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Abstract

We study the problem of comparing two circular chromosomes, evolved from a com-
mon ancestor by reversals, given the order of the corresponding genes and their orien-
tations. Determining the minimum number of reversals between the chromosomes is
equivalent to look for the minimum number of reversals that transforms a circular se-
quence of signed integer numbers, defined in an appropriate manner, into another, where
a reversal acts on a subsequence, reversing its order and flipping the signs. We carefully
formalize the concepts of circular chromosome and circular reversal, and show that this
problem is essentially equivalent to the analogous problem on linear chromosomes. As
a consequence we derive polynomial time algorithms based on this observation. We also
compute the reversal diameter for signed chromosomes, both linear and circular.

1 Introduction

The huge amount of data resulting from genome sequencing in Molecular Biology is giving
rise to an increasing interest in the development of algorithms for comparing genomes of
related species. Particularly these data allowed studies on mutational events acting on
large portions of the chromosomes, that can be used to compare genomes for which the
traditional methods of comparing DNA sequences are not conclusive. There are several
mutational events affecting large fragments of genomes of organisms, and among them, the
reversal seems to be one of the commonest. A reversal replaces a sequence of an arbitrary
region of the chromosome with the reverse complementary sequence. This reverses the gene
order within the region, and changes the orientation of each gene. In this paper we study
the comparison of two genomes, formed each by a single circular chromosome, on the basis
of the order and orientation of their common genes, and in terms of the mutational event
of reversal.

A circular chromosome can be seen as a circular arrangement of blocks of genes, where
each block has an orientation. Figure 1 shows examples of circular chromosomes of two
species of plants, where each number represents a block composed by one or more genes,
and the arrows indicate the orientations of the blocks of one species relative to the other.
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Figure 1: Examples of circular chromosomes of two species of plants. (a) The arrows
indicate the orientations of a species relative to the other. (b) These examples show different
representations of the same chromosome. (c¢) These examples show the same chromosome,
considering the two possible forms to view the gene blocks of a circular chromosome. These
two forms are considered equivalent, and these two chromosomes are obtained from one
another by reflection relative to the axis shown in the figure.

In a circular chromosome, a reversal is defined by fixing two cut points in this chro-
mosome, and reversing the order of the genes in one of the two regions delimited by these
points (see Figure 2).

In general terms, the problem of reversal distance of signed circular chromosomes is
formulated as follows. Given two circular chromosomes A and B, we want the shortest
series of reversals that transforms A into B. This minimum number of reversals is called
reversal distance between A and B. Figure 3 shows an example of a circular chromossome
transformed into another with the minimum number of reversals.

Another version of this problem arises when the orientations of the genes on the chro-
mosomes are not known. In that case, we have the unsigned version of the problem, where
the reversals only reverse gene order. There are other versions of the same problem con-
sidering linear chromosomes, and other mutational events besides reversal. The literature
on problems originated by different types of mutational events is growing very quickly in
recent years. In the following, we briefly review other works studying reversal, observing
that chromosomes are commonly represented by permutations in this context.
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Figure 2: This example shows the two possibilities for reversal in a circular chromosome,
given two cuts.
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Figure 3: This example shows a series of reversals that transforms B. oleracea (cabbage)
into B. campestris (turnip).



With respect to linear chromosomes, Aigner and West [1] had studied the problem of
sorting a permutation, considering the operation of reinsertion of the first element in the
sequence of the permutation. The sorting diameter (the maximum distance between two
permutations) in this case is n — 1, where n is the number of elements of the permutation.
Kececioglu and Sankoff [7] had studied the problem of the reversal distance of unsigned lin-
ear permutations, and developed the first approximation algorithm for the problem. Their
algorithm runs in O(n?) time and is guaranteed to use no more than two times the reversal
distance. They also developed efficient bounds, used on a branch-and-bound algorithm,
that solved to optimality or almost optimality permutations ranging from 30 to 50 ele-
ments. Bafna and Pevzner [2] afterwards introduced a new structure, the breakpoint graph
of an initial permutation relative to a target permutation, that allowed to set up a more
precise lower bound to the reversal distance, considering another parameter, based on a
maximum alternating cycle decomposition, denoted by ¢(m). Based on that graph, they
devised an approximation algorithm with a performance guarantee of 7/4, and introduced
an approximation algorithm for signed permutations with a guarantee of 3/2.

Hannenhalli and Pevzner [4] introduced two new parameters: the number of hurdles
(h(m)) and an indicator of whether the breakpoint graph is a fortress, (f(n)). Together
with the maximum number of cycles of the alternating cycles decomposition (¢(m)) of the
breakpoint graph, these parameters allowed the authors to demonstrate a duality theorem.
Based on this theorem, they presented the first polinomial algorithm for the problem of the
reversal distance of the signed linear permutations, with time complexity O(n*). Berman
and Hannenhalli [3] introduced new data structures on that algorithm and lowered the
complexity to O(n?a(n)). Finally, Kaplan, Shamir and Tarjan [5], based on the Hannenhalli
and Pevzner theory, and using part of the Berman and Hannenhalli algorithm, showed a
new algorithm with O(n?) complexity. We will call this last one KST algorithm.

