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On the Relation between the Petersen Graph and theCharateristi of Separating Cuts of Mathing Covered GraphsChristiane N.Campos� Cl�audio L. LuhesiyAbstratA mathing overed graph is a onneted graph eah edge of whih lies in some perfetmathing. A ut of a mathing overed graph is separating if eah of its two ontrationsyields a mathing overed graph. A ut is tight if eah perfet mathing of the graphontains just one edge in the ut. Every tight ut of a mathing overed graph isseparating. The harateristi of a nontight separating ut is the smallest number ofedges greater than one that some perfet mathing of the graph has in the ut. Theharateristi of a tight ut is de�ned to be equal to 1.We show that the harateristi of every separating ut C of a mathing overedgraph lies in f3; 5;1g. Moreover, if C has harateristi equal to 5 then graph G hasthe Petersen graph as a minor, in a very strit sense. In partiular, if G is free ofnontrivial tight uts then G is the Petersen graph, up to multiple edges.1 IntrodutionMathing theory has had a fast development after Hall and Tutte's Theorems. Hall's the-orem establishes neessary and suÆient onditions for a bipartite graph to have a perfetmathing and Tutte's theorem establishes neessary and suÆient onditions for a generalgraph to have a perfet mathing. We refer the reader to Lov�asz and Plummer [5℄, Murty [6℄or Lov�asz [4℄.We shall use V (G) and E(G), respetively, for the set of verties and edges of a graphG. A mathing of a graph G is a set of edges that do not have any end in ommon. We saythat a mathing M of G is perfet if every vertex of G is an end of some edge of M . Anedge of a graph G is admissible in G if it lies in some perfet mathing of G. A graph G ismathing overed if it is onneted and eah edge is admissible in G.Let G be a mathing overed graph. For subset X of V (G), r(X) denotes the edge-utassoiated with X, that is, the set of edges of G having one end in X and the other in X ;we say that X is a shore of r(X). Sine G is onneted, sets X and X are the only shoresof r(X). Sine G has perfet mathings, the size of sets X and X have the same parity.Cut r(X) is odd or even, depending on the parity of jXj. We reserve the word ut to meanan edge-ut. Cut r(X) is trivial if one of X and X has at most one vertex.�Supported by a apes Foundation sholarship.yPartial support from fapesp and npq. Member of pronex 107/97 (mt/finep).1



2 C. N. Campos and C. L. LuhesiTwo uts D1 and D2 of a mathing overed graph G are mathing-equivalent if, for everyperfet mathing M of G, the number of edges of M in D1 and in D2 oinide.Let C denote r(X). The graph obtained from G by ontrating set X to a single newvertex x is a C-ontration of G and is denoted by GfX;xg. If the name of the new vertexis irrelevant we then simply denote the ontration by GfXg. Observe that this notationis inspired in the traditional notation G[X℄, used to denote the subgraph of G spanned byset X.Cut C is tight in G if every perfet mathing of G has preisely one edge in C. If G isfree of nontrivial tight uts then it is a brae if it is bipartite, a brik otherwise. If ut Cis tight, then every C-ontration of G is mathing overed (the onverse is not neessarilytrue). This property led Lov�asz to de�ne a tight ut deomposition of G to be a olletionof mathing overed graphs obtained from the initial olletion fGg by repeatedly replaingeah member H of the olletion by the two C-ontrations of H, for any nontrivial tight utC of H, until every member of the olletion is free of nontrivial tight uts. A remarkableresult, shown by Lov�asz in [4℄, states that any two tight ut deompositions of G yieldthe same family of graphs, up to multiple edges. Thus, the number of briks of any tightut deomposition of G is an invariant of the graph and is denoted b(G). Graph G is anear-brik if b(G) = 1.Any graph H obtained during the appliation of a tight ut deomposition proedureto G is a tight ut minor of G. More formally, a graph H is tight ut minor of a mathingovered graph G if, and only if, either (i) graphH is graph G, or (ii) graph G has a nontrivialtight ut C suh that graph H is a tight ut minor of a C-ontration of G.A barrier B of a mathing overed graph is a nonempty set of verties suh that the thenumber of odd omponents of G � B is equal to the ardinality of set B. If B is a barrierof a mathing overed graph then G�B has no even omponents. A barrier B is trivial ifit has at most one vertex.Let B be a nontrivial barrier of G and K be a nontrivial odd omponent of G�B, thusr(V (K)) is a nontrivial tight ut, namely barrier ut. Let fu; vg be a 2-separation of Gthat is not a barrier. Let K be an even omponent of G � fu; vg. Then r(K [ fug) andr(K [ fvg) are both tight uts of G, namely 2-separation uts. Figure 1 shows examplesof these uts. These two uts are important beause of a remarkable result, due to Lov�asz,Edmonds and Pulleyblank, that states that if a mathing overed graph has a nontrivialtight ut then it has a nontrivial tight ut that is, either a barrier ut, or a 2-separationut.
Figure 1: Two speial types of tight uts: barrier ut and 2-separation-ut



Separating uts on mathing overed graphs 3
Figure 2: Two separating uts that do not form a ohesive olletionCut C of G is separating in G if eah of its C-ontrations is mathing overed. Thus,every tight ut of G is separating in G. A separating ut of G is stritly separating if bothC-ontrations of G are non-bipartite.The harateristi of a separating ut C of G, denoted �G(C), is the minimum numberof edges that perfet mathings of G have in C, among all perfet mathings that have morethan one edge in C. Thus, �G(C) � 3. We extend the de�nition to tight uts by de�ningthe harateristi of a tight ut to be in�nite. The harateristi of G is the minimum ofthe harateristi of its separating uts.Carvalho et al. [2℄ have shown that the harateristi of every mathing overed graphlies in f3; 5;1g. They have also shown that the only brik of harateristi 5 is the Petersengraph. We prove herein two generalizations of their result. We state now the �rst of thetwo generalizations:Theorem 1.1The harateristi �G(C) of any separating ut C of any near-brik G lies in f3; 5;1g.Moreover, if �G(C) = 5 then graph G has a tight ut minor P that is the Petersen graph,up to multiple edges, and ut C is stritly separating in P .We now prepare the statement of the seond generalization of the Theorem of Carvalho etal.. The following haraterization of separating uts is not diÆult to prove:Lemma 4.1A ut C of a mathing overed graph G is separating if, and only if, every edge of G lies ina perfet mathing of G that ontains preisely one edge in C.This result motivates the following de�nition, whih will play a entral role in thispaper. A olletion C of uts of G is ohesive in G if for eah edge of G, there exists aperfet mathing M of G suh that mathing M ontains preisely one edge in eah ut ofC. Note that any olletion of tight uts of G is ohesive. Note also that every memberof a ohesive olletion of G is separating in G. The onverse, however is not neessarilytrue: Figure 2 shows an example, due to Carvalho, of two separating uts of a mathingovered graph that do not onstitute a ohesive olletion. We may now state our seondmain result:



