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hesiyAbstra
tA mat
hing 
overed graph is a 
onne
ted graph ea
h edge of whi
h lies in some perfe
tmat
hing. A 
ut of a mat
hing 
overed graph is separating if ea
h of its two 
ontra
tionsyields a mat
hing 
overed graph. A 
ut is tight if ea
h perfe
t mat
hing of the graph
ontains just one edge in the 
ut. Every tight 
ut of a mat
hing 
overed graph isseparating. The 
hara
teristi
 of a nontight separating 
ut is the smallest number ofedges greater than one that some perfe
t mat
hing of the graph has in the 
ut. The
hara
teristi
 of a tight 
ut is de�ned to be equal to 1.We show that the 
hara
teristi
 of every separating 
ut C of a mat
hing 
overedgraph lies in f3; 5;1g. Moreover, if C has 
hara
teristi
 equal to 5 then graph G hasthe Petersen graph as a minor, in a very stri
t sense. In parti
ular, if G is free ofnontrivial tight 
uts then G is the Petersen graph, up to multiple edges.1 Introdu
tionMat
hing theory has had a fast development after Hall and Tutte's Theorems. Hall's the-orem establishes ne
essary and suÆ
ient 
onditions for a bipartite graph to have a perfe
tmat
hing and Tutte's theorem establishes ne
essary and suÆ
ient 
onditions for a generalgraph to have a perfe
t mat
hing. We refer the reader to Lov�asz and Plummer [5℄, Murty [6℄or Lov�asz [4℄.We shall use V (G) and E(G), respe
tively, for the set of verti
es and edges of a graphG. A mat
hing of a graph G is a set of edges that do not have any end in 
ommon. We saythat a mat
hing M of G is perfe
t if every vertex of G is an end of some edge of M . Anedge of a graph G is admissible in G if it lies in some perfe
t mat
hing of G. A graph G ismat
hing 
overed if it is 
onne
ted and ea
h edge is admissible in G.Let G be a mat
hing 
overed graph. For subset X of V (G), r(X) denotes the edge-
utasso
iated with X, that is, the set of edges of G having one end in X and the other in X ;we say that X is a shore of r(X). Sin
e G is 
onne
ted, sets X and X are the only shoresof r(X). Sin
e G has perfe
t mat
hings, the size of sets X and X have the same parity.Cut r(X) is odd or even, depending on the parity of jXj. We reserve the word 
ut to meanan edge-
ut. Cut r(X) is trivial if one of X and X has at most one vertex.�Supported by a 
apes Foundation s
holarship.yPartial support from fapesp and 
npq. Member of pronex 107/97 (m
t/finep).1
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hesiTwo 
uts D1 and D2 of a mat
hing 
overed graph G are mat
hing-equivalent if, for everyperfe
t mat
hing M of G, the number of edges of M in D1 and in D2 
oin
ide.Let C denote r(X). The graph obtained from G by 
ontra
ting set X to a single newvertex x is a C-
ontra
tion of G and is denoted by GfX;xg. If the name of the new vertexis irrelevant we then simply denote the 
ontra
tion by GfXg. Observe that this notationis inspired in the traditional notation G[X℄, used to denote the subgraph of G spanned byset X.Cut C is tight in G if every perfe
t mat
hing of G has pre
isely one edge in C. If G isfree of nontrivial tight 
uts then it is a bra
e if it is bipartite, a bri
k otherwise. If 
ut Cis tight, then every C-
ontra
tion of G is mat
hing 
overed (the 
onverse is not ne
essarilytrue). This property led Lov�asz to de�ne a tight 
ut de
omposition of G to be a 
olle
tionof mat
hing 
overed graphs obtained from the initial 
olle
tion fGg by repeatedly repla
ingea
h member H of the 
olle
tion by the two C-
ontra
tions of H, for any nontrivial tight 
utC of H, until every member of the 
olle
tion is free of nontrivial tight 
uts. A remarkableresult, shown by Lov�asz in [4℄, states that any two tight 
ut de
ompositions of G yieldthe same family of graphs, up to multiple edges. Thus, the number of bri
ks of any tight
ut de
omposition of G is an invariant of the graph and is denoted b(G). Graph G is anear-bri
k if b(G) = 1.Any graph H obtained during the appli
ation of a tight 
ut de
omposition pro
edureto G is a tight 
ut minor of G. More formally, a graph H is tight 
ut minor of a mat
hing
overed graph G if, and only if, either (i) graphH is graph G, or (ii) graph G has a nontrivialtight 
ut C su
h that graph H is a tight 
ut minor of a C-
ontra
tion of G.A barrier B of a mat
hing 
overed graph is a nonempty set of verti
es su
h that the thenumber of odd 
omponents of G � B is equal to the 
ardinality of set B. If B is a barrierof a mat
hing 
overed graph then G�B has no even 
omponents. A barrier B is trivial ifit has at most one vertex.Let B be a nontrivial barrier of G and K be a nontrivial odd 
omponent of G�B, thusr(V (K)) is a nontrivial tight 
ut, namely barrier 
ut. Let fu; vg be a 2-separation of Gthat is not a barrier. Let K be an even 
omponent of G � fu; vg. Then r(K [ fug) andr(K [ fvg) are both tight 
uts of G, namely 2-separation 
uts. Figure 1 shows examplesof these 
uts. These two 
uts are important be
ause of a remarkable result, due to Lov�asz,Edmonds and Pulleyblank, that states that if a mat
hing 
overed graph has a nontrivialtight 
ut then it has a nontrivial tight 
ut that is, either a barrier 
ut, or a 2-separation
ut.
Figure 1: Two spe
ial types of tight 
uts: barrier 
ut and 2-separation-
ut
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Figure 2: Two separating 
uts that do not form a 
ohesive 
olle
tionCut C of G is separating in G if ea
h of its C-
ontra
tions is mat
hing 
overed. Thus,every tight 
ut of G is separating in G. A separating 
ut of G is stri
tly separating if bothC-
ontra
tions of G are non-bipartite.The 
hara
teristi
 of a separating 
ut C of G, denoted �G(C), is the minimum numberof edges that perfe
t mat
hings of G have in C, among all perfe
t mat
hings that have morethan one edge in C. Thus, �G(C) � 3. We extend the de�nition to tight 
uts by de�ningthe 
hara
teristi
 of a tight 
ut to be in�nite. The 
hara
teristi
 of G is the minimum ofthe 
hara
teristi
 of its separating 
uts.Carvalho et al. [2℄ have shown that the 
hara
teristi
 of every mat
hing 
overed graphlies in f3; 5;1g. They have also shown that the only bri
k of 
hara
teristi
 5 is the Petersengraph. We prove herein two generalizations of their result. We state now the �rst of thetwo generalizations:Theorem 1.1The 
hara
teristi
 �G(C) of any separating 
ut C of any near-bri
k G lies in f3; 5;1g.Moreover, if �G(C) = 5 then graph G has a tight 
ut minor P that is the Petersen graph,up to multiple edges, and 
ut C is stri
tly separating in P .We now prepare the statement of the se
ond generalization of the Theorem of Carvalho etal.. The following 
hara
terization of separating 
uts is not diÆ
ult to prove:Lemma 4.1A 
ut C of a mat
hing 
overed graph G is separating if, and only if, every edge of G lies ina perfe
t mat
hing of G that 
ontains pre
isely one edge in C.This result motivates the following de�nition, whi
h will play a 
entral role in thispaper. A 
olle
tion C of 
uts of G is 
ohesive in G if for ea
h edge of G, there exists aperfe
t mat
hing M of G su
h that mat
hing M 
ontains pre
isely one edge in ea
h 
ut ofC. Note that any 
olle
tion of tight 
uts of G is 
ohesive. Note also that every memberof a 
ohesive 
olle
tion of G is separating in G. The 
onverse, however is not ne
essarilytrue: Figure 2 shows an example, due to Carvalho, of two separating 
uts of a mat
hing
overed graph that do not 
onstitute a 
ohesive 
olle
tion. We may now state our se
ondmain result:
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hesiTheorem 1.2The 
hara
teristi
 of any separating 
ut C := r(X) of any mat
hing 
overed graph G liesin f3; 5;1g. Moreover, �G(C) = 5 if, and only if, graph G has a tight 
ut minor H, inwhi
h 
ut C is stri
tly separating, su
h that one of the following two alternatives holds:(i) Either graph H is the Petersen graph, up to multiple edges, or(ii) graph H is not a near-bri
k and there exist two 
uts in H, D1 := rH(Y1) andD2 := rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in G, set Y1 is a subset of X andset Y2 is a subset of X, 
olle
tion fD1;D2; Cg is 
ohesive, 
uts D1 and D2 are notdisjoint, and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersen graph,up to multiple edges.Figure 3 shows an example of alternative (ii) in the statement of Theorem 1.2.
PSfrag repla
ements D2

D1
C

Figure 3: An illustration of alternative (ii) in (1.2)Se
tion 2 
ontains most of the basi
 material that is required, but whi
h may be skippedby the reader that is quite familiar with the subje
t. Se
tion 3 
ontains results 
on
erningrobust 
uts, whi
h are essential to the proof of main results of this paper. Se
tion 4 intro-du
es important results 
on
erning 
ohesive 
olle
tions. Se
tion 5 
ontains an importantresult, whi
h is 
alled the Theorem on Odd Wheels. The proof of Theorem 1.1 is presentedin Se
tion 6. Finally, Se
tion 7 
ontains a proof of Theorem 1.2.2 Basi
sIn this se
tion, we list some elementary or well-known results about mat
hing 
overedgraphs.Lemma 2.1Let C := r(X) be a separating 
ut of a mat
hing 
overed graph G. Then, the C-
ontra
tionGfXg is bipartite if, and only if, indu
ed subgraph G[X℄ of G is also bipartite. Moreover,if G[X℄ is bipartite, the 
ardinality of two parts of the bipartition di�er by one unit.



Separating 
uts on mat
hing 
overed graphs 5Proof: Assume that GfXg is bipartite. Graph G[X℄ is a subgraph of GfXg. Thus G[X℄ isbipartite and the assertion holds.Suppose that G[X℄ is bipartite. Let (A;B) be a bipartition of G[X℄. Cut C is aseparating 
ut of G. Thus, for ea
h edge of G there exists a perfe
t mat
hing of G thathas only one edge in C. The restri
tion of this mat
hing to edges of G[X℄ is a mat
hingwith exa
tly one single vertex. Therefore, jjAj � jBjj = 1. Thus, the moreover part follows.Adjust the notation so that jBj = jAj+ 1.Let A0 := A [ fxg, when
e jA0j = jBj. Let EA := C \ r(A). Assume that GfXg isnot bipartite. Thus, the 
ontra
ted vertex is adja
ent to verti
es of A, that is EA 6= ;.Let e 2 EA. Graph GfXg is mat
hing 
overed be
ause C is a separating 
ut. Thus, thereexists a perfe
t mat
hing of GfXg that in
ludes e. Both ends of e are in A0, thereforethere exist jA0j � 2 verti
es of A0 to mat
h with jBj verti
es of B. But jA0j = jBj and B isan independent set, thus su
h mat
hing, that uses e, does not exist. This 
ontradi
ts theadmissibility of edge e. Therefore, GfXg is bipartite. 2Corollary 2.2Let C be a separating 
ut of a mat
hing 
overed graph G. If one of the C-
ontra
tions ofG is bipartite then 
ut C is tight in G.Proof: Let X be a shore of C. Adjust the notation so that GfXg be bipartite. By (2.1)graph G[X℄ is bipartite. Let (A;B) be a bipartition of G[X℄, by (2.1) jjAj � jBjj = 1.Adjust the notation so that jAj = jBj � 1.Graph GfXg is bipartite and the ends of edges of C, di�erent from the 
ontra
tedvertex, lie in B. Therefore, B is a barrier to graph G with G[X ℄ as an odd 
omponent ofG�B, thus 
ut C is a barrier 
ut. Therefore, 
ut C is a tight 
ut of G. 2Corollary 2.3In a bipartite graph G, a 
ut is tight if, and only if, it is separating in G.Proof: Let C := r(X) be an odd 
ut of G. If C is a tight 
ut then, as we have alreadyseen, it is separating. So, we 
an assume that C is a separating 
ut of G. Graph G[X℄ isbipartite, thus, by (2.1), graph GfXg is also bipartite. By (2.2), 
ut C is tight in G. 2Lemma 2.4A mat
hing 
overed graph G is bipartite if, and only if, it has b(G) = 0.Proof: Let G be a mat
hing 
overed bipartite graph. Let C := r(X) be a separating 
ut.Graphs G[X℄ and G[X ℄ are both bipartite. Thus, by (2.1), GfXg and GfXg are bothbipartite. By (2.2), 
ut C is a tight 
ut of G. Thus, b(G) = b(GfXg) + b(GfXg). Byindu
tion hypothesis, b(GfXg) = 0 and b(GfXg) = 0. Therefore b(G) = 0.Assume now, that b(G) = 0. Any tight 
ut de
omposition yields the same list of bri
ksand bra
es and b(G) is the sum of b(Gi) for ea
h Gi in the list. We 
on
lude that any tight
ut de
omposition of G has only bra
es. Let L be a tight 
ut de
omposition of G, up tomultiple edges.
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hesiThe proof will be by indu
tion on the size of L. If L = fGg then G itself is a bra
e andthe assertion holds. Thus, we 
an assume that jLj � 2.Let C be a tight 
ut of G. Let GfXg and GfXg be the C-
ontra
tions of G. Let LXand LX be the list of bri
ks and bra
es, up to multiple edges, of any tight 
ut de
ompositionof GfXg and GfXg, respe
tively. List L = LX [ LX , therefore LX and LX are 
omposedonly bra
es, when
e b(GfXg) = b(GfXg) = 0.By indu
tion hypothesis, GfXg and GfXg are bipartite. By (2.1), graphs G[X℄ andG[X ℄ are bipartite. Let (XA;XB) a bipartition of G[X℄ and (XA;XB) a bipartition ofG[X ℄. By (2.1), jjXAj � jXB jj = 1 and ����XA��� ��XB���� = 1. Adjust the notation so thatjXAj = jXB j � 1 and ��XA�� = ��XB��+ 1 (see Figure 4).PSfrag repla
ements XA
XB

XA
XBCFigure 4: Graph G and 
ut C.Graph GfXg is bipartite. Thus ea
h edge of C has one end in the 
ontra
ted vertexand the other in XB . Therefore, there are no edges of C in r(XA). By symmetry, thereare no edges of C in r(XB). Therefore, the edges of C have one end in XB and the othern XA and G is bipartite. 2Lemma 2.5A non-bipartite mat
hing 
overed graph G is a near-bri
k if, and only if, graph G is free ofstri
tly separating tight 
uts.Proof: Suppose that G is a near-bri
k. Let C be a nontrivial tight 
ut of G. Let G1 andG2 be the two C-
ontra
tions of G. Thus, b(G) = b(G1) + b(G2). By hypothesis, b(G) = 1,therefore, either b(G1) = 1 and b(G2) = 0, or the 
ontrary. Adjust the notation so thatb(G1) = 1. By (2.4) G2 is a bipartite graph and then C is not a stri
tly separating tight 
ut.This result holds for any tight 
ut of G. We 
on
lude that G is free of stri
tly separatingtight 
uts.Now, assume that G is free of stri
tly separating tight 
uts. Thus, for any tight 
ut ofG one of the C-
ontra
tions is bipartite. If G has no nontrivial tight 
uts then it is a bri
k,when
e a near-bri
k. So, we 
an assume that G has a nontrivial tight 
ut C. Let G1 andG2 be the C-
ontra
tions. Adjust the notation so that G2 is bipartite. Thus,b(G) = b(G1) + b(G2) = b(G1) + 0 = b(G1):