With respect to circular chromosomes, Watterson and other authors [10] showed an al-
gorithm, very simple, to find out the reversal distance of circular permutations, establishing
a lower bound (number of breakpoints/2), and an upper bound (n —2) for the reversal dis-
tance. They presented also a stochastic algorithm for the problem. Kececioglu and Sankoff
[6] presented an exact branch-and-bound algorithm for the problem of reversal distance of
signed circular permutations. This algorithm, using simple methods to find the lower and
upper bounds, found extremely precise values for the reversal distance in several experi-
ments. The authors reported that they did not know reasons to justify the proximity of
these limits. Now we know that the Hannenhalli and Pevzner theory justifies these results,
because h(m) and f(m) are small for random permutations.

In this paper we present a formalism for circular chromosomes and for reversals acting
on them. As a consequence we show polinomial algorithms for the problem of reversal
distance of signed circular chromosomes. These algorithms are based on the theory for the
linear problem given by Hannenhalli and Pevzner [4]. Besides, we calculate the reversal
diameter for linear and circular chromosomes.

In Section 2 we first formalize a circular chromosome by an equivalence class, and next
we show that there is an isomorphism between reversals acting on circular chromosomes
and reversals acting on linear chromosomes. This result allow us to compute the reversal
distance of signed circular chromosomes by computing the reversal distance of signed linear



chromosomes with one less gene. In Section 3 we show some results concerning the reversal
distances of signed circular and linear permutations of the same size. In Section 4 we
calculate the reversal diameter of signed linear and circular permutations. Finally, the last
section brings conclusions of this work and indicates some future directions.

2 A formalization for the problem

2.1 Linear Chromosomes

We begin by presenting a brief overview of some important results about signed linear
chromosomes, due mainly to Bafna and Pevzner [2] and Hannenhalli and Pevzner [4]. A
signed linear chromosome is represented by a signed permutation. A signed permutation is
an ordinary permutation, except that each element has positive (4) or negative (—) sign,
indicating the relative orientation of the block. In this case, a reversal g of the interval [i, j]
is denoted by o(4,7) and we have

Q(’i,j) - = (71'1 e TG AT 1 e TG 1T ] - e 7Tn)

where 7j indicates the inversion of the sign of 7.

The problem of the reversal distance of signed linear chromosomes is commonly formal-
ized as follows. Given two permutations 7 and o modeling two signed linear chromosomes,
the reversal distance problem of m and o is to find a series of reversals o1, g2, ..., 0 such
that o¢ - 01-1-...-02-01-7=0 and t is minimum. We call ¢ the reversal distance of ©
and o, denoted by d(m, o).

The algorithms of Bafna and Pevzner [2] and of Hannenhalli and Pevzner [4] are based
on a structure called breakpoint graph. This graph is constructed from 7 and o as follows.
Each one of the signed integers is represented by an arrow, from left to right when the
sign is +, and from right to left when the sign is —. The initial and final points of these
arrows are the vertices of this graph. Besides, we add two reference points, one on the left
of the sequence (labelled by L) and the other on its right (labelled by R). After that, we
put reality edges joining extreme points of adjacent arrows in mw, and desire edges joining
extreme points of adjacent arrows in o. Important properties of this graph are:

1. The resulting graph is formed by a collection of even cycles. When m = o, the number
of these cycles gets its maximum value, n 4+ 1. For two different permutations, there
are less than n + 1 cycles.

2. Each reality edge from a cycle whose size is larger than 2 represents a breakpoint in the
permutation, that is, a point where a reversal will have to act in order to transform
m into 0. When two vertices belong to a cycle of size 2, that is, are joined by two
parallel edges, exactly one reality and one desire edge, we say that there is not a break
in that position.

From this graph we can compute three parameters that allow us to compute the reversal
distance of 7 and o: the number of cycles ¢(m, o), the number of hurdles h(m, o) and a



(+1-5+4-3+2) (+2+1-5+4-3) (-3+2+1-5+4) (+4-3+2+1-5) (-5+4-3+2 +1)

Figure 4: In a circular chromosome we can choose each one of the genes block as the first
one. Then, all of these sequences are considered equivalent, and they represent the circular
chromosome of B. oleracea shown in the Figure 1 (a).

parameter f(m, o) indicating whether the graph is a fortress, where this last value can be
equal to 1 or 0 only. The reversal distance is then given by:

dir,0) =n+1—c¢(m,0)+ h(r,0) + f(7,0).

