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Reversal distan
e of signed
ir
ular 
hromosomesJ. Meidanis� M. E. M. T. Waltery Z. DiaszAbstra
tWe study the problem of 
omparing two 
ir
ular 
hromosomes, evolved from a 
om-mon an
estor by reversals, given the order of the 
orresponding genes and their orien-tations. Determining the minimum number of reversals between the 
hromosomes isequivalent to look for the minimum number of reversals that transforms a 
ir
ular se-quen
e of signed integer numbers, de�ned in an appropriate manner, into another, wherea reversal a
ts on a subsequen
e, reversing its order and 
ipping the signs. We 
arefullyformalize the 
on
epts of 
ir
ular 
hromosome and 
ir
ular reversal, and show that thisproblem is essentially equivalent to the analogous problem on linear 
hromosomes. Asa 
onsequen
e we derive polynomial time algorithms based on this observation. We also
ompute the reversal diameter for signed 
hromosomes, both linear and 
ir
ular.1 Introdu
tionThe huge amount of data resulting from genome sequen
ing in Mole
ular Biology is givingrise to an in
reasing interest in the development of algorithms for 
omparing genomes ofrelated spe
ies. Parti
ularly these data allowed studies on mutational events a
ting onlarge portions of the 
hromosomes, that 
an be used to 
ompare genomes for whi
h thetraditional methods of 
omparing DNA sequen
es are not 
on
lusive. There are severalmutational events a�e
ting large fragments of genomes of organisms, and among them, thereversal seems to be one of the 
ommonest. A reversal repla
es a sequen
e of an arbitraryregion of the 
hromosome with the reverse 
omplementary sequen
e. This reverses the geneorder within the region, and 
hanges the orientation of ea
h gene. In this paper we studythe 
omparison of two genomes, formed ea
h by a single 
ir
ular 
hromosome, on the basisof the order and orientation of their 
ommon genes, and in terms of the mutational eventof reversal.A 
ir
ular 
hromosome 
an be seen as a 
ir
ular arrangement of blo
ks of genes, whereea
h blo
k has an orientation. Figure 1 shows examples of 
ir
ular 
hromosomes of twospe
ies of plants, where ea
h number represents a blo
k 
omposed by one or more genes,and the arrows indi
ate the orientations of the blo
ks of one spe
ies relative to the other.�Institute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.yDepartment of Informati
s, University of Brasilia, Brasilia, Brazil.zInstitute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.1
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ir
ular 
hromosomes of two spe
ies of plants. (a) The arrowsindi
ate the orientations of a spe
ies relative to the other. (b) These examples show di�erentrepresentations of the same 
hromosome. (
) These examples show the same 
hromosome,
onsidering the two possible forms to view the gene blo
ks of a 
ir
ular 
hromosome. Thesetwo forms are 
onsidered equivalent, and these two 
hromosomes are obtained from oneanother by re
e
tion relative to the axis shown in the �gure.In a 
ir
ular 
hromosome, a reversal is de�ned by �xing two 
ut points in this 
hro-mosome, and reversing the order of the genes in one of the two regions delimited by thesepoints (see Figure 2).In general terms, the problem of reversal distan
e of signed 
ir
ular 
hromosomes isformulated as follows. Given two 
ir
ular 
hromosomes A and B, we want the shortestseries of reversals that transforms A into B. This minimum number of reversals is 
alledreversal distan
e between A and B. Figure 3 shows an example of a 
ir
ular 
hromossometransformed into another with the minimum number of reversals.Another version of this problem arises when the orientations of the genes on the 
hro-mosomes are not known. In that 
ase, we have the unsigned version of the problem, wherethe reversals only reverse gene order. There are other versions of the same problem 
on-sidering linear 
hromosomes, and other mutational events besides reversal. The literatureon problems originated by di�erent types of mutational events is growing very qui
kly inre
ent years. In the following, we brie
y review other works studying reversal, observingthat 
hromosomes are 
ommonly represented by permutations in this 
ontext.2
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Figure 2: This example shows the two possibilities for reversal in a 
ir
ular 
hromosome,given two 
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With respe
t to linear 
hromosomes, Aigner and West [1℄ had studied the problem ofsorting a permutation, 
onsidering the operation of reinsertion of the �rst element in thesequen
e of the permutation. The sorting diameter (the maximum distan
e between twopermutations) in this 
ase is n� 1, where n is the number of elements of the permutation.Ke
e
ioglu and Sanko� [7℄ had studied the problem of the reversal distan
e of unsigned lin-ear permutations, and developed the �rst approximation algorithm for the problem. Theiralgorithm runs in O(n2) time and is guaranteed to use no more than two times the reversaldistan
e. They also developed eÆ
ient bounds, used on a bran
h-and-bound algorithm,that solved to optimality or almost optimality permutations ranging from 30 to 50 ele-ments. Bafna and Pevzner [2℄ afterwards introdu
ed a new stru
ture, the breakpoint graphof an initial permutation relative to a target permutation, that allowed to set up a morepre
ise lower bound to the reversal distan
e, 
onsidering another parameter, based on amaximum alternating 
y
le de
omposition, denoted by 
(�). Based on that graph, theydevised an approximation algorithm with a performan
e guarantee of 7=4, and introdu
edan approximation algorithm for signed permutations with a guarantee of 3=2.Hannenhalli and Pevzner [4℄ introdu
ed two new parameters: the number of hurdles(h(�)) and an indi
ator of whether the breakpoint graph is a fortress, (f(�)). Togetherwith the maximum number of 
y
les of the alternating 
y
les de
omposition (
(�)) of thebreakpoint graph, these parameters allowed the authors to demonstrate a duality theorem.Based on this theorem, they presented the �rst polinomial algorithm for the problem of thereversal distan
e of the signed linear permutations, with time 
omplexity O(n4). Bermanand Hannenhalli [3℄ introdu
ed new data stru
tures on that algorithm and lowered the
omplexity to O(n2�(n)). Finally, Kaplan, Shamir and Tarjan [5℄, based on the Hannenhalliand Pevzner theory, and using part of the Berman and Hannenhalli algorithm, showed anew algorithm with O(n2) 
omplexity. We will 
all this last one KST algorithm.With respe
t to 
ir
ular 
hromosomes, Watterson and other authors [10℄ showed an al-gorithm, very simple, to �nd out the reversal distan
e of 
ir
ular permutations, establishinga lower bound (number of breakpoints=2), and an upper bound (n�2) for the reversal dis-tan
e. They presented also a sto
hasti
 algorithm for the problem. Ke
e
ioglu and Sanko�[6℄ presented an exa
t bran
h-and-bound algorithm for the problem of reversal distan
e ofsigned 
ir
ular permutations. This algorithm, using simple methods to �nd the lower andupper bounds, found extremely pre
ise values for the reversal distan
e in several experi-ments. The authors reported that they did not know reasons to justify the proximity ofthese limits. Now we know that the Hannenhalli and Pevzner theory justi�es these results,be
ause h(�) and f(�) are small for random permutations.In this paper we present a formalism for 
ir
ular 
hromosomes and for reversals a
tingon them. As a 
onsequen
e we show polinomial algorithms for the problem of reversaldistan
e of signed 
ir
ular 
hromosomes. These algorithms are based on the theory for thelinear problem given by Hannenhalli and Pevzner [4℄. Besides, we 
al
ulate the reversaldiameter for linear and 
ir
ular 
hromosomes.In Se
tion 2 we �rst formalize a 
ir
ular 
hromosome by an equivalen
e 
lass, and nextwe show that there is an isomorphism between reversals a
ting on 
ir
ular 
hromosomesand reversals a
ting on linear 
hromosomes. This result allow us to 
ompute the reversaldistan
e of signed 
ir
ular 
hromosomes by 
omputing the reversal distan
e of signed linear4




