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Abstract

A matching covered graph is a connected graph each edge of which lies in some perfect
matching. A cut of a matching covered graph is separating if each of its two contractions
yields a matching covered graph. A cut is tight if each perfect matching of the graph
contains just one edge in the cut. Every tight cut of a matching covered graph is
separating. The characteristic of a nontight separating cut is the smallest number of
edges greater than one that some perfect matching of the graph has in the cut. The
characteristic of a tight cut is defined to be equal to oo.

We show that the characteristic of every separating cut C' of a matching covered
graph lies in {3,5,00}. Moreover, if C has characteristic equal to 5 then graph G has
the Petersen graph as a minor, in a very strict sense. In particular, if G is free of
nontrivial tight cuts then G is the Petersen graph, up to multiple edges.

1 Introduction

Matching theory has had a fast development after Hall and Tutte’s Theorems. Hall’s the-
orem establishes necessary and sufficient conditions for a bipartite graph to have a perfect
matching and Tutte’s theorem establishes necessary and sufficient conditions for a general
graph to have a perfect matching. We refer the reader to Lovdsz and Plummer [5], Murty [6]
or Loviész [4].

We shall use V(G) and E(G), respectively, for the set of vertices and edges of a graph
G.

A matching of a graph G is a set of edges that do not have any end in common. We say
that a matching M of G is perfect if every vertex of GG is an end of some edge of M. An
edge of a graph G is admissible in G if it lies in some perfect matching of G. A graph G is
matching covered if it is connected and each edge is admissible in G.

Let G be a matching covered graph. For subset X of V(G), V(X) denotes the edge-cut
associated with X, that is, the set of edges of G having one end in X and the other in X;
we say that X is a shore of V(X). Since G is connected, sets X and X are the only shores
of V(X). Since G has perfect matchings, the size of sets X and X have the same parity.
Cut V(X) is odd or even, depending on the parity of |X|. We reserve the word cut to mean
an edge-cut. Cut V(X) is trivial if one of X and X has at most one vertex.
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Two cuts Dy and Dy of a matching covered graph G are matching-equivalent if, for every
perfect matching M of G, the number of edges of M in D; and in Dy coincide.

Let C denote V(X). The graph obtained from G by contracting set X to a single new
vertex T is a C-contraction of G and is denoted by G{X;T}. If the name of the new vertex
is irrelevant we then simply denote the contraction by G{X}. Observe that this notation
is inspired in the traditional notation G[X], used to denote the subgraph of G spanned by
set X.

Cut C is tight in G if every perfect matching of G has precisely one edge in C. If G is
free of nontrivial tight cuts then it is a brace if it is bipartite, a brick otherwise. If cut C'
is tight, then every C-contraction of G is matching covered (the converse is not necessarily
true). This property led Lovész to define a tight cut decomposition of G to be a collection
of matching covered graphs obtained from the initial collection {G} by repeatedly replacing
each member H of the collection by the two C-contractions of H, for any nontrivial tight cut
C of H, until every member of the collection is free of nontrivial tight cuts. A remarkable
result, shown by Lovész in [4], states that any two tight cut decompositions of G yield
the same family of graphs, up to multiple edges. Thus, the number of bricks of any tight
cut decomposition of G is an invariant of the graph and is denoted b(G). Graph G is a
near-brick if b(G) = 1.

Any graph H obtained during the application of a tight cut decomposition procedure
to G is a tight cut minor of G. More formally, a graph H is tight cut minor of a matching
covered graph G if, and only if, either (i) graph H is graph G, or (ii) graph G has a nontrivial
tight cut C such that graph H is a tight cut minor of a C-contraction of G.

A barrier B of a matching covered graph is a nonempty set of vertices such that the the
number of odd components of G — B is equal to the cardinality of set B. If B is a barrier
of a matching covered graph then G' — B has no even components. A barrier B is trivial if
it has at most one vertex.

Let B be a nontrivial barrier of G and K be a nontrivial odd component of G — B, thus
V(V(K)) is a nontrivial tight cut, namely barrier cut. Let {u,v} be a 2-separation of G
that is not a barrier. Let K be an even component of G — {u,v}. Then V(K U {u}) and
V(K U {v}) are both tight cuts of G, namely 2-separation cuts. Figure 1 shows examples
of these cuts. These two cuts are important because of a remarkable result, due to Lovész,
Edmonds and Pulleyblank, that states that if a matching covered graph has a nontrivial
tight cut then it has a nontrivial tight cut that is, either a barrier cut, or a 2-separation
cut.

Figure 1: Two special types of tight cuts: barrier cut and 2-separation-cut
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Figure 2: Two separating cuts that do not form a cohesive collection

Cut C of G is separating in G if each of its C-contractions is matching covered. Thus,
every tight cut of G is separating in G. A separating cut of G is strictly separating if both
C-contractions of G are non-bipartite.

The characteristic of a separating cut C of G, denoted A\g(C), is the minimum number
of edges that perfect matchings of G have in C', among all perfect matchings that have more
than one edge in C. Thus, Ag(C) > 3. We extend the definition to tight cuts by defining
the characteristic of a tight cut to be infinite. The characteristic of G is the minimum of
the characteristic of its separating cuts.

Carvalho et al. [2] have shown that the characteristic of every matching covered graph
lies in {3,5,00}. They have also shown that the only brick of characteristic 5 is the Petersen
graph. We prove herein two generalizations of their result. We state now the first of the
two generalizations:

THEOREM 1.1

The characteristic Aq(C) of any separating cut C of any near-brick G lies in {3,5,00}.
Moreover, if \¢(C) = 5 then graph G has a tight cut minor P that is the Petersen graph,
up to multiple edges, and cut C' is strictly separating in P.

We now prepare the statement of the second generalization of the Theorem of Carvalho et
al.. The following characterization of separating cuts is not difficult to prove:

LEMMA 4.1
A cut C of a matching covered graph G is separating if, and only if, every edge of G lies in
a perfect matching of G that contains precisely one edge in C.

This result motivates the following definition, which will play a central role in this
paper. A collection C of cuts of G is cohesive in G if for each edge of G, there exists a
perfect matching M of G such that matching M contains precisely one edge in each cut of
C. Note that any collection of tight cuts of G is cohesive. Note also that every member
of a cohesive collection of G is separating in G. The converse, however is not necessarily
true: Figure 2 shows an example, due to Carvalho, of two separating cuts of a matching
covered graph that do not counstitute a cohesive collection. We may now state our second
main result:



4 C. N. Campos and C. L. Lucchesi

THEOREM 1.2

The characteristic of any separating cut C := V(X)) of any matching covered graph G lies
in {3,5,00}. Moreover, A\q(C) = 5 if, and only if, graph G has a tight cut minor H, in
which cut C' is strictly separating, such that one of the following two alternatives holds:

(i) Either graph H is the Petersen graph, up to multiple edges, or

(ii) graph H is not a near-brick and there exist two cuts in H, D; = V(Y1) and
Dy := V(Y3), each of which has characteristic 5 in G, set Y] is a subset of X and
set Yo is a subset of X, collection {Dy, Dy, C} is cohesive, cuts D1 and Dy are not
disjoint, and the graph obtained by the contraction of Y1 and Ys is the Petersen graph,
up to multiple edges.

Figure 3 shows an example of alternative (ii) in the statement of Theorem 1.2.

Figure 3: An illustration of alternative (ii) in (1.2)

Section 2 contains most of the basic material that is required, but which may be skipped
by the reader that is quite familiar with the subject. Section 3 contains results concerning
robust cuts, which are essential to the proof of main results of this paper. Section 4 intro-
duces important results concerning cohesive collections. Section 5 contains an important
result, which is called the Theorem on Odd Wheels. The proof of Theorem 1.1 is presented
in Section 6. Finally, Section 7 contains a proof of Theorem 1.2.

2 Basics

In this section, we list some elementary or well-known results about matching covered
graphs.

LEmMMA 2.1

Let C := V(X) be a separating cut of a matching covered graph G. Then, the C-contraction
G{X} is bipartite if, and only if, induced subgraph G[X] of G is also bipartite. Moreover,
if G[X] is bipartite, the cardinality of two parts of the bipartition differ by one unit.
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Proof: Assume that G{X} is bipartite. Graph G[X] is a subgraph of G{X}. Thus G[X] is
bipartite and the assertion holds.

Suppose that G[X] is bipartite. Let (A, B) be a bipartition of G[X]. Cut C is a
separating cut of G. Thus, for each edge of G there exists a perfect matching of G' that
has only one edge in C. The restriction of this matching to edges of G[X] is a matching
with exactly one single vertex. Therefore, ||A| — |B|| = 1. Thus, the moreover part follows.
Adjust the notation so that |B| = |A| + 1.

Let A" := AU {z}, whence |A'| = |B|. Let E4 := CNV(A). Assume that G{X} is
not bipartite. Thus, the contracted vertex is adjacent to vertices of A, that is F4 # (.
Let e € E4. Graph G{X} is matching covered because C is a separating cut. Thus, there
exists a perfect matching of G{X} that includes e. Both ends of e are in A’, therefore
there exist |A'| — 2 vertices of A’ to match with |B| vertices of B. But |A’| = |B| and B is
an independent set, thus such matching, that uses e, does not exist. This contradicts the
admissibility of edge e. Therefore, G{X} is bipartite. O

COROLLARY 2.2
Let C be a separating cut of a matching covered graph G. If one of the C-contractions of
G is bipartite then cut C' is tight in G.

Proof: Let X be a shore of C. Adjust the notation so that G{X} be bipartite. By (2.1)
graph G[X] is bipartite. Let (A, B) be a bipartition of G[X], by (2.1) ||A] —|B|| = 1.
Adjust the notation so that |A| = |B| — 1.

Graph G{X} is bipartite and the ends of edges of C, different from the contracted

vertex, lie in B. Therefore, B is a barrier to graph G with G[X] as an odd component of
G — B, thus cut C is a barrier cut. Therefore, cut C' is a tight cut of G. a

COROLLARY 2.3
In a bipartite graph G, a cut is tight if, and only if, it is separating in G.

Proof: Let C' := V(X) be an odd cut of G. If C is a tight cut then, as we have already
seen, it is separating. So, we can assume that C is a separating cut of G. Graph G[X] is
bipartite, thus, by (2.1), graph G{X?} is also bipartite. By (2.2), cut C is tight in G. a

LEMMA 2.4
A matching covered graph G is bipartite if, and only if, it has b(G) = 0.

Proof: Let G be a matching covered bipartite graph. Let C := V(X) be a separating cut.
Graphs G[X] and G[X] are both bipartite. Thus, by (2.1), G{X} and G{X} are both
bipartite. By (2.2), cut C is a tight cut of G. Thus, b(G) = b(G{X}) + b(G{X}). By
induction hypothesis, b(G{X}) = 0 and b(G{X}) = 0. Therefore b(G) = 0.

Assume now, that b(G) = 0. Any tight cut decomposition yields the same list of bricks
and braces and b(G) is the sum of b(G;) for each G; in the list. We conclude that any tight
cut decomposition of G has only braces. Let £ be a tight cut decomposition of G, up to
multiple edges.



6 C. N. Campos and C. L. Lucchesi

The proof will be by induction on the size of £. If £ = {G} then G itself is a brace and
the assertion holds. Thus, we can assume that [£| > 2.

Let C be a tight cut of G. Let G{X} and G{X} be the C-contractions of G. Let Lx
and L+ be the list of bricks and braces, up to multiple edges, of any tight cut decomposition
of G{X} and G{X}, respectively. List £ = Lx U Ly, therefore £Lx and L are composed
only braces, whence b(G{X}) =b(G{X}) =0.

By induction hypothesis, G{X} and G{X} are bipartite. By (2.1), graphs G[X] and
G[X] are bipartite. Let (X4, Xp) a bipartition of G[X] and (X 4, X ) a bipartition of
G[X]. By (2.1), ||Xa| — |XB|| = 1 and HYA‘ - ‘YBH = 1. Adjust the notation so that
X4l =|Xp|—1and |X 4| = |Xp|+1 (see Figure 4).

X4 Xa
|
\
Xp 1 Xp
C

Figure 4: Graph G and cut C.

Graph G{X} is bipartite. Thus each edge of C has one end in the contracted vertex
and the other in Xp. Therefore, there are no edges of C' in V(X,4). By symmetry, there
are no edges of C' in V(X ). Therefore, the edges of C have one end in Xp and the other
n X 4 and G is bipartite. U

LEMMA 2.5
A non-bipartite matching covered graph G is a near-brick if, and only if, graph G is free of
strictly separating tight cuts.

Proof: Suppose that G is a near-brick. Let C' be a nontrivial tight cut of G. Let G; and
G2 be the two C-contractions of G. Thus, b(G) = b(G1) + b(G2). By hypothesis, b(G) =1,
therefore, either b(G1) = 1 and b(G2) = 0, or the contrary. Adjust the notation so that
b(G1) = 1. By (2.4) G5 is a bipartite graph and then C'is not a strictly separating tight cut.
This result holds for any tight cut of G. We conclude that G is free of strictly separating
tight cuts.