Separating 
uts on mat
hing 
overed graphs 7Graph G1 is free of nontrivial stri
tly separating tight 
uts. Thus, by indu
tion hypothesisb(G1) = 1, when
e b(G) = 1 and the assertion holds. 2Corollary 2.6Graph G is a near bri
k if, and only if, for ea
h nontrivial tight 
ut of G one of the C-
ontra
tions is a bipartite graph and the other is a near-bri
k. 2The Petersen graph has a spe
ial role in theory of mat
hing 
overed graphs. If C := r(X)is a separating 
ut of the Petersen graph, then graphs GfXg and GfXg are odd wheels andG[X℄ and G[X ℄ are pentagons. Moreover, these two pentagons are joined by that spe
ialway (see Figure 5). Any separating 
ut of the Petersen graph has this stru
ture be
ause ofthe automorphisms of this graph.PSfrag repla
ements 00102030 40
000
400300

200100
CFigure 5: A separating 
ut in the Petersen graph.Lemma 2.7Let G be a mat
hing 
overed graph, D be a non-tight 
ut of G. If a D-
ontra
tion H of Gis the Petersen graph, up to multiple edges, then every nontrivial separating 
ut of H is aseparating 
ut of G with 
hara
teristi
 three in G.Proof: Let Y be a shore of D. Adjust the notation so that H := GfY ; yg. Graph H is thePetersen graph, up to multiple edges. Therefore, the subja
ent graph of H is 
ubi
, when
e,y has three adja
ent in H. We 
on
lude that any perfe
t mat
hing of G has at most threeedges in D.Let C := r(X) be a separating 
ut of H. Cut C separates two pentagons in H. Adjustthe notation so that the C := f00; 10; 20; 30; 40g and the 
ontra
ted vertex of H be vertex 00(see Figure 5). In order to prove that C is a separating 
ut of G we must �nd for ea
h edgeof G a perfe
t mat
hing with one edge in C.
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hesiLet H 0 be the other D-
ontra
tion of G and let e be an edge of H 0. There exists aperfe
t mat
hing of G that uses e. Let Me be this mat
hing. This mat
hing has at mostthree edges in D. If jMe \Dj = 3 then(Me \E(H 0)) [ f(20; 30); (100; 200); (300; 400)gis a perfe
t mat
hing of G that uses e and has only one edge in C.Suppose now, that jMe \Dj = 1. Let f be the edge of Me in D. There exists twopossibilities to edge f , up to automorphisms, and in ea
h 
ase we have found a perfe
tmat
hing with one edge in C.l
lf = (00; 000) ) (Me \E(H 0)) [ f(10; 20); (30; 40); (100; 200); (300; 400)gf = (00; 10) ) (Me \E(H 0)) [ f(20; 400); (30; 40); (000; 100); (200; 300)gLet f1 := (00; 000), f2 := (00; 10) and f3 := (00; 40). Ea
h of these edges have adja
entedges in H that are admissible edges in G. Let e be an edge that is adja
ent to some fi.There exists a perfe
t mat
hing Me of G that uses e. Cut D is an odd 
ut, therefore, ea
hperfe
t mat
hing has one or three edges in D. Mat
hing Me 
an not have three edges inC be
ause one of these edges would be adja
ent to e, 
ontradi
ting the fa
t of Me being amat
hing. Therefore, we 
on
lude that jMe \Dj = 1. So, for ea
h fi there exist a perfe
tmat
hing of G that uses fi and only fi. Let Mi be the restri
tion of su
h mat
hing to edgesof E(H 0).Let e be an edge of H. Cut C is a separating 
ut of H. Therefore, there exists a perfe
tmat
hing of H that uses e and has only one edge in C. By 
onstru
tion, this mat
hing hasonly one edge in D. Let fi be this edge. Thus, Mi [Me is a perfe
t mat
hing of G thatuses e and has only one edge in C. We 
on
lude that C is a separating 
ut of G.Now, to 
omplete the proof we need to �nd a perfe
t mat
hing of G that has three edgesin C. By hypothesis, D is a nontight 
ut, therefore, there exists a perfe
t mat
hing M ofG with three edges in D. Thus,(M \E(H 0)) [ f(20; 400); (30; 100); (200; 300)gis a perfe
t mat
hing of G with three edges in C. Therefore, �(C) = 3. 2Lemma 2.8Let G be the simple graph obtained from the Petersen graph P by adding an edge e. LetC be a nontrivial separating 
ut of G su
h that C � e is separating in G � e. Then, the
hara
teristi
 of C in G is equal to three.Proof: In order to show that �(C) = 3 it is enough to �nd a perfe
t mat
hing of G withthree edges in C. Ea
h separating 
ut of G�e separates two pentagons. Let C�e := r(X)be a separating 
ut of G� e. Adjust the notation so that the X := f00; 10; 20; 30; 40g and the
ontra
ted vertex of D be vertex 00 (see Figure 5).
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uts on mat
hing 
overed graphs 9Edge e is not multiple, thus it joins two non-
onse
utive verti
es of G. Suppose �rst thate 62 C. By automorphisms of Petersen graph, we 
an adjust the notation so that e = (10; 40).Thus, M := f(00; 000); (10; 40); (20; 400); (30; 100); (200; 300)gis a perfe
t mat
hing of G with three edges in C.Now, we 
an assume that e 2 C. Again by the automorphisms of Petersen graph, we
an 
onsider e = (00; 200). Thus,M := f(00; 200); (10; 20); (30; 100); (40; 300); (000; 400)gis a perfe
t mat
hing of G with three edges in C. Therefore, the assertion follows. 2Lemma 2.9For any maximal barrier B of a mat
hing 
overed graph G, every bipartite (odd) 
omponentof G�B is trivial.Proof: Let B be a maximal barrier of G. Let K1; : : : ;Kr be the odd 
omponents of G�B.Assume, to the 
ontrary, that there exists Ki su
h that G[Ki℄ is bipartite. Let (Ai; Bi) abipartition of Ki. Cut r(Ki) is a separating 
ut, thus, by (2.1), jjAij � jBijj = 1. Adjustthe notation so that jAij = jBij+ 1. Thus, r(Ai) = r(Bi) [r(Ki). Therefore, B [Bi is abarrier to G that 
ontradi
ts the maximality of B 2Let G be a mat
hing 
overed graph and let e and f be any two edges of G. Then we say edepends on f , or e implies f , if every perfe
t mat
hing that 
ontains e also 
ontains f . Wewrite e) f to indi
ate that e depends on f . Relation ) is re
exive and transitive.Two edges e and f are mutually dependent if e ) f , and f ) e. In this 
ase we writee, f . Clearly , is an equivalen
e relation on E(G). In general, an equivalen
e 
lass 
anbe arbitrarily large. However, in a 3-edge-
onne
ted near-bri
k, equivalen
e 
lasses have
ardinality at most two as shown in the following lemma.Lemma 2.10For every 3-edge-
onne
ted near-bri
k G, every equivalen
e 
lass Q with respe
t to thedependen
e relation 
ontains at most two edges, with equality only if graph G � Q isbipartite.Proof: Graph G is non-bipartite mat
hing 
overed graph, thus if jQj = 1, graph G � Q isnon-bipartite then assertion holds. Assume that jQj > 2 . Let e, f and g be three edges ofQ. Ea
h of these three edges imply the other two. Let B be a maximal barrier of G � fsu
h that both ends of e are in B and the two ends of f are in di�erent 
omponents ofG� f �B.Suppose that there exists another edge e0 whi
h has both its ends in B. Let M be aperfe
t mat
hing in G that 
ontains edge e0. By 
ounting, we 
on
lude that f 2 M ande 62 M . But this 
ontradi
ts the hypothesis that e , f . Therefore, e is the only edgespanned by B.
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hesiSuppose now that G�f�B has at least one nontrivial 
omponent. LetK be a nontrivial
omponent of G�f�B. Barrier B is maximal, thus by (2.9), K is non bipartite. Thus, 
utC := r(K) is a separating 
ut of G with both its CK-
ontra
tions non-bipartite. Therefore,by (2.6), CK 
an not be a tight 
ut. Let M be a perfe
t mat
hing of G that has more thanone edge in CK . By 
ounting,jM \ CK j = 3; f 2M and e 62M:Again 
ontradi
ts the hypothesis of e, f .Therefore, G � e � f is bipartite and E n fe; fg is a 
ut of G. By analogy, E n fe; ggis also a 
ut of G. The symmetri
 di�eren
e of these two 
uts is ff; gg. Moreover, thesymmetri
 di�eren
e of any two 
uts is also a 
ut. Therefore, ff; gg is a 
ut of G. But thisis a 
ontradi
tion be
ause G is 3-edge-
onne
ted. Therefore, jQj � 2. Moreover, if jQj = 2then G�Q is bipartite. 2Lemma 2.11Let G be a mat
hing 
overed graph, C := r(X) a separating 
ut of G. If ea
h C-
ontra
tionof G is bi
riti
al then graph G is bi
riti
al. Moreover, if ea
h C-
ontra
tion of G is a bri
kthen, G is a bri
k if, and only if, subgraph G[C℄ of G spanned by C has a mat
hing withat least three edges.Proof: Let G1 := GfX;xg and G2 := fX ;xg be the two C-
ontra
tions of G. We will showthat G is bi
riti
al by removal of any two verti
es, say u and v, of G and �nding a perfe
tmat
hing to G� u� v. Consider �rst the 
ase in whi
h both u and v are verti
es of X. Byhypothesis, graph G1 is bi
riti
al, therefore, G1 � fu; vg has a perfe
t mat
hing M1. Let ebe the edge of M1 \C. Graph G2 is mat
hing 
overed, thus there exists a mat
hing M2 inG2 that uses e. Therefore, M1 [M2 is a perfe
t mat
hing of G.Consider now the 
ase in whi
h u 2 X and v 2 X . Graph G1 � u � x has perfe
tmat
hings. Let M1 be a mat
hing of G1 � u � x. This mat
hing has no edges in C.Analoguely, there is a perfe
t mat
hing, M2, to G2 � v � x without edges in C. Thus,M1 [M2 is a perfe
t mat
hing to G� u� v. Therefore, G is bi
riti
al.Now, we will show the se
ond part of the lemma. Suppose that G is a bri
k and 
utC is a separating 
ut of G, thus 
ut C 
an not be tight. Therefore, there exist at leastone perfe
t mat
hing of G with at least three edges in C. In parti
ular, the subgraph G[C℄spanned by C has a mat
hing with at least three edges.Now, suppose that G[C℄ has a mat
hing with at least three edges. Assume, to the
ontrary, that G has a nontrivial tight 
ut. Thus, graph G has a nontrivial tight 
ut thatis either a barrier 
ut or a 2-separation 
ut. Graph G is bi
riti
al, thus this tight 
ut mustbe a 2-separation 
ut. Let fu; vg be this 2-separation and let K1 and K2 be the (even)
omponents of G� fu; vg.Suppose �rst that u and v lie in X. If K1 � X then fu; vg is a 2-separation of G1(see Figure 6(a)) 
ontradi
ting the hypothesis that G1 is a bri
k. Otherwise, that is, ifKi \X 6= ; and Ki \X 6= ; for 1 � i � 2 then graph G2 has a vertex 
ut (see Figure 6(b)),a 
ontradi
tion with the hypothesis of G2 is mat
hing 
overed.
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PSfrag repla
ements XX(a) PSfrag repla
ements X X(b)Figure 6: Verti
es of the 2-separation lie in X.Now, we may assume that u 2 X and v 2 X . Suppose that Ki \X 6= ; for 1 � i � 2.In this 
ase, fu; xg is a 2-separation of G1 (see Figure 7(a)) a 
ontradi
tion be
ause, byhypothesis, this graph is a bri
k. Assume then that K2 \ X = ; and K1 \ X = ;. Inthis 
ase 
ut C is a tight 
ut of this 2-separation (see �gure 7(b)). By hypothesis, thereexists a perfe
t mat
hing with more than one edge in C and, again we have a 
ontradi
tion.Therefore, as we have asserted graph G is a bri
k.

PSfrag repla
ements X X(a) PSfrag repla
ements X X(b)Figure 7: One vertex of the 2-separation lies in X and the other lies in X. 2The �rst part of the next Lemma was proved in [1℄. The last part follows trivially of thefa
t that G, in that 
ase, is isomorphi
 to C4 with multiple edges.Lemma 2.12Let G be a bra
e with at least four verti
es. If G has at least six verti
es then every edgeis removable in G. If G has just four verti
es and is free of verti
es of degree two then, forevery vertex v of G, at most one edge of r(v) is not removable in G.
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hesi3 Robust Cuts and b-removable edgesRobust 
uts have been de�ned and used in [2℄ and in [3℄. We 
ite here the fundamentalresults we need involving robust 
uts. We remark that most of these results were proved inthose two papers.Let G be a mat
hing 
overed graph. A 
ut C of G is robust in G if 
ut C is not tightin G and ea
h C-
ontra
tion of G is a near-bri
k.Lemma 3.1Let G be a mat
hing 
overed graph, D := r(Y ) a separating 
ut of G that is either tightor robust in G, H := GfY ; yg a D-
ontra
tion of G, C a tight 
ut of H. Then, either (i)
ut C is tight in G or (ii) 
uts C and D are mat
hing-equivalent in G, 
ut C is robust in Gand the C-
ontra
tion of H that 
ontains vertex y is bipartite.Proof: Let X be the shore of 
ut C in H that 
ontains vertex y. Let X denote the othershore of C in H. Let H1 := HfX;xg, H2 := HfX ;xg. (See Figure 8).PSfrag repla
ements
XX XX