We refer the readers to the important works [4, 3, 5] or to the introdutory text of Setubal
and Meidanis [9] for a more detailed explanation on these parameters. We will not need
details on hurdles and fortresses until Section 4, where we will review these concepts.

2.2 Circular Chromosomes

Now we give a formalization of a circular chromosome by an equivalence class.

Intuitively, a circular chromosome is a circular arrangement of signed blocks (see Fig-
ure 1). A block of genes of the chromosome will be modelled by a signed integer. The
sign “4” indicates an arrow in clockwise direction in Figure 1, and the sign “—” indicates
an arrow in counterclockwise direction. Given an initial block, we can represent a circu-
lar chromosome by a sequence as follows. Through convention, we always read the blocks
in clockwise direction. Walk around the chromosome in clockwise direction, beginning at
the initial block, and write down the signed integers corresponding to the blocks found.
Then, 7 = (w72 ... m,) will denote the circular chromosome, with n blocks of genes. As an
example, the chromosome of B. oleracea of Figure la can be represented by the sequence
(+1 =5 +4 =3 +2).

We can choose each one of the blocks as the first one, and therefore we can have many
different sequences representing the same chromosome (see Figure 4). All of these sequences
are considered equivalent. Besides, two sequences where one of them is obtained by the
other by reflection are considered equivalent, and in particular 7 = (m7me ... m,) and s- 7 =
(TpTn—1...7o71) are considered equivalent sequences (see Figure 5).

This way, a sequence modeling a circular chromosome is a representative of an equiv-
alence class in the set of all sequences. Below we define the rotation and the reflection
operations, that will formalize the two characteristics described above. From these opera-
tions we will define an equivalence relation between two sequences, and an equivalence class
that will represent a circular chromosome.
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Figure 5: In a circular chromosome two sequences where one of them is obtained from the
other by reflection are considered equivalent. The circular chromosome represented is B.
oleracea shown in Figure 1 (a).

We will call S, the set of all possible sequences of distinct signed integers, where each
sequence has size n. These integers must belong to the interval [1..n]. Observe that |S,| =
2"n!. Let us take m = (mme ... m,), a sequence of S,. We will define two types of operations
acting in 7 as follows:

e Rotations. We will denote by r the basic rotation that moves the permutation elements
one position to the left:
rem = (mymy ... TpML).

We will define ¢ for every i € Z in the usual way: r* is the composition of i times
for i > 0 and 7 is the inverse of 7. Besides, r¥ is the identity. We have the following
important relations:

n 0

r™ =70, or more generally, r’ =/ if i =5 (mod n) for all 4,5 € Z.

rird =i for alli,j € Z.
The operations r* are called rotations.

o Reflections. We will denote by s the basic reflection that inverses the order of the
permutation and also the signs. So,

We will define s’ for all i € Z as follows: s’ is the composition of s i times for i > 0
and s~! is the inverse of s’. Note that s~* = s’. Besides, s° is the identity. We have
the following important relations:

52 = 50, or more generally, s' = s7 ifi = j (mod 2) for all i,j € Z.

sts] = 5" for all 4, € Z.



We can apply r and s to a sequence, using the above definitions. Then, rsm = r(sm) =
r(TpTn—1... 7o) = (Tpn-1Tn-2... ToT1Tp).

We have the following relation:
rs = sr b (1)

Generically, the operations sr’ are called reflections. BEach reflection is equal to its
own inverse.

Now we will define an equivalence relation between two sequences m and .
Definition 2.1 Given two sequences m and 7y, we define
T~y
if and only if there are i,j € Z such that y = r's) - .

The above relation is an equivalence relation. The proof of this result is simple. Equa-
tion (1) can be used in this proof.

From this equivalence relation, we can define an equivalence class of the sequence «,
denoted by [n], which represents a signed circular chromosome, as follows

(7] = {v € Snlr ~~}

This formalization is interesting biologically, because it does not fix the first element of
the sequence, and then each one of the genes block can be the first, it is sufficient to apply
rotation. Besides, two sequences where one of them is obtained from the other by reflection
can be produced applying the s operator.

2.3 Circular Reversals

We model now how a reversal will act in a class A representing a circular chromosome.
First we note that there are two possibilities for a reversal acting on a circular chromosomme,
given the two points where the cuts have occurred (see Figure 6).

Suppose the two cuts occur between ¢ © 1,7 and 5,7 ® 1, with 1 < ¢ < j < n. Here ©
and @ are the usual operations of subtraction and addition, respectively, except that we
take the result modulo n and choose n rather than zero as the representative of the class
of multiples of n. We will assume that these cuts are distinct, therefore i # (j & 1).

Also if we choose ¢ and j such that ¢ > j, we can change ¢ and j without problems
because both are just pointers to the cuts.

Then we have the following lemma.