Now, assume that G is free of strictly separating tight cuts. Thus, for any tight cut of
G one of the C-contractions is bipartite. If G has no nontrivial tight cuts then it is a brick,
whence a near-brick. So, we can assume that G has a nontrivial tight cut C. Let G; and
G- be the C-contractions. Adjust the notation so that G is bipartite. Thus,

b(G) = b(G1) + b(G2) = b(G1) + 0 = b(Gy).
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Graph G} is free of nontrivial strictly separating tight cuts. Thus, by induction hypothesis
b(G1) =1, whence b(G) =1 and the assertion holds. O

COROLLARY 2.6
Graph G is a near brick if, and only if, for each nontrivial tight cut of G one of the C-
contractions is a bipartite graph and the other is a near-brick. O

The Petersen graph has a special role in theory of matching covered graphs. If C' := V(X)
is a separating cut of the Petersen graph, then graphs G{X} and G{X} are odd wheels and
G[X] and G[X] are pentagons. Moreover, these two pentagons are joined by that special
way (see Figure 5). Any separating cut of the Petersen graph has this structure because of

the automorphisms of this graph.

Figure 5: A separating cut in the Petersen graph.

LEMMA 2.7

Let G be a matching covered graph, D be a non-tight cut of G. If a D-contraction H of G
is the Petersen graph, up to multiple edges, then every nontrivial separating cut of H is a
separating cut of G with characteristic three in G.

Proof: Let Y be a shore of D. Adjust the notation so that H := G{Y;y}. Graph H is the
Petersen graph, up to multiple edges. Therefore, the subjacent graph of H is cubic, whence,
7 has three adjacent in H. We conclude that any perfect matching of G has at most three
edges in D.

Let C := V(X) be a separating cut of H. Cut C separates two pentagons in H. Adjust
the notation so that the C := {0',1’,2',3',4’'} and the contracted vertex of H be vertex ('
(see Figure 5). In order to prove that C is a separating cut of G we must find for each edge
of G a perfect matching with one edge in C.
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Let H' be the other D-contraction of G and let e be an edge of H'. There exists a
perfect matching of G that uses e. Let M, be this matching. This matching has at most
three edges in D. If |M, N D| = 3 then

(M. N E(H') U{(2,3),(1",2"),(3",4")}

is a perfect matching of G that uses e and has only one edge in C.

Suppose now, that |[M, N D| = 1. Let f be the edge of M, in D. There exists two
possibilities to edge f, up to automorphisms, and in each case we have found a perfect
matching with one edge in C.

lelf = (0, 0")
f = (0’7 ]-’)

= (M. NEH))U{(1',2),(3,4),(1",2"),3",4")}
:> (Me ﬂ E(H’)) U {(2,’4”), (3”4,)’ (0”’ 1”), (2", 3”)}

Let f1 := (0/,0"), fo := (0',1") and f3 := (0/,4'). Each of these edges have adjacent
edges in H that are admissible edges in G. Let e be an edge that is adjacent to some f;.
There exists a perfect matching M, of G that uses e. Cut D is an odd cut, therefore, each
perfect matching has one or three edges in D. Matching M, can not have three edges in
C because one of these edges would be adjacent to e, contradicting the fact of M, being a
matching. Therefore, we conclude that |[M, N D| = 1. So, for each f; there exist a perfect
matching of G that uses f; and only f;. Let M; be the restriction of such matching to edges
of E(H').

Let e be an edge of H. Cut C' is a separating cut of H. Therefore, there exists a perfect
matching of H that uses e and has only one edge in C. By construction, this matching has
only one edge in D. Let f; be this edge. Thus, M; U M, is a perfect matching of G that
uses e and has only one edge in C. We conclude that C is a separating cut of G.

Now, to complete the proof we need to find a perfect matching of G that has three edges
in C. By hypothesis, D is a nontight cut, therefore, there exists a perfect matching M of
G with three edges in D. Thus,

(M NE(H"))u{(2,4"),(3,17),(2",3")}

is a perfect matching of G with three edges in C. Therefore, A\(C) = 3. O

LEMMA 2.8

Let G be the simple graph obtained from the Petersen graph P by adding an edge e. Let
C be a nontrivial separating cut of G such that C' — e is separating in G — e. Then, the
characteristic of C' in G is equal to three.

Proof: In order to show that A(C') = 3 it is enough to find a perfect matching of G with
three edges in C. Each separating cut of G — e separates two pentagons. Let C'—e := V(X))
be a separating cut of G —e. Adjust the notation so that the X := {0',1’,2',3',4'} and the
contracted vertex of D be vertex 0" (see Figure 5).
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Edge e is not multiple, thus it joins two non-consecutive vertices of G. Suppose first that
e ¢ C. By automorphisms of Petersen graph, we can adjust the notation so that e = (1',4").
Thus,

M = {(0’,0”), (11,41)’ (217411)’ (31’ 1//)’ (2”’ 3//)}

is a perfect matching of G with three edges in C.
Now, we can assume that e € C. Again by the automorphisms of Petersen graph, we
can consider e = (0',2"). Thus,

M = {(0,, 2//)’ (11’ 2/)’ (3/7 1”)’ (41’ 3//)’ (0//74”)}

is a perfect matching of G with three edges in C'. Therefore, the assertion follows. O

LEMMA 2.9

For any maximal barrier B of a matching covered graph G, every bipartite (odd) component
of G — B is trivial.

Proof: Let B be a maximal barrier of G. Let Ki,..., K, be the odd components of G — B.
Assume, to the contrary, that there exists K; such that G[K;] is bipartite. Let (A;, B;) a
bipartition of K;. Cut V(Kj;) is a separating cut, thus, by (2.1), ||A;] — |Bi|| = 1. Adjust
the notation so that |A;| = |B;| + 1. Thus, V(4;) = V(B;) UV(K;). Therefore, BUB; is a
barrier to G' that contradicts the maximality of B a

Let G be a matching covered graph and let e and f be any two edges of G. Then we say e
depends on f, or e implies f, if every perfect matching that contains e also contains f. We
write e = f to indicate that e depends on f. Relation = is reflexive and transitive.

Two edges e and f are mutually dependent if e = f, and f = e. In this case we write
e < f. Clearly < is an equivalence relation on E(G). In general, an equivalence class can
be arbitrarily large. However, in a 3-edge-connected near-brick, equivalence classes have
cardinality at most two as shown in the following lemma.

LEMMA 2.10

For every 3-edge-connected near-brick G, every equivalence class () with respect to the
dependence relation contains at most two edges, with equality only if graph G — @) is
bipartite.

Proof: Graph G is non-bipartite matching covered graph, thus if |Q| = 1, graph G — @ is
non-bipartite then assertion holds. Assume that || > 2 . Let e, f and g be three edges of
Q. Each of these three edges imply the other two. Let B be a maximal barrier of G — f
such that both ends of e are in B and the two ends of f are in different components of
G-f—-B.

Suppose that there exists another edge ¢’ which has both its ends in B. Let M be a
perfect matching in G that contains edge ¢/. By counting, we conclude that f € M and
e & M. But this contradicts the hypothesis that e < f. Therefore, e is the only edge
spanned by B.
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Suppose now that G— f — B has at least one nontrivial component. Let K be a nontrivial
component of G — f — B. Barrier B is maximal, thus by (2.9), K is non bipartite. Thus, cut
C := V(K) is a separating cut of G with both its Cx-contractions non-bipartite. Therefore,
by (2.6), Cx can not be a tight cut. Let M be a perfect matching of G that has more than
one edge in Cx. By counting,

IMNCk|=3, feM and e¢ M.

Again contradicts the hypothesis of e & f.

Therefore, G — e — f is bipartite and E \ {e, f} is a cut of G. By analogy, E \ {e, g}
is also a cut of G. The symmetric difference of these two cuts is {f,g}. Moreover, the
symmetric difference of any two cuts is also a cut. Therefore, {f, g} is a cut of G. But this
is a contradiction because G is 3-edge-connected. Therefore, |Q)| < 2. Moreover, if |Q| = 2
then G — @ is bipartite. a

LEMMA 2.11

Let G be a matching covered graph, C' := V(X)) a separating cut of G. If each C-contraction
of G is bicritical then graph G is bicritical. Moreover, if each C'-contraction of G is a brick
then, G is a brick if, and only if, subgraph G|C] of G spanned by C has a matching with
at least three edges.

Proof: Let G1 := G{X;Z} and G5 := {X;x} be the two C-contractions of G. We will show
that G is bicritical by removal of any two vertices, say v and v, of G and finding a perfect
matching to G —u — v. Consider first the case in which both v and v are vertices of X. By
hypothesis, graph G is bicritical, therefore, G; — {u, v} has a perfect matching M;. Let e
be the edge of My N C. Graph G5 is matching covered, thus there exists a matching Ms in
G- that uses e. Therefore, M; U My is a perfect matching of G.

Consider now the case in which © € X and v € X. Graph G| — u — T has perfect
matchings. Let M; be a matching of G; — u — Z. This matching has no edges in C.
Analoguely, there is a perfect matching, My, to Gy — v — = without edges in C'. Thus,
Mi U My is a perfect matching to G — u — v. Therefore, G is bicritical.

Now, we will show the second part of the lemma. Suppose that G is a brick and cut
C is a separating cut of G, thus cut C can not be tight. Therefore, there exist at least
one perfect matching of G with at least three edges in C. In particular, the subgraph G[C]
spanned by C has a matching with at least three edges.

Now, suppose that G[C] has a matching with at least three edges. Assume, to the
contrary, that G has a nontrivial tight cut. Thus, graph G has a nontrivial tight cut that
is either a barrier cut or a 2-separation cut. Graph G is bicritical, thus this tight cut must
be a 2-separation cut. Let {u,v} be this 2-separation and let K; and Ky be the (even)
components of G — {u,v}.

Suppose first that v and v lie in X. If K1 C X then {u,v} is a 2-separation of G
(see Figure 6(a)) contradicting the hypothesis that G is a brick. Otherwise, that is, if
K;NX # 0 and K;NX # () for 1 <4 < 2 then graph G has a vertex cut (see Figure 6(b)),
a contradiction with the hypothesis of G5 is matching covered.
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Figure 6: Vertices of the 2-separation lie in X.

Now, we may assume that « € X and v € X. Suppose that K; N X # 0 for 1 <i < 2.
In this case, {u,T} is a 2-separation of G; (see Figure 7(a)) a contradiction because, by
hypothesis, this graph is a brick. Assume then that Ko N X = ) and K; N X = 0. In
this case cut C is a tight cut of this 2-separation (see figure 7(b)). By hypothesis, there
exists a perfect matching with more than one edge in C' and, again we have a contradiction.
Therefore, as we have asserted graph G is a brick.

Figure 7: One vertex of the 2-separation lies in X and the other lies in X.

|

The first part of the next Lemma was proved in [1]. The last part follows trivially of the
fact that G, in that case, is isomorphic to Cy with multiple edges.

LEMMA 2.12

Let G be a brace with at least four vertices. If G has at least six vertices then every edge
is removable in G. If G has just four vertices and is free of vertices of degree two then, for
every vertex v of G, at most one edge of V(v) is not removable in G.



12 C. N. Campos and C. L. Lucchesi

3 Robust Cuts and b-removable edges

Robust cuts have been defined and used in [2] and in [3]. We cite here the fundamental
results we need involving robust cuts. We remark that most of these results were proved in
those two papers.

Let G be a matching covered graph. A cut C of G is robust in G if cut C is not tight
in G and each C-contraction of G is a near-brick.

LEMMA 3.1

Let G be a matching covered graph, D := V(Y') a separating cut of G that is either tight
or robust in G, H := G{Y;y} a D-contraction of G, C a tight cut of H. Then, either (i)
cut C is tight in G or (ii) cuts C and D are matching-equivalent in G, cut C is robust in G
and the C-contraction of H that contains vertex gy is bipartite.

Proof: Let X be the shore of cut €' in H that contains vertex 3. Let X denote the other
shore of C in H. Let H, := H{X;Z}, Hy := H{X;z}. (See Figure 8).

>

Figure 8: An illustration for Lemma 3.1

Counsider first the case in which graph H is not a near-brick. By definition of robust cut, it
follows that cut D is not robust. By hypothesis, cut D is either tight or robust in G. We
deduce that cut D is tight in G. By hypothesis, cut C' is tight in H, therefore it is also
tight in G. The assertion thus holds in this case.

We may thus assume that graph H is a near-brick. By hypothesis, cut C' is tight in H.
Therefore, one of H; and Hs is bipartite, the other is a near-brick. Observe that Hs is a
C-contraction of G. If Hy is bipartite then cut C is tight in G, and the assertion holds in
this case.

We may thus assume that graph Hj is bipartite. Cut C' is tight in H, thus b(Hy) =
b(H) = 1, we conclude that Hy is a near-brick. If vertices ¥ and T lie in the same part of
H, then the other part of H; is a barrier of G, whence cuts C' and D are both tight in G,
the assertion holds in this case. Alternatively, if vertices ¥ and 7 lie in distinct parts of Hy
then cuts C' and D are matching-equivalent in G. If D is tight in G' then so too is C. So
we can assume that D is robust. Therefore, the two D-contractions of G are near-bricks.
Thus, the other C-contraction of G that includes cut D is a near-brick too. So, cut C' is
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a non-tight cut and both its C-contractions are near-bricks, whence C' is a robust cut. In
both alternatives the assertion holds. |

LEMMA 3.2 (SEE [2], THEOREM 4.3)
If a matching covered graph has a robust cut then it is a near-brick. O

Let G be a matching covered graph, let C' and D denote two (not necessarily distinct) cuts
of G such that

IMNC|<|MnND]J, for every perfect matching M of G. (1)

We then say that cut C precedes cut D, and denote this fact by writing C' < D. In addition,
if equality holds in (1) for each perfect matching M of G then we say that cuts C and D
are matching-equivalent. If equality does not hold in (1) for some perfect matching M of G
then we say that cut C strictly precedes cut D and denote this fact by writing C' < D. For
any collection C of cuts of G, a cut C of C is minimal with respect to < in C if no cut D in
C strictly precedes C' in G.