4 C. N. Campos and C. L. LuhesiTheorem 1.2The harateristi of any separating ut C := r(X) of any mathing overed graph G liesin f3; 5;1g. Moreover, �G(C) = 5 if, and only if, graph G has a tight ut minor H, inwhih ut C is stritly separating, suh that one of the following two alternatives holds:(i) Either graph H is the Petersen graph, up to multiple edges, or(ii) graph H is not a near-brik and there exist two uts in H, D1 := rH(Y1) andD2 := rH(Y2), eah of whih has harateristi 5 in G, set Y1 is a subset of X andset Y2 is a subset of X, olletion fD1;D2; Cg is ohesive, uts D1 and D2 are notdisjoint, and the graph obtained by the ontration of Y1 and Y2 is the Petersen graph,up to multiple edges.Figure 3 shows an example of alternative (ii) in the statement of Theorem 1.2.
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Figure 3: An illustration of alternative (ii) in (1.2)Setion 2 ontains most of the basi material that is required, but whih may be skippedby the reader that is quite familiar with the subjet. Setion 3 ontains results onerningrobust uts, whih are essential to the proof of main results of this paper. Setion 4 intro-dues important results onerning ohesive olletions. Setion 5 ontains an importantresult, whih is alled the Theorem on Odd Wheels. The proof of Theorem 1.1 is presentedin Setion 6. Finally, Setion 7 ontains a proof of Theorem 1.2.2 BasisIn this setion, we list some elementary or well-known results about mathing overedgraphs.Lemma 2.1Let C := r(X) be a separating ut of a mathing overed graph G. Then, the C-ontrationGfXg is bipartite if, and only if, indued subgraph G[X℄ of G is also bipartite. Moreover,if G[X℄ is bipartite, the ardinality of two parts of the bipartition di�er by one unit.



Separating uts on mathing overed graphs 5Proof: Assume that GfXg is bipartite. Graph G[X℄ is a subgraph of GfXg. Thus G[X℄ isbipartite and the assertion holds.Suppose that G[X℄ is bipartite. Let (A;B) be a bipartition of G[X℄. Cut C is aseparating ut of G. Thus, for eah edge of G there exists a perfet mathing of G thathas only one edge in C. The restrition of this mathing to edges of G[X℄ is a mathingwith exatly one single vertex. Therefore, jjAj � jBjj = 1. Thus, the moreover part follows.Adjust the notation so that jBj = jAj+ 1.Let A0 := A [ fxg, whene jA0j = jBj. Let EA := C \ r(A). Assume that GfXg isnot bipartite. Thus, the ontrated vertex is adjaent to verties of A, that is EA 6= ;.Let e 2 EA. Graph GfXg is mathing overed beause C is a separating ut. Thus, thereexists a perfet mathing of GfXg that inludes e. Both ends of e are in A0, thereforethere exist jA0j � 2 verties of A0 to math with jBj verties of B. But jA0j = jBj and B isan independent set, thus suh mathing, that uses e, does not exist. This ontradits theadmissibility of edge e. Therefore, GfXg is bipartite. 2Corollary 2.2Let C be a separating ut of a mathing overed graph G. If one of the C-ontrations ofG is bipartite then ut C is tight in G.Proof: Let X be a shore of C. Adjust the notation so that GfXg be bipartite. By (2.1)graph G[X℄ is bipartite. Let (A;B) be a bipartition of G[X℄, by (2.1) jjAj � jBjj = 1.Adjust the notation so that jAj = jBj � 1.Graph GfXg is bipartite and the ends of edges of C, di�erent from the ontratedvertex, lie in B. Therefore, B is a barrier to graph G with G[X ℄ as an odd omponent ofG�B, thus ut C is a barrier ut. Therefore, ut C is a tight ut of G. 2Corollary 2.3In a bipartite graph G, a ut is tight if, and only if, it is separating in G.Proof: Let C := r(X) be an odd ut of G. If C is a tight ut then, as we have alreadyseen, it is separating. So, we an assume that C is a separating ut of G. Graph G[X℄ isbipartite, thus, by (2.1), graph GfXg is also bipartite. By (2.2), ut C is tight in G. 2Lemma 2.4A mathing overed graph G is bipartite if, and only if, it has b(G) = 0.Proof: Let G be a mathing overed bipartite graph. Let C := r(X) be a separating ut.Graphs G[X℄ and G[X ℄ are both bipartite. Thus, by (2.1), GfXg and GfXg are bothbipartite. By (2.2), ut C is a tight ut of G. Thus, b(G) = b(GfXg) + b(GfXg). Byindution hypothesis, b(GfXg) = 0 and b(GfXg) = 0. Therefore b(G) = 0.Assume now, that b(G) = 0. Any tight ut deomposition yields the same list of briksand braes and b(G) is the sum of b(Gi) for eah Gi in the list. We onlude that any tightut deomposition of G has only braes. Let L be a tight ut deomposition of G, up tomultiple edges.