hromosomes with one less gene. In Se
tion 3 we show some results 
on
erning the reversaldistan
es of signed 
ir
ular and linear permutations of the same size. In Se
tion 4 we
al
ulate the reversal diameter of signed linear and 
ir
ular permutations. Finally, the lastse
tion brings 
on
lusions of this work and indi
ates some future dire
tions.2 A formalization for the problem2.1 Linear ChromosomesWe begin by presenting a brief overview of some important results about signed linear
hromosomes, due mainly to Bafna and Pevzner [2℄ and Hannenhalli and Pevzner [4℄. Asigned linear 
hromosome is represented by a signed permutation. A signed permutation isan ordinary permutation, ex
ept that ea
h element has positive (+) or negative (�) sign,indi
ating the relative orientation of the blo
k. In this 
ase, a reversal % of the interval [i; j℄is denoted by %(i; j) and we have%(i; j) � � = (�1 : : : �i�1�j�j�1 : : : �i+1�i�j+1 : : : �n)where �k indi
ates the inversion of the sign of �k.The problem of the reversal distan
e of signed linear 
hromosomes is 
ommonly formal-ized as follows. Given two permutations � and � modeling two signed linear 
hromosomes,the reversal distan
e problem of � and � is to �nd a series of reversals %1; %2; : : : ; %t su
hthat %t � %t�1 � : : : � %2 � %1 � � = � and t is minimum. We 
all t the reversal distan
e of �and �, denoted by d(�; �).The algorithms of Bafna and Pevzner [2℄ and of Hannenhalli and Pevzner [4℄ are basedon a stru
ture 
alled breakpoint graph. This graph is 
onstru
ted from � and � as follows.Ea
h one of the signed integers is represented by an arrow, from left to right when thesign is +, and from right to left when the sign is �. The initial and �nal points of thesearrows are the verti
es of this graph. Besides, we add two referen
e points, one on the leftof the sequen
e (labelled by L) and the other on its right (labelled by R). After that, weput reality edges joining extreme points of adja
ent arrows in �, and desire edges joiningextreme points of adja
ent arrows in �. Important properties of this graph are:1. The resulting graph is formed by a 
olle
tion of even 
y
les. When � = �, the numberof these 
y
les gets its maximum value, n+ 1. For two di�erent permutations, thereare less than n+ 1 
y
les.2. Ea
h reality edge from a 
y
le whose size is larger than 2 represents a breakpoint in thepermutation, that is, a point where a reversal will have to a
t in order to transform� into �. When two verti
es belong to a 
y
le of size 2, that is, are joined by twoparallel edges, exa
tly one reality and one desire edge, we say that there is not a breakin that position.From this graph we 
an 
ompute three parameters that allow us to 
ompute the reversaldistan
e of � and �: the number of 
y
les 
(�; �), the number of hurdles h(�; �) and a5
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(+1 -5 +4 -3 +2) (+2 +1 -5 +4 -3) (-3 +2 +1 -5 +4) (+4 -3 +2 +1 -5) (-5 +4 -3 +2 +1)Figure 4: In a 
ir
ular 
hromosome we 
an 
hoose ea
h one of the genes blo
k as the �rstone. Then, all of these sequen
es are 
onsidered equivalent, and they represent the 
ir
ular
hromosome of B. olera
ea shown in the Figure 1 (a).parameter f(�; �) indi
ating whether the graph is a fortress, where this last value 
an beequal to 1 or 0 only. The reversal distan
e is then given by:d(�; �) = n+ 1� 
(�; �) + h(�; �) + f(�; �):We refer the readers to the important works [4, 3, 5℄ or to the introdutory text of Setubaland Meidanis [9℄ for a more detailed explanation on these parameters. We will not needdetails on hurdles and fortresses until Se
tion 4, where we will review these 
on
epts.2.2 Cir
ular ChromosomesNow we give a formalization of a 
ir
ular 
hromosome by an equivalen
e 
lass.Intuitively, a 
ir
ular 
hromosome is a 
ir
ular arrangement of signed blo
ks (see Fig-ure 1). A blo
k of genes of the 
hromosome will be modelled by a signed integer. Thesign \+" indi
ates an arrow in 
lo
kwise dire
tion in Figure 1, and the sign \�" indi
atesan arrow in 
ounter
lo
kwise dire
tion. Given an initial blo
k, we 
an represent a 
ir
u-lar 
hromosome by a sequen
e as follows. Through 
onvention, we always read the blo
ksin 
lo
kwise dire
tion. Walk around the 
hromosome in 
lo
kwise dire
tion, beginning atthe initial blo
k, and write down the signed integers 
orresponding to the blo
ks found.Then, � = (�1�2 : : : �n) will denote the 
ir
ular 
hromosome, with n blo
ks of genes. As anexample, the 
hromosome of B. olera
ea of Figure 1a 
an be represented by the sequen
e(+1 �5 +4 �3 +2).We 
an 
hoose ea
h one of the blo
ks as the �rst one, and therefore we 
an have manydi�erent sequen
es representing the same 
hromosome (see Figure 4). All of these sequen
esare 
onsidered equivalent. Besides, two sequen
es where one of them is obtained by theother by re
e
tion are 
onsidered equivalent, and in parti
ular � = (�1�2 : : : �n) and s �� =(�n�n�1 : : : �2�1) are 
onsidered equivalent sequen
es (see Figure 5).This way, a sequen
e modeling a 
ir
ular 
hromosome is a representative of an equiv-alen
e 
lass in the set of all sequen
es. Below we de�ne the rotation and the re
e
tionoperations, that will formalize the two 
hara
teristi
s des
ribed above. From these opera-tions we will de�ne an equivalen
e relation between two sequen
es, and an equivalen
e 
lassthat will represent a 
ir
ular 
hromosome. 6
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(-2 +3 -4 +5 -1)Figure 5: In a 
ir
ular 
hromosome two sequen
es where one of them is obtained from theother by re
e
tion are 
onsidered equivalent. The 
ir
ular 
hromosome represented is B.olera
ea shown in Figure 1 (a).We will 
all Sn the set of all possible sequen
es of distin
t signed integers, where ea
hsequen
e has size n. These integers must belong to the interval [1::n℄. Observe that jSnj =2nn!. Let us take � = (�1�2 : : : �n), a sequen
e of Sn. We will de�ne two types of operationsa
ting in � as follows:� Rotations. We will denote by r the basi
 rotation that moves the permutation elementsone position to the left: r � � = (�2�3 : : : �n�1):We will de�ne ri for every i 2 Z in the usual way: ri is the 
omposition of r i timesfor i > 0 and r�i is the inverse of ri. Besides, r0 is the identity. We have the followingimportant relations:rn = r0, or more generally, ri = rj if i � j (mod n) for all i; j 2 Z.rirj = ri+j for all i; j 2 Z.The operations ri are 
alled rotations.� Re
e
tions. We will denote by s the basi
 re
e
tion that inverses the order of thepermutation and also the signs. So,s � � = (�n�n�1 : : : �2�1):We will de�ne si for all i 2 Z as follows: si is the 
omposition of s i times for i > 0and s�i is the inverse of si. Note that s�i = si. Besides, s0 is the identity. We havethe following important relations:s2 = s0, or more generally, si = sj if i � j (mod 2) for all i; j 2 Z.sisj = si+j for all i; j 2 Z. 7