LEMMA 3.3 (SEE [3], COROLLARY 2.4)

Let C be a separating cut of a brick G, let My be a perfect matching of G that contains
more than one edge in C. Let C be the collection of separating cuts D of G such that
|MoND|>1and D < C. Then, every cut of C that is minimal with respect to the relation
of precedence is robust in G. O

A matching covered graph G is solid if it is free of strictly separating cuts. An edge e of a
matching covered graph G is removable in G if graph G — e is also matching covered. An
edge e of G is b-removable in G if it is removable in G and b(G — e) = b(G).

LEMMA 3.4 (SEE THE PROOF OF THEOREM 2.23 IN [2])

Let e be a removable edge of a matching covered graph G, let C be a cut of G such that
C — e is strictly separating in G — e. Let C be the collection of those cuts D of G such that
D — e is strictly separating in G — e and D < C. Then, every cut of C that is minimal with
respect to the relation of precedence is strictly separating in G.

Proof: Certainly cut C lies in collection C. Let D be a cut in C that is minimal with respect
to the relation of precedence. Each (D — e)-contraction of G — e is non-bipartite. Therefore,
each D-contraction of G is non-bipartite. If cut D is separating in G then it is strictly
separating.

Assume, to the contrary, that cut D is not separating in G. Then, at least one of the
D-contractions of G is not matching covered. Let X be a shore of D and H := G{X;T} be
a D-contraction of G that is not matching covered.

By hypothesis, cut D — e is separating in G — e. Graph H — e, a (D — e)-contraction of
G — e, is thus matching covered. We conclude that edge e lies in H but is not admissible in
H. Let B denote a maximal barrier of graph H that contains both ends of edge e. If vertex
T does not lie in B then B is a barrier of G that spans edge e, whence e is not admissible
in G, a contradiction. We conclude that vertex z lies in B.
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Let K denote the set of (odd) components of H — e — B. For each component K in IC,
let Ck denote cut V(V(K)) of G.

By hypothesis, cut D — e, a member of collection C, is strictly separating in G — e.
This observation has two important implications. The first is that graph H — e is non-
bipartite, whence at least one component in C, say L, is nontrivial, therefore the Cp-
contraction G{V (L)} is non-bipartite, by (2.9). The other implication is that the Cp-
contraction (G — e){V(L)} of G — e is non-bipartite, by (2.1). We conclude that both
Cp-contractions of G — e are non-bipartite.

We now show that cut Cp is separating in G — e and also that Cp < D, thereby
contradicting the definition of D. For this, observe that for every perfect matching M of
G, the number of edges of M in cut Vy(B) may be expressed in two ways:

IMAD|+|B|—1-2[Mn{e}|= Y |[MNCk|>|MNCL|+|K| - 1.
KeK

Since |K| = |B|, it follows that
|IMND|—-2|Mn{e}|>|MnNCL|.

From the equation above, it follows that for every perfect matching M of G, |[M N Cr| <
| M N D|, with equality only if edge e does not lie in M. Since edge e is admissible in G, it
follows that Cr, < D.

Let f be any edge of G —e. Cut D — e is separating in G — e, therefore there exists a
perfect matching My of G—e that contains edge f and just one edge in D. From the equation
above it then follows that matching M contains just one edge in Cp,. This conclusion holds
for each edge f of G — e, therefore cut Cp, is separating in G — e. Since both Cp-contraction
of G — e are non-bipartite, cut C, is strictly separating in G — e.

In sum, cut Cp, strictly precedes cut D in G, cut C, is strictly separating in G — e.
This conclusion contradicts the minimality of cut D in C. As asserted, cut D is strictly
separating in G. ad

COROLLARY 3.5
If a near-brick G is solid then every removable edge of G is b-removable in G.

Proof: Let e denote a removable edge of G.

We observe first that graph G — e is not bipartite. For if G — e is bipartite, then either
edge e has both ends in the same part of G — e or graph G itself is bipartite. If edge e has
both ends in the same part of G — e then it is not admissible in G; if graph G is bipartite
then it is not a near-brick. In both alternatives we derive a contradiction. Indeed, graph
G — e is non-bipartite.

Assume, to the contrary, that edge e is not b-removable in G. Then, graph G —e is neither
bipartite nor a near-brick, whence it has a strictly separating tight cut, by (2.5). Therefore
by previous lemma, graph G also has a strictly separating tight cut. This contradicts the
hypothesis that G is solid. a
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4 Cohesive Collections of Cuts

In this section we list some important properties of cohesive collections of cuts of a matching
covered graph. As we have defined, a collection of cuts C is cohesive if every edge of G lies
in a perfect matching of G' that contains precisely one edge in each cut in C. The following
result characterizes separating cuts.

LEmMMA 4.1
A cut C of a matching covered graph G is separating if, and only if, every edge of G lies in
a perfect matching of G that contains precisely one edge in C'.

COROLLARY 4.2
Every tight cut of a matching covered graph is separating.

COROLLARY 4.3
A cut C of a matching covered graph G is separating, if, and only if, collection {C} is
cohesive.

COROLLARY 4.4
For each cohesive collection C of a matching covered graph G and every tight cut C of G,
collection {C} UC is also cohesive.

Two cuts V(X) and V(Y) of a graph G cross ifeachof X NY, XNY, XNY and XNY
is non-null. A collection of cuts is laminar if no two of its cuts cross.

LEMMA 4.5

For any cohesive laminar collection {C,D} of cuts of a matching covered graph G, let
H denote the D-contraction of G that contains cut C. Then, cut C is separating in H.
Moreover, A\q(C) < Ay (C), with equality if cut D is tight in G.

Proof: Collection {C, D} is cohesive. Thus, for each edge of G there exists a perfect matching
with one edge in C and with one edge in D. The restriction of this matching to edges of H
is a perfect matching in H with one edge in C. In particular, for each edge of H there exists
a perfect matching with one edge in C. Therefore, C is a separating cut in H. Moreover,
each perfect matching of H has one edge in D and can be expanded to a perfect matching
of G. Therefore \(C) < Ay (C).

If D is a tight cut then the restriction of each perfect matching of G' to edges of H is a
perfect matching of H. Therefore, the set of perfect matchings of H is exactly the set of the
perfect matching of G restricting the edges of these matchings to edges of H. Therefore,
Ag(C) = )\H(C) O

LEMMA 4.6

Let C := V(X) and D := V(Y') be two crossing cuts of a matching covered graph G. Adjust
notation so that | X NY| be odd. Let I := V(X NY), let U := V(X NY). If collection
{C, D} is cohesive, then the following properties hold:
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(i) For every set F' of edges of G, the following relation of modularity holds:

|FNC|+|FND|=|FNI|+|FNU|.

(ii) Collection {C,D,1,U} is cohesive.

(iii) Let A\; denote the characteristic of cut I in G{Y } and Ay denote the characteristic of
cut U in G{Y'}. Then, \c(G) < min{\;, \y}, with equality if cut D is tight in G.

Proof: Let S be the set of edges that have one end in X N'Y and the other in X NY. For
any set of edges the following relation is true:

IFNC|+|FND|=|FNI|+|FNY|+2|FNS|

Suppose that S # (). Collection {C, D} is cohesive. Therefore, for each edge of G there
exists a perfect matching with exactly one edge in C and one edge in D. Let M be a perfect
matching of G that uses e € S and has one edges in C and one edge in D. Thus,

2=MNC|+|MND|=|MNI|+|MNY|+2|MNS|>2

Therefore, S must be empty and the modularity property holds.

Collection {C, D} is cohesive and modularity holds. Thus, {C,D,I,U} is a cohesive
collection. If {C,D,I,U} is a cohesive collection, so too is {D,I} and {D,U}. By (4.5),
we conclude that I is separating in G{Y'} and U is separating in G{Y }.

Let M be a perfect matching with A\; edges in I and one edge in D and U. Thus, by
modularity, |M N C| = A;. Let M be a perfect matching with Ay edges in U and one edge
in D and I. Thus, by modularity, |[M N C| = A\y. Therefore, A(C) < min{Ar, A\ }.

Suppose now that D is a tight cut. Let M be a perfect matching of G with A¢ edges in
C. Cut D is tight and the modularity property holds. Therefore,

IMNI|+MNU|=Xc+1. (2)
Moreover,
M NI+ |MNU|>2min{A;, Av}. (3)
By 2 and 3 we conclude that
Ac > min{\r, \y}

We know that A\¢ < min{A7, Ay}. Therefore the equality holds and the proof is complete.
(]
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5 The Theorem on Odd Wheels

In this section we present a result that establishes, under certain conditions, that a near-
brick is an odd wheel. That result plays a fundamental role in the proof of the Main
Theorem.

For any vertex v of a graph G, a v-matching of G is a set M of edges of G such that
every vertex of G distinct from v is incident with precisely one edge of M. A trivial but
important remark: if M is a v-matching of a graph that has an even number of vertices
then | M NV (v)]| is odd.

THEOREM 5.1 (THEOREM ON ODD WHEELS)
For any vertex v of a 3-edge-connected near-brick G and any v-matching M of G, one of
the following properties holds:

(i) Either graph G is an odd wheel of hub v, up to multiple edges incident with vertex v,
(ii) or graph G is not solid,
(iii) or graph G has a removable singleton or doubleton that is disjoint with M UV (v).

Proof: By induction on the size of G.

CAseE 1 Graph G is not a brick.

By hypothesis, graph G is a near-brick. Thus, for every tight cut C' of G, one of the C-
contractions of G is bipartite, the other is a near-brick. By hypothesis of the case, graph G
is not a brick. Let thus C' be a nontrivial tight cut of G such that the set of edges of the
bipartite C-contraction of G is minimal. Then, that C-contraction is a brace.

Let X be a shore of C, Gy := G{X;T}, G2 := G{X;z} the two C-contractions of G.
Adjust notation so that G is bipartite. Let (A, B) denote the bipartition of G such that
vertex T lies in A.

Consider first the case in which vertex v does not lie in V(G;). In that case, the
restriction of M to G is a perfect matching of G;. Let w be any vertex of A — Z. This
vertex is incident with exactly one edge of M. By (2.12), at most one edge of G incident
with vertex w is not removable in G;. By hypothesis, graph G is 3-edge-connected, whence
it is free of vertices of degree two. We conclude that V(w) — M contains an edge, say e,
that is removable in G;. Moreover, vertices w and Z lie on the same part A of G, therefore
edge e does not lie in C. Finally, vertex v does not lie in V' (G1), therefore edge e does not
lie in V(v). We conclude that edge e is removable in G and does not lie in M U V(v). The
assertion holds in this case.

Consider next the case in which vertex v lies in A. Then, it is distinct from vertex
Z. Moreover, each vertex of V(G;) — {v,Z} is incident with precisely one edge of M,
and |M NV (v)| is odd, therefore M is a perfect matching of G, and cut C is tight in
G. By (2.12), cut C contains an edge, e, that does not lie in M and is removable in G;.
Moreover, edge e does not lie in V(v). Let R be a minimal class of G5 induced by edge e.
Observe that the restriction of M to G9 is a perfect matching of G5, and edge e does not
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lie in M, therefore R and M are disjoint. Moreover, graph G2, a C-contraction of G, is
3-edge-connected, therefore R contains at most two edges. If R and C are disjoint then R
is removable in G and is disjoint with M UV (v). If R and C are not disjoint then e is the
only edge of R in C. In both cases, R is a removable singleton or doubleton of G' that is
disjoint with M U V(v). The assertion holds in this case.

Consider last the case in which vertex v lies in B. In this case, cut C' has as many edges
in M as does cut V(v). Therefore, the restriction of M to Gg is an z-matching of G5. By
induction hypothesis, with x playing the role of v, M N E(G3) the role of M and G2 the
role of G, we have one of the alternatives of the assertion. We consider each one of them
separately. If G5 has a removable singleton or doubleton R that is disjoint with M U C',
then R is also a removable doubleton or singleton in G that is disjoint with M UV (v).
For every separating cut D of (g, its characteristic in Gy equals its characteristic in G:
if G2 is not solid, neither is G. Finally, assume that G5 is an odd wheel of hub z, up to
multiple edges in C, let w be any vertex of B — v. By (2.12), V(w) has an edge, say e,
that is removable in G and does not lie in M U V(v). If edge e does not lie in C' then it
is removable in G if edge e lies in C' and either the order of the wheel G5 is greater than
three or edge e is a multiple edge in C, then edge e is removable in Gj if edge e is not a
multiple edge in G2 and the order of G5 is three, then there exists a doubleton in Go that is
disjoint with M and removable in both G9 and G. In all cases considered, either graph G
has a removable singleton or doubleton that is disjoint with M U V(v), or graph G is not
solid. The analysis of this case is complete.

We may thus assume that graph G is a brick. To proceed with the proof, we need a theorem
due to Lovéasz (Theorem 5.5.1, page 196, [5]):

THEOREM 5.2
Every critical graph G can be represented as

G=F+P+---+F, (4)

where Py is K; and each P; (1 < i < r) is either an odd path or an odd circuit having
precisely its origin and terminus in common with Py + P; + -+ + P;_;.

Sequence P := (P, P1,--- , P.) is an ear decomposition of critical graph G, and for each 4
(1 <i<r), Pisan ear of P. The following assertion is the converse of (5.2), and is easily
proved by induction.