6 C. N. Campos and C. L. LuhesiThe proof will be by indution on the size of L. If L = fGg then G itself is a brae andthe assertion holds. Thus, we an assume that jLj � 2.Let C be a tight ut of G. Let GfXg and GfXg be the C-ontrations of G. Let LXand LX be the list of briks and braes, up to multiple edges, of any tight ut deompositionof GfXg and GfXg, respetively. List L = LX [ LX , therefore LX and LX are omposedonly braes, whene b(GfXg) = b(GfXg) = 0.By indution hypothesis, GfXg and GfXg are bipartite. By (2.1), graphs G[X℄ andG[X ℄ are bipartite. Let (XA;XB) a bipartition of G[X℄ and (XA;XB) a bipartition ofG[X ℄. By (2.1), jjXAj � jXB jj = 1 and ����XA��� ��XB���� = 1. Adjust the notation so thatjXAj = jXB j � 1 and ��XA�� = ��XB��+ 1 (see Figure 4).PSfrag replaements XA
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XBCFigure 4: Graph G and ut C.Graph GfXg is bipartite. Thus eah edge of C has one end in the ontrated vertexand the other in XB . Therefore, there are no edges of C in r(XA). By symmetry, thereare no edges of C in r(XB). Therefore, the edges of C have one end in XB and the othern XA and G is bipartite. 2Lemma 2.5A non-bipartite mathing overed graph G is a near-brik if, and only if, graph G is free ofstritly separating tight uts.Proof: Suppose that G is a near-brik. Let C be a nontrivial tight ut of G. Let G1 andG2 be the two C-ontrations of G. Thus, b(G) = b(G1) + b(G2). By hypothesis, b(G) = 1,therefore, either b(G1) = 1 and b(G2) = 0, or the ontrary. Adjust the notation so thatb(G1) = 1. By (2.4) G2 is a bipartite graph and then C is not a stritly separating tight ut.This result holds for any tight ut of G. We onlude that G is free of stritly separatingtight uts.Now, assume that G is free of stritly separating tight uts. Thus, for any tight ut ofG one of the C-ontrations is bipartite. If G has no nontrivial tight uts then it is a brik,whene a near-brik. So, we an assume that G has a nontrivial tight ut C. Let G1 andG2 be the C-ontrations. Adjust the notation so that G2 is bipartite. Thus,b(G) = b(G1) + b(G2) = b(G1) + 0 = b(G1):



Separating uts on mathing overed graphs 7Graph G1 is free of nontrivial stritly separating tight uts. Thus, by indution hypothesisb(G1) = 1, whene b(G) = 1 and the assertion holds. 2Corollary 2.6Graph G is a near brik if, and only if, for eah nontrivial tight ut of G one of the C-ontrations is a bipartite graph and the other is a near-brik. 2The Petersen graph has a speial role in theory of mathing overed graphs. If C := r(X)is a separating ut of the Petersen graph, then graphs GfXg and GfXg are odd wheels andG[X℄ and G[X ℄ are pentagons. Moreover, these two pentagons are joined by that speialway (see Figure 5). Any separating ut of the Petersen graph has this struture beause ofthe automorphisms of this graph.PSfrag replaements 00102030 40
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CFigure 5: A separating ut in the Petersen graph.Lemma 2.7Let G be a mathing overed graph, D be a non-tight ut of G. If a D-ontration H of Gis the Petersen graph, up to multiple edges, then every nontrivial separating ut of H is aseparating ut of G with harateristi three in G.Proof: Let Y be a shore of D. Adjust the notation so that H := GfY ; yg. Graph H is thePetersen graph, up to multiple edges. Therefore, the subjaent graph of H is ubi, whene,y has three adjaent in H. We onlude that any perfet mathing of G has at most threeedges in D.Let C := r(X) be a separating ut of H. Cut C separates two pentagons in H. Adjustthe notation so that the C := f00; 10; 20; 30; 40g and the ontrated vertex of H be vertex 00(see Figure 5). In order to prove that C is a separating ut of G we must �nd for eah edgeof G a perfet mathing with one edge in C.



8 C. N. Campos and C. L. LuhesiLet H 0 be the other D-ontration of G and let e be an edge of H 0. There exists aperfet mathing of G that uses e. Let Me be this mathing. This mathing has at mostthree edges in D. If jMe \Dj = 3 then(Me \E(H 0)) [ f(20; 30); (100; 200); (300; 400)gis a perfet mathing of G that uses e and has only one edge in C.Suppose now, that jMe \Dj = 1. Let f be the edge of Me in D. There exists twopossibilities to edge f , up to automorphisms, and in eah ase we have found a perfetmathing with one edge in C.llf = (00; 000) ) (Me \E(H 0)) [ f(10; 20); (30; 40); (100; 200); (300; 400)gf = (00; 10) ) (Me \E(H 0)) [ f(20; 400); (30; 40); (000; 100); (200; 300)gLet f1 := (00; 000), f2 := (00; 10) and f3 := (00; 40). Eah of these edges have adjaentedges in H that are admissible edges in G. Let e be an edge that is adjaent to some fi.There exists a perfet mathing Me of G that uses e. Cut D is an odd ut, therefore, eahperfet mathing has one or three edges in D. Mathing Me an not have three edges inC beause one of these edges would be adjaent to e, ontraditing the fat of Me being amathing. Therefore, we onlude that jMe \Dj = 1. So, for eah fi there exist a perfetmathing of G that uses fi and only fi. Let Mi be the restrition of suh mathing to edgesof E(H 0).Let e be an edge of H. Cut C is a separating ut of H. Therefore, there exists a perfetmathing of H that uses e and has only one edge in C. By onstrution, this mathing hasonly one edge in D. Let fi be this edge. Thus, Mi [Me is a perfet mathing of G thatuses e and has only one edge in C. We onlude that C is a separating ut of G.Now, to omplete the proof we need to �nd a perfet mathing of G that has three edgesin C. By hypothesis, D is a nontight ut, therefore, there exists a perfet mathing M ofG with three edges in D. Thus,(M \E(H 0)) [ f(20; 400); (30; 100); (200; 300)gis a perfet mathing of G with three edges in C. Therefore, �(C) = 3. 2Lemma 2.8Let G be the simple graph obtained from the Petersen graph P by adding an edge e. LetC be a nontrivial separating ut of G suh that C � e is separating in G � e. Then, theharateristi of C in G is equal to three.Proof: In order to show that �(C) = 3 it is enough to �nd a perfet mathing of G withthree edges in C. Eah separating ut of G�e separates two pentagons. Let C�e := r(X)be a separating ut of G� e. Adjust the notation so that the X := f00; 10; 20; 30; 40g and theontrated vertex of D be vertex 00 (see Figure 5).