We 
an apply r and s to a sequen
e, using the above de�nitions. Then, rs� = r(s�) =r(�n�n�1 : : : �2�1) = (�n�1�n�2 : : : �2�1�n).We have the following relation: rs = sr�1: (1)Generi
ally, the operations sri are 
alled re
e
tions. Ea
h re
e
tion is equal to itsown inverse.Now we will de�ne an equivalen
e relation between two sequen
es � and 
.De�nition 2.1 Given two sequen
es � and 
, we de�ne� � 
if and only if there are i; j 2 Z su
h that 
 = risj � �.The above relation is an equivalen
e relation. The proof of this result is simple. Equa-tion (1) 
an be used in this proof.From this equivalen
e relation, we 
an de�ne an equivalen
e 
lass of the sequen
e �,denoted by [�℄, whi
h represents a signed 
ir
ular 
hromosome, as follows[�℄ = f
 2 Snj� � 
gThis formalization is interesting biologi
ally, be
ause it does not �x the �rst element ofthe sequen
e, and then ea
h one of the genes blo
k 
an be the �rst, it is suÆ
ient to applyrotation. Besides, two sequen
es where one of them is obtained from the other by re
e
tion
an be produ
ed applying the s operator.2.3 Cir
ular ReversalsWe model now how a reversal will a
t in a 
lass A representing a 
ir
ular 
hromosome.First we note that there are two possibilities for a reversal a
ting on a 
ir
ular 
hromosome,given the two points where the 
uts have o