PROPOSITION 5.3
If a graph G has an ear decomposition as in (4), then it is critical. O

Graph G is bicritical, therefore graph G — v is critical. By (5.2), graph G — v has ear
decompositions. Set M is a v-matching of G therefore M — V(v) is a matching of G — v,
and E(G — v) is not a subset of M. Thus, for each ear decomposition P = (Py, Py,--- , P;)
of G — v, there exists at least one integer 7 such that 0 < ¢ < r and E(F;) is not a subset of
M; we define the indez of P to be the largest positive integer ¢ < r such that E(FP,;) — M
is nonnull.
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Let P := (Py, P, -+ ,P,) be an ear decomposition of G — v of highest index. Let ¢
denote the index of P.

PROPOSITION 5.4

For each integer i, (¢ < i < r), ear P; has length one, its only edge, p;, lies in M. Therefore,
for any permutation (P, 1, -+, P)) of (Pyy1,- -+, Py), sequence (Py, Pr, -+, Py, Py iy, , Py)
is an ear decomposition of G — v of index q.

Proof: Let ¢ be any integer such that ¢ < i < r. No edge of P; is incident with vertex v.
Therefore, every vertex of V(P;) is incident with at most one edge of M. By definition of
index q, E(P;) C M. Thus, P; must have length one. This conclusion holds for each index
i such that ¢ <4 < r. Therefore, graph Py + Py +--- + P, is a spanning subgraph of G' —v.
We conclude that we may permute the ears of P as indicated in the assertion, to obtain
another ear decomposition of G — v of index gq. a

CASE 2 g =1.

We assert that » = 1. To see this, assume the contrary. Then, the edge po of P» has both
ends in V(P;). But P; is an odd circuit, whence the ends of py split P; in two paths, P’
and P”, of odd and even length, respectively. If P’ has length one then its edge e and ps
counstitute a pair of multiple edges of GG; moreover, ps lies in M, therefore edge e does not lie
in M. Alternatively, if the length of P’ is greater than one then E(P’') is not a subset of M.
In both cases, E(P') is not a subset of M. Let P} be the vertex graph of any vertex of P".
Replacement of Py, P, P> in P by Pj, P" + py, P', respectively, yields an ear decomposition
of G — v of index two, a contradiction. As asserted, r = 1. We conclude that G — v is an
odd circuit.

Graph @ is bicritical, therefore every vertex of G is adjacent to at least three vertices.
Thus, each vertex of G — v is adjacent to v. We conclude that G is an odd wheel of hub v,
up to multiple edges in V(v). The analysis of the case is complete.

CASE 3 ¢ > 1 and |E(F,)|=1.

We assert that ¢ = r in this case. For i = ¢+ 1,--- ,r, path P; has length one, by (5.4).
Therefore, graph Py + P; + - -- + P, is a spanning subgraph of G — v. Therefore, we may
replace (Py,--- ,FP) in P by (Py41,--- , P, Py), thereby obtaining an ear decomposition of
index r. By definition of P, it follows that ¢ = r, as asserted. Let e be the edge of P,. Let
S be the set of edges of G that depend on edge e.

PROPOSITION 5.5
No edge f of S lies in M UV (v).

Proof: Edge e, an edge of graph G — v that does not lie in M, does not lie in M UV (v).
The assertion holds trivially if f = e. We may thus assume that f is an edge of S — e.
Then, graph G — e has a barrier B that contains both ends of f.

We assert that vertex v does not lie in B. For this, assume the contrary. Let w be any
vertex of B—wv. Let B’ := B—{v,w}. Let ' := G—v—e—w. Then, G'— B' = G—e¢— B,
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whence the number of (odd) components of G' — B’ is strictly greater than the number of
vertices of B’. Thus, graph G’ has no perfect matching, whence graph G — v — e is not
critical. But (Py, Py,--- , Pr_1) is an ear decomposition of graph G — v — e, therefore graph
G — v — e is critical, by (5.3). This is a contradiction. As asserted, vertex v does not lie in
B.

Set M, a v-matching of G, has precisely one edge incident with each vertex of G distinct
from v, therefore it has an odd number of edges incident with each vertex of G. For each
(odd) component K of G — e — B, set M has thus an odd number of edges in V(V (K)).
Edge e does not lie in M, therefore set M has at least |B| edges in V(B). Vertex v does
not lie in B, therefore each vertex of B is incident with precisely one edge of M. Moreover,
that edge lies in V(B). Therefore, edge f does not lie in M. In sum, edge f has both ends
in B and does not lie in M, and vertex v does not lie in B. We conclude that edge f does
not lie in M UV (v), as asserted. O

Let R be any minimal class of G induced by e. Then, set R is disjoint with M U V(v).
Graph G is a brick, thus R contains at most two edges, by (2.10). We conclude that graph
G has a removable singleton or doubleton R that is disjoint with M U V(v), as asserted.
The analysis of this case is complete.

CASE 4 ¢ > 1 and |E(F,)| > 1.

Let
Pq = (voaelavla e 76271,-}-171)277,—1—1)

X = (V(P) — {vo,von+1}) U{v}, C := V(X). Let Gy := G{X;z} and Gy = G{X;T}
denote the two C-contractions of G.

LEMMA 5.6
Fach of G1 — x and Gy — T is critical.

Proof: Sequence (Fy,P;---,P, 1) is an ear decomposition of graph G; — z. Therefore,
graph Gy — z is critical, by (5.3).

The proof that graph G2 — T is critical is more elaborate. For any two integers j and k
such that 0 < 5,k < 2n + 1, let S[j, k] denote the subpath of P, extending from vertex v;
to vertex vy, if j < k, otherwise let S[j, k] denote the reversal of S[k, j]. For each integer i
such that ¢ < ¢ < r, edge p; of F; is an upper edge of P.

PROPOSITION 5.7
Let e be any upper edge of P. Then, both ends of edge e are internal vertices of V (F).
Moreover, if v; and vy, denote the two ends of e in V (P,;), path S[j, k] has even length.

Proof: We may permute the upper edges of P so that e is the edge of P;;q1. Assume,
to the contrary, that no end of edge e is an internal vertex of P;. Then, we may clearly
interchange P, and F,11 in P, thereby obtaining an ear decomposition of index ¢ + 1, a
contradiction. We conclude that at least one end of e is an internal vertex of P, say v,
where 0 < j < 2n + 1.
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Assume, to the contrary, that the other end of e is not an internal vertex of F,. One
of S[0,4] and S[j,2n + 1] has odd length, the other has even length. Adjust notation, by
replacing P, in P by its reversal, if necessary, so that the length of S[0, j] is even. Replace,
in P, P, by S[0, 5] Py41 and P, by S[j,2n+1]. Edge e lies in M, therefore E(S[j,2n +1])
is not a subset of M, whence P has not maximum index, a contradiction. As asserted, both
ends of e are internal vertices of F.

Let vg be the other end of edge e. Assume, to the contrary, that S[j, k] has odd length.
Adjust notation so that j < k. Replace, in P, P, by S[0,j] - Pyjq1 - S[k,2n + 1], and Py
by S[j, k|, thereby obtaining an ear decomposition of G — v of index ¢ + 1, a contradiction.
As asserted, S[j, k] has even length. O

Two upper edges e and f of P cross if the ends v; and v; of edge e and the ends v; and v,
of edge f, with 1 < 5 and k < [, satisfy the inequality ¢« < k < 7 <.

PROPOSITION 5.8

Let v;,v; be the ends of upper edge e and vy, v; the ends of upper edge f such that i < k <
j <. Then, each of S[i, k], S[k,j] and S[j,l] has even length.

Proof: We may assume, by permuting upper edges, that e is the edge of P; and f the edge
of Pyio. Path S[i,j] has even length, by (5.7). Therefore, the lengths of paths S[i, k] and
S|k, j] have the same parity. Likewise, the lengths of paths S[k,j] and S[j,[] also have the
same parity. Thus, the three paths have lengths of the same parity. Assume, to the contrary,
that the common parity is odd. Replace, in P, P, by S[0,¢]- Pyy1-S[k,j]- Pyi2-S[l,2n +1],
P11 by S[i, k] and P,19 by S[j,{]. This replacement yields an ear decomposition of G — v
of index g + 2, a contradiction. As asserted, the common parity is even. O

PROPOSITION 5.9
Let e be an upper edge of P, v; and v; its ends in V (FP,). Then, at least one internal vertex
of S[i, j] is adjacent to vertex v.

Proof: By induction on |j —¢|. Adjust notation so that i < j. Vertex v;;; has degree at
least three in G' and is distinct from vertex vj;, because j — ¢ is even. If v;; is adjacent to
vertex v then the assertion holds. Assume thus that vertex v;4+; is adjacent to an upper
edge f of P. Path S[i,i+ 1] has odd length, therefore edge f cannot cross edge e, by (5.8).
We conclude that edge f has ends v;41 and v such that i +1 < k£ < j. By induction, path
S[i + 1, k] has at least one internal vertex adjacent to vertex v. a

PROPOSITION 5.10
Graph Gy — T is critical.

Proof: We assert that a spanning subgraph of Gy — T has an ear decomposition Q :=
Qo+ Q1+ -+ Qs, where s < 3. For this, recall first that graph G is a brick, therefore
{vo, v2p41} is not a 2-separation of G. No edge of G joins an internal vertex of P, to vertices
of G1 — v. Therefore, at least one internal vertex of P, is adjacent to vertex v. Let i be
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the smallest positive integer such that ¢ < 2n + 1 and vertex v; is adjacent to vertex wv.
Likewise, let j be the largest positive integer such that j < 2n + 1 and v; is adjacent to
vertex v. Thus, 0 <7 < j < 2n + 1. Let e; and e; be edges of V(v) incident with vertices
v; and vj, respectively.

Consider first the case in which 7 = 1 and j = 2n (Figure 9(a)). In this case, the
assertion holds, with s = 1 and @ := S[1,2n]- (vey, e2p, v, e1,v1). Consider next the case in

Vo V2n41

V1 v1

(a) (b) (c)

Figure 9: An illustration for the proof of (5.10)

which 4 = 1 and j < 2n, or 4 > 1 and j = 2n. Adjust notation, by reversing P, if necessary,
so that j = 2n (Figure 9(b)). Then, ¢ > 1. Graph G is bicritical, therefore vertex v; is
adjacent to at least three vertices of G. No edge of G joins vertex vy to either v or any
vertex of X. Therefore, there is an upper edge of P incident with vertex v;. Let e denote
that upper edge. Let vy denote the other end of e. By (5.7), path S[1,k] has even length,
whence path S[k,2n] has odd length. Moreover, by (5.9) and by definition of 7, i < k. The
assertion holds, with s = 2, Q; := S[1, k] - (vg, e,v1) and Q2 := S[k,2n] - (voy, ean, v, €;,v;).

We may thus assume that 1 < ¢ < j < 2n. Graph G is bicritical, therefore both vertices
vy and v, are incident with upper edges of P, say e and f, respectively. Let vg be the end
of e distinct from vy, let v; denote the end of f distinct from wvg,. Then, by (5.9)and by
definition of ¢ and j, we have that 1 < ¢ < k and [ < j < 2n. Edges e and f cannot cross.
To see this, assume the contrary. By (5.8), each of the three segments S[1,!], S[k,2n] and
S|, k] has even length. But the sum of the legnths of these three segments is odd, (2n —1).
This is a contradiction. We conclude that 1 < i < k <[ < j < 2n (Figure 9(c)).

Suppose that at least one of S[1,i] or S[j,2n] has even length. Adjust the notation so
that the length of S[1,7] is even . In that case, the assertion holds, with s = 3, Q :=
S[,2n] - (von, fru), Q2 := (vj,e5,v,e;,v;) - S[i,1], and Q3 := (vg,e,v1) - S[1,14].

Finally, if each of S[1,i] and S[j,2n] has odd length then so too have paths S|[i, k] and
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S[l,7]. Then, the assertion holds with s = 3,
Ql = S[I,Z] ' (viaeiavaejavj) : S[]a 2”] ' (UQTHfavl) ' S[lak] : (vkaeavl)a

QQ = S[l,k‘] and Qg = S[l,]]
As asserted, graph G2 — T has a critical spanning subgraph. Therefore, Go — T is also
critical. a

As asserted, both G; — = and G — T are critical. The proof of Lemma 5.6 is complete. O

PRrROPOSITION 5.11
Let D := V(Y) be any odd cut of G, H := G{Y;y}. If graph H — 7 is critical then H is
matching covered and bicritical.

Proof: For any vertex w of H distinct from 3, graph H — 3§ — w has a perfect matching.
Thus, each edge of H incident with vertex ¥ is admissible in H. Therefore, graph H has
perfect matchings. Moreover, no nontrivial barrier of H contains vertex 3. Every barrier of
H that does not contain vertex ¥ is a barrier of G, therefore it is trivial. We conclude that
H is bicritical. a

Graph G is a C-contraction of G in which the vertex of contraction is z and graph
G1 — z is critical, by (5.6). Likewise, graph G is a C-contraction of G in which the vertex
of contraction is  and graph G2 —7 is critical. Thus, both G; and G2 are bicritical matching
covered graphs, by(5.11). We conclude that cut C is a nontrivial separating cut of G. Cut
C is not tight, because G is a brick. Therefore, G is not solid. The analysis of the last case
of the Theorem on Odd Wheels is complete. O

6 Proof of Theorem 1.1

THEOREM 1.1

The characteristic A\g(C) of any separating cut C' of any near-brick G lies in {3,5,00}.
Moreover, if \G(C) = 5 then graph G has a tight cut minor P that is the Petersen graph,
up to multiple edges, and cut C' is strictly separating in P.

Proof: By induction on the size of G. Let A denote the characteristic of C' in G. We may
assume C to be nontrivial and G to be free of multiple edges.

CASE 1 Graph G has a nontrivial tight cut D that does not cross cut C.