Lemma 2.1 Given a sequence m from an equivalence class A which models a circular chro-
mosome, and two integers i and j with 1 <i < j <n and i # (j ® 1) such that these cuts
occur between 1 © 1,1, and j,j @ 1, the sequences resulting from the two possible ways of
reversing the circular chromosome between these cuts belong to the same equivalence class.



Figure 6: This figure shows that the two circular chromosomes resulting from the reversal
are represented by two sequences that belong to the same equivalence class. Note that
the arrow, before the reversion, indicates the first block of the sequence chosen from the
equivalence class which represents the circular chromosome. The portion of the chromosome
suffering the reversal can include or not the arrow. (a) In this case, the reversal does not
include the arrow. The sequence resulting from the reversal is shown. (b) In that case, the
reversal includes the arrow. We can apply reflection and rotation in the sequence resulting
from the reversal in order to obtain the same sequence as in case (a). The sequences resulting
from each operation are shown.

Proof:
We will denote by P and @) the two possible ways of reversing the circular chromosome
(see Figure 6). Taking sequence m = (my...m_17;...TjTjt1...7,) from class A, and

applying P on A we have

P-l(my...miam. . T . mn)] = (T T T T - T

Applying @ on A we have

Q - [(7‘(1 R (PR I (o N 7Tn)] = [(flfn ce T 1T e TG .72)]
But applying 7! and s on (my ... T 17 ... FTjt1 ... ™) we have
rls. (71'1 ce T AT T ] .7Tn) = (flfn e T T e T ] - .72)

So
[P Al =[Q- A]



[ ={(+1-5+4-3+2) (-5+4 -3 +2 +1) (+4 -3 +2+1 -5)

(-3+2+1-5+4) (+2+1-5+4-3)

(-2+3-4+5-1) (+3-4+5-1-2) (-4 +5-1-2 +3)

(+5-1-2+3-4) (-1 -2 +3 -4 +5)}

can ([) =(+1-5+4-3+2)

Figure 7: Example of an equivalence class [r] and its canonical representative can([r]).

O

Now we can enunciate the problem of finding the minimal number of reversals acting
on circular chromosomes with known relative orientations.

Given two equivalence classes A and B, representing two circular chromosomes with
known relative orientations, the problem of reversal distance of signed circular chro-
mosomes is to find a series of reversals Py, P, ..., P, such that P,-P, 1-...-Py,-P,-A=DB
and v is minimum. We call u the reversal distance of A and B, denoted by d“(A, B).

2.4 Relating Circular Chromosomes to Linear Chromosomes

In the formalization of circular chromosomes, we would like to use some results from the
linear case. A linear reversal p(i,7) acts as described in Section 2.1. It would be tempting
to define a corresponding circular reversal (i, j) by

QC(iJj) : [ﬂ-] = [Q(Z,]) : ﬂ']

However this definition does not make sense, because different choices of sequences m in-
side an equivalence class A lead to non-equivalent right-hand members. So, it will not be
permitted a random choice of the sequence in A in which the reversal will act.

We will define a canonical representative of A, denoted by can(A), with the charac-
teristics of having the 1 block fixed as the first element of the sequence, and with the +
orientation (see Figure 7). Note that each equivalence class has a unique canonical repre-
sentative. For the formalism, a reversal will be applied only in the canonical representative.
Thus, given a linear reversal o(i,7) with 1 <7 < j < n, we define a circular reversal (i, )
by the formula

Qc(iaj) A= [9(7’7]) ' can(A)]

Notice that the case (i,7) = (1,n) is excluded from consideration as mentioned in
Section 2.3.
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The next theorem tells us that every circular reversal is of the form (¢, j) for some i, j.
Moreover, we can always choose the indices from 2 to n.

Theorem 2.1 For any circular reversal P, there are integers ¢ and j with 2 <1 <7< n
such that
P A=o(i,j) - can(A)].

Proof:

A circular reversal P must be applied only in the canonical representative of the equiv-
alence class A representing the circular chromosome. There are two possible forms for a
reversal acting on any sequence of A, but both of them produce sequences that belong to
the same equivalence class (Lemma 2.1). As we can choose any of these forms we will pick
the form not including 7; = +1. This way P - A will produce a sequence which is also a
canonical representative. In other words, the canonical representative of the equivalence
class which models the circular chromosome before the reversal is carried to a canonical
representative of the equivalence class which represents the circular chromosome after the
reversal. In this case, in terms of the linear representation, the reversal acts in the canonical
representative like a linear reversal o(i, ). Then,

o(i,j) - (Flmo..omy.oomjomy) = (FL mo . Ty T Ty
with 2 <4 < j < n. This comes from the definition of linear reversal. As the right sequence
is canonical we have

0(i,7) - can(A) = can(P - A)

from where

[0(i,7) - can(A)] = [can(P - A)] = P - A.