urred (see Figure 6).Suppose the two 
uts o

ur between i 	 1; i and j; j � 1, with 1 � i � j � n. Here 	and � are the usual operations of subtra
tion and addition, respe
tively, ex
ept that wetake the result modulo n and 
hoose n rather than zero as the representative of the 
lassof multiples of n. We will assume that these 
uts are distin
t, therefore i 6= (j � 1).Also if we 
hoose i and j su
h that i > j, we 
an 
hange i and j without problemsbe
ause both are just pointers to the 
uts.Then we have the following lemma.Lemma 2.1 Given a sequen
e � from an equivalen
e 
lass A whi
h models a 
ir
ular 
hro-mosome, and two integers i and j with 1 � i � j � n and i 6= (j � 1) su
h that these 
utso

ur between i 	 1; i, and j; j � 1, the sequen
es resulting from the two possible ways ofreversing the 
ir
ular 
hromosome between these 
uts belong to the same equivalen
e 
lass.8
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Figure 6: This �gure shows that the two 
ir
ular 
hromosomes resulting from the reversalare represented by two sequen
es that belong to the same equivalen
e 
lass. Note thatthe arrow, before the reversion, indi
ates the �rst blo
k of the sequen
e 
hosen from theequivalen
e 
lass whi
h represents the 
ir
ular 
hromosome. The portion of the 
hromosomesu�ering the reversal 
an in
lude or not the arrow. (a) In this 
ase, the reversal does notin
lude the arrow. The sequen
e resulting from the reversal is shown. (b) In that 
ase, thereversal in
ludes the arrow. We 
an apply re
e
tion and rotation in the sequen
e resultingfrom the reversal in order to obtain the same sequen
e as in 
ase (a). The sequen
es resultingfrom ea
h operation are shown.Proof:We will denote by P and Q the two possible ways of reversing the 
ir
ular 
hromosome(see Figure 6). Taking sequen
e � = (�1 : : : �i�1�i : : : �j�j+1 : : : �n) from 
lass A, andapplying P on A we haveP � [(�1 : : : �i�1�i : : : �j�j+1 : : : �n)℄ = [(�1 : : : �i�1�j : : : �i�j+1 : : : �n)℄Applying Q on A we haveQ � [(�1 : : : �i�1�i : : : �j�j+1 : : : �n)℄ = [(�1�n : : : �j+1�i : : : �j�i�1 : : : �2)℄But applying r�1 and s on (�1 : : : �i�1�j : : : �i�j+1 : : : �n) we haver�1s � (�1 : : : �i�1�j : : : �i�j+1 : : : �n) = (�1�n : : : �j+1�i : : : �j�i�1 : : : �2)So [P � A℄ = [Q � A℄9



 
[π] = {(+1 −5 +4 −3 +2) (−5 +4 −3 +2 +1) (+4 −3 +2 +1 −5)

(−3 +2 +1 −5 +4) (+2 +1 −5 +4 −3)

(−2 +3 −4 +5 −1) (+3 −4 +5 −1 −2) (−4 +5 −1 −2 +3)

 (+5 −1 −2 +3 −4) (−1 −2 +3 −4 +5)}

can ([π]) = (+1 −5 +4 −3 +2)Figure 7: Example of an equivalen
e 
lass [�℄ and its 
anoni
al representative 
an([�℄).2Now we 
an enun
iate the problem of �nding the minimal number of reversals a
tingon 
ir
ular 
hromosomes with known relative orientations.Given two equivalen
e 
lasses A and B, representing two 
ir
ular 
hromosomes withknown relative orientations, the problem of reversal distan
e of signed 
ir
ular 
hro-mosomes is to �nd a series of reversals P1; P2; : : : ; Pu su
h that Pu �Pu�1 � : : : �P2 �P1 �A = Band u is minimum. We 
all u the reversal distan
e of A and B, denoted by d
(A;B).2.4 Relating Cir
ular Chromosomes to Linear ChromosomesIn the formalization of 
ir
ular 
hromosomes, we would like to use some results from thelinear 
ase. A linear reversal %(i; j) a
ts as des
ribed in Se
tion 2.1. It would be temptingto de�ne a 
orresponding 
ir
ular reversal %
(i; j) by%
(i; j) � [�℄ = [%(i; j) � �℄However this de�nition does not make sense, be
ause di�erent 
hoi
es of sequen
es � in-side an equivalen
e 
lass A lead to non-equivalent right-hand members. So, it will not bepermitted a random 
hoi
e of the sequen
e in A in whi
h the reversal will a
t.We will de�ne a 
anoni
al representative of A, denoted by 
an(A), with the 
hara
-teristi
s of having the 1 blo
k �xed as the �rst element of the sequen
e, and with the +orientation (see Figure 7). Note that ea
h equivalen
e 
lass has a unique 
anoni
al repre-sentative. For the formalism, a reversal will be applied only in the 
anoni
al representative.Thus, given a linear reversal %(i; j) with 1 � i � j � n, we de�ne a 
ir
ular reversal %
(i; j)by the formula %
(i; j) �A = [%(i; j) � 
an(A)℄Noti
e that the 
ase (i; j) = (1; n) is ex
luded from 
onsideration as mentioned inSe
tion 2.3. 10