Let Hy and Hs denote the two D-contractions of G. By hypothesis, graph G is a near-brick,
therefore one of H; and Hj is bipartite, the other is a near-brick. By hypothesis, cuts C'
and D do not cross, therefore C' is a cut of one of H; and Hs. Adjust notation, so that C'
is a cut of graph Hj.
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Cut D is tight in G, therefore collection {C, D} is cohesive in G. By (4.5), cut C is
separating in H;. Moreover, the characteristic of C' in H; is equal to A. If graph H; is
bipartite then cut C is tight in H;, whence it is tight in G. In that case, the assertion holds.

Assume thus that H; is not bipartite. Then, H is a near-brick. By induction hypothesis,
with graph H; playing the role of G, A lies in {3,5,00}. If A lies in {3, 00} then we are done
in this case. Assume thus that A = 5. By induction hypothesis, graph H; has a tight cut
minor P that is the Petersen graph, up to multiple edges, and cut C is strictly separating
in P. But graph H; is a tight cut minor of G. Therefore graph P is also a tight cut minor
of G. The analysis of this case is complete.

CASE 2 Graph G is not a brick and every nontrivial tight cut of G crosses C.

We assert that A = 3 in this case. Graph G is a near-brick that is not a brick, therefore it
has nontrivial tight cuts. Let D be a nontrivial tight cut of G. Every nontrivial tight cut
of G crosses cut C, therefore cuts C and D cross.

Let X be a shore of C, Y be a shore of D. Adjust notation so that | X NY'| is odd. Let

[:=V(XNY),U:=V(XNY),H :=G{Y;y}, Hs := G{Y;y}.

Collection {C, D} is cohesive. By (4.6), so too is collection {C,D,I,U}. Moreover,
A = min{A\7, \y}, where A; denotes the characteristic of cut I in H; and Ay denote the
characteristic of cut U in Ho. Graph G is a near-brick and cut D is nontrivial and tight in
G. Therefore, one of Hy and H» is bipartite, the other is a near-brick. Adjust notation so
that Hs is bipartite, whereupon H; is a near-brick.

Graph H is bipartite and cut U is separating in Hy. Therefore, cut U is tight in Hs.
That is, Ay = 00, whence A = A;.

Cut I cannot be tight in H;, otherwise C' would be a nontrivial tight cut that does not
cross itself. If A; = 3 then A = 3 and the assertion holds. Assume, to the contrary, that
3 < Ar < oo. By induction hypothesis, with I playing the role of C' and H; that of G,
graph H; has a tight cut minor P that is the Petersen graph up to multiple edges, and cut
1 is strictly separating in P.

We assert that the subgraph @ of G spanned by X NY is a pentagon. To see this, let
T be any tight cut of H; that has a shore Z that is a subset of X NY . Then, T is a tight
cut of G. Moreover, cuts C and T' do not cross because Z is a subset of X. Thus, cut 7T is
trivial. That is, set Z is a singleton. We conclude that the vertices of @) are all vertices of
P. As asserted, the vertices of () span a pentagon in G.

The Petersen graph is cubic, therefore precisely one vertex of () is adjacent in G to
vertices of Y. Let i denote that vertex. Let Y' := {i}U(XNY), D' := V(Y'). The
modularity relating cuts C, D, I and U implies that no edge of G joins vertices of X NY
with vertices of X NY . Observe that

YNY' =Y -i=(Q—-i)u(XNY) and YNY' = XNY.

Therefore, no edge of G joins vertices of ¥ N Y’ with vertices of Y N Y. Note that Y NY' =
{i} and Y NY’' = X NY . Thus, modularity also relates cuts D, D', V(i) and U. But cuts
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D, V(i) and U are each tight in G, therefore cut D' is also tight in G. We conclude that
cut D' is a nontrivial tight cut of G that does not cross cut C, a contradiction. As asserted,
A = A;r = 3. The analysis of the case is complete.

In view of Cases 1 and 2, we may assume graph G to be a brick. We now introduce a
concept that will be quite important to reduce the proof further, to the case in which each
C-contraction of G is a solid near-brick.

A cut D of G is a witness for C if D is robust in G, collection {C, D} is cohesive and
cuts C' and D are not matching-equivalent,

CASE 3 Graph G is a brick and it has a witness for C that does not cross cut C.

We assert that A = 3 in this case. Let X be a shore of C. By hypothesis of the case, at least
one C-contraction of G' contains a cut that is a witness. Adjust notation so that G{X} has
a cut that is a witness. Among the witnesses in G{X}, choose one, D, such that the shore
Y of D that is a subset of X is maximal.

Let H := G{Y;y}. Then, H is the D-contraction of G that contains C. By definition of
witness, cut D is robust and collection {C, D} is cohesive, whence graph H is a near-brick
and cut C is separating in H. Let Ay denote the characteristic of C' in H. By induction
hypothesis, with H playing the role of G, Ay lies in {3,5, co}.

We assert that cut C is not tight in H. Assume, to the contrary, that C is tight in H.
Cut C is not tight in G because it is nontrivial in G and G is a brick. By (3.1), cuts C and
D are matching-equivalent, in contradiction to the definition of witness. As asserted, C is
not tight in H. We conclude that Ay lies in {3,5}.

By (4.5), A < Ag. If Ay = 3 then A = 3 and the assertion holds. Assume thus that
Ag = 5. By induction hypothesis, graph H has a tight cut minor P such that cut C is
strictly separating in P and P is the Petersen graph, up to multiple edges.

We assert that H = P. Let T be any (possibly trivial) tight cut of H that does not cross
cut C. By the hypothesis of the case, G is a brick; if T" is tight in G then it is trivial in G,
therefore trivial in H. Assume thus that 7" is not tight in G. By (3.1), cut 7" is robust in G,
matching-equivalent to D and the T-contraction of H that contains vertex y is bipartite.
Cuts C and D are not matching-equivalent, whence neither are cuts C and T'. Let Z be the
shore of T" in H that contains vertex y. Then, H{Z} is bipartite. Every separating cut of
H that lies in H{Z} is tight in G{Z}, whence it is also tight in H. Cut C is not tight in H,
therefore C is not a cut of G{Z}. Thus, Y':= Y U(Z — y) is the shore of 7" in G that is a
subset of X. By the maximality of Y, it follows that Z = {y}. That is, D and T coincide.
We conclude that every tight cut of H that does not cross C' is trivial in H. Graph P is a
tight cut minor of H that has C as a cut. It follows that H = P, as asserted.

Cut D is a trivial cut of H, but a robust cut of G. In particular, cut D is not tight in
G. By (2.7), A = 3. The analysis of this case is complete.

CASE 4 Graph G is a brick, every witness for C crosses C' and G has a witness D.

We assert that A = 3. By hypothesis of the case, cuts C and D cross. Let X be a shore of
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C, Y ashore of D. Adjust the notation so that | X NY | be odd. Let
[:=V(XNY),U:=V(XNY),H :=G{Y;y}, Hs := G{Y;y}.

By definition of witness, collection {C,D} is cohesive. By (4.6), so too is collection
{C,D,1,U}. Thus, cut [ is separating in H; and cut U is separating in Hy. Let A;
denote the characteristic of I in Hy, let Ay denote the characteristic of U in Hy. By (4.6),
A < min{A7, A\y}. If min{A;, Ay} =3 then A\ = 3 and the assertion holds.

Assume, to the contrary, that min{A;, \y} > 3. Cut D is robust, therefore graphs H;
and Hs are both near-bricks. By induction hypothesis, with H; playing the role of G and
I that of C, it follows that A; lies in {5,00}. Likewise, Ay also lies in {5, 00}. Let

Cr = {Z:ZC XNY ,hV(Z) is a witness for C in G}, and
Cuv = {Z:ZC XNY ,V(Z) is a witness for C in G}.

PROPOSITION 6.1
Either set C; is nonnull or set X NY contains a vertex, ¢, such that no vertex of Y 1is
adjacent to any vertex of X NY — .

Proof: Consider first the case in which there exists a nontrivial subset Z of X NY such
that cut W := V(Z) is tight in H;. Graph G is a brick and cut W is nontrivial, therefore
W is not tight in G. By (3.1), cut W is robust in G and matching-equivalent to D, whence
it is a witnessfor C'. That is, Z lies in Cz. The assertion holds in this case.

We may assume that for every separating cut V(Z), Z C X NY, cut V(Z) is not tight
in Hy. In particular, this implies that either I is trivial or it is not tight in Hy. If I is trivial
then the assertion holds, with ¢ the only vertex of X NY .

We may thus assume that I is not tight in H;. But A; lies in {5, 00}. Therefore, A\; = 5.
By induction hypothesis, graph H; has a tight cut minor P that is the Petersen graph,
up to multiple edges, and cut I is strictly separating in P. We have assumed above that
no nontrivial separating cut of H; whose shore is a subset of X NY is tight in H;. We
conclude that X NY spans a pentagon in G. Moreover, precisely one vertex of X NY is
adjacent to vertices in Y. Let i be that vertex. The assertion holds. O

Likewise, either set Cy; is nonnull or set X NY contains a vertex, u, such that no vertex
of Y is adjacent to any vertex of X NY — w.

If C; and Cy are both empty then graph G has a 2-separation {7, u}, by (6.1). This is a
contradiction to the hypothesis that graph G is a brick. If at least one of C; or Cy is nonnull
then G has a witness that does not cross C, in contradiction to the hypothesis of the case.
In both alternatives, we derive a contradiction. As asserted, A\ = min{A;, \y} = 3. The
analysis of the case is complete.

In view of Cases 1-4, we may assume that graph G is a brick free of witnesses for cut C.
The next assertion implies then that cut C is robust and each C-contraction of G is solid.

LEMMA 6.2
Let G be a brick, C' a nontrivial separating cut of G. Either G has a witness for C or cut
C is robust and each C-contraction of G is solid.
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Proof: We first consider whether or not cut C'is robust in G. Cut C'is a nontrivial separating
cut of G, in turn a brick. Therefore, cut C is not tight in G. Let My be a perfect matching
of G that contains more than one edge in C'. Let C be the collection of those separating
cuts D of G such that D < C and |[MyND| > 1. Collection C is cohesive and contains
cut C. Let Cy be a cut in C that is minimal with respect to the relation of precedence.
By (3.3), cut Cp is robust in G. Moreover, {C,Cy}, a subcollection of C, is cohesive. If
cuts C' and Cj are not matching-equivalent then cut Cy is a witness for C. If cuts C and
Cy are matching-equivalent then cut C' is a cut of C that is also minimal with respect to
the relation of precedence; in that case, C' is robust in G. We conclude that either G has a
witness for C' or C' is robust in G.

We may thus assume that C' is robust in G. We now consider whether or not a C-
contraction H of G is solid. Assume that it is not. Let D be a strictly separating cut of H.
Then, collection {C, D} is cohesive. Cut C is robust in G, therefore H is a near-brick. Cut
D is strictly separating in H, therefore it is not tight. Let Mp be a perfect matching of H
that contains more than one edge in D. Let M be an extension of Mp to a perfect matching
of G. Let D be the collection of those cuts W of G such that W < D and M; has more
than one edge in W. Every perfect matching that contains just one edge in D contains also
just one edge in each cut of D. Moreover, collection {C, D} is cohesive, therefore collection
{C} UD is also cohesive. Let D; be a cut of D that is minimal with respect to the relation
of precedence. Cut D; is robust in G and collection {C, D;}, a subcollection of {C'}UD,
is cohesive. Moreover, cut D; has more than one edge in M7, whereas cut C has just one.
Thus, D; is not matching-equivalent to C, whence it is a witness for C. We conclude that
either near-brick H is solid or G has a witness for C. a

CASE 5 Graph G is a brick, cut C is robust and one of the C-contractions of G has a
removable doubleton.

We assert that A = 3. For this, let X be a shore of C, H := G{X;Z} be a C-contraction of
G that has a removable doubleton. Let e and f be the edges of the doubleton. By (2.10),
graph H — e — f is bipartite. Let (A, B) be the bipartition of H — e — f. Adjust notation
so that edge e has both ends in A, edge f has both ends in B and vertex T lies in A.

Note that set B is a barrier of G — e. Every perfect matching of G that does not contain
any of the edges e and f contains precisely one edge in C'. Every perfect matching of G
that contains edge f contains also just one edge in C. Cut C is not tight in G, therefore
there must exist in G a perfect matching that contains edge e but no edge f. Any such
matching has precisely three edges in cut C'. We conclude that A = 3. The analysis of the
case is complete.

CASE 6 Graph G is a brick and there exists a b-removable edge e of G such that edge e
does not lie in C' and cut C' is separating in G — e.

We assert that A = 3 in this case. Cut C is not tight in G, therefore neither C-contraction
of G is bipartite. Thus, no C-contraction of G — e is bipartite. That is, cut C is strictly
separating in G — e. We conclude that cut C is not tight in G — e. Let )\’ denote the
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characteristic of C' in G — e. By induction hypothesis, A" lies in {3,5}. Every perfect
matching of G — e is a perfect matching of G. Thus, if ' = 3 then A\ = 3 and we are done.

We may thus assume that \' = 5. By induction hypothesis, graph G — e has a tight cut
minor P that is the Petersen graph, up to multiple edges, and cut C is strictly separating
in P.

Let X be the shore of C' that contains both ends of e. Let D be the set of those nontrivial,
disjoint subsets Y of any of X or X, such that graph P is the result of the contraction of
each set Y in D to a single vertex.

PROPOSITION 6.3

Collection D has at most two members, each of which is a subset of X. Moreover, for each
set Y in D, graph H := (G — e)[Y] has a bipartition (A, B) such that |B| = |A| + 1, and
edge e is the only edge of G that is incident with some vertex of A but not incident with
any vertex of B.