O
We will see now that there is an isomorphism between reversals acting on circular
chromosomes and reversals acting on linear chromosomes. To prove this, we will initially
define two bijections. Recall that S,, is the set of all signed linear permutations on n
elements. Let R,, be the set of all linear reversals on n elements, and S}, R{, the analogous
sets for the circular case. Define
@ : Sﬁb — Sn—1

so that
©(A) = take can(A), remove + 1, subtract 1 from the others
and
0 : RTCZ — Rn—l
so that

0(P) =o(i—1,j-1)
where P = p°(4,7),2 <i<j <n.

We enunciate the result.

11



Theorem 2.2 Given the two bijections ¢ and 6 defined above, we have
p(P-A)=0(P)- o(4)

Proof:
First we have

o(P - A) = take can(P - A), remove + 1, subtract 1 from the others
Let (by Theorem 2.1) P = ¢°(4,7), with 2 < i < j < n, and A = [r]|, where m; = +1. Then

o(P - A) = take o(4,j) - , remove + 1, subtract 1 from the others
On the other side, since can(A) = 7, we have

¢(A) = take 7, remove + 1, subtract 1 from the others
and
0(P) =o(i—1,j—1)

Then we have the result, because (P) will act on the same elements as (4, 7).

Note that | S¢ |=| S, 1 |= 2" (n — 1)! and | RS |=| R,_1 |= ((n — 1)n)/2.
From Theorem 2.2 we have immediately

Corollary 2.1 Given any two classes A and B modeling two circular chromosomes, and
the bijection ¢ defined above,

d°(A, B) = d(¢(A), ¢(B))

From Corollary 2.1 we can derive an algorithm to the problem of signed circular chromo-
somes. Basically it consists in running any algorithm solving the problem of signed linear
chromosomes, taking as inputs two permutations, obtained from applying the bijection ¢
in the two classes representing the circular chromosomes.

In particular, if we take the KST algorithm, the complexity of the algorithm is O(n?)
(to find out the input sequences costs O(n) and the KST algorithm has complexity O(n?)),
where n is the number of genes blocks of the circular chromosomes.

We can also obtain the circular reversals used, just applying the inverse of 6 on each
step of the algorithm for the linear chromosome. It does not affect the complexity of the
above algorithm because it takes O(1).

3 Relating circular chromosomes to linear chromosomes of

the same size

In the previous section we saw that there is a distance preserving correspondence between
circular chromosomes and linear chromosomes of size one unit smaller. Here we will derive
similar results for circular and linear chromosomes of the same size.

12



First of all, we would like to know what is the relation between d(7, o) and d°([n], [o])
for any 7 and o. As we will see in Theorem 3.1, d°([n], [¢]) < d(m, o). Before this, we need
three technical lemmas.

Lemma 3.1 Given two linear permutations o and w, such that o = q -7 where ¢ =1 or s,
then for every reversal o there is a reversal o' such that o-m ~ o' - 0.

Proof:
Let m = (my ... m,).
We have two possibilities for gq.

e Suppose 0 =r -7 = (moms ... 1) and o = o(i,7) so that
o(i,7) ™= (T ... T AT .. . TTj41...Tp)
We have three cases.
l.i=1,75=mn:
o(l,n) -m=(Tp...T1)
In this case p = s. Take ¢’ = s also. We have
0 T=8 T~T~O~S-0=0" 0

2. 1 =1,7 < n: In this case

o(l,j) -m=(Tj...TiTj41...7p).

Then:

o(jy,m—1)-0=(mom3 ... Wj_1TjTp ... Tjy171)

s-0(jyn—1)-0=(T1Tjqt1...T,Tj ... T3T2)

Pt g o(g,m—1)-0=(Tj... T3ToT1Tjq1...Tn)
o(l,j) -w=r""7* 5. 0(jin = 1) -0
Therefore, taking o' = o(j,n — 1) we have
o-m~o -o.

3. 1> 1,75 < n: In this case

0(6,7) - m = (1 ... T1Tj .. . TTjp1 ... Tp).
Then:
o(it—1,j—1)-0=(mom3 ... Tj...T... TpT1)
r_l-g(i— L,j—1)-0=(mmms... M 1T ... Ti...Ty)
o(i,j) - m=r"-pli-1,j-1)-0
Therefore, taking o' = (i — 1,7 — 1) we have

o-m~o 0.

13



e Suppose 0 = s -7 = (T, ...71) and ¢ = p(i,7) so that
o(1,7) ™= (T ... T AT .. . TTj41...Tp)

Then:
oln+1—jn+1—i)-0=Tpy.. TjpTi...TjTi—1...7T1)
scon+1l—jgn+1—i)-0=(m ..M 1Tj...TiTjq1...Tn)
o(i,j) - m=s-on+1—jn+1—-4) -0

Therefore, taking o’ = o(n +1 — j,n + 1 — i), we have
o-m~o -o.
O

Lemma 3.2 Given two linear permutations m and o, such that ™ ~ o then for every reversal
o there is a reversal o' such that o- 7~ o - 0.