Separating uts on mathing overed graphs 9Edge e is not multiple, thus it joins two non-onseutive verties of G. Suppose �rst thate 62 C. By automorphisms of Petersen graph, we an adjust the notation so that e = (10; 40).Thus, M := f(00; 000); (10; 40); (20; 400); (30; 100); (200; 300)gis a perfet mathing of G with three edges in C.Now, we an assume that e 2 C. Again by the automorphisms of Petersen graph, wean onsider e = (00; 200). Thus,M := f(00; 200); (10; 20); (30; 100); (40; 300); (000; 400)gis a perfet mathing of G with three edges in C. Therefore, the assertion follows. 2Lemma 2.9For any maximal barrier B of a mathing overed graph G, every bipartite (odd) omponentof G�B is trivial.Proof: Let B be a maximal barrier of G. Let K1; : : : ;Kr be the odd omponents of G�B.Assume, to the ontrary, that there exists Ki suh that G[Ki℄ is bipartite. Let (Ai; Bi) abipartition of Ki. Cut r(Ki) is a separating ut, thus, by (2.1), jjAij � jBijj = 1. Adjustthe notation so that jAij = jBij+ 1. Thus, r(Ai) = r(Bi) [r(Ki). Therefore, B [Bi is abarrier to G that ontradits the maximality of B 2Let G be a mathing overed graph and let e and f be any two edges of G. Then we say edepends on f , or e implies f , if every perfet mathing that ontains e also ontains f . Wewrite e) f to indiate that e depends on f . Relation ) is reexive and transitive.Two edges e and f are mutually dependent if e ) f , and f ) e. In this ase we writee, f . Clearly , is an equivalene relation on E(G). In general, an equivalene lass anbe arbitrarily large. However, in a 3-edge-onneted near-brik, equivalene lasses haveardinality at most two as shown in the following lemma.Lemma 2.10For every 3-edge-onneted near-brik G, every equivalene lass Q with respet to thedependene relation ontains at most two edges, with equality only if graph G � Q isbipartite.Proof: Graph G is non-bipartite mathing overed graph, thus if jQj = 1, graph G � Q isnon-bipartite then assertion holds. Assume that jQj > 2 . Let e, f and g be three edges ofQ. Eah of these three edges imply the other two. Let B be a maximal barrier of G � fsuh that both ends of e are in B and the two ends of f are in di�erent omponents ofG� f �B.Suppose that there exists another edge e0 whih has both its ends in B. Let M be aperfet mathing in G that ontains edge e0. By ounting, we onlude that f 2 M ande 62 M . But this ontradits the hypothesis that e , f . Therefore, e is the only edgespanned by B.



10 C. N. Campos and C. L. LuhesiSuppose now that G�f�B has at least one nontrivial omponent. LetK be a nontrivialomponent of G�f�B. Barrier B is maximal, thus by (2.9), K is non bipartite. Thus, utC := r(K) is a separating ut of G with both its CK-ontrations non-bipartite. Therefore,by (2.6), CK an not be a tight ut. Let M be a perfet mathing of G that has more thanone edge in CK . By ounting,jM \ CK j = 3; f 2M and e 62M:Again ontradits the hypothesis of e, f .Therefore, G � e � f is bipartite and E n fe; fg is a ut of G. By analogy, E n fe; ggis also a ut of G. The symmetri di�erene of these two uts is ff; gg. Moreover, thesymmetri di�erene of any two uts is also a ut. Therefore, ff; gg is a ut of G. But thisis a ontradition beause G is 3-edge-onneted. Therefore, jQj � 2. Moreover, if jQj = 2then G�Q is bipartite. 2Lemma 2.11Let G be a mathing overed graph, C := r(X) a separating ut of G. If eah C-ontrationof G is biritial then graph G is biritial. Moreover, if eah C-ontration of G is a brikthen, G is a brik if, and only if, subgraph G[C℄ of G spanned by C has a mathing withat least three edges.Proof: Let G1 := GfX;xg and G2 := fX ;xg be the two C-ontrations of G. We will showthat G is biritial by removal of any two verties, say u and v, of G and �nding a perfetmathing to G� u� v. Consider �rst the ase in whih both u and v are verties of X. Byhypothesis, graph G1 is biritial, therefore, G1 � fu; vg has a perfet mathing M1. Let ebe the edge of M1 \C. Graph G2 is mathing overed, thus there exists a mathing M2 inG2 that uses e. Therefore, M1 [M2 is a perfet mathing of G.Consider now the ase in whih u 2 X and v 2 X . Graph G1 � u � x has perfetmathings. Let M1 be a mathing of G1 � u � x. This mathing has no edges in C.Analoguely, there is a perfet mathing, M2, to G2 � v � x without edges in C. Thus,M1 [M2 is a perfet mathing to G� u� v. Therefore, G is biritial.Now, we will show the seond part of the lemma. Suppose that G is a brik and utC is a separating ut of G, thus ut C an not be tight. Therefore, there exist at leastone perfet mathing of G with at least three edges in C. In partiular, the subgraph G[C℄spanned by C has a mathing with at least three edges.Now, suppose that G[C℄ has a mathing with at least three edges. Assume, to theontrary, that G has a nontrivial tight ut. Thus, graph G has a nontrivial tight ut thatis either a barrier ut or a 2-separation ut. Graph G is biritial, thus this tight ut mustbe a 2-separation ut. Let fu; vg be this 2-separation and let K1 and K2 be the (even)omponents of G� fu; vg.Suppose �rst that u and v lie in X. If K1 � X then fu; vg is a 2-separation of G1(see Figure 6(a)) ontraditing the hypothesis that G1 is a brik. Otherwise, that is, ifKi \X 6= ; and Ki \X 6= ; for 1 � i � 2 then graph G2 has a vertex ut (see Figure 6(b)),a ontradition with the hypothesis of G2 is mathing overed.