Proof: Let Y be a member of D, D := V(Y). By definition of D, cut D — e is tight in G —e,
in turn a near-brick. Therefore one of the (D — e)-contractions of G — e is bipartite. Cut C
is not tight in G — e, but is separating in the (D — e)-contraction (G —e){Y} in which it lies.
Thus, (G —e){Y} is not bipartite. Therefore, (G —e){Y} is bipartite. Thus, so too is graph
H. Let (A, B) denote a bipartition of H. Adjust notation so that |B| = |A|+ 1. Then, no
edge of G — e joins a vertex of A to a vertex of V(G) — B. If edge e is not incident with a
vertex of A, or if edge e is incident with a vertex of B, then cut D is tight in G, whence set
Y is trivial, a contradiction. Thus, edge e must be incident with at least one vertex of A
and to no vertex of B. Indeed, e is the only edge of G that satisfies this property. Finally,
each member of D contains at least one end of edge e; both ends of e lie in X. We conclude
that D has at most two members, each of which is a subset of shore X of C. a

NOTATION 6.4

Let r := |D|. For 1 < i < r, let Y; denote an enumeration of the members of D, H; :=
(G — e)Yi], (A;, B;) the bipartition of H; such that |B;| = |A;| + 1. Let v; and w; denote
the ends of e in G, such that vertex v; lies in A;. Let y; be the vertex of P obtained by the
contraction of Y; to a single vertex.

If collection D is empty, then graph G is P + e, up to multiple edges. By (2.8), A = 3. We
may thus assume that D is nonempty. Consider next the case in which collection D has
just one member, Y7, and either (i) edge e has both ends in A;, or the end w; of e, not in
Y1, is adjacent to y; in P. If edge e has both ends in Aj, then graph P is G{Y1}; if wy
is adjacent to y; in P then edge e is a multiple edge in G{Y1}. In both cases, graph P is
G{Y1}, up to multiple edges. Moreover, every perfect matching of G that contains edge e
has precisely three edges in V(Y7). By (2.7), A = 3 also in this case.

We are thus left with three cases to consider: either (i) r = 1 and vertex w; is not
adjacent to vertex y; in P, or (ii) 7 = 2 and vertices y; and yo are not adjacent in P, or
(iii) » = 2 and vertices y; and yo are adjacent in P. The three possibilities are depicted in
Figure 10, up to automorphism that fix cut C.
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Figure 10: The three possibilities considered in Cases 6.1 and 6.2

CASE 6.1 Either r = 1 and vertex w,; is not adjacent to vertex y; in P, or r = 2 and
vertices Y, and ys are not adjacent in P.

PROPOSITION 6.5

Under the hypothesis of Case 6.1, for each member Y; of D and any two vertices x; and
y; of the set Z; of the three vertices of V(G) NV (P) that are adjacent in G to vertices of
B, the subgraph W; of G spanned by Y; U {z;,y;,w;} has a perfect matching, M;, that
contains precisely three edges in V(Y;), incident, respectively, to z;, y;, and w;.

Proof: Let z; be the vertex of Z; — {z;,y;}. Graph G a brick, is bicritical. Therefore, graph
G —{zj,v;} has a perfect matching, say, V;. We have removed from G a vertex from A; and
a vertex not in Yj, therefore N; has precisely two edges in V(Y;), each of which is incident
with a vertex of B; and a vertex of Z;. The vertex outside Y; removed from G is precisely
one of the three vertices of Z;. We conclude that those two edges necessarily are incident
to z; and y;. Restrict N; to E(W;) and add to that restriction edge e. It is easy to check
that the resulting set, M;, is a perfect matching of W; that has the asserted properties. O

We now apply the assertion just proved to the cases under consideration. In the case in
which r» = 1, we choose {z;,y;} to be {0”,4'} (see Figure 10); it is easy to check that M;
can be extended to a perfect matching of G that contains precisely three edges in C. In
the case in which r = 2, the choices are {0',2"} and {3',3"} (see Figure 10), and again, it
is easy to check that M; U M2 may be extended to a perfect matching of G that contains
precisely three edges in C.

CAsE 6.2 Collection D has two members and vertices y; and yy are adjacent in P.

For i = 1,2, Let Z; denote the set {z;,y;} consisting of the two vertices of V(G) NV (P)
that are adjacent in P to y;. Let Z := Z; U Z,. (In Figure 10, Z = {1',4',1",4"}).
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PROPOSITION 6.6

The subgraph W of G spanned by Y, UYs U Z has a perfect matching that contains pre-
cisely four edges in V(Y UY>), each of which is incident to one of the four vertices of
Z.

Proof: Graph G, a brick, is 3-connected. Therefore, at least three vertices of B} U By are
adjacent to vertices of Z. Thus, either B; has at least two vertices that are adjacent to
vertices of Z; or By has at least two vertices that are adjacent to vertices of Z;. Adjust
notation so that B; has this property. Vertices 1 and y; are both adjacent to vertices of
By . Therefore, there exist two vertices in By, say z and y}, such that 2 is adjacent to z;
and v} is adjacent to y;. Let e; and f; denote the corresponding edges that join those pair
of vertices.

Graph G, a brick, is bicritical, therefore graph G — {2/, v} has a perfect matching, N.
Two vertices of By have been removed from G, therefore edge e lies in N. Moreover, every
vertex of A; other than the end v; of e is matched with a vertex of B;. Therefore, edge e is
the only edge of N NY;. In particular, no edge of N — e joins any vertex of Y7 to a vertex
of Y5. Moreover, edge e lies in N, and is incident to vertex vs of As. We conclude that
N NV(Y;) contains precisely three edges, one is edge e, the other two are edges incident
with vertices zo and y,. Restrict N to W and add to that restriction edges e; and f;. The
resulting matching has the asserted properties. a

It is now easy to check that the matching thus obtained may be (uniquely) extended to a
perfect matching of G that contains precisely three edges in C. The analysis of this case is
complete.

CASE 7 None of the previous cases apply.

We show that either A = 3 or G is the Petersen graph. Let X; be a shore of C, let X, be
the other shore of C'. For i = 1,2, let

Gi = G{Xi;vi},ni = |XZ| .

PROPOSITION 6.7
For i =1,2, G; is an odd wheel of hub v;, up to multiple edges in V (v;).

Proof: Cases 1 and 2 do not apply. Therefore, graph G is a brick. Cases 3 and 4 do not
apply. Therefore, there are no witnesses for C' in G. By (6.2), each C-contraction of G
is a solid near-brick. Case 5 does not apply, therefore neither G; nor G2 has a removable
doubleton.

Cut C, a nontrivial separating cut of brick G, is not tight in G. Let My be a perfect
matching of G such that |MyNC| > 1. For i = 1,2, let M; denote MyN E(G;). Then,
M; is a vi-matching of G;, for i = 1,2. By the Theorem on Odd Wheels, (5.1), one of the
following alternatives hold, for each 7 =1, 2:

(i) Either G; is an odd wheel of hub v;, up to multiple edges in V(v;),

(ii) or G; has a removable edge that does not lie in M; UC'.
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Assume, to the contrary, that GG say, has a removable edge e that does not lie in M; UC'.
Graph @ is a solid near-brick. By (3.5), edge e is b-removable in G;. That is, graph G| —e
is a near-brick. Edge e does not lie in C, therefore the two C-contractions of G — e are
near-bricks. Moreover, edge e does not lie in M;, a subset of My. Therefore, cut C' is not
tight in G — e. In sum, C is a nontight cut of G — e and both C-contractions of G — e are
near-bricks. By (3.2), graph G — e is a near-brick. That is, edge e is b-removable in G.
It follows that Case 6 applies, a contradiction. We conclude that for ¢ = 1,2, graph Gj is
indeed an odd wheel of hub v;, up to multiple edges in C. a

We have defined n; = | X;| and, by previous lemma, each C-contraction is an odd wheel of
hub v;. Thus n; and ng are the order of wheels G; and Gy, respectively. If |[MyNC| =3
then A = 3 and we are done. We may thus assume that My contains at least 5 edges in C.
In that case, both ny and no are at least 5. Thus, each edge of C' is removable in each of
Gl and GZ.

Let e be any edge of C. For i = 1,2, let p;(e) denote the end of e in the shore X; of C.
Define graph G/ (e) as follows.

If the degree of p;(e) is greater than three then edge e is a multiple edge in G;: in that
case, graph G; — e is an odd wheel, let G}(e) be G; — e. If the degree of p;(e) is three then
pi(e) and its two neighbors in G; — e constitute the shore of a tight cut D of G; — e. The
nonbipartite D-contraction of G; — e is thus an odd wheel of hub v;, up to multiple edges
incident in v;, having two vertices less than G;. Let G)(e) be that odd wheel. In the first
case, let pi(e) be p;(e). In the second case, let p}(e) be the vertex of the contraction. In
both cases, G’(e) is an odd wheel of hub v;, up to multiple edges incident with v;. Finally,
let G'(e) denote the graph whose (C — e)-contractions are G’ (e) and G (e).

Let H denote the (bipartite) subgraph of G spanned by the edges of C.

PROPOSITION 6.8

Let e be any edge of C. Then, graph G'(e) is bicritical. Moreover, if the degree of one of
pi1(e) and py(e) in H is at least two, or if edge e does not lie in My, then graph G'(e) is a
brick and graph G — e is a near-brick.

Proof: The (C — e)-contractions of G'(e) are both odd wheels. Odd wheels are bicritical
graphs. Therefore, graph G'(e) is bicritical, by (2.11).

Assume further that either edge e does not lie in My or the degree in H of one of its
ends is at least two.

Counsider first the case in which edge e does not lie in My. Then, My is a perfect matching
of G — e that contains more than one edge in G — e. Moreover, each (C — e)-contraction
of G — e is a near-brick. Thus, cut C' — e is robust in G — e. By (3.2), graph G — e is a
near-brick. Graph G’(e) is obtained from G — e by the contraction of the bipartite shores
of two tight cuts. Therefore, graph G'(e) is a near-brick. But G'(e) is bicritical. Therefore,
G'(e) is a brick.

Consider next the case in which one of the ends of e has degree at least two in H. Let
H'(e) denote the bipartite subgraph of G'(e) spanned by the edges of C —e. Cut C — e has
at least four edges in Mj. If the degree of po(e) in H is also greater than one, then those
four edges constitute a matching of H'(e). If the degree of py(e) in H is precisely one then
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two of the four edges might be incident with p)(e) in H'(e). In both cases, we conclude that
graph H'(e) has a matching of at least three edges. By (2.11), graph G'(e) is a brick. O

Recall that n; and ng are the order of wheels G; and G2, respectively. We now adjust
notation, so that ny > no.

PROPOSITION 6.9
If a vertex of X has degree at least four in G then A = 3.

Proof: Let v denote vertex of X; that has degree at least four in G. Then, cut C contains
at least two edges incident with vertex v. Let e be an edge of C that is incident with vertex
v. If possible, choose an edge e such that ps(e) has degree three in G.

By (6.8), graph G'(e) is a brick. Let \'(e) denote the characteristic of cut C' —e in G'(e).
Every perfect matching of G’(e) may be extended to a perfect matching of G that has the
same set of edges in C. Thus, if M'(e) = 3, then A = 3 and we are done.

Assume, to the contrary, that A'(e) > 3. Graph G'(e) is a brick and cut C — e is
separating but not tight in G’(e). Therefore, brick G'(e) is the Petersen graph, up to
multiple edges, by induction hypothesis.

Graph G'/(e) is equal to G; — e. Therefore, ny = 5. We have assume that n; > na.
Therefore, ny < band then graph G (e) has order 5. Therefore, G4 (e) is equal to Gy — e.
Thus, vertex ps(e) has degree four in G. We conclude that G'(e) = G — e, whence G — e
is the Petersen graph, without multiple edges. Let f be any edge of C' — e incident with v.
The end py(f) of f in X, has degree three in G. This is a contradiction to the definition of
e. As asserted, A = 3. |

PROPOSITION 6.10
If a vertex v of X9 has degree at least four in G then \ = 3.

Proof: If a vertex of X; has degree four in G then A = 3, by (6.9). We may thus assume
that each vertex of X has degree three in G, whereupon |C| = n;.

For each edge e of C' that is incident with vertex v, let w and = denote the two vertices
of X; that are adjacent to p;(e). Let f and g denote the edges of C' incident with w and z,
respectively. If possible, choose edge e such that edges f and g are not adjacent in G.

By (6.8), graph G'(e) is a brick. Let X'(e) denote the characteristic of cut C' —e in G'(e).
Every perfect matching of G’(e) may be extended to a perfect matching of G that has the
same set of edges in C. Thus, if X' (e) = 3, then A = 3 and we are done.

Assume, to the contrary, that \(e) > 3. Graph G’(e) is a brick and cut C' — e is
separating but not tight in G’(e). Therefore, brick G’'(e) is the Petersen graph, up to
multiple edges, by induction hypothesis.

Vertex pj(e) has degree three in G. Vertex pa(e) has degree greater than three in G,
therefore G5 (e) = Gy —e. We conclude that ny = 7 and ne = 5. Moreover, since |C| = nq, it
follows that either Xo has precisely two vertices of degree greater than three, each of which
has degree 4, or X, has just one vertex of degree greater than three, and it has degree 5.

The ends of f and ¢ in G'(e) coincide in the shore of C'— e resulting from the contraction
of {p1(e), w,z} and graph G’'(e) is the Petersen graph, up to multiples edges. Therefore,
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edges f and g are multiple edges in G'(e). But G4 (e) = G5 — e, therefore, the ends of f and
g in Xy coincide. Let v’ denote that common end of f and g.