Proof:
Take o =qy-qy_1-...-q1 -7, where v >0, and ¢; =r or s, for 1 <7 < w.
This proof will be made by induction on v.

e v =0: just make o' = p

e v > 0: Take
UIZ%fl'---'QrW

Given p, we want to obtain ¢’ such that
0w~ o

By the induction hiphotesis, we have
o-m~g" o

But, 0 = ¢, - 0’ and then, using Lemma 3.1, there is o’ such that
oo~ o

Then,
Q'WNQI'O'

Lemma 3.3 Given a permutation © and a reversal g, then
[o-m] =P - [r]

where P = I, the identity transformation, or P is a circular reversal.

14



Proof:
Let o be the canonical representative of [r]:

w ~ o = can([n])
Lemma 3.2 says that given p there is ¢’ such that
o-m~o o,

hence
lo- 7] =[d" 0]
But o' = p(i,7) with 1 <i < j < n. Then we have two cases:

1. i=7@®1. Then, ¢’ = s and
lo-m] =[s-0] =[o] = I[n],
so P = I works in this case.
2. 1 # j @ 1. Because o is canonical,
[Q(%]) : [U]] = Qc(iaj) : [ﬂ—]
hence P = p°(i,j) works in this case.

O
Now we show that there are fewer reversals in the circular case than in the linear case
when both chromosomes have the same size.

Theorem 3.1 Given any two permutations m and o,

d(m, o) 2 d*([n], [0])

Proof:
Take t = d(m,0). Then,
Ot 0¢t—1"---"01"T=0
[ot-0t—1-... 01 7] =[0]
Using Lemma 3.3 we have
P -P -...- P [r]=|0]

where P/ is either a circular reversal or the identity. Then,
d*([n], [0]) <t = d(m,0)

a
We note that it is not true that d(m, o) = d([n],[0]), for any 7 and o. It is enough to
take 7 = (—2+4+3+1) and 0 = (+1 + 2+ 3). We have d°([r], [o]) = 1 because d°([7], [0]) =
d(can([r]),can([o])) = 1, where can([7]) = (+1 — 2+ 3). But d(w,0) = 3. To make this
computation, it is sufficient to construct the breakpoint graphs of 7 and o, and use the
formula presented by Hannenhalli and Pevzner [4].
Following we demonstrate another theorem that solves the problem of reversal distance
for signed circular chromosomes.
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Theorem 3.2 Given two circular chromosomes represented by classes A and B we have
d°(A, B) = d(can(A), can(B))

Proof:
First we will show that

d°(A, B) < d(can(A), can(B))

By Theorem 3.1 we know that d(w, o) > d°([n], [o]). In particular, taking 7 = can(A)
and o = can(B), we immediately have the result.
Secondly, we will show that

d°(A, B) > d(can(A), can(B))

To solve the problem of the reversal distance of signed circular chromosome, we use
reversals in the interval [2,n], that act always in the canonical representative sequence.
Considering the linear chromosome can(A), initially, 71 = 41 is in its correct position,
and this is not modified throughout the process. Thus, these reversals supply a series of
reversals for the linear case too.

(]

From Theorem 3.2 we can derive another algorithm for the problem of signed circular
chromosomes that consists in running any algorithm solving the problem of signed linear
chromosomes giving as input the canonical representatives of A and B.

Let us take the two input permutations « and 3, where « is a permutation of the A
class which represents one of the circular chromosomes, and 3 a permutation of the B class
wich represents the other circular chromosome. The canonical representatives are obtained
traversing the two permutations « and f finding the position k of the 1 block. If it has sign
+ we just apply r*~1, and if it has sign — we apply r*~" followed by s.

In particular, if we take the KST algorithm, the complexity of the algorithm is O(n?)
(to find out the canonical representatives costs O(n) and the KST algorithm has complexity
O(n?)), where n is the number of gene blocks of the circular chromosomes.

Finally we prove a theorem that allow us to say that the canonical representatives of
the classes modeling the circular chromosomes provide a minimum distance, among all
permutations belonging to those two classes.