The next theorem tells us that every 
ir
ular reversal is of the form %
(i; j) for some i; j.Moreover, we 
an always 
hoose the indi
es from 2 to n.Theorem 2.1 For any 
ir
ular reversal P , there are integers i and j with 2 � i � j � nsu
h that P �A = [%(i; j) � 
an(A)℄:Proof:A 
ir
ular reversal P must be applied only in the 
anoni
al representative of the equiv-alen
e 
lass A representing the 
ir
ular 
hromosome. There are two possible forms for areversal a
ting on any sequen
e of A, but both of them produ
e sequen
es that belong tothe same equivalen
e 
lass (Lemma 2.1). As we 
an 
hoose any of these forms we will pi
kthe form not in
luding �1 = +1. This way P � A will produ
e a sequen
e whi
h is also a
anoni
al representative. In other words, the 
anoni
al representative of the equivalen
e
lass whi
h models the 
ir
ular 
hromosome before the reversal is 
arried to a 
anoni
alrepresentative of the equivalen
e 
lass whi
h represents the 
ir
ular 
hromosome after thereversal. In this 
ase, in terms of the linear representation, the reversal a
ts in the 
anoni
alrepresentative like a linear reversal %(i; j). Then,%(i; j) � (+1 �2 : : : �i : : : �j : : : �n) = (+1 �2 : : : �j : : : �i : : : �n)with 2 � i � j � n. This 
omes from the de�nition of linear reversal. As the right sequen
eis 
anoni
al we have %(i; j) � 
an(A) = 
an(P �A)from where [%(i; j) � 
an(A)℄ = [
an(P � A)℄ = P �A: 2We will see now that there is an isomorphism between reversals a
ting on 
ir
ular
hromosomes and reversals a
ting on linear 
hromosomes. To prove this, we will initiallyde�ne two bije
tions. Re
all that Sn is the set of all signed linear permutations on nelements. Let Rn be the set of all linear reversals on n elements, and S
n, R
n the analogoussets for the 
ir
ular 
ase. De�ne ' : S
n �! Sn�1so that '(A) = take 
an(A), remove + 1, subtra
t 1 from the othersand � : R
n �! Rn�1so that �(P ) = %(i� 1; j � 1)where P = %
(i; j), 2 � i � j � n.We enun
iate the result. 11



Theorem 2.2 Given the two bije
tions ' and � de�ned above, we have'(P � A) = �(P ) � '(A)Proof:First we have'(P � A) = take 
an(P � A), remove + 1, subtra
t 1 from the othersLet (by Theorem 2.1) P = %
(i; j), with 2 � i � j � n, and A = [�℄, where �1 = +1. Then'(P �A) = take %(i; j) � �, remove + 1, subtra
t 1 from the othersOn the other side, sin
e 
an(A) = �, we have'(A) = take �, remove + 1, subtra
t 1 from the othersand �(P ) = %(i� 1; j � 1)Then we have the result, be
ause �(P ) will a
t on the same elements as %(i; j). 2Note that j S
n j=j Sn�1 j= 2n�1(n� 1)! and j R
n j=j Rn�1 j= ((n� 1)n)=2.From Theorem 2.2 we have immediatelyCorollary 2.1 Given any two 
lasses A and B modeling two 
ir
ular 
hromosomes, andthe bije
tion ' de�ned above, d
(A;B) = d('(A); '(B))From Corollary 2.1 we 
an derive an algorithm to the problem of signed 
ir
ular 
hromo-somes. Basi
ally it 
onsists in running any algorithm solving the problem of signed linear
hromosomes, taking as inputs two permutations, obtained from applying the bije
tion 'in the two 
lasses representing the 
ir
ular 
hromosomes.In parti
ular, if we take the KST algorithm, the 
omplexity of the algorithm is O(n2)(to �nd out the input sequen
es 
osts O(n) and the KST algorithm has 
omplexity O(n2)),where n is the number of genes blo
ks of the 
ir
ular 
hromosomes.We 
an also obtain the 
ir
ular reversals used, just applying the inverse of � on ea
hstep of the algorithm for the linear 
hromosome. It does not a�e
t the 
omplexity of theabove algorithm be
ause it takes O(1).3 Relating 
ir
ular 
hromosomes to linear 
hromosomes ofthe same sizeIn the previous se
tion we saw that there is a distan
e preserving 
orresponden
e between
ir
ular 
hromosomes and linear 
hromosomes of size one unit smaller. Here we will derivesimilar results for 
ir
ular and linear 
hromosomes of the same size.12



First of all, we would like to know what is the relation between d(�; �) and d
([�℄; [�℄)for any � and �. As we will see in Theorem 3.1, d
([�℄; [�℄) � d(�; �). Before this, we needthree te
hni
al lemmas.Lemma 3.1 Given two linear permutations � and �, su
h that � = q � � where q = r or s,then for every reversal % there is a reversal %0 su
h that % � � � %0 � �.Proof:Let � = (�1 : : : �n).We have two possibilities for q.� Suppose � = r � � = (�2�3 : : : �n�1) and % = %(i; j) so that%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)We have three 
ases.1. i = 1; j = n: %(1; n) � � = (�n : : : �1)In this 
ase % = s. Take %0 = s also. We have% � � = s � � � � � � � s � � = %0 � �2. i = 1; j < n: In this 
ase%(1; j) � � = (�j : : : �1�j+1 : : : �n):Then: %(j; n� 1) � � = (�2�3 : : : �j�1�j�n : : : �j+1�1)s � %(j; n� 1) � � = (�1�j+1 : : : �n�j : : : �3�2)rn�j+1 � s � %(j; n� 1) � � = (�j : : : �3�2�1�j+1 : : : �n)%(1; j) � � = rn�j+1 � s � %(j; n� 1) � �Therefore, taking %0 = %(j; n � 1) we have% � � � %0 � �:3. i > 1; j � n: In this 
ase%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n):Then: %(i� 1; j � 1) � � = (�2�3 : : : �j : : : �i : : : �n�1)r�1 � %(i� 1; j � 1) � � = (�1�2�3 : : : �i�1�j : : : �i : : : �n)%(i; j) � � = r�1 � %(i� 1; j � 1) � �Therefore, taking %0 = %(i� 1; j � 1) we have% � � � %0 � �:13