If v' = v then the degree of v in G is 5, every vertex of G distinct from v has degree
three. In that case, both edges f and g contradict the choice of edge e. If v' # v, then v’
and v each have degree 4 in G, every vertex of G distinct from v and v’ has degree three. In
that case, the edge of C' that is distinct from e and is incident with vertex v also contradicts
the choice of e. In both alternatives, we derive a contradiction. As asserted, A = 3. O

PROPOSITION 6.11
If cut C has a b-removable edge e then A = 3.

Proof: By (6.9) and (6.10), we may assume G to be cubic. Thus, ny = |C| = ng. If G'(e)
is not the Petersen graph, up to multiple edges, then A = 3 and we are done. Assume thus
that G'(e) is the Petersen graph, up to multiple edges. Then, n; = ng = 7.

Let w; and z; denote the two vertices of X; that are adjacent to pi(e). Let f and g
denote the edges of C that are incident with wy and z1, respectively. Edges f and ¢ share a
common end of degree four in G’(e). The underlying simple graph of G'(e) is the Petersen
graph. Thus, edges f and ¢ are multiple in G'(e). It follows that the ends py(e), p2(f) and
p2(g) of edges e, f and g are cyclically consecutive in that order, in the heptagon spanned
by Xy. The same property holds for the ends of these three edges in G. Therefore, {e, f, g}
may be extended to a perfect matching of G, by adding two edges in each of the heptagons
spanned by X; and Xs, respectively. a

We may thus assume that graph G is cubic and no edge of C'is b-removable in G. We assert
that G is the Petersen graph. For this, we observe first that every edge of C lies in My, for
any edge of C' — M, is b-removable in G, by (6.8). We conclude that My = C

Let e be any edge of C. Graph G'(e) is not a brick. Each (C — e)-contraction of G’(e)
is an odd wheel, a brick. By (2.11), no matching of H'(e) has more than two edges, that is
the bipartite graph H'(e) has a vertex cover od edges cosisiting of at most two edges.

Perfect matching M, has at least 5 edges. Therefore, C' — e has at least 4 edges. It
follows that C has just 5 edges, and p/ (e) and p,(e), the vertices resulting from contractions
in G; — e and Gy — e, constitute a 2-separation of H'(e). This conclusion holds for each
edge e of C.

Let us number the vertices of the pentagons spanned by X; and X,

(0,, 1/’21,3/’41) and (0//, 1//’2”’3”’4”)’

respectively. Adjust notation, by changing the origin of those enumerations, if necessary,
so that edge e is (0’,0”). Then, the edge f of C incident with vertex 2" is incident with
one of 1" and 4’. Adjust notation, by adjusting the orientation of the enumeration of the
vertices of X1, so that f = (1',2"). The edge of C incident with 3" is thus incident with 4'.
The edge of C incident with vertex 1” cannot be incident with vertex 2, otherwise (4',3")
would be b-removable in G. We conclude that the edges of C are of the form (i, j"), where
j =2¢ mod 5. Indeed, graph G is the Petersen graph. a
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7 Proof of Theorem 1.2

THEOREM 1.2

The characteristic of any separating cut C := V(X)) of any matching covered graph G lies
in {3,5,00}. Moreover, \q(C) = 5 if, and only if, graph G has a tight cut minor H, in
which cut C' is strictly separating, such that one of the following two alternatives holds:

(i) Either graph H is the Petersen graph, up to multiple edges, or

(ii) graph H is not a near-brick and there exist two cuts in H, D; := V(Y1) and
Dy := V(Y3), each of which has characteristic 5 in G, set Y] is a subset of X and
set Yo is a subset of X, collection {D1,Ds,C} is cohesive, cuts D1 and Dy are not
disjoint, and the graph obtained by the contraction of Y1 and Y5 is the Petersen graph,
up to multiple edges.

Proof: By induction on the size of G. Let A denote the characteristic of C' in G. We may
assume C to be nontrivial and G to be free of multiple edges.

CASE 1 Graph G has a nontrivial tight cut that does not cross C.

Let D be a nontrivial tight cut of G that does not cross C. Let H' be the C-contraction of
G that includes C.

Cut D is tight in G, therefore collection {C, D} is cohesive. By (4.5), cut C is separating
in H and A\g/(C) = A. By induction hypothesis with H' playing the role of G, we conclude
that A lies in {3,5,00}. If A lies in {3, 00} then the assertion holds. We may assume that
A=5.

By induction hypothesis, A\ = 5 if, and only if, H' has a tight cut minor H, in which
C is a strictly separating cut. Cut D is a tight cut and H is a tight cut minor of H’,
a D-contraction of G. Therefore, H is a tight cut minor of G. Moreover, by induction
hypothesis, one of the following alternatives holds:

(i) Either graph H is the Petersen graph up to multiple edges, or

(ii) graph H is not a near-brick and there are two cuts in H, Dy := V(Y1) and Dy :=
Vi (Y3), each of which has characteristic 5 in G, set Y7 is a subset of X and set Y5
is a subset of X, collection {Dy, Dy, C} is cohesive, cuts D1 and Dy are not disjoint,
and the graph obtained by the contraction of Y7 and Y5 is the Petersen graph, up to
multiple edges.

Therefore, the analysis of this case is complete.

CASE 2 Every nontrivial tight cut of G crosses C.

Let D := V(Y) be a nontrivial tight cut of G. Adjust the notation so that |X NY| be
odd. Among all nontrivial tight cuts of G choose one such that Y is minimal. Therefore,
graph G{Y;7} is free of nontrivial tight cuts.
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Let [ :=V(XNY)and U := V(X NY). Collection {C, D} is cohesive. Thus, by (4.6),
{C, D, 1,U} is also cohesive, C, D, I and U are related by modularity,  and U are separating
in G{Y;y} and G{Y;y}, respectively, and A < min{Agyy (1), )\G{Y}(U)}. By (4.5),

Aa(I) = Agprid)  and  Ag(U) = Agn (U).

Let A\; := Ag(I) and Ay := Ag(U). Suppose that [ is nontrivial, thus G{Y'} is nonbi-
partite, whence a brick. By induction hypothesis, with G{Y’; 7} playing the role of G and I
playing the role of C, A; lies in {3,5,00}. In fact, we conclude that A; lies in {3,5} because
G{Y} is free of nontrivial tight cuts. Thus, A lies in {3,5} because A < A\;. If \; = 3 then
A = 3 and the assertion holds. We may assume that \f =5

By induction hypothesis, there exists a tight cut minor H of G{Y;3}, such that:

(i) Either graph H is the Petersen graph up to multiple edges, or

(ii) graph H is not a near-brick and there are two cuts in H, Dy := V(Y1) and Dy :=
Vi (Ys), each of which has characteristic 5 in G, set Y] is a subset of X NY and
set Yy is a subset of X NY, collection {Dy, Dy, I} is cohesive, cuts Dy and Dy are
not disjoint, and the graph obtained by the contraction of Y7 and Y3 is the Petersen
graph, up to multiple edges.

Graph G{Y;y} is a brick, thus, by induction hypothesis, it is the Petersen graph, up
to multiple edges. Therefore I separates two pentagons in G{Y;y}. Moreover, Petersen
graph is a cubic graph, thus each vertex of each pentagon is adjacent to exactly one vertex
of the other pentagon. Let v be the the vertex that is adjacent to 7 in the other pentagon.
Figure 11 depicts graph G in this case.

Y

Figure 11: Graph G when I is nontrivial.

Let Dy := V((X NY)U{v}). The modularity relating cuts C, D, I and U implies that
no edge of G join vertices of X NY with vertices of X NY. Moreover, V(v)NV(XNY) = 0.
Therefore, modularity relates Dy, D, V((X NY) \ {v}) and U. That is, for each perfect
matching M of G

|M N Do|+|MND|=|MnV({})|+|MnU|
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Both D and V({v})are tight cuts. Therefore, Dy and U are matching equivalent. We
conclude that Dy is a separating cut of G and has the same characteristic of U.

Suppose first that U is a tight cut, whence, Dy is also tight cut. By case hypothesis,
both cuts are trivial. Thus, graph G is the Petersen graph, up to multiple edges and C' is
one of its strictly separating cuts.

Now, we may assume that Ay < oo. Cut U is a separating cut of G{Y;y}. Thus, by
induction hypothesis, Ay lies in {3, 5, co}. Therefore, Ay lies in {3,5}. If \;y = 3 then A =3
and we are done. So we may assume that Ay = 5. Thus, Ap, = 5 because it is matching
equivalent to U and A = 5, by modularity. Moreover, after contraction of U and Dy we
have, up to multiple edges, the Petersen graph with C' as a strictly separating cut of this
graph. The assertion follows in this case.

Now, we may assume that I is a trivial cut. Let ¢ be the vertex of X NY. If U is a
trivial cut then, by modularity, cut C is a tight cut and the assertion follows. Therefore,
we may assume that U is nontrivial.

By induction hypothesis, with G{Y;y} playing the role of G and U playing the role of
C, we conclude that Ay lies in {3,5}. If Ay = 3 then the assertion holds. We may assume
that Ay = 5, whence, A = 5.

By induction hypothesis, Ay = 5 if, and only if, G{Y;y} has a tight cut minor H, in
which U is a strictly separating cut. Moreover, by induction hypothesis, one of the following
alternatives holds:

(i) Either graph H is the Petersen graph up to multiple edges, or

(ii) graph H is not a near-brick and there are two cuts in H, D; := V(Y1) and Dy :=
Vi (Ys), each of which has characteristic 5 in G{Y;y}, set Y; is a subset of X NY and
set Yy is a subset of X UY, collection {Dy,Dy,U} is cohesive, cuts D; and D, are
not disjoint, and the graph obtained by the contraction of Y7 and Y5 is the Petersen
graph, up to multiple edges.

Graph H is a tight cut minor of G. Let D' := V(Z) be a tight cut of G{Y;y} used to
obtain H that includes set Y in one of its shores. Adjust the notation so that Y C Z.Cut
D' does not cross D neither U, but it must cross C. Moreover D’ separates D and U, that
isY C Z and X NY C Z. Therefore, the relative position of these cuts are depicted in
Figure 12.

Suppose first that H is the Petersen graph, up to multiple edges, with U a strictly
separating cut of H. Then, U separates two pentagons in H. Moreover, Petersen graph is
a cubic graph, whence each vertex of each pentagon is adjacent to exactly one vertex of the
other pentagon. Let v be the vertex of X NY such that V(v) N.D’ # (). Let H' be the splice
of the G{Z; 2} and H. Figure 13 shows this graph.

Set {i,v} is a 2-separation of G. Cut D is a 2-separation cut. The other tight cut of
this 2-separation is V((X NY) U{v}) that does not cross C. Therefore, by case hypothesis
X NY must be empty, but in this case D is trivial. Contradiction.

Now, we may assume that H is not a near-brick and there exist two cuts in H, D; :=
V(Y1) and Dy := Vg (Y2) satisfying ((ii)).
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D D’

Figure 12: Sketch of the cuts when Ay = 5 and I is trivial.

Figure 13: Graph H’, splice of G{Z; 2} and H.

Contracting D, and Dy we have the Petersen graph. The contracted vertices are adjacent
in the Petersen graph and they are in different shores of U. Petersen graph is cubic,
therefore, each vertex in each pentagon of the shores of U is adjacent to only one vertex in
the other. Therefore, determination of position of D; uniquely determines the position of
Dy. We have two cases to analyze depending on whether the vertex y to be in Y, or in Y,
(see Figure 14). In both cases we derive a contradiction, whence the result follows.

Figure 14: The two cases considered. In first y € Y5 and in second y € Yo



38 C. N. Campos and C. L. Lucchesi

In first case that y € Ys (see Figure 14). Let D' := V((XNY)UY]). Note that there are
only three vertices that are incident with edges of D’ in shore Y U {i}. Cut D’ is nontrivial
and does not cross C, therefore, by case hypothesis, D’ can not be tight. Thus, A\(D’) = 3.
One of D'-contraction is the Petersen graph and D’ is non-tight, then by (2.7) we conclude
that A = 3. Contradiction.

Suppose now that y ¢ D;. Let v be the vertex adjacent to y in the other pentagon. Thus,
{i,v} is a 2-separation of H'. One of the tight cuts associated with this 2-separation is D.
The other is V((XNY)U{v}). This cut is also a tight cut in G does not cross C. Therefore,
by case hypothesis, this cut must be trivial, whence D is also trivial. Contradiction.

To complete the analysis of this case we must show that if G has a tight cut minor H,
in which cut C is strictly separating cut and such that either (i) or (ii) holds, then A = 5.
Observe that in both alternatives, (i), or (ii), we have a Petersen graph as a minor and the
characteristic of C' in this minor is five, therefore A lies in {3, 5}.

By hypothesis of the case every nontrivial tight cut of G' crosses C. So, the only tight
cut minor of G that includes C is G itself. If G is a near-brick then, by (i), G is the Petersen
graph, up multiple edges, and C' is a nontrivial separating cut in G, whence A = 5.

We may assume that G is not a near-brick. By hypothesis, there are two separating cuts
of characteristic 5 in G, say D; := V(Y1) and Dy := V(Y3), such that D; and Dy are not
disjoint, C' separates D1 and Dy and the graph obtained by the contraction of Dy and Do
is the Petersen graph, up to multiple edges. Adjust the notation so that Y7 C X. Figure 15
shows this graph.

Figure 15: Graph G is not a near-brick.