Theorem 3.3 Given any two classes A and B modeling circular chromosomes, we have

d(can(A), can(B)) = IgleifIll {d(m,0)}.

oceB

Proof:
To begin with, notice that we have d(4, B) = d(can(A), can(B)) (from Theorem 3.2).
From Theorem 3.1, we have each value d(r, o) greater than or equal to d°([x], [0]).
O
A question arises here. Which sequences, from the two equivalence classes modeling the
circular chromosomes, lead to a minimum reversal distance? Our results showed that the
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canonical representatives from the classes certainly do. But they are not the only ones. An
example found in an article of Palmer and co-authors [8] did not have the characteristics
of our canonical representatives, but led to a minimum distance. The sequences in that
case were (-8 —7 —6 -5 -4 -3 -2 -1 —11 —10 —9C —9B —9A4) and
(<4 +3 -2 48 +7 -1 =5 —6 —11 +10 +9A4 —9B +9C). If we call
optimal representatives of two classes modeling circular chromosomes, two permutations,
one for each class, that lead to a minimum reversal distance, we would like to know how to
characterize this set of optimal representatives.

From the above results, it can be shown that Corollary 2.1 and Theorem 3.2 are equiv-
alent, in the following sense:

Theorem 3.4 Given two classes A and B modeling two linear chromosomes and the bijec-
tion @ defined above, then

d(p(A), p(B)) = d(can(A), can(B))

4 The reversal diameter of signed chromosomes

The circular reversal diameter, denoted by D¢(n), of the equivalence classes on S,,, with
respect to the circular reversal distance, is the maximum distance between two equivalence
classes. Similarly, the linear reversal diameter, denoted by D(n), of the n element
permutations of the set S,, with respect to the linear reversal distance, is the maximum
distance between two permutations. We show now that the reversal diameter for signed
linear and circular chromosomes are respectively n + 1 and n (except in a few cases). This
corrects a statement from Kececioglu and Sankoff [6] that said that n —2 < D(n) <n — 1.

Now we need some definitions and facts about hurdles and fortresses, as mentioned
earlier. A cycle C is bad when for any reversal ¢ acting on two reality edges of C' we have

e(m,o) =c(o-m, o).

Otherwise, the cycle is good.

Two cycles are interleaving when there are two desire edges, one from each cycle, that
cross. A cycle C' is contained in another cycle D when C and D are not interleaving and
C is contained in at least one desire edge of D.

The following facts will be important in this section:

e [fa bad cycle C does not interleave with and does not contain any other cycle, then C'
forms a hurdle just by itself. We should point out that these are not the only types
of hurdles that can exist in a breakpoint graph, but this will suffice for our purposes.

e In a fortress there is at least one cycle that does not belong to a hurdle. Again, we
point out that this condition is not sufficient to define fortresses.

Theorem 4.1 The reversal diameter of linear chromosomes is

D(n) = max {d(m,0)} =

{n ifn=1o0rn=23

n+1 otherwise
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(CY
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L -2 +2 -1 +1 R
21473
L -2 +2 -1 +1 -4 +4 -3 +3 R

Figure 8: The breakpoint graph for n = 2 e 4 with respect to ip,.

Proof:

We will show two sequences, m, and oy, that give d(m,,0,) = n + 1, for each n. The
construction depends on n being even or odd. All the integers will have 4 sign in our
examples, so we omit them in the proof.

e For n even, n > 2, consider
™ =1(214365...n—4n—-5n—-2n—-3nn-—1)

and
op=t,=(1234... n—1n)

The breakpoint graph for m, with respect to ¢, is formed by exactly one cycle, of size
n + 1, involving all labels. This is a bad cycle and therefore a hurdle. Figure 8 shows
examples of breakpoint graphs for n = 2 and 4 with respect to ¢,.

In this case, using the Hannenhalli and Pevzner formula [4], and by construction of

the breakpoint graph G(m,,0,) of the sequence 7, with respect to ¢y,

d(mp,tn) =(n+1) — 1 +1+0=n+1

e Fornodd,n=2-k+1withk >0

Initially we observe that for n = 1 we have just two permutations with distance 1
between them, so D(1) = 1.

For n = 3 we have from a theorem of Kececioglu and Sankoff [6] that the greedy
algorithm sorts any permutation m with at least one negative element in at most n —1
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L -2 +2 -1 +1 -3 43 -5 4+ -4 +4 R

TR R

L 2 +2 -1 +1 -3 +3 -5 +5 -4 +4 -7 +7 -6 +6 R

2135476

214357698

TR RN 7RSSR

L 2 +2 -1 +1 -4 +4 3 +3 -5 +5 -7 +7 -6 +6 -9 +9 -8 +8 R

Figure 9: The breakpoint graphs for n = 5,7 and 9 with respect to ¢y,.

steps. Then, only the permutations with all elements positive are candidates to have
D(n) = n+ 1. Using this fact and constructing the breakpoint graphs for all possible
sequences with all their elements positive for n = 3, we conclude that d(m3,¢3) < 3.
On the other hand, 73 = (3 2 1) and (3 = (1 2 3) give d(ms3,t3) = 3, so D(3) = 3.