� Suppose � = s � � = (�n : : : �1) and % = %(i; j) so that%(i; j) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)Then: %(n+ 1� j; n+ 1� i) � � = (�n : : : �j+1�i : : : �j�i�1 : : : �1)s � %(n+ 1� j; n+ 1� i) � � = (�1 : : : �i�1�j : : : �i�j+1 : : : �n)%(i; j) � � = s � %(n+ 1� j; n+ 1� i) � �Therefore, taking %0 = %(n+ 1� j; n+ 1� i), we have% � � � %0 � �: 2Lemma 3.2 Given two linear permutations � and �, su
h that � � � then for every reversal% there is a reversal %0 su
h that % � � � %0 � �.Proof:Take � = qv � qv�1 � : : : � q1 � �, where v � 0, and qi = r or s, for 1 � i � v.This proof will be made by indu
tion on v.� v = 0: just make %0 = %� v > 0: Take �0 = qv�1 � : : : � q1 � �Given %, we want to obtain %0 su
h that% � � � %0 � �By the indu
tion hiphotesis, we have% � � � %00 � �0But, � = qv � �0 and then, using Lemma 3.1, there is %0 su
h that%00 � �0 � %0 � �Then, % � � � %0 � � 2Lemma 3.3 Given a permutation � and a reversal %, then[% � �℄ = P � [�℄where P = I, the identity transformation, or P is a 
ir
ular reversal.14



Proof:Let � be the 
anoni
al representative of [�℄:� � � = 
an([�℄)Lemma 3.2 says that given % there is %0 su
h that% � � � %0 � �;hen
e [% � �℄ = [%0 � �℄But %0 = %(i; j) with 1 � i � j � n. Then we have two 
ases:1. i = j � 1. Then, %0 = s and [% � �℄ = [s � �℄ = [�℄ = [�℄;so P = I works in this 
ase.2. i 6= j � 1. Be
ause � is 
anoni
al,[%(i; j) � [�℄℄ = %
(i; j) � [�℄hen
e P = %
(i; j) works in this 
ase. 2Now we show that there are fewer reversals in the 
ir
ular 
ase than in the linear 
asewhen both 
hromosomes have the same size.Theorem 3.1 Given any two permutations � and �,d(�; �) � d
([�℄; [�℄)Proof:Take t = d(�; �). Then, %t � %t�1 � : : : � %1 � � = �[%t � %t�1 � : : : � %1 � �℄ = [�℄Using Lemma 3.3 we have P 0t � P 0t�1 � : : : � P 01 � [�℄ = [�℄where P 0i is either a 
ir
ular reversal or the identity. Then,d
([�℄; [�℄) � t = d(�; �) 2We note that it is not true that d(�; �) = d
([�℄; [�℄), for any � and �. It is enough totake � = (�2 + 3 + 1) and � = (+1 + 2 + 3). We have d
([�℄; [�℄) = 1 be
ause d
([�℄; [�℄) =d(
an([�℄); 
an([�℄)) = 1, where 
an([�℄) = (+1 � 2 + 3). But d(�; �) = 3. To make this
omputation, it is suÆ
ient to 
onstru
t the breakpoint graphs of � and �, and use theformula presented by Hannenhalli and Pevzner [4℄.Following we demonstrate another theorem that solves the problem of reversal distan
efor signed 
ir
ular 
hromosomes. 15



Theorem 3.2 Given two 
ir
ular 
hromosomes represented by 
lasses A and B we haved
(A;B) = d(
an(A); 
an(B))Proof:First we will show that d
(A;B) � d(
an(A); 
an(B))By Theorem 3.1 we know that d(�; �) � d
([�℄; [�℄). In parti
ular, taking � = 
an(A)and � = 
an(B), we immediately have the result.Se
ondly, we will show thatd
(A;B) � d(
an(A); 
an(B))To solve the problem of the reversal distan
e of signed 
ir
ular 
hromosome, we usereversals in the interval [2; n℄, that a
t always in the 
anoni
al representative sequen
e.Considering the linear 
hromosome 
an(A), initially, �1 = +1 is in its 
orre
t position,and this is not modi�ed throughout the pro
ess. Thus, these reversals supply a series ofreversals for the linear 
ase too. 2From Theorem 3.2 we 
an derive another algorithm for the problem of signed 
ir
ular
hromosomes that 
onsists in running any algorithm solving the problem of signed linear
hromosomes giving as input the 
anoni
al representatives of A and B.Let us take the two input permutations � and �, where � is a permutation of the A
lass whi
h represents one of the 
ir
ular 
hromosomes, and � a permutation of the B 
lasswi
h represents the other 
ir
ular 
hromosome. The 
anoni
al representatives are obtainedtraversing the two permutations � and � �nding the position k of the 1 blo
k. If it has sign+ we just apply rk�1, and if it has sign � we apply rk�n followed by s.In parti
ular, if we take the KST algorithm, the 
omplexity of the algorithm is O(n2)(to �nd out the 
anoni
al representatives 
osts O(n) and the KST algorithm has 
omplexityO(n2)), where n is the number of gene blo
ks of the 
ir
ular 
hromosomes.Finally we prove a theorem that allow us to say that the 
anoni
al representatives ofthe 
lasses modeling the 
ir
ular 
hromosomes provide a minimum distan
e, among allpermutations belonging to those two 
lasses.Theorem 3.3 Given any two 
lasses A and B modeling 
ir
ular 
hromosomes, we haved(
an(A); 
an(B)) = min�2A�2B fd(�; �)g:Proof:To begin with, noti
e that we have d
(A;B) = d(
an(A); 
an(B)) (from Theorem 3.2).From Theorem 3.1, we have ea
h value d(�; �) greater than or equal to d
([�℄; [�℄). 2A question arises here. Whi
h sequen
es, from the two equivalen
e 
lasses modeling the
ir
ular 
hromosomes, lead to a minimum reversal distan
e? Our results showed that the16