Separating uts on mathing overed graphs 11
PSfrag replaements XX(a) PSfrag replaements X X(b)Figure 6: Verties of the 2-separation lie in X.Now, we may assume that u 2 X and v 2 X . Suppose that Ki \X 6= ; for 1 � i � 2.In this ase, fu; xg is a 2-separation of G1 (see Figure 7(a)) a ontradition beause, byhypothesis, this graph is a brik. Assume then that K2 \ X = ; and K1 \ X = ;. Inthis ase ut C is a tight ut of this 2-separation (see �gure 7(b)). By hypothesis, thereexists a perfet mathing with more than one edge in C and, again we have a ontradition.Therefore, as we have asserted graph G is a brik.

PSfrag replaements X X(a) PSfrag replaements X X(b)Figure 7: One vertex of the 2-separation lies in X and the other lies in X. 2The �rst part of the next Lemma was proved in [1℄. The last part follows trivially of thefat that G, in that ase, is isomorphi to C4 with multiple edges.Lemma 2.12Let G be a brae with at least four verties. If G has at least six verties then every edgeis removable in G. If G has just four verties and is free of verties of degree two then, forevery vertex v of G, at most one edge of r(v) is not removable in G.



12 C. N. Campos and C. L. Luhesi3 Robust Cuts and b-removable edgesRobust uts have been de�ned and used in [2℄ and in [3℄. We ite here the fundamentalresults we need involving robust uts. We remark that most of these results were proved inthose two papers.Let G be a mathing overed graph. A ut C of G is robust in G if ut C is not tightin G and eah C-ontration of G is a near-brik.Lemma 3.1Let G be a mathing overed graph, D := r(Y ) a separating ut of G that is either tightor robust in G, H := GfY ; yg a D-ontration of G, C a tight ut of H. Then, either (i)ut C is tight in G or (ii) uts C and D are mathing-equivalent in G, ut C is robust in Gand the C-ontration of H that ontains vertex y is bipartite.Proof: Let X be the shore of ut C in H that ontains vertex y. Let X denote the othershore of C in H. Let H1 := HfX;xg, H2 := HfX ;xg. (See Figure 8).PSfrag replaements
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G H1 H2Figure 8: An illustration for Lemma 3.1Consider �rst the ase in whih graph H is not a near-brik. By de�nition of robust ut, itfollows that ut D is not robust. By hypothesis, ut D is either tight or robust in G. Wededue that ut D is tight in G. By hypothesis, ut C is tight in H, therefore it is alsotight in G. The assertion thus holds in this ase.We may thus assume that graph H is a near-brik. By hypothesis, ut C is tight in H.Therefore, one of H1 and H2 is bipartite, the other is a near-brik. Observe that H2 is aC-ontration of G. If H2 is bipartite then ut C is tight in G, and the assertion holds inthis ase.We may thus assume that graph H1 is bipartite. Cut C is tight in H, thus b(H2) =b(H) = 1, we onlude that H2 is a near-brik. If verties y and x lie in the same part ofH1 then the other part of H1 is a barrier of G, whene uts C and D are both tight in G,the assertion holds in this ase. Alternatively, if verties y and x lie in distint parts of H1then uts C and D are mathing-equivalent in G. If D is tight in G then so too is C. Sowe an assume that D is robust. Therefore, the two D-ontrations of G are near-briks.Thus, the other C-ontration of G that inludes ut D is a near-brik too. So, ut C is



Separating uts on mathing overed graphs 13a non-tight ut and both its C-ontrations are near-briks, whene C is a robust ut. Inboth alternatives the assertion holds. 2Lemma 3.2 (See [2℄, Theorem 4.3)If a mathing overed graph has a robust ut then it is a near-brik. 2Let G be a mathing overed graph, let C and D denote two (not neessarily distint) utsof G suh that jM \ C j � jM \D j ; for every perfet mathing M of G: (1)We then say that ut C preedes ut D, and denote this fat by writing C � D. In addition,if equality holds in (1) for eah perfet mathing M of G then we say that uts C and Dare mathing-equivalent. If equality does not hold in (1) for some perfet mathing M of Gthen we say that ut C stritly preedes ut D and denote this fat by writing C � D. Forany olletion C of uts of G, a ut C of C is minimal with respet to � in C if no ut D inC stritly preedes C in G.Lemma 3.3 (See [3℄, Corollary 2.4)Let C be a separating ut of a brik G, let M0 be a perfet mathing of G that ontainsmore than one edge in C. Let C be the olletion of separating uts D of G suh thatjM0 \D j > 1 and D � C. Then, every ut of C that is minimal with respet to the relationof preedene is robust in G. 2A mathing overed graph G is solid if it is free of stritly separating uts. An edge e of amathing overed graph G is removable in G if graph G � e is also mathing overed. Anedge e of G is b-removable in G if it is removable in G and b(G� e) = b(G).Lemma 3.4 (See the proof of Theorem 2.23 in [2℄)Let e be a removable edge of a mathing overed graph G, let C be a ut of G suh thatC � e is stritly separating in G� e. Let C be the olletion of those uts D of G suh thatD� e is stritly separating in G� e and D � C. Then, every ut of C that is minimal withrespet to the relation of preedene is stritly separating in G.Proof: Certainly ut C lies in olletion C. Let D be a ut in C that is minimal with respetto the relation of preedene. Eah (D�e)-ontration of G�e is non-bipartite. Therefore,eah D-ontration of G is non-bipartite. If ut D is separating in G then it is stritlyseparating.Assume, to the ontrary, that ut D is not separating in G. Then, at least one of theD-ontrations of G is not mathing overed. Let X be a shore of D and H := GfX;xg bea D-ontration of G that is not mathing overed.By hypothesis, ut D� e is separating in G� e. Graph H � e, a (D� e)-ontration ofG� e, is thus mathing overed. We onlude that edge e lies in H but is not admissible inH. Let B denote a maximal barrier of graph H that ontains both ends of edge e. If vertexx does not lie in B then B is a barrier of G that spans edge e, whene e is not admissiblein G, a ontradition. We onlude that vertex x lies in B.