YY
D D C CC y xx

G H1 H2Figure 8: An illustration for Lemma 3.1Consider �rst the 
ase in whi
h graph H is not a near-bri
k. By de�nition of robust 
ut, itfollows that 
ut D is not robust. By hypothesis, 
ut D is either tight or robust in G. Wededu
e that 
ut D is tight in G. By hypothesis, 
ut C is tight in H, therefore it is alsotight in G. The assertion thus holds in this 
ase.We may thus assume that graph H is a near-bri
k. By hypothesis, 
ut C is tight in H.Therefore, one of H1 and H2 is bipartite, the other is a near-bri
k. Observe that H2 is aC-
ontra
tion of G. If H2 is bipartite then 
ut C is tight in G, and the assertion holds inthis 
ase.We may thus assume that graph H1 is bipartite. Cut C is tight in H, thus b(H2) =b(H) = 1, we 
on
lude that H2 is a near-bri
k. If verti
es y and x lie in the same part ofH1 then the other part of H1 is a barrier of G, when
e 
uts C and D are both tight in G,the assertion holds in this 
ase. Alternatively, if verti
es y and x lie in distin
t parts of H1then 
uts C and D are mat
hing-equivalent in G. If D is tight in G then so too is C. Sowe 
an assume that D is robust. Therefore, the two D-
ontra
tions of G are near-bri
ks.Thus, the other C-
ontra
tion of G that in
ludes 
ut D is a near-bri
k too. So, 
ut C is
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ut and both its C-
ontra
tions are near-bri
ks, when
e C is a robust 
ut. Inboth alternatives the assertion holds. 2Lemma 3.2 (See [2℄, Theorem 4.3)If a mat
hing 
overed graph has a robust 
ut then it is a near-bri
k. 2Let G be a mat
hing 
overed graph, let C and D denote two (not ne
essarily distin
t) 
utsof G su
h that jM \ C j � jM \D j ; for every perfe
t mat
hing M of G: (1)We then say that 
ut C pre
edes 
ut D, and denote this fa
t by writing C � D. In addition,if equality holds in (1) for ea
h perfe
t mat
hing M of G then we say that 
uts C and Dare mat
hing-equivalent. If equality does not hold in (1) for some perfe
t mat
hing M of Gthen we say that 
ut C stri
tly pre
edes 
ut D and denote this fa
t by writing C � D. Forany 
olle
tion C of 
uts of G, a 
ut C of C is minimal with respe
t to � in C if no 
ut D inC stri
tly pre
edes C in G.Lemma 3.3 (See [3℄, Corollary 2.4)Let C be a separating 
ut of a bri
k G, let M0 be a perfe
t mat
hing of G that 
ontainsmore than one edge in C. Let C be the 
olle
tion of separating 
uts D of G su
h thatjM0 \D j > 1 and D � C. Then, every 
ut of C that is minimal with respe
t to the relationof pre
eden
e is robust in G. 2A mat
hing 
overed graph G is solid if it is free of stri
tly separating 
uts. An edge e of amat
hing 
overed graph G is removable in G if graph G � e is also mat
hing 
overed. Anedge e of G is b-removable in G if it is removable in G and b(G� e) = b(G).Lemma 3.4 (See the proof of Theorem 2.23 in [2℄)Let e be a removable edge of a mat
hing 
overed graph G, let C be a 
ut of G su
h thatC � e is stri
tly separating in G� e. Let C be the 
olle
tion of those 
uts D of G su
h thatD� e is stri
tly separating in G� e and D � C. Then, every 
ut of C that is minimal withrespe
t to the relation of pre
eden
e is stri
tly separating in G.Proof: Certainly 
ut C lies in 
olle
tion C. Let D be a 
ut in C that is minimal with respe
tto the relation of pre
eden
e. Ea
h (D�e)-
ontra
tion of G�e is non-bipartite. Therefore,ea
h D-
ontra
tion of G is non-bipartite. If 
ut D is separating in G then it is stri
tlyseparating.Assume, to the 
ontrary, that 
ut D is not separating in G. Then, at least one of theD-
ontra
tions of G is not mat
hing 
overed. Let X be a shore of D and H := GfX;xg bea D-
ontra
tion of G that is not mat
hing 
overed.By hypothesis, 
ut D� e is separating in G� e. Graph H � e, a (D� e)-
ontra
tion ofG� e, is thus mat
hing 
overed. We 
on
lude that edge e lies in H but is not admissible inH. Let B denote a maximal barrier of graph H that 
ontains both ends of edge e. If vertexx does not lie in B then B is a barrier of G that spans edge e, when
e e is not admissiblein G, a 
ontradi
tion. We 
on
lude that vertex x lies in B.
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hesiLet K denote the set of (odd) 
omponents of H � e�B. For ea
h 
omponent K in K,let CK denote 
ut r(V (K)) of G.By hypothesis, 
ut D � e, a member of 
olle
tion C, is stri
tly separating in G � e.This observation has two important impli
ations. The �rst is that graph H � e is non-bipartite, when
e at least one 
omponent in K, say L, is nontrivial, therefore the CL-
ontra
tion GfV (L)g is non-bipartite, by (2.9). The other impli
ation is that the CL-
ontra
tion (G � e)fV (L)g of G � e is non-bipartite, by (2.1). We 
on
lude that bothCL-
ontra
tions of G� e are non-bipartite.We now show that 
ut CL is separating in G � e and also that CL � D, thereby
ontradi
ting the de�nition of D. For this, observe that for every perfe
t mat
hing M ofG, the number of edges of M in 
ut rH(B) may be expressed in two ways:jM \D j+ jBj � 1� 2 jM \ feg j = XK2K jM \ CK j � jM \ CL j+ jKj � 1:Sin
e jKj = jBj, it follows thatjM \D j � 2 jM \ feg j � jM \CL j :From the equation above, it follows that for every perfe
t mat
hing M of G, jM \ CL j �jM \D j, with equality only if edge e does not lie in M . Sin
e edge e is admissible in G, itfollows that CL � D.Let f be any edge of G � e. Cut D � e is separating in G � e, therefore there exists aperfe
t mat
hingMf ofG�e that 
ontains edge f and just one edge inD. From the equationabove it then follows that mat
hingMf 
ontains just one edge in CL. This 
on
lusion holdsfor ea
h edge f of G� e, therefore 
ut CL is separating in G� e. Sin
e both CL-
ontra
tionof G� e are non-bipartite, 
ut CL is stri
tly separating in G� e.In sum, 
ut CL stri
tly pre
edes 
ut D in G, 
ut CL is stri
tly separating in G � e.This 
on
lusion 
ontradi
ts the minimality of 
ut D in C. As asserted, 
ut D is stri
tlyseparating in G. 2Corollary 3.5If a near-bri
k G is solid then every removable edge of G is b-removable in G.Proof: Let e denote a removable edge of G.We observe �rst that graph G� e is not bipartite. For if G� e is bipartite, then eitheredge e has both ends in the same part of G� e or graph G itself is bipartite. If edge e hasboth ends in the same part of G � e then it is not admissible in G; if graph G is bipartitethen it is not a near-bri
k. In both alternatives we derive a 
ontradi
tion. Indeed, graphG� e is non-bipartite.Assume, to the 
ontrary, that edge e is not b-removable inG. Then, graphG�e is neitherbipartite nor a near-bri
k, when
e it has a stri
tly separating tight 
ut, by (2.5). Thereforeby previous lemma, graph G also has a stri
tly separating tight 
ut. This 
ontradi
ts thehypothesis that G is solid. 2
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tions of CutsIn this se
tion we list some important properties of 
ohesive 
olle
tions of 
uts of a mat
hing
overed graph. As we have de�ned, a 
olle
tion of 
uts C is 
ohesive if every edge of G liesin a perfe
t mat
hing of G that 
ontains pre
isely one edge in ea
h 
ut in C. The followingresult 
hara
terizes separating 
uts.Lemma 4.1A 
ut C of a mat
hing 
overed graph G is separating if, and only if, every edge of G lies ina perfe
t mat
hing of G that 
ontains pre
isely one edge in C.Corollary 4.2Every tight 
ut of a mat
hing 
overed graph is separating.Corollary 4.3A 
ut C of a mat
hing 
overed graph G is separating, if, and only if, 
olle
tion fCg is
ohesive.Corollary 4.4For ea
h 
ohesive 
olle
tion C of a mat
hing 
overed graph G and every tight 
ut C of G,
olle
tion fCg [ C is also 
ohesive.Two 
uts r(X) and r(Y ) of a graph G 
ross if ea
h of X \ Y , X \ Y , X \ Y and X \ Yis non-null. A 
olle
tion of 
uts is laminar if no two of its 
uts 
ross.Lemma 4.5For any 
ohesive laminar 
olle
tion fC;Dg of 
uts of a mat
hing 
overed graph G, letH denote the D-
ontra
tion of G that 
ontains 
ut C. Then, 
ut C is separating in H.Moreover, �G(C) � �H(C), with equality if 
ut D is tight in G.Proof: Colle
tion fC;Dg is 
ohesive. Thus, for ea
h edge of G there exists a perfe
t mat
hingwith one edge in C and with one edge in D. The restri
tion of this mat
hing to edges of His a perfe
t mat
hing in H with one edge in C. In parti
ular, for ea
h edge of H there existsa perfe
t mat
hing with one edge in C. Therefore, C is a separating 
ut in H. Moreover,ea
h perfe
t mat
hing of H has one edge in D and 
an be expanded to a perfe
t mat
hingof G. Therefore �G(C) � �H(C).If D is a tight 
ut then the restri
tion of ea
h perfe
t mat
hing of G to edges of H is aperfe
t mat
hing of H. Therefore, the set of perfe
t mat
hings of H is exa
tly the set of theperfe
t mat
hing of G restri
ting the edges of these mat
hings to edges of H. Therefore,�G(C) = �H(C). 2Lemma 4.6Let C := r(X) and D := r(Y ) be two 
rossing 
uts of a mat
hing 
overed graph G. Adjustnotation so that jX \ Y j be odd. Let I := r(X \ Y ), let U := r(X \ Y ). If 
olle
tionfC;Dg is 
ohesive, then the following properties hold:
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hesi(i) For every set F of edges of G, the following relation of modularity holds:jF \ C j+ jF \D j = jF \ I j+ jF \ U j :(ii) Colle
tion fC;D; I; Ug is 
ohesive.(iii) Let �I denote the 
hara
teristi
 of 
ut I in GfY g and �U denote the 
hara
teristi
 of
ut U in GfY g. Then, �C(G) � minf�I ; �Ug, with equality if 
ut D is tight in G.Proof: Let S be the set of edges that have one end in X \ Y and the other in X \ Y . Forany set of edges the following relation is true:jF \ Cj+ jF \Dj = jF \ Ij+ jF \ Y j+ 2 jF \ SjSuppose that S 6= ;. Colle
tion fC;Dg is 
ohesive. Therefore, for ea
h edge of G thereexists a perfe
t mat
hing with exa
tly one edge in C and one edge in D. LetM be a perfe
tmat
hing of G that uses e 2 S and has one edges in C and one edge in D. Thus,2 = jM \ Cj+ jM \Dj = jM \ Ij+ jM \ Y j+ 2 jM \ Sj > 2Therefore, S must be empty and the modularity property holds.Colle
tion fC;Dg is 
ohesive and modularity holds. Thus, fC;D; I; Ug is a 
ohesive
olle
tion. If fC;D; I; Ug is a 
ohesive 
olle
tion, so too is fD; Ig and fD;Ug. By (4.5),we 
on
lude that I is separating in GfY g and U is separating in GfY g.Let M be a perfe
t mat
hing with �I edges in I and one edge in D and U . Thus, bymodularity, jM \ Cj = �I . Let M be a perfe
t mat
hing with �U edges in U and one edgein D and I. Thus, by modularity, jM \ Cj = �U . Therefore, �(C) � minf�I ; �Ug.Suppose now that D is a tight 
ut. Let M be a perfe
t mat
hing of G with �C edges inC. Cut D is tight and the modularity property holds. Therefore,jM \ Ij+ jM \ U j = �C + 1: (2)Moreover, jM \ Ij+ jM \ U j � 2minf�I ; �Ug: (3)By 2 and 3 we 
on
lude that �C � minf�I ; �UgWe know that �C � minf�I ; �Ug. Therefore the equality holds and the proof is 
omplete.2
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uts on mat
hing 
overed graphs 175 The Theorem on Odd WheelsIn this se
tion we present a result that establishes, under 
ertain 
onditions, that a near-bri
k is an odd wheel. That result plays a fundamental role in the proof of the MainTheorem.For any vertex v of a graph G, a v-mat
hing of G is a set M of edges of G su
h thatevery vertex of G distin
t from v is in
ident with pre
isely one edge of M . A trivial butimportant remark: if M is a v-mat
hing of a graph that has an even number of verti
esthen jM \r(v) j is odd.Theorem 5.1 (Theorem on Odd Wheels)For any vertex v of a 3-edge-
onne
ted near-bri
k G and any v-mat
hing M of G, one ofthe following properties holds:(i) Either graph G is an odd wheel of hub v, up to multiple edges in
ident with vertex v,(ii) or graph G is not solid,(iii) or graph G has a removable singleton or doubleton that is disjoint with M [r(v) .Proof: By indu
tion on the size of G.Case 1 Graph G is not a bri
k.By hypothesis, graph G is a near-bri
k. Thus, for every tight 
ut C of G, one of the C-
ontra
tions of G is bipartite, the other is a near-bri
k. By hypothesis of the 
ase, graph Gis not a bri
k. Let thus C be a nontrivial tight 
ut of G su
h that the set of edges of thebipartite C-
ontra
tion of G is minimal. Then, that C-
ontra
tion is a bra
e.Let X be a shore of C, G1 := GfX;xg, G2 := GfX ;xg the two C-
ontra
tions of G.Adjust notation so that G1 is bipartite. Let (A;B) denote the bipartition of G1 su
h thatvertex x lies in A.Consider �rst the 
ase in whi
h vertex v does not lie in V (G1). In that 
ase, therestri
tion of M to G1 is a perfe
t mat
hing of G1. Let w be any vertex of A � x. Thisvertex is in
ident with exa
tly one edge of M . By (2.12), at most one edge of G1 in
identwith vertex w is not removable in G1. By hypothesis, graph G is 3-edge-
onne
ted, when
eit is free of verti
es of degree two. We 
on
lude that r(w) �M 
ontains an edge, say e,that is removable in G1. Moreover, verti
es w and x lie on the same part A of G1, thereforeedge e does not lie in C. Finally, vertex v does not lie in V (G1), therefore edge e does notlie in r(v). We 
on
lude that edge e is removable in G and does not lie in M [r(v) . Theassertion holds in this 
ase.Consider next the 
ase in whi
h vertex v lies in A. Then, it is distin
t from vertexx. Moreover, ea
h vertex of V (G1) � fv; xg is in
ident with pre
isely one edge of M ,and jM \r(v) j is odd, therefore M is a perfe
t mat
hing of G, and 
ut C is tight inG. By (2.12), 
ut C 
ontains an edge, e, that does not lie in M and is removable in G1.Moreover, edge e does not lie in r(v). Let R be a minimal 
lass of G2 indu
ed by edge e.Observe that the restri
tion of M to G2 is a perfe
t mat
hing of G2, and edge e does not
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hesilie in M , therefore R and M are disjoint. Moreover, graph G2, a C-
ontra
tion of G, is3-edge-
onne
ted, therefore R 
ontains at most two edges. If R and C are disjoint then Ris removable in G and is disjoint with M [r(v) . If R and C are not disjoint then e is theonly edge of R in C. In both 
ases, R is a removable singleton or doubleton of G that isdisjoint with M [r(v) . The assertion holds in this 
ase.Consider last the 
ase in whi
h vertex v lies in B. In this 
ase, 
ut C has as many edgesin M as does 
ut r(v). Therefore, the restri
tion of M to G2 is an x-mat
hing of G2. Byindu
tion hypothesis, with x playing the role of v, M \E(G2) the role of M and G2 therole of G, we have one of the alternatives of the assertion. We 
onsider ea
h one of themseparately. If G2 has a removable singleton or doubleton R that is disjoint with M [C ,then R is also a removable doubleton or singleton in G that is disjoint with M [r(v) .For every separating 
ut D of G2, its 
hara
teristi
 in G2 equals its 
hara
teristi
 in G:if G2 is not solid, neither is G. Finally, assume that G2 is an odd wheel of hub x, up tomultiple edges in C, let w be any vertex of B � v. By (2.12), r(w) has an edge, say e,that is removable in G1 and does not lie in M [r(v) . If edge e does not lie in C then itis removable in G; if edge e lies in C and either the order of the wheel G2 is greater thanthree or edge e is a multiple edge in C, then edge e is removable in G; if edge e is not amultiple edge in G2 and the order of G2 is three, then there exists a doubleton in G2 that isdisjoint with M and removable in both G2 and G. In all 
ases 
onsidered, either graph Ghas a removable singleton or doubleton that is disjoint with M [r(v) , or graph G is notsolid. The analysis of this 
ase is 
omplete.We may thus assume that graph G is a bri
k. To pro
eed with the proof, we need a theoremdue to Lov�asz (Theorem 5.5.1, page 196, [5℄):Theorem 5.2Every 
riti
al graph G 
an be represented asG = P0 + P1 + � � � + Pr; (4)where P0 is K1 and ea
h Pi (1 � i � r) is either an odd path or an odd 
ir
uit havingpre
isely its origin and terminus in 
ommon with P0 + P1 + � � �+ Pi�1.Sequen
e P := (P0; P1; � � � ; Pr) is an ear de
omposition of 
riti
al graph G, and for ea
h i(1 � i � r), Pi is an ear of P. The following assertion is the 
onverse of (5.2), and is easilyproved by indu
tion.Proposition 5.3If a graph G has an ear de
omposition as in (4), then it is 
riti
al. 2Graph G is bi
riti
al, therefore graph G � v is 
riti
al. By (5.2), graph G � v has earde
ompositions. Set M is a v-mat
hing of G therefore M �r(v) is a mat
hing of G � v,and E(G� v) is not a subset of M . Thus, for ea
h ear de
omposition P = (P0; P1; � � � ; Pr)of G� v, there exists at least one integer i su
h that 0 < i � r and E(Pi) is not a subset ofM ; we de�ne the index of P to be the largest positive integer q � r su
h that E(Pq)�Mis nonnull.
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overed graphs 19Let P := (P0; P1; � � � ; Pr) be an ear de
omposition of G � v of highest index. Let qdenote the index of P.Proposition 5.4For ea
h integer i, (q < i � r), ear Pi has length one, its only edge, pi, lies inM . Therefore,for any permutation (P 0q+1; � � � ; P 0r) of (Pq+1; � � � ; Pr), sequen
e (P0; P1; � � � ; Pq; P 0q+1; � � � ; P 0r)is an ear de
omposition of G� v of index q.Proof: Let i be any integer su
h that q < i � r. No edge of Pi is in
ident with vertex v.Therefore, every vertex of V (Pi) is in
ident with at most one edge of M . By de�nition ofindex q, E(Pi) �M . Thus, Pi must have length one. This 
on
lusion holds for ea
h indexi su
h that q < i � r. Therefore, graph P0+P1+ � � �+Pq is a spanning subgraph of G� v.We 
on
lude that we may permute the ears of P as indi
ated in the assertion, to obtainanother ear de
omposition of G� v of index q. 2Case 2 q = 1.We assert that r = 1. To see this, assume the 
ontrary. Then, the edge p2 of P2 has bothends in V (P1). But P1 is an odd 
ir
uit, when
e the ends of p2 split P1 in two paths, P 0and P 00, of odd and even length, respe
tively. If P 0 has length one then its edge e and p2
onstitute a pair of multiple edges of G; moreover, p2 lies inM , therefore edge e does not lieinM . Alternatively, if the length of P 0 is greater than one then E(P 0) is not a subset of M .In both 
ases, E(P 0) is not a subset of M . Let P 00 be the vertex graph of any vertex of P 00.Repla
ement of P0; P1; P2 in P by P 00; P 00+ p2; P 0, respe
tively, yields an ear de
ompositionof G � v of index two, a 
ontradi
tion. As asserted, r = 1. We 
on
lude that G � v is anodd 
ir
uit.Graph G is bi
riti
al, therefore every vertex of G is adja
ent to at least three verti
es.Thus, ea
h vertex of G� v is adja
ent to v. We 
on
lude that G is an odd wheel of hub v,up to multiple edges in r(v). The analysis of the 
ase is 
omplete.Case 3 q > 1 and jE(Pq)j = 1.We assert that q = r in this 
ase. For i = q + 1; � � � ; r, path Pi has length one, by (5.4).Therefore, graph P0 +P1 + � � �+Pq�1 is a spanning subgraph of G� v. Therefore, we mayrepla
e (Pq; � � � ; Pr) in P by (Pq+1; � � � ; Pr; Pq), thereby obtaining an ear de
omposition ofindex r. By de�nition of P, it follows that q = r, as asserted. Let e be the edge of Pq. LetS be the set of edges of G that depend on edge e.Proposition 5.5No edge f of S lies in M [r(v) .Proof: Edge e, an edge of graph G � v that does not lie in M , does not lie in M [r(v) .The assertion holds trivially if f = e. We may thus assume that f is an edge of S � e.Then, graph G� e has a barrier B that 
ontains both ends of f .We assert that vertex v does not lie in B. For this, assume the 
ontrary. Let w be anyvertex of B�v. Let B0 := B�fv; wg. Let G0 := G�v� e�w. Then, G0�B0 = G� e�B,
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hesiwhen
e the number of (odd) 
omponents of G0 � B0 is stri
tly greater than the number ofverti
es of B0. Thus, graph G0 has no perfe
t mat
hing, when
e graph G � v � e is not
riti
al. But (P0; P1; � � � ; Pr�1) is an ear de
omposition of graph G� v� e, therefore graphG� v � e is 
riti
al, by (5.3). This is a 
ontradi
tion. As asserted, vertex v does not lie inB. SetM , a v-mat
hing of G, has pre
isely one edge in
ident with ea
h vertex of G distin
tfrom v, therefore it has an odd number of edges in
ident with ea
h vertex of G. For ea
h(odd) 
omponent K of G � e � B, set M has thus an odd number of edges in r(V (K)).Edge e does not lie in M , therefore set M has at least jBj edges in r(B). Vertex v doesnot lie in B, therefore ea
h vertex of B is in
ident with pre
isely one edge of M . Moreover,that edge lies in r(B). Therefore, edge f does not lie in M . In sum, edge f has both endsin B and does not lie in M , and vertex v does not lie in B. We 
on
lude that edge f doesnot lie in M [r(v) , as asserted. 2Let R be any minimal 
lass of G indu
ed by e. Then, set R is disjoint with M [r(v) .Graph G is a bri
k, thus R 
ontains at most two edges, by (2.10). We 
on
lude that graphG has a removable singleton or doubleton R that is disjoint with M [r(v) , as asserted.The analysis of this 
ase is 
omplete.Case 4 q > 1 and jE(Pq)j > 1.Let Pq = (v0; e1; v1; � � � ; e2n+1; v2n+1)X := (V (Pq)� fv0; v2n+1g) [ fvg , C := r(X). Let G1 := GfX ;xg and G2 := GfX;xgdenote the two C-
ontra
tions of G.Lemma 5.6Ea
h of G1 � x and G2 � x is 
riti
al.Proof: Sequen
e (P0; P1 � � � ; Pq�1) is an ear de
omposition of graph G1 � x. Therefore,graph G1 � x is 
riti
al, by (5.3).The proof that graph G2 � x is 
riti
al is more elaborate. For any two integers j and ksu
h that 0 < j; k < 2n + 1, let S[j; k℄ denote the subpath of Pq extending from vertex vjto vertex vk, if j � k, otherwise let S[j; k℄ denote the reversal of S[k; j℄. For ea
h integer isu
h that q < i � r, edge pi of Pi is an upper edge of P.Proposition 5.7Let e be any upper edge of P. Then, both ends of edge e are internal verti
es of V (Pq).Moreover, if vj and vk denote the two ends of e in V (Pq), path S[j; k℄ has even length.Proof: We may permute the upper edges of P so that e is the edge of Pq+1. Assume,to the 
ontrary, that no end of edge e is an internal vertex of Pq. Then, we may 
learlyinter
hange Pq and Pq+1 in P, thereby obtaining an ear de
omposition of index q + 1, a
ontradi
tion. We 
on
lude that at least one end of e is an internal vertex of Pq, say vj ,where 0 < j < 2n+ 1.
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overed graphs 21Assume, to the 
ontrary, that the other end of e is not an internal vertex of Pq. Oneof S[0; j℄ and S[j; 2n + 1℄ has odd length, the other has even length. Adjust notation, byrepla
ing Pq in P by its reversal, if ne
essary, so that the length of S[0; j℄ is even. Repla
e,in P, Pq by S[0; j℄ �Pq+1 and Pq+1 by S[j; 2n+1℄. Edge e lies inM , therefore E(S[j; 2n+1℄)is not a subset of M , when
e P has not maximum index, a 
ontradi
tion. As asserted, bothends of e are internal verti
es of Pq.Let vk be the other end of edge e. Assume, to the 
ontrary, that S[j; k℄ has odd length.Adjust notation so that j < k. Repla
e, in P, Pq by S[0; j℄ � Pq+1 � S[k; 2n + 1℄, and Pq+1by S[j; k℄, thereby obtaining an ear de
omposition of G� v of index q+ 1, a 
ontradi
tion.As asserted, S[j; k℄ has even length. 2Two upper edges e and f of P 
ross if the ends vi and vj of edge e and the ends vk and vlof edge f , with i < j and k < l, satisfy the inequality i < k < j < l.Proposition 5.8Let vi; vj be the ends of upper edge e and vk; vl the ends of upper edge f su
h that i < k <j < l. Then, ea
h of S[i; k℄, S[k; j℄ and S[j; l℄ has even length.Proof: We may assume, by permuting upper edges, that e is the edge of Pq+1 and f the edgeof Pq+2. Path S[i; j℄ has even length, by (5.7). Therefore, the lengths of paths S[i; k℄ andS[k; j℄ have the same parity. Likewise, the lengths of paths S[k; j℄ and S[j; l℄ also have thesame parity. Thus, the three paths have lengths of the same parity. Assume, to the 
ontrary,that the 
ommon parity is odd. Repla
e, in P, Pq by S[0; i℄ �Pq+1 �S[k; j℄ �Pq+2 �S[l; 2n+1℄,Pq+1 by S[i; k℄ and Pq+2 by S[j; l℄. This repla
ement yields an ear de
omposition of G� vof index q + 2, a 
ontradi
tion. As asserted, the 
ommon parity is even. 2Proposition 5.9Let e be an upper edge of P, vi and vj its ends in V (Pq). Then, at least one internal vertexof S[i; j℄ is adja
ent to vertex v.Proof: By indu
tion on jj � ij. Adjust notation so that i < j. Vertex vi+1 has degree atleast three in G and is distin
t from vertex vj , be
ause j � i is even. If vi+1 is adja
ent tovertex v then the assertion holds. Assume thus that vertex vi+1 is adja
ent to an upperedge f of P. Path S[i; i+1℄ has odd length, therefore edge f 
annot 
ross edge e, by (5.8).We 
on
lude that edge f has ends vi+1 and vk su
h that i+ 1 < k < j. By indu
tion, pathS[i+ 1; k℄ has at least one internal vertex adja
ent to vertex v. 2Proposition 5.10Graph G2 � x is 
riti
al.Proof: We assert that a spanning subgraph of G2 � x has an ear de
omposition Q :=Q0 + Q1 + � � � + Qs, where s � 3. For this, re
all �rst that graph G is a bri
k, thereforefv0; v2n+1g is not a 2-separation of G. No edge of G joins an internal vertex of Pq to verti
esof G1 � v. Therefore, at least one internal vertex of Pq is adja
ent to vertex v. Let i be
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hesithe smallest positive integer su
h that i < 2n + 1 and vertex vi is adja
ent to vertex v.Likewise, let j be the largest positive integer su
h that j < 2n + 1 and vj is adja
ent tovertex v. Thus, 0 < i � j < 2n + 1. Let ei and ej be edges of r(v) in
ident with verti
esvi and vj , respe
tively.Consider �rst the 
ase in whi
h i = 1 and j = 2n (Figure 9(a)). In this 
ase, theassertion holds, with s = 1 and Q1 := S[1; 2n℄ � (v2n; e2n; v; e1; v1). Consider next the 
ase inPSfrag repla
ementsei
v