anoni
al representatives from the 
lasses 
ertainly do. But they are not the only ones. Anexample found in an arti
le of Palmer and 
o-authors [8℄ did not have the 
hara
teristi
sof our 
anoni
al representatives, but led to a minimum distan
e. The sequen
es in that
ase were (�8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 � 11 � 10 � 9C � 9B � 9A) and(�4 + 3 � 2 + 8 + 7 � 1 � 5 � 6 � 11 + 10 + 9A � 9B + 9C). If we 
alloptimal representatives of two 
lasses modeling 
ir
ular 
hromosomes, two permutations,one for ea
h 
lass, that lead to a minimum reversal distan
e, we would like to know how to
hara
terize this set of optimal representatives.From the above results, it 
an be shown that Corollary 2.1 and Theorem 3.2 are equiv-alent, in the following sense:Theorem 3.4 Given two 
lasses A and B modeling two linear 
hromosomes and the bije
-tion ' de�ned above, then d('(A); '(B)) = d(
an(A); 
an(B))4 The reversal diameter of signed 
hromosomesThe 
ir
ular reversal diameter, denoted by D
(n), of the equivalen
e 
lasses on Sn, withrespe
t to the 
ir
ular reversal distan
e, is the maximum distan
e between two equivalen
e
lasses. Similarly, the linear reversal diameter, denoted by D(n), of the n elementpermutations of the set Sn, with respe
t to the linear reversal distan
e, is the maximumdistan
e between two permutations. We show now that the reversal diameter for signedlinear and 
ir
ular 
hromosomes are respe
tively n+ 1 and n (ex
ept in a few 
ases). This
orre
ts a statement from Ke
e
ioglu and Sanko� [6℄ that said that n� 2 � D(n) � n� 1.Now we need some de�nitions and fa
ts about hurdles and fortresses, as mentionedearlier. A 
y
le C is bad when for any reversal % a
ting on two reality edges of C we have
(�; �) = 
(% � �; �):Otherwise, the 
y
le is good.Two 
y
les are interleaving when there are two desire edges, one from ea
h 
y
le, that
ross. A 
y
le C is 
ontained in another 
y
le D when C and D are not interleaving andC is 
ontained in at least one desire edge of D.The following fa
ts will be important in this se
tion:� If a bad 
y
le C does not interleave with and does not 
ontain any other 
y
le, then Cforms a hurdle just by itself. We should point out that these are not the only typesof hurdles that 
an exist in a breakpoint graph, but this will suÆ
e for our purposes.� In a fortress there is at least one 
y
le that does not belong to a hurdle. Again, wepoint out that this 
ondition is not suÆ
ient to de�ne fortresses.Theorem 4.1 The reversal diameter of linear 
hromosomes isD(n) = max�2Sn�2Sn fd(�; �)g = ( n if n = 1 or n = 3n+ 1 otherwise17
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Figure 8: The breakpoint graph for n = 2 e 4 with respe
t to �n.Proof:We will show two sequen
es, �n and �n, that give d(�n; �n) = n + 1, for ea
h n. The
onstru
tion depends on n being even or odd. All the integers will have + sign in ourexamples, so we omit them in the proof.� For n even, n � 2, 
onsider�n = (2 1 4 3 6 5 : : : n� 4 n� 5 n� 2 n� 3 n n� 1)and �n = �n = (1 2 3 4 : : : n� 1 n)The breakpoint graph for �n with respe
t to �n is formed by exa
tly one 
y
le, of sizen+1, involving all labels. This is a bad 
y
le and therefore a hurdle. Figure 8 showsexamples of breakpoint graphs for n = 2 and 4 with respe
t to �n.In this 
ase, using the Hannenhalli and Pevzner formula [4℄, and by 
onstru
tion ofthe breakpoint graph G(�n; �n) of the sequen
e �n with respe
t to �n,d(�n; �n) = (n+ 1) � 1 + 1 + 0 = n+ 1� For n odd, n = 2 � k + 1 with k � 0Initially we observe that for n = 1 we have just two permutations with distan
e 1between them, so D(1) = 1.For n = 3 we have from a theorem of Ke
e
ioglu and Sanko� [6℄ that the greedyalgorithm sorts any permutation � with at least one negative element in at most n�118
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RFigure 9: The breakpoint graphs for n = 5; 7 and 9 with respe
t to �n.steps. Then, only the permutations with all elements positive are 
andidates to haveD(n) = n+1. Using this fa
t and 
onstru
ting the breakpoint graphs for all possiblesequen
es with all their elements positive for n = 3, we 
on
lude that d(�3; �3) � 3.On the other hand, �3 = (3 2 1) and �3 = (1 2 3) give d(�3; �3) = 3, so D(3) = 3.Now we will present sequen
es �n su
h that d(�n; �n) = n+ 1 for the other 
ases of nodd, n = 2 �k+1 with k � 2, that is, n � 5. We 
onsider now the remainder betweenn+ 1 and 3. We have three 
ases:{ remainder = 0: Consider the sequen
e(2 1 3 5 4 6 8 7 9 � � � n� 6 n� 7 n� 5 n� 3 n� 4 n� 2 n n� 1)The breakpoint graph for �n with respe
t to �n with n � 5 is formed by exa
tly(n + 1)=3 
y
les of size 3, with n � 5, 
onstru
ted one beside the other. Theseare bad 
y
les and therefore hurdles. Figure 9 shows an example of a breakpointgraph for n = 5 with respe
t to �5.In this 
ase, using Hannenhalli and Pevzner formula [4℄, and by 
onstru
tion ofthe breakpoint graph G(�n; �n) of �n with respe
t to �n,d(�n; �n) = (n+ 1) � (n+ 1)=3 + (n+ 1)=3 + 0 = n+ 119