14 C. N. Campos and C. L. LuhesiLet K denote the set of (odd) omponents of H � e�B. For eah omponent K in K,let CK denote ut r(V (K)) of G.By hypothesis, ut D � e, a member of olletion C, is stritly separating in G � e.This observation has two important impliations. The �rst is that graph H � e is non-bipartite, whene at least one omponent in K, say L, is nontrivial, therefore the CL-ontration GfV (L)g is non-bipartite, by (2.9). The other impliation is that the CL-ontration (G � e)fV (L)g of G � e is non-bipartite, by (2.1). We onlude that bothCL-ontrations of G� e are non-bipartite.We now show that ut CL is separating in G � e and also that CL � D, therebyontraditing the de�nition of D. For this, observe that for every perfet mathing M ofG, the number of edges of M in ut rH(B) may be expressed in two ways:jM \D j+ jBj � 1� 2 jM \ feg j = XK2K jM \ CK j � jM \ CL j+ jKj � 1:Sine jKj = jBj, it follows thatjM \D j � 2 jM \ feg j � jM \CL j :From the equation above, it follows that for every perfet mathing M of G, jM \ CL j �jM \D j, with equality only if edge e does not lie in M . Sine edge e is admissible in G, itfollows that CL � D.Let f be any edge of G � e. Cut D � e is separating in G � e, therefore there exists aperfet mathingMf ofG�e that ontains edge f and just one edge inD. From the equationabove it then follows that mathingMf ontains just one edge in CL. This onlusion holdsfor eah edge f of G� e, therefore ut CL is separating in G� e. Sine both CL-ontrationof G� e are non-bipartite, ut CL is stritly separating in G� e.In sum, ut CL stritly preedes ut D in G, ut CL is stritly separating in G � e.This onlusion ontradits the minimality of ut D in C. As asserted, ut D is stritlyseparating in G. 2Corollary 3.5If a near-brik G is solid then every removable edge of G is b-removable in G.Proof: Let e denote a removable edge of G.We observe �rst that graph G� e is not bipartite. For if G� e is bipartite, then eitheredge e has both ends in the same part of G� e or graph G itself is bipartite. If edge e hasboth ends in the same part of G � e then it is not admissible in G; if graph G is bipartitethen it is not a near-brik. In both alternatives we derive a ontradition. Indeed, graphG� e is non-bipartite.Assume, to the ontrary, that edge e is not b-removable inG. Then, graphG�e is neitherbipartite nor a near-brik, whene it has a stritly separating tight ut, by (2.5). Thereforeby previous lemma, graph G also has a stritly separating tight ut. This ontradits thehypothesis that G is solid. 2



Separating uts on mathing overed graphs 154 Cohesive Colletions of CutsIn this setion we list some important properties of ohesive olletions of uts of a mathingovered graph. As we have de�ned, a olletion of uts C is ohesive if every edge of G liesin a perfet mathing of G that ontains preisely one edge in eah ut in C. The followingresult haraterizes separating uts.Lemma 4.1A ut C of a mathing overed graph G is separating if, and only if, every edge of G lies ina perfet mathing of G that ontains preisely one edge in C.Corollary 4.2Every tight ut of a mathing overed graph is separating.Corollary 4.3A ut C of a mathing overed graph G is separating, if, and only if, olletion fCg isohesive.Corollary 4.4For eah ohesive olletion C of a mathing overed graph G and every tight ut C of G,olletion fCg [ C is also ohesive.Two uts r(X) and r(Y ) of a graph G ross if eah of X \ Y , X \ Y , X \ Y and X \ Yis non-null. A olletion of uts is laminar if no two of its uts ross.Lemma 4.5For any ohesive laminar olletion fC;Dg of uts of a mathing overed graph G, letH denote the D-ontration of G that ontains ut C. Then, ut C is separating in H.Moreover, �G(C) � �H(C), with equality if ut D is tight in G.Proof: Colletion fC;Dg is ohesive. Thus, for eah edge of G there exists a perfet mathingwith one edge in C and with one edge in D. The restrition of this mathing to edges of His a perfet mathing in H with one edge in C. In partiular, for eah edge of H there existsa perfet mathing with one edge in C. Therefore, C is a separating ut in H. Moreover,eah perfet mathing of H has one edge in D and an be expanded to a perfet mathingof G. Therefore �G(C) � �H(C).If D is a tight ut then the restrition of eah perfet mathing of G to edges of H is aperfet mathing of H. Therefore, the set of perfet mathings of H is exatly the set of theperfet mathing of G restriting the edges of these mathings to edges of H. Therefore,�G(C) = �H(C). 2Lemma 4.6Let C := r(X) and D := r(Y ) be two rossing uts of a mathing overed graph G. Adjustnotation so that jX \ Y j be odd. Let I := r(X \ Y ), let U := r(X \ Y ). If olletionfC;Dg is ohesive, then the following properties hold:



16 C. N. Campos and C. L. Luhesi(i) For every set F of edges of G, the following relation of modularity holds:jF \ C j+ jF \D j = jF \ I j+ jF \ U j :(ii) Colletion fC;D; I; Ug is ohesive.(iii) Let �I denote the harateristi of ut I in GfY g and �U denote the harateristi ofut U in GfY g. Then, �C(G) � minf�I ; �Ug, with equality if ut D is tight in G.Proof: Let S be the set of edges that have one end in X \ Y and the other in X \ Y . Forany set of edges the following relation is true:jF \ Cj+ jF \Dj = jF \ Ij+ jF \ Y j+ 2 jF \ SjSuppose that S 6= ;. Colletion fC;Dg is ohesive. Therefore, for eah edge of G thereexists a perfet mathing with exatly one edge in C and one edge in D. LetM be a perfetmathing of G that uses e 2 S and has one edges in C and one edge in D. Thus,2 = jM \ Cj+ jM \Dj = jM \ Ij+ jM \ Y j+ 2 jM \ Sj > 2Therefore, S must be empty and the modularity property holds.Colletion fC;Dg is ohesive and modularity holds. Thus, fC;D; I; Ug is a ohesiveolletion. If fC;D; I; Ug is a ohesive olletion, so too is fD; Ig and fD;Ug. By (4.5),we onlude that I is separating in GfY g and U is separating in GfY g.Let M be a perfet mathing with �I edges in I and one edge in D and U . Thus, bymodularity, jM \ Cj = �I . Let M be a perfet mathing with �U edges in U and one edgein D and I. Thus, by modularity, jM \ Cj = �U . Therefore, �(C) � minf�I ; �Ug.Suppose now that D is a tight ut. Let M be a perfet mathing of G with �C edges inC. Cut D is tight and the modularity property holds. Therefore,jM \ Ij+ jM \ U j = �C + 1: (2)Moreover, jM \ Ij+ jM \ U j � 2minf�I ; �Ug: (3)By 2 and 3 we onlude that �C � minf�I ; �UgWe know that �C � minf�I ; �Ug. Therefore the equality holds and the proof is omplete.2