ej
e1 e2nv0v1vivjvkvl v2nv2n+1

(a)

PSfrag repla
ements

ei v
eje1

e2nv0v1vivj vkvl v2nv2n+1
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PSfrag repla
ements
ei v ej

e1e2n v0v1vi vjvk vl
v2nv2n+1

(
)Figure 9: An illustration for the proof of (5.10)whi
h i = 1 and j < 2n, or i > 1 and j = 2n. Adjust notation, by reversing Pq if ne
essary,so that j = 2n (Figure 9(b)). Then, i > 1. Graph G is bi
riti
al, therefore vertex v1 isadja
ent to at least three verti
es of G. No edge of G joins vertex v1 to either v or anyvertex of X. Therefore, there is an upper edge of P in
ident with vertex v1. Let e denotethat upper edge. Let vk denote the other end of e. By (5.7), path S[1; k℄ has even length,when
e path S[k; 2n℄ has odd length. Moreover, by (5.9) and by de�nition of i, i < k. Theassertion holds, with s = 2, Q1 := S[1; k℄ � (vk; e; v1) and Q2 := S[k; 2n℄ � (v2n; e2n; v; ei; vi).We may thus assume that 1 < i � j < 2n. Graph G is bi
riti
al, therefore both verti
esv1 and v2n are in
ident with upper edges of P, say e and f , respe
tively. Let vk be the endof e distin
t from v1, let vl denote the end of f distin
t from v2n. Then, by (5.9)and byde�nition of i and j, we have that 1 < i < k and l < j < 2n. Edges e and f 
annot 
ross.To see this, assume the 
ontrary. By (5.8), ea
h of the three segments S[1; l℄, S[k; 2n℄ andS[l; k℄ has even length. But the sum of the legnths of these three segments is odd, (2n� 1).This is a 
ontradi
tion. We 
on
lude that 1 < i < k < l < j < 2n (Figure 9(
)).Suppose that at least one of S[1; i℄ or S[j; 2n℄ has even length. Adjust the notation sothat the length of S[1; i℄ is even . In that 
ase, the assertion holds, with s = 3, Q1 :=S[l; 2n℄ � (v2n; f; vl), Q2 := (vj ; ej ; v; ei; vi) � S[i; l℄, and Q3 := (vk; e; v1) � S[1; i℄.Finally, if ea
h of S[1; i℄ and S[j; 2n℄ has odd length then so too have paths S[i; k℄ and
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overed graphs 23S[l; j℄. Then, the assertion holds with s = 3,Q1 := S[1; i℄ � (vi; ei; v; ej ; vj) � S[j; 2n℄ � (v2n; f; vl) � S[l; k℄ � (vk; e; v1);Q2 := S[i; k℄ and Q3 := S[l; j℄.As asserted, graph G2 � x has a 
riti
al spanning subgraph. Therefore, G2 � x is also
riti
al. 2As asserted, both G1 � x and G2 � x are 
riti
al. The proof of Lemma 5.6 is 
omplete. 2Proposition 5.11Let D := r(Y ) be any odd 
ut of G, H := GfY ; yg. If graph H � y is 
riti
al then H ismat
hing 
overed and bi
riti
al.Proof: For any vertex w of H distin
t from y, graph H � y � w has a perfe
t mat
hing.Thus, ea
h edge of H in
ident with vertex y is admissible in H. Therefore, graph H hasperfe
t mat
hings. Moreover, no nontrivial barrier of H 
ontains vertex y. Every barrier ofH that does not 
ontain vertex y is a barrier of G, therefore it is trivial. We 
on
lude thatH is bi
riti
al. 2Graph G1 is a C-
ontra
tion of G in whi
h the vertex of 
ontra
tion is x and graphG1 � x is 
riti
al, by (5.6). Likewise, graph G2 is a C-
ontra
tion of G in whi
h the vertexof 
ontra
tion is x and graph G2�x is 
riti
al. Thus, both G1 and G2 are bi
riti
al mat
hing
overed graphs, by(5.11). We 
on
lude that 
ut C is a nontrivial separating 
ut of G. CutC is not tight, be
ause G is a bri
k. Therefore, G is not solid. The analysis of the last 
aseof the Theorem on Odd Wheels is 
omplete. 26 Proof of Theorem 1.1Theorem 1.1The 
hara
teristi
 �G(C) of any separating 
ut C of any near-bri
k G lies in f3; 5;1g.Moreover, if �G(C) = 5 then graph G has a tight 
ut minor P that is the Petersen graph,up to multiple edges, and 
ut C is stri
tly separating in P .Proof: By indu
tion on the size of G. Let � denote the 
hara
teristi
 of C in G. We mayassume C to be nontrivial and G to be free of multiple edges.Case 1 Graph G has a nontrivial tight 
ut D that does not 
ross 
ut C.Let H1 and H2 denote the two D-
ontra
tions of G. By hypothesis, graph G is a near-bri
k,therefore one of H1 and H2 is bipartite, the other is a near-bri
k. By hypothesis, 
uts Cand D do not 
ross, therefore C is a 
ut of one of H1 and H2. Adjust notation, so that Cis a 
ut of graph H1.
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hesiCut D is tight in G, therefore 
olle
tion fC;Dg is 
ohesive in G. By (4.5), 
ut C isseparating in H1. Moreover, the 
hara
teristi
 of C in H1 is equal to �. If graph H1 isbipartite then 
ut C is tight in H1, when
e it is tight in G. In that 
ase, the assertion holds.Assume thus thatH1 is not bipartite. Then, H1 is a near-bri
k. By indu
tion hypothesis,with graph H1 playing the role of G, � lies in f3; 5;1g. If � lies in f3;1g then we are donein this 
ase. Assume thus that � = 5. By indu
tion hypothesis, graph H1 has a tight 
utminor P that is the Petersen graph, up to multiple edges, and 
ut C is stri
tly separatingin P . But graph H1 is a tight 
ut minor of G. Therefore graph P is also a tight 
ut minorof G. The analysis of this 
ase is 
omplete.Case 2 Graph G is not a bri
k and every nontrivial tight 
ut of G 
rosses C.We assert that � = 3 in this 
ase. Graph G is a near-bri
k that is not a bri
k, therefore ithas nontrivial tight 
uts. Let D be a nontrivial tight 
ut of G. Every nontrivial tight 
utof G 
rosses 
ut C, therefore 
uts C and D 
ross.Let X be a shore of C, Y be a shore of D. Adjust notation so that jX \ Y j is odd. LetI := r(X \ Y ); U := r(X \ Y );H1 := GfY ; yg;H2 := GfY ; yg:Colle
tion fC;Dg is 
ohesive. By (4.6), so too is 
olle
tion fC;D; I; Ug. Moreover,� = minf�I ; �Ug, where �I denotes the 
hara
teristi
 of 
ut I in H1 and �U denote the
hara
teristi
 of 
ut U in H2. Graph G is a near-bri
k and 
ut D is nontrivial and tight inG. Therefore, one of H1 and H2 is bipartite, the other is a near-bri
k. Adjust notation sothat H2 is bipartite, whereupon H1 is a near-bri
k.Graph H2 is bipartite and 
ut U is separating in H2. Therefore, 
ut U is tight in H2.That is, �U =1, when
e � = �I .Cut I 
annot be tight in H1, otherwise C would be a nontrivial tight 
ut that does not
ross itself. If �I = 3 then � = 3 and the assertion holds. Assume, to the 
ontrary, that3 < �I < 1. By indu
tion hypothesis, with I playing the role of C and H1 that of G,graph H1 has a tight 
ut minor P that is the Petersen graph up to multiple edges, and 
utI is stri
tly separating in P .We assert that the subgraph Q of G spanned by X \ Y is a pentagon. To see this, letT be any tight 
ut of H1 that has a shore Z that is a subset of X \ Y . Then, T is a tight
ut of G. Moreover, 
uts C and T do not 
ross be
ause Z is a subset of X. Thus, 
ut T istrivial. That is, set Z is a singleton. We 
on
lude that the verti
es of Q are all verti
es ofP . As asserted, the verti
es of Q span a pentagon in G.The Petersen graph is 
ubi
, therefore pre
isely one vertex of Q is adja
ent in G toverti
es of Y . Let i denote that vertex. Let Y 0 := fig [ (X \ Y ) , D0 := r(Y 0). Themodularity relating 
uts C, D, I and U implies that no edge of G joins verti
es of X \ Ywith verti
es of X \ Y . Observe thatY \ Y 0 = Y � i = (Q� i) [ (X \ Y ) and Y \ Y 0 = X \ Y :Therefore, no edge ofG joins verti
es of Y \ Y 0 with verti
es of Y \ Y 0 . Note that Y \ Y 0 =fig and Y \ Y 0 = X \ Y . Thus, modularity also relates 
uts D, D0, r(i) and U . But 
uts
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overed graphs 25D, r(i) and U are ea
h tight in G, therefore 
ut D0 is also tight in G. We 
on
lude that
ut D0 is a nontrivial tight 
ut of G that does not 
ross 
ut C, a 
ontradi
tion. As asserted,� = �I = 3. The analysis of the 
ase is 
omplete.In view of Cases 1 and 2, we may assume graph G to be a bri
k. We now introdu
e a
on
ept that will be quite important to redu
e the proof further, to the 
ase in whi
h ea
hC-
ontra
tion of G is a solid near-bri
k.A 
ut D of G is a witness for C if D is robust in G, 
olle
tion fC;Dg is 
ohesive and
uts C and D are not mat
hing-equivalent,Case 3 Graph G is a bri
k and it has a witness for C that does not 
ross 
ut C.We assert that � = 3 in this 
ase. Let X be a shore of C. By hypothesis of the 
ase, at leastone C-
ontra
tion of G 
ontains a 
ut that is a witness. Adjust notation so that GfXg hasa 
ut that is a witness. Among the witnesses in GfXg, 
hoose one, D, su
h that the shoreY of D that is a subset of X is maximal.Let H := GfY ; yg. Then, H is the D-
ontra
tion of G that 
ontains C. By de�nition ofwitness, 
ut D is robust and 
olle
tion fC;Dg is 
ohesive, when
e graph H is a near-bri
kand 
ut C is separating in H. Let �H denote the 
hara
teristi
 of C in H. By indu
tionhypothesis, with H playing the role of G, �H lies in f3; 5;1g.We assert that 
ut C is not tight in H. Assume, to the 
ontrary, that C is tight in H.Cut C is not tight in G be
ause it is nontrivial in G and G is a bri
k. By (3.1), 
uts C andD are mat
hing-equivalent, in 
ontradi
tion to the de�nition of witness. As asserted, C isnot tight in H. We 
on
lude that �H lies in f3; 5g.By (4.5), � � �H . If �H = 3 then � = 3 and the assertion holds. Assume thus that�H = 5. By indu
tion hypothesis, graph H has a tight 
ut minor P su
h that 
ut C isstri
tly separating in P and P is the Petersen graph, up to multiple edges.We assert that H = P . Let T be any (possibly trivial) tight 
ut of H that does not 
ross
ut C. By the hypothesis of the 
ase, G is a bri
k; if T is tight in G then it is trivial in G,therefore trivial in H. Assume thus that T is not tight in G. By (3.1), 
ut T is robust in G,mat
hing-equivalent to D and the T -
ontra
tion of H that 
ontains vertex y is bipartite.Cuts C and D are not mat
hing-equivalent, when
e neither are 
uts C and T . Let Z be theshore of T in H that 
ontains vertex y. Then, HfZg is bipartite. Every separating 
ut ofH that lies in HfZg is tight in GfZg, when
e it is also tight in H. Cut C is not tight in H,therefore C is not a 
ut of GfZg. Thus, Y 0 := Y [ (Z � y) is the shore of T in G that is asubset of X. By the maximality of Y , it follows that Z = fyg. That is, D and T 
oin
ide.We 
on
lude that every tight 
ut of H that does not 
ross C is trivial in H. Graph P is atight 
ut minor of H that has C as a 
ut. It follows that H = P , as asserted.Cut D is a trivial 
ut of H, but a robust 
ut of G. In parti
ular, 
ut D is not tight inG. By (2.7), � = 3. The analysis of this 
ase is 
omplete.Case 4 Graph G is a bri
k, every witness for C 
rosses C and G has a witness D.We assert that � = 3. By hypothesis of the 
ase, 
uts C and D 
ross. Let X be a shore of
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hesiC, Y a shore of D. Adjust the notation so that jX \ Y j be odd. LetI := r(X \ Y ); U := r(X \ Y );H1 := GfY ; yg;H2 := GfY ; yg:By de�nition of witness, 
olle
tion fC;Dg is 
ohesive. By (4.6), so too is 
olle
tionfC;D; I; Ug. Thus, 
ut I is separating in H1 and 
ut U is separating in H2. Let �Idenote the 
hara
teristi
 of I in H1, let �U denote the 
hara
teristi
 of U in H2. By (4.6),� � minf�I ; �Ug. If minf�I ; �Ug = 3 then � = 3 and the assertion holds.Assume, to the 
ontrary, that minf�I ; �Ug > 3. Cut D is robust, therefore graphs H1and H2 are both near-bri
ks. By indu
tion hypothesis, with H1 playing the role of G andI that of C, it follows that �I lies in f5;1g. Likewise, �U also lies in f5;1g. LetCI := fZ : Z � X \ Y ;r(Z) is a witness for C in Gg; andCU := fZ : Z � X \ Y ;r(Z) is a witness for C in Gg:Proposition 6.1Either set CI is nonnull or set X \ Y 
ontains a vertex, i, su
h that no vertex of Y isadja
ent to any vertex of X \ Y � i.Proof: Consider �rst the 
ase in whi
h there exists a nontrivial subset Z of X \ Y su
hthat 
ut W := r(Z) is tight in H1. Graph G is a bri
k and 
ut W is nontrivial, thereforeW is not tight in G. By (3.1), 
ut W is robust in G and mat
hing-equivalent to D, when
eit is a witnessfor C. That is, Z lies in CI . The assertion holds in this 
ase.We may assume that for every separating 
ut r(Z), Z � X \ Y , 
ut r(Z) is not tightin H1. In parti
ular, this implies that either I is trivial or it is not tight in H1. If I is trivialthen the assertion holds, with i the only vertex of X \ Y .We may thus assume that I is not tight in H1. But �I lies in f5;1g. Therefore, �I = 5.By indu
tion hypothesis, graph H1 has a tight 
ut minor P that is the Petersen graph,up to multiple edges, and 
ut I is stri
tly separating in P . We have assumed above thatno nontrivial separating 
ut of H1 whose shore is a subset of X \ Y is tight in H1. We
on
lude that X \ Y spans a pentagon in G. Moreover, pre
isely one vertex of X \ Y isadja
ent to verti
es in Y . Let i be that vertex. The assertion holds. 2Likewise, either set CU is nonnull or set X \ Y 
ontains a vertex, u, su
h that no vertexof Y is adja
ent to any vertex of X \ Y � u.If CI and CU are both empty then graph G has a 2-separation fi; ug, by (6.1). This is a
ontradi
tion to the hypothesis that graph G is a bri
k. If at least one of CI or CU is nonnullthen G has a witness that does not 
ross C, in 
ontradi
tion to the hypothesis of the 
ase.In both alternatives, we derive a 
ontradi
tion. As asserted, � = minf�I ; �Ug = 3. Theanalysis of the 
ase is 
omplete.In view of Cases 1{4, we may assume that graph G is a bri
k free of witnesses for 
ut C.The next assertion implies then that 
ut C is robust and ea
h C-
ontra
tion of G is solid.Lemma 6.2Let G be a bri
k, C a nontrivial separating 
ut of G. Either G has a witness for C or 
utC is robust and ea
h C-
ontra
tion of G is solid.
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overed graphs 27Proof: We �rst 
onsider whether or not 
ut C is robust inG. Cut C is a nontrivial separating
ut of G, in turn a bri
k. Therefore, 
ut C is not tight in G. Let M0 be a perfe
t mat
hingof G that 
ontains more than one edge in C. Let C be the 
olle
tion of those separating
uts D of G su
h that D � C and jM0 \D j > 1. Colle
tion C is 
ohesive and 
ontains
ut C. Let C0 be a 
ut in C that is minimal with respe
t to the relation of pre