{ remainder = 1: Consider the sequen
e(2 1 3 5 4 6 � � � n� 15 n� 13 n� 14 n� 12 n� 10 n� 11n� 9 n� 7 n� 8 n� 5 n� 6 n� 4 n� 2 n� 3 n n� 1)The breakpoint graph for �n with respe
t to �n with n � 9 is formed by exa
tly(n � 9)=3 
y
les of size 3, and 2 
y
les of size 5, with n � 9, 
onstru
ted onebeside the other. These are bad 
y
les, and therefore hurdles. We note thatthe restri
tion n � 9 does not eliminate any n su
h that (n + 1) mod 3 = 1,be
ause n = 9 is the �rst odd number satisfying this 
ondition. Figure 9 showsan example of a breakpoint graph for n = 9 with respe
t to �9.In this 
ase, using the Hannenhalli and Pevzner formula [4℄, and by 
onstru
tionof the breakpoint graph G(�n; �n) of �n with respe
t to �n,d(�n; �n) = (n+ 1) � ((n� 9)=3 + 2) + ((n� 9)=3 + 2) + 0 = n+ 1{ remainder = 2: Consider the sequen
e(2 1 3 5 4 6 � � � n� 11 n� 12 n� 10 n� 8 n� 9 n� 7 n� 5 n� 6n� 4 n� 2 n� 3 n n� 1)The breakpoint graph for �n with respe
t to �n with n � 5 is formed by exa
tly(n�4)=3 
y
les of size 3, and 1 
y
le of size 5, with n � 5, 
onstru
ted one besidethe other. These are bad 
y
les, and so hurdles. We note that the restri
tionn � 5 does not eliminate any n su
h that (n + 1) mod 3 = 2, be
ause n = 7 isthe �rst odd number satisfying this 
ondition. Figure 9 shows an example of abreakpoint graph for n = 7 with respe
t to �7.In this 
ase, using the Hannenhalli and Pevner formula [4℄, and by 
onstru
tionof the breakpoint graph G(�n; �n) of �n with respe
t to �n,d(�n; �n) = (n+ 1) � ((n� 4)=3 + 1) + ((n� 4)=3 + 1) + 0 = n+ 1Then, we proved that D(n) � n+1. We yet have to prove that D(n) < n+2, to obtainthe wanted result.We have, by the Hannenhalli and Pevner formula [4℄,d(�n; �n) = (n+ 1)� 
(�n; �n) + h(�n; �n) + f(�n; �n)First, we have h(�n; �n) � 
(�n; �n), by de�nition of h(�n; �n). So, if h(�n; �n) = 
(�n; �n),then we have d(�n; �n) � (n + 1) + 1, that is, d(�n; �n) � n+ 2. But if f(�n; �n) = 1, thenne
essarily h(�n; �n) < 
(�n; �n), and then d(�n; �n) < n+ 2.This proves the linear 
ase. 2From the bije
tions de�ned earlier, we have the following result.20



Lemma 4.1 D
(n) = D(n� 1)From this lemma, we have the following theorem showing the 
ir
ular reversal diameterof the equivalen
e 
lasses on Sn.Theorem 4.2 The reversal diameter of 
ir
ular 
hromosomes isD
(n) = maxA 2 S
nB 2 S
n fd
(A;B)g = ( n� 1 if n = 1, n = 2 or n = 4n otherwise5 Con
lusionsIn this work, we attempted to start a systemati
 study of the theory of the reversal dis-tan
e problem for signed 
ir
ular 
hromosomes. To do this, we gave some 
ontributions,des
ribed as follows. First we formalized 
ir
ular 
hromosomes by equivalen
e 
lasses. Thisis interesting be
ause it in
ludes the di�erent forms to visualize a signed 
ir
ular 
hromo-some, obtained by rotations and re
e
tions. We also de�ned 
ir
ular reversals using theknown de�nitions of linear reversals, whi
h allowed to solve the reversal distan
e problemof signed 
ir
ular 
hromosomes by using polinomial algorithms that solve the reversal dis-tan
e problem of signed linear 
hromosome, giving as input suitable sequen
es from theequivalen
e 
lasses. Besides, we presented some results 
on
erning the linear and 
ir
ular
hromosomes of the same size. Finally, we determined the signed reversal diameter for lin-ear (D(n) = n+1) and 
ir
ular 
hromosomes (D
(n) = n), 
orre
ting a result of Ke
e
iogluand Sanko� [6℄ on the linear reversal diameter D(n).To �nish, a question arising from these studies is whi
h permutations from the equiv-alen
e 
lasses lead to a minimum reversal distan
e, that is, we would like to know how to
hara
terize pre
isely the set of optimal representatives.A
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