Separating uts on mathing overed graphs 175 The Theorem on Odd WheelsIn this setion we present a result that establishes, under ertain onditions, that a near-brik is an odd wheel. That result plays a fundamental role in the proof of the MainTheorem.For any vertex v of a graph G, a v-mathing of G is a set M of edges of G suh thatevery vertex of G distint from v is inident with preisely one edge of M . A trivial butimportant remark: if M is a v-mathing of a graph that has an even number of vertiesthen jM \r(v) j is odd.Theorem 5.1 (Theorem on Odd Wheels)For any vertex v of a 3-edge-onneted near-brik G and any v-mathing M of G, one ofthe following properties holds:(i) Either graph G is an odd wheel of hub v, up to multiple edges inident with vertex v,(ii) or graph G is not solid,(iii) or graph G has a removable singleton or doubleton that is disjoint with M [r(v) .Proof: By indution on the size of G.Case 1 Graph G is not a brik.By hypothesis, graph G is a near-brik. Thus, for every tight ut C of G, one of the C-ontrations of G is bipartite, the other is a near-brik. By hypothesis of the ase, graph Gis not a brik. Let thus C be a nontrivial tight ut of G suh that the set of edges of thebipartite C-ontration of G is minimal. Then, that C-ontration is a brae.Let X be a shore of C, G1 := GfX;xg, G2 := GfX ;xg the two C-ontrations of G.Adjust notation so that G1 is bipartite. Let (A;B) denote the bipartition of G1 suh thatvertex x lies in A.Consider �rst the ase in whih vertex v does not lie in V (G1). In that ase, therestrition of M to G1 is a perfet mathing of G1. Let w be any vertex of A � x. Thisvertex is inident with exatly one edge of M . By (2.12), at most one edge of G1 inidentwith vertex w is not removable in G1. By hypothesis, graph G is 3-edge-onneted, wheneit is free of verties of degree two. We onlude that r(w) �M ontains an edge, say e,that is removable in G1. Moreover, verties w and x lie on the same part A of G1, thereforeedge e does not lie in C. Finally, vertex v does not lie in V (G1), therefore edge e does notlie in r(v). We onlude that edge e is removable in G and does not lie in M [r(v) . Theassertion holds in this ase.Consider next the ase in whih vertex v lies in A. Then, it is distint from vertexx. Moreover, eah vertex of V (G1) � fv; xg is inident with preisely one edge of M ,and jM \r(v) j is odd, therefore M is a perfet mathing of G, and ut C is tight inG. By (2.12), ut C ontains an edge, e, that does not lie in M and is removable in G1.Moreover, edge e does not lie in r(v). Let R be a minimal lass of G2 indued by edge e.Observe that the restrition of M to G2 is a perfet mathing of G2, and edge e does not



18 C. N. Campos and C. L. Luhesilie in M , therefore R and M are disjoint. Moreover, graph G2, a C-ontration of G, is3-edge-onneted, therefore R ontains at most two edges. If R and C are disjoint then Ris removable in G and is disjoint with M [r(v) . If R and C are not disjoint then e is theonly edge of R in C. In both ases, R is a removable singleton or doubleton of G that isdisjoint with M [r(v) . The assertion holds in this ase.Consider last the ase in whih vertex v lies in B. In this ase, ut C has as many edgesin M as does ut r(v). Therefore, the restrition of M to G2 is an x-mathing of G2. Byindution hypothesis, with x playing the role of v, M \E(G2) the role of M and G2 therole of G, we have one of the alternatives of the assertion. We onsider eah one of themseparately. If G2 has a removable singleton or doubleton R that is disjoint with M [C ,then R is also a removable doubleton or singleton in G that is disjoint with M [r(v) .For every separating ut D of G2, its harateristi in G2 equals its harateristi in G:if G2 is not solid, neither is G. Finally, assume that G2 is an odd wheel of hub x, up tomultiple edges in C, let w be any vertex of B � v. By (2.12), r(w) has an edge, say e,that is removable in G1 and does not lie in M [r(v) . If edge e does not lie in C then itis removable in G; if edge e lies in C and either the order of the wheel G2 is greater thanthree or edge e is a multiple edge in C, then edge e is removable in G; if edge e is not amultiple edge in G2 and the order of G2 is three, then there exists a doubleton in G2 that isdisjoint with M and removable in both G2 and G. In all ases onsidered, either graph Ghas a removable singleton or doubleton that is disjoint with M [r(v) , or graph G is notsolid. The analysis of this ase is omplete.We may thus assume that graph G is a brik. To proeed with the proof, we need a theoremdue to Lov�asz (Theorem 5.5.1, page 196, [5℄):Theorem 5.2Every ritial graph G an be represented asG = P0 + P1 + � � � + Pr; (4)where P0 is K1 and eah Pi (1 � i � r) is either an odd path or an odd iruit havingpreisely its origin and terminus in ommon with P0 + P1 + � � �+ Pi�1.Sequene P := (P0; P1; � � � ; Pr) is an ear deomposition of ritial graph G, and for eah i(1 � i � r), Pi is an ear of P. The following assertion is the onverse of (5.2), and is easilyproved by indution.Proposition 5.3If a graph G has an ear deomposition as in (4), then it is ritial. 2Graph G is biritial, therefore graph G � v is ritial. By (5.2), graph G � v has eardeompositions. Set M is a v-mathing of G therefore M �r(v) is a mathing of G � v,and E(G� v) is not a subset of M . Thus, for eah ear deomposition P = (P0; P1; � � � ; Pr)of G� v, there exists at least one integer i suh that 0 < i � r and E(Pi) is not a subset ofM ; we de�ne the index of P to be the largest positive integer q � r suh that E(Pq)�Mis nonnull.



