.Referenes[1℄ M. Aigner and D. B. West. Sorting by insertion of leading element. Journal of Com-binatorial Theory, 45:306{309, 1987.[2℄ V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. SIAMJournal on Computing, 25(2):272{289, 1996.[3℄ P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proeedings of Combina-torial Pattern Mathing - CPM'96, 1996.21
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