eden
e.By (3.3), 
ut C0 is robust in G. Moreover, fC;C0g, a sub
olle
tion of C, is 
ohesive. If
uts C and C0 are not mat
hing-equivalent then 
ut C0 is a witness for C. If 
uts C andC0 are mat
hing-equivalent then 
ut C is a 
ut of C that is also minimal with respe
t tothe relation of pre
eden
e; in that 
ase, C is robust in G. We 
on
lude that either G has awitness for C or C is robust in G.We may thus assume that C is robust in G. We now 
onsider whether or not a C-
ontra
tion H of G is solid. Assume that it is not. Let D be a stri
tly separating 
ut of H.Then, 
olle
tion fC;Dg is 
ohesive. Cut C is robust in G, therefore H is a near-bri
k. CutD is stri
tly separating in H, therefore it is not tight. Let MD be a perfe
t mat
hing of Hthat 
ontains more than one edge inD. LetM1 be an extension ofMD to a perfe
t mat
hingof G. Let D be the 
olle
tion of those 
uts W of G su
h that W � D and M1 has morethan one edge in W . Every perfe
t mat
hing that 
ontains just one edge in D 
ontains alsojust one edge in ea
h 
ut of D. Moreover, 
olle
tion fC;Dg is 
ohesive, therefore 
olle
tionfCg [ D is also 
ohesive. Let D1 be a 
ut of D that is minimal with respe
t to the relationof pre
eden
e. Cut D1 is robust in G and 
olle
tion fC;D1g, a sub
olle
tion of fCg [ D ,is 
ohesive. Moreover, 
ut D1 has more than one edge in M1, whereas 
ut C has just one.Thus, D1 is not mat
hing-equivalent to C, when
e it is a witness for C. We 
on
lude thateither near-bri
k H is solid or G has a witness for C. 2Case 5 Graph G is a bri
k, 
ut C is robust and one of the C-
ontra
tions of G has aremovable doubleton.We assert that � = 3. For this, let X be a shore of C, H := GfX;xg be a C-
ontra
tion ofG that has a removable doubleton. Let e and f be the edges of the doubleton. By (2.10),graph H � e� f is bipartite. Let (A;B) be the bipartition of H � e � f . Adjust notationso that edge e has both ends in A, edge f has both ends in B and vertex x lies in A.Note that set B is a barrier of G�e. Every perfe
t mat
hing of G that does not 
ontainany of the edges e and f 
ontains pre
isely one edge in C. Every perfe
t mat
hing of Gthat 
ontains edge f 
ontains also just one edge in C. Cut C is not tight in G, thereforethere must exist in G a perfe
t mat
hing that 
ontains edge e but no edge f . Any su
hmat
hing has pre
isely three edges in 
ut C. We 
on
lude that � = 3. The analysis of the
ase is 
omplete.Case 6 Graph G is a bri
k and there exists a b-removable edge e of G su
h that edge edoes not lie in C and 
ut C is separating in G� e.We assert that � = 3 in this 
ase. Cut C is not tight in G, therefore neither C-
ontra
tionof G is bipartite. Thus, no C-
ontra
tion of G � e is bipartite. That is, 
ut C is stri
tlyseparating in G � e. We 
on
lude that 
ut C is not tight in G � e. Let �0 denote the
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hesi
hara
teristi
 of C in G � e. By indu
tion hypothesis, �0 lies in f3; 5g. Every perfe
tmat
hing of G� e is a perfe
t mat
hing of G. Thus, if �0 = 3 then � = 3 and we are done.We may thus assume that �0 = 5. By indu
tion hypothesis, graph G� e has a tight 
utminor P that is the Petersen graph, up to multiple edges, and 
ut C is stri
tly separatingin P .LetX be the shore of C that 
ontains both ends of e. Let D be the set of those nontrivial,disjoint subsets Y of any of X or X, su
h that graph P is the result of the 
ontra
tion ofea
h set Y in D to a single vertex.Proposition 6.3Colle
tion D has at most two members, ea
h of whi
h is a subset of X. Moreover, for ea
hset Y in D, graph H := (G � e)[Y ℄ has a bipartition (A;B) su
h that jBj = jAj + 1, andedge e is the only edge of G that is in
ident with some vertex of A but not in
ident withany vertex of B.Proof: Let Y be a member of D, D := r(Y ). By de�nition of D, 
ut D� e is tight in G� e,in turn a near-bri
k. Therefore one of the (D� e)-
ontra
tions of G� e is bipartite. Cut Cis not tight in G�e, but is separating in the (D�e)-
ontra
tion (G�e)fY g in whi
h it lies.Thus, (G�e)fY g is not bipartite. Therefore, (G�e)fY g is bipartite. Thus, so too is graphH. Let (A;B) denote a bipartition of H. Adjust notation so that jBj = jAj+ 1. Then, noedge of G� e joins a vertex of A to a vertex of V (G) �B. If edge e is not in
ident with avertex of A, or if edge e is in
ident with a vertex of B, then 
ut D is tight in G, when
e setY is trivial, a 
ontradi
tion. Thus, edge e must be in
ident with at least one vertex of Aand to no vertex of B. Indeed, e is the only edge of G that satis�es this property. Finally,ea
h member of D 
ontains at least one end of edge e; both ends of e lie in X. We 
on
ludethat D has at most two members, ea
h of whi
h is a subset of shore X of C. 2Notation 6.4Let r := jDj. For 1 � i � r, let Yi denote an enumeration of the members of D, Hi :=(G � e)[Yi℄, (Ai; Bi) the bipartition of Hi su
h that jBij = jAij + 1. Let vi and wi denotethe ends of e in G, su
h that vertex vi lies in Ai. Let yi be the vertex of P obtained by the
ontra
tion of Yi to a single vertex.If 
olle
tion D is empty, then graph G is P + e, up to multiple edges. By (2.8), � = 3. Wemay thus assume that D is nonempty. Consider next the 
ase in whi
h 
olle
tion D hasjust one member, Y1, and either (i) edge e has both ends in A1, or the end w1 of e, not inY1, is adja
ent to y1 in P . If edge e has both ends in A1, then graph P is GfY1g; if w1is adja
ent to y1 in P then edge e is a multiple edge in GfY1g. In both 
ases, graph P isGfY1g, up to multiple edges. Moreover, every perfe
t mat
hing of G that 
ontains edge ehas pre
isely three edges in r(Y1). By (2.7), � = 3 also in this 
ase.We are thus left with three 
ases to 
onsider: either (i) r = 1 and vertex w1 is notadja
ent to vertex y1 in P , or (ii) r = 2 and verti
es y1 and y2 are not adja
ent in P , or(iii) r = 2 and verti
es y1 and y2 are adja
ent in P . The three possibilities are depi
ted inFigure 10, up to automorphism that �x 
ut C.
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Figure 10: The three possibilities 
onsidered in Cases 6.1 and 6.2Case 6.1 Either r = 1 and vertex w1 is not adja
ent to vertex y1 in P , or r = 2 andverti
es y1 and y2 are not adja
ent in P .Proposition 6.5Under the hypothesis of Case 6.1, for ea
h member Yi of D and any two verti
es xi andyi of the set Zi of the three verti
es of V (G) \ V (P ) that are adja
ent in G to verti
es ofBi, the subgraph Wi of G spanned by Yi [ fxi; yi; wig has a perfe
t mat
hing, Mi, that
ontains pre
isely three edges in r(Yi), in
ident, respe
tively, to xi, yi, and wi.Proof: Let zi be the vertex of Zi�fxi; yig. Graph G a bri
k, is bi
riti
al. Therefore, graphG�fzi; vig has a perfe
t mat
hing, say, Ni. We have removed from G a vertex from Ai anda vertex not in Yi, therefore Ni has pre
isely two edges in r(Yi), ea
h of whi
h is in
identwith a vertex of Bi and a vertex of Zi. The vertex outside Yi removed from G is pre
iselyone of the three verti
es of Zi. We 
on
lude that those two edges ne
essarily are in
identto xi and yi. Restri
t Ni to E(Wi) and add to that restri
tion edge e. It is easy to 
he
kthat the resulting set, Mi, is a perfe
t mat
hing of Wi that has the asserted properties. 2We now apply the assertion just proved to the 
ases under 
onsideration. In the 
ase inwhi
h r = 1, we 
hoose fxi; yig to be f000; 40g (see Figure 10); it is easy to 
he
k that M1
an be extended to a perfe
t mat
hing of G that 
ontains pre
isely three edges in C. Inthe 
ase in whi
h r = 2, the 
hoi
es are f00; 200g and f30; 300g (see Figure 10), and again, itis easy to 
he
k that M1 [M2 may be extended to a perfe
t mat
hing of G that 
ontainspre
isely three edges in C.Case 6.2 Colle
tion D has two members and verti
es y1 and y2 are adja
ent in P .For i = 1; 2, Let Zi denote the set fxi; yig 
onsisting of the two verti
es of V (G) \ V (P )that are adja
ent in P to yi. Let Z := Z1 [ Z2 . (In Figure 10, Z = f10; 40; 100; 400g).
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hesiProposition 6.6The subgraph W of G spanned by Y1 [ Y2 [ Z has a perfe
t mat
hing that 
ontains pre-
isely four edges in r(Y1 [ Y2 ), ea
h of whi
h is in
ident to one of the four verti
es ofZ.Proof: Graph G, a bri
k, is 3-
onne
ted. Therefore, at least three verti
es of B1 [B2 areadja
ent to verti
es of Z. Thus, either B1 has at least two verti
es that are adja
ent toverti
es of Z1 or B2 has at least two verti
es that are adja
ent to verti
es of Z2. Adjustnotation so that B1 has this property. Verti
es x1 and y1 are both adja
ent to verti
es ofB1. Therefore, there exist two verti
es in B1, say x01 and y01, su
h that x01 is adja
ent to x1and y01 is adja
ent to y1. Let e1 and f1 denote the 
orresponding edges that join those pairof verti
es.Graph G, a bri
k, is bi
riti
al, therefore graph G� fx01; y01g has a perfe
t mat
hing, N .Two verti
es of B1 have been removed from G, therefore edge e lies in N . Moreover, everyvertex of A1 other than the end v1 of e is mat
hed with a vertex of B1. Therefore, edge e isthe only edge of N \ Y1 . In parti
ular, no edge of N � e joins any vertex of Y1 to a vertexof Y2. Moreover, edge e lies in N , and is in
ident to vertex v2 of A2. We 
on
lude thatN \r(Y2) 
ontains pre
isely three edges, one is edge e, the other two are edges in
identwith verti
es x2 and y2. Restri
t N to W and add to that restri
tion edges e1 and f1. Theresulting mat
hing has the asserted properties. 2It is now easy to 
he
k that the mat
hing thus obtained may be (uniquely) extended to aperfe
t mat
hing of G that 
ontains pre
isely three edges in C. The analysis of this 
ase is
omplete.Case 7 None of the previous 
ases apply.We show that either � = 3 or G is the Petersen graph. Let X1 be a shore of C, let X2 bethe other shore of C. For i = 1; 2, letGi := GfXi; vig; ni := jXij :Proposition 6.7For i = 1; 2, Gi is an odd wheel of hub vi, up to multiple edges in r(vi).Proof: Cases 1 and 2 do not apply. Therefore, graph G is a bri
k. Cases 3 and 4 do notapply. Therefore, there are no witnesses for C in G. By (6.2), ea
h C-
ontra
tion of Gis a solid near-bri
k. Case 5 does not apply, therefore neither G1 nor G2 has a removabledoubleton.Cut C, a nontrivial separating 
ut of bri
k G, is not tight in G. Let M0 be a perfe
tmat
hing of G su
h that jM0 \ C j > 1. For i = 1; 2, let Mi denote M0 \E(Gi) . Then,Mi is a vi-mat
hing of Gi, for i = 1; 2. By the Theorem on Odd Wheels, (5.1), one of thefollowing alternatives hold, for ea
h i = 1; 2:(i) Either Gi is an odd wheel of hub vi, up to multiple edges in r(vi),(ii) or Gi has a removable edge that does not lie in Mi [C .
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uts on mat
hing 
overed graphs 31Assume, to the 
ontrary, that G1 say, has a removable edge e that does not lie in M1 [C .Graph G1 is a solid near-bri
k. By (3.5), edge e is b-removable in G1. That is, graph G1�eis a near-bri
k. Edge e does not lie in C, therefore the two C-
ontra
tions of G � e arenear-bri
ks. Moreover, edge e does not lie in M1, a subset of M0. Therefore, 
ut C is nottight in G� e. In sum, C is a nontight 
ut of G � e and both C-
ontra
tions of G� e arenear-bri
ks. By (3.2), graph G � e is a near-bri
k. That is, edge e is b-removable in G.It follows that Case 6 applies, a 
ontradi
tion. We 
on
lude that for i = 1; 2, graph Gi isindeed an odd wheel of hub vi, up to multiple edges in C. 2We have de�ned ni = jXij and, by previous lemma, ea
h C-
ontra
tion is an odd wheel ofhub vi. Thus n1 and n2 are the order of wheels G1 and G2, respe
tively. If jM0 \ C j = 3then � = 3 and we are done. We may thus assume that M0 
ontains at least 5 edges in C.In that 
ase, both n1 and n2 are at least 5. Thus, ea
h edge of C is removable in ea
h ofG1 and G2.Let e be any edge of C. For i = 1; 2, let pi(e) denote the end of e in the shore Xi of C.De�ne graph G0i(e) as follows.If the degree of pi(e) is greater than three then edge e is a multiple edge in Gi: in that
ase, graph Gi � e is an odd wheel, let G0i(e) be Gi � e. If the degree of pi(e) is three thenpi(e) and its two neighbors in Gi � e 
onstitute the shore of a tight 
ut D of Gi � e. Thenonbipartite D-
ontra
tion of Gi � e is thus an odd wheel of hub vi, up to multiple edgesin
ident in vi, having two verti
es less than Gi. Let G0i(e) be that odd wheel. In the �rst
ase, let p0i(e) be pi(e). In the se
ond 
ase, let p0i(e) be the vertex of the 
ontra
tion. Inboth 
ases, G0i(e) is an odd wheel of hub vi, up to multiple edges in
ident with vi. Finally,let G0(e) denote the graph whose (C � e)-
ontra
tions are G01(e) and G02(e).Let H denote the (bipartite) subgraph of G spanned by the edges of C.Proposition 6.8Let e be any edge of C. Then, graph G0(e) is bi
riti
al. Moreover, if the degree of one ofp1(e) and p2(e) in H is at least two, or if edge e does not lie in M0, then graph G0(e) is abri
k and graph G� e is a near-bri
k.Proof: The (C � e)-
ontra
tions of G0(e) are both odd wheels. Odd wheels are bi
riti
algraphs. Therefore, graph G0(e) is bi
riti
al, by (2.11).Assume further that either edge e does not lie in M0 or the degree in H of one of itsends is at least two.Consider �rst the 
ase in whi
h edge e does not lie inM0. Then,M0 is a perfe
t mat
hingof G � e that 
ontains more than one edge in G � e. Moreover, ea
h (C � e)-
ontra
tionof G � e is a near-bri
k. Thus, 
ut C � e is robust in G � e. By (3.2), graph G � e is anear-bri
k. Graph G0(e) is obtained from G � e by the 
ontra
tion of the bipartite shoresof two tight 
uts. Therefore, graph G0(e) is a near-bri
k. But G0(e) is bi
riti
al. Therefore,G0(e) is a bri
k.Consider next the 
ase in whi
h one of the ends of e has degree at least two in H. LetH 0(e) denote the bipartite subgraph of G0(e) spanned by the edges of C � e. Cut C � e hasat least four edges in M0. If the degree of p2(e) in H is also greater than one, then thosefour edges 