Now we will present sequences m,, such that d(m,,t,) = n + 1 for the other cases of n
odd, n = 2-k+1 with £ > 2, that is, n > 5. We consider now the remainder between
n + 1 and 3. We have three cases:

— remainder = 0: Consider the sequence
(213546879 ---n—6n—Tn—->5n—-3n—4n—-2nn-1)

The breakpoint graph for m, with respect to ¢, with n > 5 is formed by exactly
(n+1)/3 cycles of size 3, with n > 5, constructed one beside the other. These
are bad cycles and therefore hurdles. Figure 9 shows an example of a breakpoint
graph for n = 5 with respect to ¢5.

In this case, using Hannenhalli and Pevzner formula [4], and by construction of
the breakpoint graph G(m,, 0,) of m, with respect to ¢,

d(mp,tn) =(n+1) — (n+1)/3 + (n+1)/3 + 0=n+1
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— remainder = 1: Consider the sequence
(213546 ---n—15n—183n—14n—-12n—-10n—11
n—9n—-T"Tn—-8n—-5n—-6n—-4n—-2n—-3nn-1)

The breakpoint graph for m, with respect to ¢, with n > 9 is formed by exactly
(n —9)/3 cycles of size 3, and 2 cycles of size 5, with n > 9, constructed one
beside the other. These are bad cycles, and therefore hurdles. We note that
the restriction n > 9 does not eliminate any n such that (n + 1) mod 3 = 1,
because n = 9 is the first odd number satisfying this condition. Figure 9 shows
an example of a breakpoint graph for n = 9 with respect to vg.

In this case, using the Hannenhalli and Pevzner formula [4], and by construction
of the breakpoint graph G(m,,o,) of m, with respect to ¢y,

d(mp,tn) =(n+1) — (n—-9)/3+2) + (n—-9)/3+2) + 0=n+1
— remainder = 2: Consider the sequence
(213546 ---n—-11n—-12n—-10n—-8n—-9n—-T"Tn—-5n—=06
n—4n—-2n—-3nn-—1)

The breakpoint graph for 7, with respect to ¢, with n > 5 is formed by exactly
(n—4)/3 cycles of size 3, and 1 cycle of size 5, with n > 5, constructed one beside
the other. These are bad cycles, and so hurdles. We note that the restriction
n > 5 does not eliminate any n such that (n + 1) mod 3 = 2, because n = 7 is
the first odd number satisfying this condition. Figure 9 shows an example of a
breakpoint graph for n = 7 with respect to ¢7.

In this case, using the Hannenhalli and Pevner formula [4], and by construction
of the breakpoint graph G(m,,o,) of m, with respect to ¢y,

d(mp,tn) =(n+1) — (n—4)/3+1) + (n—4)/3+1) + 0=n+1

Then, we proved that D(n) > n+ 1. We yet have to prove that D(n) < n+ 2, to obtain
the wanted result.
We have, by the Hannenhalli and Pevner formula [4],

d(mp,tn) = (N4 1) — c(mp, tn) + h(mn, tn) + (70, tn)

First, we have h(my,, tn) < ¢(my, tr), by definition of h(7my,, ty,). So, if h(my, tn) = c(mp, tn),
then we have d(mp,t,) < (n+ 1) + 1, that is, d(my,,t,) < n+ 2. But if f(m,,t,) = 1, then

necessarily h(mp, 1) < ¢(mp, ty), and then d(my,, 1) < n + 2.
This proves the linear case.

From the bijections defined earlier, we have the following result.
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Lemma 4.1
D(n) = D(n —1)

From this lemma, we have the following theorem showing the circular reversal diameter
of the equivalence classes on S,.

Theorem 4.2 The reversal diameter of circular chromosomes is

n—1 ifn=1,n=2o0rn=4

A€ s n otherwise

B € S¢,

D(n) = max {d°(4,B)} = {

5 Conclusions

In this work, we attempted to start a systematic study of the theory of the reversal dis-
tance problem for signed circular chromosomes. To do this, we gave some contributions,
described as follows. First we formalized circular chromosomes by equivalence classes. This
is interesting because it includes the different forms to visualize a signed circular chromo-
some, obtained by rotations and reflections. We also defined circular reversals using the
known definitions of linear reversals, which allowed to solve the reversal distance problem
of signed circular chromosomes by using polinomial algorithms that solve the reversal dis-
tance problem of signed linear chromosome, giving as input suitable sequences from the
equivalence classes. Besides, we presented some results concerning the linear and circular
chromosomes of the same size. Finally, we determined the signed reversal diameter for lin-
ear (D(n) = n+1) and circular chromosomes (D¢(n) = n), correcting a result of Kececioglu
and Sankoff [6] on the linear reversal diameter D(n).

To finish, a question arising from these studies is which permutations from the equiv-
alence classes lead to a minimum reversal distance, that is, we would like to know how to
characterize precisely the set of optimal representatives.
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