Graph G is not a near-brick, therefore it has a nontrivial tight cut D. By hypothesis,
every nontrivial tight cut crosses C. Let Y be a shore of D. Graph G[Y] must be connected
because G{Y} is matching covered. Adjust the notation so that |[X NY| be odd. Let
[:=V(XNY)and U := V(X NY). Cut D is a tight cut of G and C is a separating cut of
G, thus {C, D} is a cohesive collection. By (4.6), modularity property holds with cuts C,
D, I and U and A = min{A(I), \(U)}.

Suppose Y7 is a (proper) subset of X NY. In this case there are edges from X NY to
X NY, contradicting modularity property. Therefore, Y1 N (X NY) # 0.

Suppose that Y5 is a proper subset of X NY. Thus, because D crosses C edges f and
g lie in D. There exists a perfect matching of the Petersen graph that uses edges f and ¢
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(see Figure 15). This perfect matching can be extended to a perfect matching of G and has
three edges in D. Contradiction.

Therefore, we conclude that F(G[Y1])ND # () and E(G[Y2])ND # (. Let Y1 := Y1:UY79
and Y5 := Yy; U Yoy, Adjust the notation so that Y1; C X NY and Yoy C X NY. Figure 16
shows graph G and cuts C and D. By counting, |Y11| =1 mod 2 and |Y31| =0 mod 2

Do D

Figure 16: Graph G and cuts C and D.

Let e be an edge of V(Y22) NC. By hypothesis, collection {C, D1, D2} is cohesive. Thus,
there exists a perfect matching of G that uses e and has exactly one edge in each cut of
{C, D1, Dy}. Cut D is a tight cut, therefore |[M, N V(Y21)| = 0 because | M, NV (Y1) N D| =
1 and this edge is an edge of D, whence M, N E(G[Y21]) is a perfect matching of G[Y21].

Suppose, by absurd, that A = 3. Let M be a perfect matching of G with three edges in
C. In this matching,

|MﬂD1ﬂC| =3 and |MﬂV(Y21)ﬂV(Y22)| =0.
Thus, M N E(G[X U Yy]) is a perfect matching of G[X U Yag]. Therefore,
(M. N E(G[Ya1])) U (M N E(GIX UYa]) U{f, g})

is a perfect matching of G' with three edges in D;. Contradiction, the characteristic of D,
is five. Thus A = 5 as we have asserted and the analysis of this case is complete.

CASE 3 Previous cases do not apply

We may assume now that graph G is a brick. By (1.1), A lies in {3,5,00} and, if A =5
then graph G has a tight cut minor H that is the Petersen graph, up to multiple edges.
To complete the proof we need analyze the case in which H, that is a tight cut minor of
G, is isomorphic to Petersen graph, up to multiple edges, and C' is a strictly separating cut
of H. Each cut used to obtain H is a tight cut. Therefore by (4.5), A =5 and the proof of
the theorem is complete. a
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The characteristic Ag(C) of any separating cut C of any near-brick G lies in {3,5, co}.
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up to multiple edges, and cut C' is strictly separating in P.

Theorem 1.2 {main, MAIN, alt:Petersen, alt:cohesive} ......................... 4
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in {3,5,00}. Moreover, A\¢(C) = 5 if, and only if, graph G has a tight cut minor H, in
which cut C is strictly separating, such that one of the following two alternatives holds:

(i) Either graph H is the Petersen graph, up to multiple edges, or

(ii) graph H is not a near-brick and there exist two cuts in H, D; := Vy(Y1) and
D, := Vg (Y3), each of which has characteristic 5 in G, set Y] is a subset of X and
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Graph G is a near brick if, and only if, for each nontrivial tight cut of G one of the C-
contractions is a bipartite graph and the other is a near-brick. |
Lemma 2.7 {three:extends} ...........o.oiiiiiii i 7

Let G be a matching covered graph, D be a non-tight cut of G. If a D-contraction H of G
is the Petersen graph, up to multiple edges, then every nontrivial separating cut of H is a
separating cut of G with characteristic three in G.

Lemma 2.8 {Pplus:e} ......ouiiiiiiti 8

Let G be the simple graph obtained from the Petersen graph P by adding an edge e. Let
C be a nontrivial separating cut of G such that C' — e is separating in G — e. Then, the
characteristic of C' in G is equal to three.

Lemma 2.9 {maximal:barrier} ..............ooiiiiiiiiiiiiiiiiiiiiiia 9
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Lemma 2.10 {near-brick:atMoStTWO} ......ouueieinititi e, 9

For every 3-edge-connected near-brick G, every equivalence class () with respect to the
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Lemma 2.11 {splicing:bricks} .........oouiiiiiuiiiiiiiiiiiiiiiiiiiiiaaan. 10

Let G be a matching covered graph, C' := V(X)) a separating cut of G. If each C-contraction
of G is bicritical then graph G is bicritical. Moreover, if each C-contraction of G is a brick
then, G is a brick if, and only if, subgraph G[C] of G spanned by C has a matching with
at least three edges.

Lemma 2.12 {bipartite:atMostOneNonRemovable} ...........c.cooveviiuinininan... 11

Let G be a brace with at least four vertices. If G has at least six vertices then every edge
is removable in G. If G has just four vertices and is free of vertices of degree two then, for
every vertex v of G, at most one edge of V(v) is not removable in G.

Lemma 3.1 {tight:in:contraction} .............ccooiiiiiiiiiiiiiiiiiiiiiin.. 12

Let G be a matching covered graph, D := V(Y') a separating cut of G that is either tight
or robust in G, H := G{Y;3} a D-contraction of G, C a tight cut of H. Then, either (i)
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cut C is tight in G or (ii) cuts C and D are matching-equivalent in G, cut C' is robust in G
and the C-contraction of H that contains vertex ¥ is bipartite.

Lemma 3.2 {subadditivity} .....coovininiii e 13
(See [2], Theorem 4.3) If a matching covered graph has a robust cut then it is a
near-brick. O
Lemma 3.3 {robust} ... ...t 13

(See [3], Corollary 2.4) Let C be a separating cut of a brick G, let M, be a perfect
matching of G that contains more than one edge in C. Let C be the collection of separating
cuts D of G such that | MyND| > 1and D =< C. Then, every cut of C that is minimal with
respect to the relation of precedence is robust in G. a

Lemma 3.4 {monotonicity:lambda} ............coooiiiiiiiiiiiiiiiiiiii, 13

(See the proof of Theorem 2.23 in [2]) Let e be a removable edge of a matching
covered graph G, let C be a cut of G such that C — e is strictly separating in G — e. Let C
be the collection of those cuts D of G such that D — e is strictly separating in G — e and
D < C. Then, every cut of C that is minimal with respect to the relation of precedence is
strictly separating in G.

Corollary 3.5 {solid:removable} ............ooiiuiiniiiiiiiiiiiiiiiiiiiaean.n 14

If a near-brick G is solid then every removable edge of G is b-removable in G.

Lemma 4.1 {separating:charac} ............c.ooiuiiiiiiiiiiiiiiiiiiiiiiiiannn. 15

A cut C of a matching covered graph G is separating if, and only if, every edge of G lies in
a perfect matching of G that contains precisely one edge in C.

Corollary 4.2 . e 15
Every tight cut of a matching covered graph is separating.
Corollary 4.3 ..o 15

A cut C of a matching covered graph G is separating, if, and only if, collection {C} is
cohesive.

Corollary 4.4 ..o e 15
For each cohesive collection C of a matching covered graph G and every tight cut C of G,
collection {C'} UC is also cohesive.

Lemma 4.5 {lambda:1aminar} ............c.oeiuniinininiiniinininiiiainean.n. 15

For any cohesive laminar collection {C,D} of cuts of a matching covered graph G, let
H denote the D-contraction of G that contains cut C. Then, cut C is separating in H.
Moreover, Ag(C) < Ay (C), with equality if cut D is tight in G.

Lemma 4.6 {1ambda:CroSS} .......oiuiiniiiiii i 16

Let C := V(X) and D := V(Y) be two crossing cuts of a matching covered graph G. Adjust
notation so that | X NY| be odd. Let I := V(X NY), let U := V(X NY). If collection
{C, D} is cohesive, then the following properties hold:
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(i) For every set F' of edges of G, the following relation of modularity holds:

|FNC|+|FND|=|FNI|+|FNU|.

(ii) Collection {C,D,I,U} is cohesive.

(iii) Let A7 denote the characteristic of cut I in G{Y } and Ay denote the characteristic of
cut U in G{Y'}. Then, A¢(G) < min{\;, Ay}, with equality if cut D is tight in G.

Theorem 5.1 {0ddWheels} .........iuiiuiiniiiii e 17

(Theorem on Odd Wheels) For any vertex v of a 3-edge-connected near-brick G and
any v-matching M of G, one of the following properties holds:

(i) Either graph G is an odd wheel of hub v, up to multiple edges incident with vertex v,

(ii) or graph G is not solid,

(iii) or graph G has a removable singleton or doubleton that is disjoint with M U V(v).
Theorem 5.2 {thm:10ovaszCritical} ........uuiutniiineieit i, 18
Every critical graph G can be represented as

G=FP+P+ - +PF, (4)

where Py is K; and each P; (1 < i < r) is either an odd path or an odd circuit having
precisely its origin and terminus in common with Py + Py + -+ 4+ P;_;.

Proposition 5.3 {converse:lovaszCritical} ............oiiiiiiiiiiiiiiiin... 18
If a graph G has an ear decomposition as in (4), then it is critical. a
Proposition 5.4 {allInM} ......... ... 19

For each integer i, (¢ < i < r), ear P; has length one, its only edge, p;, lies in M. Therefore,
for any permutation (P, ,- -+, P)) of (Pgy1,- -+, Pr), sequence (Py, P1, -+, Py, Py iy, Py)
is an ear decomposition of G — v of index gq.

Proposition 5.5 ... ... e 19
No edge f of S liesin M U V(v).
Lemma 5.6 {both:critical} .......c.oininininiiiiii e 20

Each of G1 — z and G9 — T is critical.

Proposition 5.7 {bothEndsInPq} ...........couiiiiiiiiiiiiiiiiiiiiiii e, 20
Let e be any upper edge of P. Then, both ends of edge e are internal vertices of V (F,).
Moreover, if v; and vy, denote the two ends of e in V(P;), path S[j, k] has even length.

Proposition 5.8 {cross} ......... .. 21

Let v;,v; be the ends of upper edge e and vy, v; the ends of upper edge f such that i <k <
j < l. Then, each of S[i, k], S[k,j] and S[j,[] has even length.
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Proposition 5.9 {adjTo: v} ..ot 21
Let e be an upper edge of P, v; and v; its ends in V' (FP,). Then, at least one internal vertex
of S[i, j] is adjacent to vertex v.

Proposition 5.10 {GtwoMinusxCritical} ...........c.oiuiiiiiiiiiiiiiiian.... 21
Graph G2 — 7 is critical.

Proposition 5.11 {contra:bicritical} ..........ccuiiiririiiiiiniiiiiianneinns 23
Let D := V(Y) be any odd cut of G, H := G{Y;y}. If graph H — 7 is critical then H is
matching covered and bicritical.

Proposition 6.1 {CInonnull} ...........ioiiuininiuiiiiiiii i 26
Either set C; is nonnull or set X NY contains a vertex, ¢, such that no vertex of Y is
adjacent to any vertex of X NY — 1.

Lemma 6.2 {noWitnesses} ..........ouiiuiiiiiiiiii e 27
Let G be a brick, C' a nontrivial separating cut of G. Either G has a witness for C or cut
C is robust and each C-contraction of G is solid.

Proposition 6.3 ... 28

Collection D has at most two members, each of which is a subset of X. Moreover, for each
set Y in D, graph H := (G — e)[Y] has a bipartition (A, B) such that |B| = |A| + 1, and
edge e is the only edge of G that is incident with some vertex of A but not incident with
any vertex of B.

Notation 6.4 . ... e 28
Let r := |D|. For 1 < i < r, let Y; denote an enumeration of the members of D, H; :=
(G — e)]Yi], (4;, B;) the bipartition of H; such that |B;| = |A;| + 1. Let v; and w; denote
the ends of e in G, such that vertex v; lies in A;. Let y; be the vertex of P obtained by the
contraction of Y; to a single vertex.

Proposition 6.5 ... .. e 29

Under the hypothesis of Case 6.1, for each member Y; of D and any two vertices z; and
y; of the set Z; of the three vertices of V(G) NV (P) that are adjacent in G to vertices of
B, the subgraph W; of G spanned by Y; U {z;,y;, w;} has a perfect matching, M;, that
contains precisely three edges in V(Y;), incident, respectively, to x;, y;, and w;.

Proposition 6.6 ........ ... e 30

The subgraph W of G spanned by Y; UYs U Z has a perfect matching that contains pre-
cisely four edges in V(Y; UY2), each of which is incident to one of the four vertices of
Z.

Proposition 6.7 ... e 30
For i = 1,2, G; is an odd wheel of hub v;, up to multiple edges in V(v;).
Proposition 6.8 {splicing:oddWheels} ............cooiuiiiiiiiiiiiiiiiiann.. 31

Let e be any edge of C. Then, graph G’(e) is bicritical. Moreover, if the degree of one of
p1(e) and pa(e) in H is at least two, or if edge e does not lie in My, then graph G'(e) is a
brick and graph G — e is a near-brick.
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Proposition 6.9 {fourNotOne} .......... ...ttt 32
If a vertex of X has degree at least four in G then A = 3.

Proposition 6.10 {fourNotTWo} .........ooiiininirii it 32
If a vertex v of Xy has degree at least four in G then A = 3.

Proposition 6.10 ... ... e 33
If cut C has a b-removable edge e then A = 3.