onstitute a mat
hing of H 0(e). If the degree of p2(e) in H is pre
isely one then
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hesitwo of the four edges might be in
ident with p02(e) in H 0(e). In both 
ases, we 
on
lude thatgraph H 0(e) has a mat
hing of at least three edges. By (2.11), graph G0(e) is a bri
k. 2Re
all that n1 and n2 are the order of wheels G1 and G2, respe
tively. We now adjustnotation, so that n1 � n2.Proposition 6.9If a vertex of X1 has degree at least four in G then � = 3.Proof: Let v denote vertex of X1 that has degree at least four in G. Then, 
ut C 
ontainsat least two edges in
ident with vertex v. Let e be an edge of C that is in
ident with vertexv. If possible, 
hoose an edge e su
h that p2(e) has degree three in G.By (6.8), graph G0(e) is a bri
k. Let �0(e) denote the 
hara
teristi
 of 
ut C�e in G0(e).Every perfe
t mat
hing of G0(e) may be extended to a perfe
t mat
hing of G that has thesame set of edges in C. Thus, if �0(e) = 3, then � = 3 and we are done.Assume, to the 
ontrary, that �0(e) > 3. Graph G0(e) is a bri
k and 
ut C � e isseparating but not tight in G0(e). Therefore, bri
k G0(e) is the Petersen graph, up tomultiple edges, by indu
tion hypothesis.Graph G01(e) is equal to G1 � e. Therefore, n1 = 5. We have assume that n1 � n2.Therefore, n2 � 5and then graph G02(e) has order 5. Therefore, G02(e) is equal to G2 � e.Thus, vertex p2(e) has degree four in G. We 
on
lude that G0(e) = G � e, when
e G � eis the Petersen graph, without multiple edges. Let f be any edge of C � e in
ident with v.The end p2(f) of f in X2 has degree three in G. This is a 
ontradi
tion to the de�nition ofe. As asserted, � = 3. 2Proposition 6.10If a vertex v of X2 has degree at least four in G then � = 3.Proof: If a vertex of X1 has degree four in G then � = 3, by (6.9). We may thus assumethat ea
h vertex of X1 has degree three in G, whereupon jCj = n1.For ea
h edge e of C that is in
ident with vertex v, let w and x denote the two verti
esof X1 that are adja
ent to p1(e). Let f and g denote the edges of C in
ident with w and x,respe
tively. If possible, 
hoose edge e su
h that edges f and g are not adja
ent in G.By (6.8), graph G0(e) is a bri
k. Let �0(e) denote the 
hara
teristi
 of 
ut C�e in G0(e).Every perfe
t mat
hing of G0(e) may be extended to a perfe
t mat
hing of G that has thesame set of edges in C. Thus, if �0(e) = 3, then � = 3 and we are done.Assume, to the 
ontrary, that �0(e) > 3. Graph G0(e) is a bri
k and 
ut C � e isseparating but not tight in G0(e). Therefore, bri
k G0(e) is the Petersen graph, up tomultiple edges, by indu
tion hypothesis.Vertex p1(e) has degree three in G. Vertex p2(e) has degree greater than three in G,therefore G02(e) = G2�e. We 
on
lude that n1 = 7 and n2 = 5. Moreover, sin
e jCj = n1, itfollows that either X2 has pre
isely two verti
es of degree greater than three, ea
h of whi
hhas degree 4, or X2 has just one vertex of degree greater than three, and it has degree 5.The ends of f and g in G0(e) 
oin
ide in the shore of C�e resulting from the 
ontra
tionof fp1(e); w; xg and graph G0(e) is the Petersen graph, up to multiples edges. Therefore,
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overed graphs 33edges f and g are multiple edges in G0(e). But G02(e) = G2� e, therefore, the ends of f andg in X2 
oin
ide. Let v0 denote that 
ommon end of f and g.If v0 = v then the degree of v in G is 5, every vertex of G distin
t from v has degreethree. In that 
ase, both edges f and g 
ontradi
t the 
hoi
e of edge e. If v0 6= v, then v0and v ea
h have degree 4 in G, every vertex of G distin
t from v and v0 has degree three. Inthat 
ase, the edge of C that is distin
t from e and is in
ident with vertex v also 
ontradi
tsthe 
hoi
e of e. In both alternatives, we derive a 
ontradi
tion. As asserted, � = 3. 2Proposition 6.11If 
ut C has a b-removable edge e then � = 3.Proof: By (6.9) and (6.10), we may assume G to be 
ubi
. Thus, n1 = jCj = n2. If G0(e)is not the Petersen graph, up to multiple edges, then � = 3 and we are done. Assume thusthat G0(e) is the Petersen graph, up to multiple edges. Then, n1 = n2 = 7.Let w1 and x1 denote the two verti
es of X1 that are adja
ent to p1(e). Let f and gdenote the edges of C that are in
ident with w1 and x1, respe
tively. Edges f and g share a
ommon end of degree four in G0(e). The underlying simple graph of G0(e) is the Petersengraph. Thus, edges f and g are multiple in G0(e). It follows that the ends p2(e), p2(f) andp2(g) of edges e, f and g are 
y
li
ally 
onse
utive in that order, in the heptagon spannedby X2. The same property holds for the ends of these three edges in G. Therefore, fe; f; ggmay be extended to a perfe
t mat
hing of G, by adding two edges in ea
h of the heptagonsspanned by X1 and X2, respe
tively. 2We may thus assume that graph G is 
ubi
 and no edge of C is b-removable in G. We assertthat G is the Petersen graph. For this, we observe �rst that every edge of C lies in M0, forany edge of C �M0 is b-removable in G, by (6.8). We 
on
lude that M0 = CLet e be any edge of C. Graph G0(e) is not a bri
k. Ea
h (C � e)-
ontra
tion of G0(e)is an odd wheel, a bri
k. By (2.11), no mat
hing of H 0(e) has more than two edges, that isthe bipartite graph H 0(e) has a vertex 
over od edges 
osisiting of at most two edges.Perfe
t mat
hing M0 has at least 5 edges. Therefore, C � e has at least 4 edges. Itfollows that C has just 5 edges, and p01(e) and p02(e), the verti
es resulting from 
ontra
tionsin G1 � e and G2 � e, 
onstitute a 2-separation of H 0(e). This 
on
lusion holds for ea
hedge e of C.Let us number the verti
es of the pentagons spanned by X1 and X2,(00; 10; 20; 30; 40) and (000; 100; 200; 300; 400);respe
tively. Adjust notation, by 
hanging the origin of those enumerations, if ne
essary,so that edge e is (00; 000). Then, the edge f of C in
ident with vertex 200 is in
ident withone of 10 and 40. Adjust notation, by adjusting the orientation of the enumeration of theverti
es of X1, so that f = (10; 200). The edge of C in
ident with 300 is thus in
ident with 40.The edge of C in
ident with vertex 100 
annot be in
ident with vertex 20, otherwise (40; 300)would be b-removable in G. We 
on
lude that the edges of C are of the form (i0; j00), wherej = 2i mod 5. Indeed, graph G is the Petersen graph. 2
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hesi7 Proof of Theorem 1.2Theorem 1.2The 
hara
teristi
 of any separating 
ut C := r(X) of any mat
hing 
overed graph G liesin f3; 5;1g. Moreover, �G(C) = 5 if, and only if, graph G has a tight 
ut minor H, inwhi
h 
ut C is stri
tly separating, su
h that one of the following two alternatives holds:(i) Either graph H is the Petersen graph, up to multiple edges, or(ii) graph H is not a near-bri
k and there exist two 
uts in H, D1 := rH(Y1) andD2 := rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in G, set Y1 is a subset of X andset Y2 is a subset of X, 
olle
tion fD1;D2; Cg is 
ohesive, 
uts D1 and D2 are notdisjoint, and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersen graph,up to multiple edges.Proof: By indu
tion on the size of G. Let � denote the 
hara
teristi
 of C in G. We mayassume C to be nontrivial and G to be free of multiple edges.Case 1 Graph G has a nontrivial tight 
ut that does not 
ross C.Let D be a nontrivial tight 
ut of G that does not 
ross C. Let H 0 be the C-
ontra
tion ofG that in
ludes C.Cut D is tight in G, therefore 
olle
tion fC;Dg is 
ohesive. By (4.5), 
ut C is separatingin H 0 and �H0(C) = �. By indu
tion hypothesis with H 0 playing the role of G, we 
on
ludethat � lies in f3; 5;1g. If � lies in f3;1g then the assertion holds. We may assume that� = 5.By indu
tion hypothesis, � = 5 if, and only if, H 0 has a tight 
ut minor H, in whi
hC is a stri
tly separating 
ut. Cut D is a tight 
ut and H is a tight 
ut minor of H 0,a D-
ontra
tion of G. Therefore, H is a tight 
ut minor of G. Moreover, by indu
tionhypothesis, one of the following alternatives holds:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-bri
k and there are two 
uts in H, D1 := rH(Y1) and D2 :=rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in G, set Y1 is a subset of X and set Y2is a subset of X, 
olle
tion fD1;D2; Cg is 
ohesive, 
uts D1 and D2 are not disjoint,and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersen graph, up tomultiple edges.Therefore, the analysis of this 
ase is 
omplete.Case 2 Every nontrivial tight 
ut of G 
rosses C.Let D := r(Y ) be a nontrivial tight 
ut of G. Adjust the notation so that jX \ Y j beodd. Among all nontrivial tight 
uts of G 
hoose one su
h that Y is minimal. Therefore,graph GfY ; yg is free of nontrivial tight 
uts.
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uts on mat
hing 
overed graphs 35Let I := r(X \ Y ) and U := r(X \ Y ). Colle
tion fC;Dg is 
ohesive. Thus, by (4.6),fC;D; I; Ug is also 
ohesive, C,D, I and U are related by modularity, I and U are separatingin GfY ; yg and GfY ; yg, respe
tively, and � � minf�GfY g(I); �GfY g(U)g. By (4.5),�G(I) = �GfY g(I) and �G(U) = �GfY g(U):Let �I := �G(I) and �U := �G(U). Suppose that I is nontrivial, thus GfY g is nonbi-partite, when
e a bri
k. By indu
tion hypothesis, with GfY ; yg playing the role of G and Iplaying the role of C, �I lies in f3; 5;1g. In fa
t, we 
on
lude that �I lies in f3; 5g be
auseGfY g is free of nontrivial tight 
uts. Thus, � lies in f3; 5g be
ause � � �I . If �I = 3 then� = 3 and the assertion holds. We may assume that �I = 5By indu
tion hypothesis, there exists a tight 
ut minor H of GfY ; yg, su
h that:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-bri
k and there are two 
uts in H, D1 := rH(Y1) and D2 :=rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in G, set Y1 is a subset of X \ Y andset Y2 is a subset of X \ Y , 
olle
tion fD1;D2; Ig is 
ohesive, 
uts D1 and D2 arenot disjoint, and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersengraph, up to multiple edges.Graph GfY ; yg is a bri
k, thus, by indu
tion hypothesis, it is the Petersen graph, upto multiple edges. Therefore I separates two pentagons in GfY ; yg. Moreover, Petersengraph is a 
ubi
 graph, thus ea
h vertex of ea
h pentagon is adja
ent to exa
tly one vertexof the other pentagon. Let v be the the vertex that is adja
ent to y in the other pentagon.Figure 11 depi
ts graph G in this 
ase.PSfrag repla
ements U XY
DC D0vFigure 11: Graph G when I is nontrivial.Let D0 := r((X \ Y ) [ fvg). The modularity relating 
uts C, D, I and U implies thatno edge of G join verti
es of X \Y with verti
es of X \Y . Moreover, r(v)\r(X \Y ) = ;.Therefore, modularity relates D0, D, r((X \ Y ) n fvg) and U . That is, for ea
h perfe
tmat
hing M of G jM \D0j+ jM \Dj = jM \r(fvg)j + jM \ U j
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hesiBoth D and r(fvg)are tight 
uts. Therefore, D0 and U are mat
hing equivalent. We
on
lude that D0 is a separating 
ut of G and has the same 
hara
teristi
 of U .Suppose �rst that U is a tight 
ut, when
e, D0 is also tight 
ut. By 
ase hypothesis,both 
uts are trivial. Thus, graph G is the Petersen graph, up to multiple edges and C isone of its stri
tly separating 
uts.Now, we may assume that �U < 1. Cut U is a separating 
ut of GfY ; yg. Thus, byindu
tion hypothesis, �U lies in f3; 5;1g. Therefore, �U lies in f3; 5g. If �U = 3 then � = 3and we are done. So we may assume that �U = 5. Thus, �D0 = 5 be
ause it is mat
hingequivalent to U and � = 5, by modularity. Moreover, after 
ontra
tion of U and D0 wehave, up to multiple edges, the Petersen graph with C as a stri
tly separating 
ut of thisgraph. The assertion follows in this 
ase.Now, we may assume that I is a trivial 
ut. Let i be the vertex of X \ Y . If U is atrivial 
ut then, by modularity, 
ut C is a tight 
ut and the assertion follows. Therefore,we may assume that U is nontrivial.By indu
tion hypothesis, with GfY ; yg playing the role of G and U playing the role ofC, we 
on
lude that �U lies in f3; 5g. If �U = 3 then the assertion holds. We may assumethat �U = 5, when
e, � = 5.By indu
tion hypothesis, �U = 5 if, and only if, GfY ; yg has a tight 
ut minor H, inwhi
h U is a stri
tly separating 
ut. Moreover, by indu
tion hypothesis, one of the followingalternatives holds:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-bri
k and there are two 
uts in H, D1 := rH(Y1) and D2 :=rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in GfY ; yg, set Y1 is a subset of X \Y andset Y2 is a subset of X [ Y , 
olle
tion fD1;D2; Ug is 
ohesive, 
uts D1 and D2 arenot disjoint, and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersengraph, up to multiple edges.Graph H is a tight 
ut minor of G. Let D0 := r(Z) be a tight 
ut of GfY ; yg used toobtain H that in
ludes set Y in one of its shores. Adjust the notation so that Y � Z.CutD0 does not 
ross D neither U , but it must 
ross C. Moreover D0 separates D and U , thatis Y � Z and X \ Y � Z. Therefore, the relative position of these 
uts are depi
ted inFigure 12.Suppose �rst that H is the Petersen graph, up to multiple edges, with U a stri
tlyseparating 
ut of H. Then, U separates two pentagons in H. Moreover, Petersen graph isa 
ubi
 graph, when
e ea
h vertex of ea
h pentagon is adja
ent to exa
tly one vertex of theother pentagon. Let v be the vertex of X \Y su
h that r(v)\D0 6= ;. Let H 0 be the spli
eof the GfZ ; zg and H. Figure 13 shows this graph.Set fi; vg is a 2-separation of G. Cut D is a 2-separation 
ut. The other tight 
ut ofthis 2-separation is r((X \ Y )[ fvg) that does not 
ross C. Therefore, by 
ase hypothesisX \ Y must be empty, but in this 
ase D is trivial. Contradi
tion.Now, we may assume that H is not a near-bri
k and there exist two 
uts in H, D1 :=rH(Y1) and D2 := rH(Y2) satisfying ((ii)).
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ements U
X

Y
Z C
D0DiFigure 12: Sket
h of the 
uts when �U = 5 and I is trivial.PSfrag repla
ements vX

YZ C
D0DiFigure 13: Graph H', spli
e of GfZ ; zg and H.Contra
tingD1 andD2 we have the Petersen graph. The 
ontra
ted verti
es are adja
entin the Petersen graph and they are in di�erent shores of U . Petersen graph is 
ubi
,therefore, ea
h vertex in ea
h pentagon of the shores of U is adja
ent to only one vertex inthe other. Therefore, determination of position of D1 uniquely determines the position ofD2. We have two 
ases to analyze depending on whether the vertex y to be in Y2 or in Y2(see Figure 14). In both 
ases we derive a 
ontradi
tion, when
e the result follows.PSfrag repla
ements D0

ivX Y
Y2

PSfrag repla
ements D0
i vX Y

Y2Figure 14: The two 
ases 
onsidered. In �rst y 2 Y2 and in se
ond y 62 Y2
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hesiIn �rst 
ase that y 2 Y2 (see Figure 14). Let D0 := r((X \Y )[Y1). Note that there areonly three verti
es that are in
ident with edges of D0 in shore Y [ fig. Cut D0 is nontrivialand does not 
ross C, therefore, by 
ase hypothesis, D0 
an not be tight. Thus, �(D0) = 3.One of D0-
ontra
tion is the Petersen graph and D0 is non-tight, then by (2.7) we 
on
ludethat � = 3. Contradi
tion.Suppose now that y 62 D1. Let v be the vertex adja
ent to y in the other pentagon. Thus,fi; vg is a 2-separation of H 0. One of the tight 
uts asso
iated with this 2-separation is D.The other is r((X\Y )[fvg). This 
ut is also a tight 
ut in G does not 
ross C. Therefore,by 
ase hypothesis, this 
ut must be trivial, when
e D is also trivial. Contradi
tion.To 
omplete the analysis of this 
ase we must show that if G has a tight 
ut minor H,in whi
h 
ut C is stri
tly separating 
ut and su
h that either (i) or (ii) holds, then � = 5.Observe that in both alternatives, (i), or (ii), we have a Petersen graph as a minor and the
hara
teristi
 of C in this minor is �ve, therefore � lies in f3; 5g.By hypothesis of the 
ase every nontrivial tight 
ut of G 
rosses C. So, the only tight
ut minor of G that in
ludes C is G itself. If G is a near-bri
k then, by (i), G is the Petersengraph, up multiple edges, and C is a nontrivial separating 
ut in G, when
e � = 5.We may assume that G is not a near-bri
k. By hypothesis, there are two separating 
utsof 
hara
teristi
 5 in G, say D1 := r(Y1) and D2 := r(Y2), su
h that D1 and D2 are notdisjoint, C separates D1 and D2 and the graph obtained by the 
ontra
tion of D1 and D2is the Petersen graph, up to multiple edges. Adjust the notation so that Y1 � X. Figure 15shows this graph.PSfrag repla
ements fgX D2D1C
Figure 15: Graph G is not a near-bri
k.Graph G is not a near-bri
k, therefore it has a nontrivial tight 
ut D. By hypothesis,every nontrivial tight 
ut 
rosses C. Let Y be a shore of D. Graph G[Y ℄ must be 
onne
tedbe
ause GfY g is mat
hing 
overed. Adjust the notation so that jX \ Y j be odd. LetI := r(X \ Y ) and U := r(X \ Y ). Cut D is a tight 
ut of G and C is a separating 
ut ofG, thus fC;Dg is a 
ohesive 
olle
tion. By (4.6), modularity property holds with 
uts C,D, I and U and � = minf�(I); �(U)g.Suppose Y1 is a (proper) subset of X \ Y . In this 
ase there are edges from X \ Y toX \ Y , 
ontradi
ting modularity property. Therefore, Y1 \ (X \ Y ) 6= ;.Suppose that Y2 is a proper subset of X \ Y . Thus, be
ause D 
rosses C edges f andg lie in D. There exists a perfe
t mat
hing of the Petersen graph that uses edges f and g
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hing 
overed graphs 39(see Figure 15). This perfe
t mat
hing 
an be extended to a perfe
t mat
hing of G and hasthree edges in D. Contradi
tion.Therefore, we 
on
lude that E(G[Y1℄)\D 6= ; and E(G[Y2℄)\D 6= ;. Let Y1 := Y11[Y12and Y2 := Y21 [ Y22. Adjust the notation so that Y11 � X \ Y and Y22 � X \ Y . Figure 16shows graph G and 
uts C and D. By 
ounting, jY11j � 1 mod 2 and jY21j � 0 mod 2PSfrag repla
ements
Y11 Y12Y21 Y22X YZC D1

DD2

Figure 16: Graph G and 
uts C and D.Let e be an edge of r(Y22)\C. By hypothesis, 
olle
tion fC;D1;D2g is 
ohesive. Thus,there exists a perfe
t mat
hing of G that uses e and has exa
tly one edge in ea
h 
ut offC;D1;D2g. CutD is a tight 
ut, therefore jMe \r(Y21)j = 0 be
ause jMe \r(Y11) \Dj =1 and this edge is an edge of D, when
e Me \E(G[Y21℄) is a perfe
t mat
hing of G[Y21℄.Suppose, by absurd, that � = 3. Let M be a perfe
t mat
hing of G with three edges inC. In this mat
hing,jM \D1 \ Cj = 3 and jM \r(Y21) \r(Y22)j = 0:Thus, M \E(G[X [ Y22℄) is a perfe
t mat
hing of G[X [ Y22℄. Therefore,(Me \E(G[Y21℄)) [ (M \E(G[X [ Y22℄) [ ff; gg)is a perfe
t mat
hing of G with three edges in D1. Contradi
tion, the 
hara
teristi
 of D1is �ve. Thus � = 5 as we have asserted and the analysis of this 
ase is 
omplete.Case 3 Previous 
ases do not applyWe may assume now that graph G is a bri
k. By (1.1), � lies in f3; 5;1g and, if � = 5then graph G has a tight 
ut minor H that is the Petersen graph, up to multiple edges.To 
omplete the proof we need analyze the 
ase in whi
h H, that is a tight 
ut minor ofG, is isomorphi
 to Petersen graph, up to multiple edges, and C is a stri
tly separating 
utof H. Ea
h 
ut used to obtain H is a tight 
ut. Therefore by (4.5), � = 5 and the proof ofthe theorem is 
omplete. 2
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tions of Cuts 155 The Theorem on Odd Wheels 176 Proof of Theorem 1.1 237 Proof of Theorem 1.2 34List of Assertions 41List of AssertionsTheorem 1.1 fmain:near-bri
ks, MAIN:NEAR-BRICKSg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3The 
hara
teristi
 �G(C) of any separating 
ut C of any near-bri
k G lies in f3; 5;1g.Moreover, if �G(C) = 5 then graph G has a tight 
ut minor P that is the Petersen graph,up to multiple edges, and 
ut C is stri
tly separating in P .Theorem 1.2 fmain, MAIN, alt:Petersen, alt:
ohesiveg . . . . . . . . . . . . . . . . . . . . . . . . . 4The 
hara
teristi
 of any separating 
ut C := r(X) of any mat
hing 
overed graph G liesin f3; 5;1g. Moreover, �G(C) = 5 if, and only if, graph G has a tight 
ut minor H, inwhi
h 
ut C is stri
tly separating, su
h that one of the following two alternatives holds:(i) Either graph H is the Petersen graph, up to multiple edges, or(ii) graph H is not a near-bri
k and there exist two 
uts in H, D1 := rH(Y1) andD2 := rH(Y2), ea
h of whi
h has 
hara
teristi
 5 in G, set Y1 is a subset of X andset Y2 is a subset of X, 
olle
tion fD1;D2; Cg is 
ohesive, 
uts D1 and D2 are notdisjoint, and the graph obtained by the 
ontra
tion of Y1 and Y2 is the Petersen graph,up to multiple edges.Lemma 2.1 findu
ed:
ontra
tedg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Let C := r(X) be a separating 
ut of a mat
hing 
overed graph G. Then, the C-
ontra
tionGfXg is bipartite if, and only if, indu
ed subgraph G[X℄ of G is also bipartite. Moreover,if G[X℄ is bipartite, the 
ardinality of two parts of the bipartition di�er by one unit.Corollary 2.2 fshore:bipg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Let C be a separating 
ut of a mat
hing 
overed graph G. If one of the C-
ontra
tions ofG is bipartite then 
ut C is tight in G.
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hesiCorollary 2.3 fseparating:bipartiteg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5In a bipartite graph G, a 
ut is tight if, and only if, it is separating in G.Lemma 2.4 fbipartite:bZerog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5A mat
hing 
overed graph G is bipartite if, and only if, it has b(G) = 0.Lemma 2.5 fstri
tly-separating-tightg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6A non-bipartite mat
hing 
overed graph G is a near-bri
k if, and only if, graph G is free ofstri
tly separating tight 
uts.Corollary 2.6 ftight:near-bri
kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Graph G is a near bri
k if, and only if, for ea
h nontrivial tight 
ut of G one of the C-
ontra
tions is a bipartite graph and the other is a near-bri
k. 2Lemma 2.7 fthree:extendsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Let G be a mat
hing 
overed graph, D be a non-tight 
ut of G. If a D-
ontra
tion H of Gis the Petersen graph, up to multiple edges, then every nontrivial separating 
ut of H is aseparating 
ut of G with 
hara
teristi
 three in G.Lemma 2.8 fPplus:eg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Let G be the simple graph obtained from the Petersen graph P by adding an edge e. LetC be a nontrivial separating 
ut of G su
h that C � e is separating in G � e. Then, the
hara
teristi
 of C in G is equal to three.Lemma 2.9 fmaximal:barrierg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9For any maximal barrier B of a mat
hing 
overed graph G, every bipartite (odd) 
omponentof G�B is trivial.Lemma 2.10 fnear-bri
k:atMostTwog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9For every 3-edge-
onne
ted near-bri
k G, every equivalen
e 
lass Q with respe
t to thedependen
e relation 
ontains at most two edges, with equality only if graph G � Q isbipartite.Lemma 2.11 fspli
ing:bri
ksg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Let G be a mat
hing 
overed graph, C := r(X) a separating 
ut of G. If ea
h C-
ontra
tionof G is bi
riti
al then graph G is bi
riti
al. Moreover, if ea
h C-
ontra
tion of G is a bri
kthen, G is a bri
k if, and only if, subgraph G[C℄ of G spanned by C has a mat
hing withat least three edges.Lemma 2.12 fbipartite:atMostOneNonRemovableg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Let G be a bra
e with at least four verti
es. If G has at least six verti
es then every edgeis removable in G. If G has just four verti
es and is free of verti
es of degree two then, forevery vertex v of G, at most one edge of r(v) is not removable in G.Lemma 3.1 ftight:in:
ontra
tiong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Let G be a mat
hing 
overed graph, D := r(Y ) a separating 
ut of G that is either tightor robust in G, H := GfY ; yg a D-
ontra
tion of G, C a tight 
ut of H. Then, either (i)
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ut C is tight in G or (ii) 
uts C and D are mat
hing-equivalent in G, 
ut C is robust in Gand the C-
ontra
tion of H that 
ontains vertex y is bipartite.Lemma 3.2 fsubadditivityg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See [2℄, Theorem 4.3) If a mat
hing 
overed graph has a robust 
ut then it is anear-bri
k. 2Lemma 3.3 frobustg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See [3℄, Corollary 2.4) Let C be a separating 
ut of a bri
k G, let M0 be a perfe
tmat
hing of G that 
ontains more than one edge in C. Let C be the 
olle
tion of separating
uts D of G su
h that jM0 \D j > 1 and D � C. Then, every 
ut of C that is minimal withrespe
t to the relation of pre
eden
e is robust in G. 2Lemma 3.4 fmonotoni
ity:lambdag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See the proof of Theorem 2.23 in [2℄) Let e be a removable edge of a mat
hing
overed graph G, let C be a 
ut of G su
h that C � e is stri
tly separating in G� e. Let Cbe the 
olle
tion of those 
uts D of G su
h that D � e is stri
tly separating in G � e andD � C. Then, every 
ut of C that is minimal with respe
t to the relation of pre
eden
e isstri
tly separating in G.Corollary 3.5 fsolid:removableg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14If a near-bri
k G is solid then every removable edge of G is b-removable in G.Lemma 4.1 fseparating:
hara
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15A 
ut C of a mat
hing 
overed graph G is separating if, and only if, every edge of G lies ina perfe
t mat
hing of G that 
ontains pre
isely one edge in C.Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Every tight 
ut of a mat
hing 
overed graph is separating.Corollary 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15A 
ut C of a mat
hing 
overed graph G is separating, if, and only if, 
olle
tion fCg is
ohesive.Corollary 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15For ea
h 
ohesive 
olle
tion C of a mat
hing 
overed graph G and every tight 
ut C of G,
olle
tion fCg [ C is also 
ohesive.Lemma 4.5 flambda:laminarg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15For any 
ohesive laminar 
olle
tion fC;Dg of 
uts of a mat
hing 
overed graph G, letH denote the D-
ontra
tion of G that 
ontains 
ut C. Then, 
ut C is separating in H.Moreover, �G(C) � �H(C), with equality if 
ut D is tight in G.Lemma 4.6 flambda:
rossg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Let C := r(X) and D := r(Y ) be two 
rossing 
uts of a mat
hing 
overed graph G. Adjustnotation so that jX \ Y j be odd. Let I := r(X \ Y ), let U := r(X \ Y ). If 
olle
tionfC;Dg is 
ohesive, then the following properties hold:
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hesi(i) For every set F of edges of G, the following relation of modularity holds:jF \ C j+ jF \D j = jF \ I j+ jF \ U j :(ii) Colle
tion fC;D; I; Ug is 
ohesive.(iii) Let �I denote the 
hara
teristi
 of 
ut I in GfY g and �U denote the 
hara
teristi
 of
ut U in GfY g. Then, �C(G) � minf�I ; �Ug, with equality if 
ut D is tight in G.Theorem 5.1 foddWheelsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17(Theorem on Odd Wheels) For any vertex v of a 3-edge-
onne
ted near-bri
k G andany v-mat
hing M of G, one of the following properties holds:(i) Either graph G is an odd wheel of hub v, up to multiple edges in
ident with vertex v,(ii) or graph G is not solid,(iii) or graph G has a removable singleton or doubleton that is disjoint with M [r(v) .Theorem 5.2 fthm:lovaszCriti
alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Every 
riti
al graph G 
an be represented asG = P0 + P1 + � � � + Pr; (4)where P0 is K1 and ea
h Pi (1 � i � r) is either an odd path or an odd 
ir
uit havingpre
isely its origin and terminus in 
ommon with P0 + P1 + � � �+ Pi�1.Proposition 5.3 f
onverse:lovaszCriti
alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18If a graph G has an ear de
omposition as in (4), then it is 
riti
al. 2Proposition 5.4 fallInMg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19For ea
h integer i, (q < i � r), ear Pi has length one, its only edge, pi, lies inM . Therefore,for any permutation (P 0q+1; � � � ; P 0r) of (Pq+1; � � � ; Pr), sequen
e (P0; P1; � � � ; Pq; P 0q+1; � � � ; P 0r)is an ear de
omposition of G� v of index q.Proposition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19No edge f of S lies in M [r(v) .Lemma 5.6 fboth:
riti
alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Ea
h of G1 � x and G2 � x is 
riti
al.Proposition 5.7 fbothEndsInPqg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Let e be any upper edge of P. Then, both ends of edge e are internal verti
es of V (Pq).Moreover, if vj and vk denote the two ends of e in V (Pq), path S[j; k℄ has even length.Proposition 5.8 f
rossg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Let vi; vj be the ends of upper edge e and vk; vl the ends of upper edge f su
h that i < k <j < l. Then, ea
h of S[i; k℄, S[k; j℄ and S[j; l℄ has even length.



Separating 
uts on mat
hing 
overed graphs 45Proposition 5.9 fadjTo:vg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Let e be an upper edge of P, vi and vj its ends in V (Pq). Then, at least one internal vertexof S[i; j℄ is adja
ent to vertex v.Proposition 5.10 fGtwoMinusxCriti
alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Graph G2 � x is 
riti
al.Proposition 5.11 f
ontra:bi
riti
alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Let D := r(Y ) be any odd 
ut of G, H := GfY ; yg. If graph H � y is 
riti
al then H ismat
hing 
overed and bi
riti
al.Proposition 6.1 fCInonnullg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Either set CI is nonnull or set X \ Y 
ontains a vertex, i, su
h that no vertex of Y isadja
ent to any vertex of X \ Y � i.Lemma 6.2 fnoWitnessesg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Let G be a bri
k, C a nontrivial separating 
ut of G. Either G has a witness for C or 
utC is robust and ea
h C-
ontra
tion of G is solid.Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Colle
tion D has at most two members, ea
h of whi
h is a subset of X. Moreover, for ea
hset Y in D, graph H := (G � e)[Y ℄ has a bipartition (A;B) su
h that jBj = jAj + 1, andedge e is the only edge of G that is in
ident with some vertex of A but not in
ident withany vertex of B.Notation 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Let r := jDj. For 1 � i � r, let Yi denote an enumeration of the members of D, Hi :=(G � e)[Yi℄, (Ai; Bi) the bipartition of Hi su
h that jBij = jAij + 1. Let vi and wi denotethe ends of e in G, su
h that vertex vi lies in Ai. Let yi be the vertex of P obtained by the
ontra
tion of Yi to a single vertex.Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Under the hypothesis of Case 6.1, for ea
h member Yi of D and any two verti
es xi andyi of the set Zi of the three verti
es of V (G) \ V (P ) that are adja
ent in G to verti
es ofBi, the subgraph Wi of G spanned by Yi [ fxi; yi; wig has a perfe
t mat
hing, Mi, that
ontains pre
isely three edges in r(Yi), in
ident, respe
tively, to xi, yi, and wi.Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30The subgraph W of G spanned by Y1 [ Y2 [ Z has a perfe
t mat
hing that 
ontains pre-
isely four edges in r(Y1 [ Y2 ), ea
h of whi
h is in
ident to one of the four verti
es ofZ.Proposition 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30For i = 1; 2, Gi is an odd wheel of hub vi, up to multiple edges in r(vi).Proposition 6.8 fspli
ing:oddWheelsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Let e be any edge of C. Then, graph G0(e) is bi
riti
al. Moreover, if the degree of one ofp1(e) and p2(e) in H is at least two, or if edge e does not lie in M0, then graph G0(e) is abri
k and graph G� e is a near-bri
k.



46 C. N. Campos and C. L. Lu

hesiProposition 6.9 ffourNotOneg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32If a vertex of X1 has degree at least four in G then � = 3.Proposition 6.10 ffourNotTwog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32If a vertex v of X2 has degree at least four in G then � = 3.Proposition 6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33If 
ut C has a b-removable edge e then � = 3.