Separating uts on mathing overed graphs 19Let P := (P0; P1; � � � ; Pr) be an ear deomposition of G � v of highest index. Let qdenote the index of P.Proposition 5.4For eah integer i, (q < i � r), ear Pi has length one, its only edge, pi, lies inM . Therefore,for any permutation (P 0q+1; � � � ; P 0r) of (Pq+1; � � � ; Pr), sequene (P0; P1; � � � ; Pq; P 0q+1; � � � ; P 0r)is an ear deomposition of G� v of index q.Proof: Let i be any integer suh that q < i � r. No edge of Pi is inident with vertex v.Therefore, every vertex of V (Pi) is inident with at most one edge of M . By de�nition ofindex q, E(Pi) �M . Thus, Pi must have length one. This onlusion holds for eah indexi suh that q < i � r. Therefore, graph P0+P1+ � � �+Pq is a spanning subgraph of G� v.We onlude that we may permute the ears of P as indiated in the assertion, to obtainanother ear deomposition of G� v of index q. 2Case 2 q = 1.We assert that r = 1. To see this, assume the ontrary. Then, the edge p2 of P2 has bothends in V (P1). But P1 is an odd iruit, whene the ends of p2 split P1 in two paths, P 0and P 00, of odd and even length, respetively. If P 0 has length one then its edge e and p2onstitute a pair of multiple edges of G; moreover, p2 lies inM , therefore edge e does not lieinM . Alternatively, if the length of P 0 is greater than one then E(P 0) is not a subset of M .In both ases, E(P 0) is not a subset of M . Let P 00 be the vertex graph of any vertex of P 00.Replaement of P0; P1; P2 in P by P 00; P 00+ p2; P 0, respetively, yields an ear deompositionof G � v of index two, a ontradition. As asserted, r = 1. We onlude that G � v is anodd iruit.Graph G is biritial, therefore every vertex of G is adjaent to at least three verties.Thus, eah vertex of G� v is adjaent to v. We onlude that G is an odd wheel of hub v,up to multiple edges in r(v). The analysis of the ase is omplete.Case 3 q > 1 and jE(Pq)j = 1.We assert that q = r in this ase. For i = q + 1; � � � ; r, path Pi has length one, by (5.4).Therefore, graph P0 +P1 + � � �+Pq�1 is a spanning subgraph of G� v. Therefore, we mayreplae (Pq; � � � ; Pr) in P by (Pq+1; � � � ; Pr; Pq), thereby obtaining an ear deomposition ofindex r. By de�nition of P, it follows that q = r, as asserted. Let e be the edge of Pq. LetS be the set of edges of G that depend on edge e.Proposition 5.5No edge f of S lies in M [r(v) .Proof: Edge e, an edge of graph G � v that does not lie in M , does not lie in M [r(v) .The assertion holds trivially if f = e. We may thus assume that f is an edge of S � e.Then, graph G� e has a barrier B that ontains both ends of f .We assert that vertex v does not lie in B. For this, assume the ontrary. Let w be anyvertex of B�v. Let B0 := B�fv; wg. Let G0 := G�v� e�w. Then, G0�B0 = G� e�B,



20 C. N. Campos and C. L. Luhesiwhene the number of (odd) omponents of G0 � B0 is stritly greater than the number ofverties of B0. Thus, graph G0 has no perfet mathing, whene graph G � v � e is notritial. But (P0; P1; � � � ; Pr�1) is an ear deomposition of graph G� v� e, therefore graphG� v � e is ritial, by (5.3). This is a ontradition. As asserted, vertex v does not lie inB. SetM , a v-mathing of G, has preisely one edge inident with eah vertex of G distintfrom v, therefore it has an odd number of edges inident with eah vertex of G. For eah(odd) omponent K of G � e � B, set M has thus an odd number of edges in r(V (K)).Edge e does not lie in M , therefore set M has at least jBj edges in r(B). Vertex v doesnot lie in B, therefore eah vertex of B is inident with preisely one edge of M . Moreover,that edge lies in r(B). Therefore, edge f does not lie in M . In sum, edge f has both endsin B and does not lie in M , and vertex v does not lie in B. We onlude that edge f doesnot lie in M [r(v) , as asserted. 2Let R be any minimal lass of G indued by e. Then, set R is disjoint with M [r(v) .Graph G is a brik, thus R ontains at most two edges, by (2.10). We onlude that graphG has a removable singleton or doubleton R that is disjoint with M [r(v) , as asserted.The analysis of this ase is omplete.Case 4 q > 1 and jE(Pq)j > 1.Let Pq = (v0; e1; v1; � � � ; e2n+1; v2n+1)X := (V (Pq)� fv0; v2n+1g) [ fvg , C := r(X). Let G1 := GfX ;xg and G2 := GfX;xgdenote the two C-ontrations of G.Lemma 5.6Eah of G1 � x and G2 � x is ritial.Proof: Sequene (P0; P1 � � � ; Pq�1) is an ear deomposition of graph G1 � x. Therefore,graph G1 � x is ritial, by (5.3).The proof that graph G2 � x is ritial is more elaborate. For any two integers j and ksuh that 0 < j; k < 2n + 1, let S[j; k℄ denote the subpath of Pq extending from vertex vjto vertex vk, if j � k, otherwise let S[j; k℄ denote the reversal of S[k; j℄. For eah integer isuh that q < i � r, edge pi of Pi is an upper edge of P.Proposition 5.7Let e be any upper edge of P. Then, both ends of edge e are internal verties of V (Pq).Moreover, if vj and vk denote the two ends of e in V (Pq), path S[j; k℄ has even length.Proof: We may permute the upper edges of P so that e is the edge of Pq+1. Assume,to the ontrary, that no end of edge e is an internal vertex of Pq. Then, we may learlyinterhange Pq and Pq+1 in P, thereby obtaining an ear deomposition of index q + 1, aontradition. We onlude that at least one end of e is an internal vertex of Pq, say vj ,where 0 < j < 2n+ 1.



Separating uts on mathing overed graphs 21Assume, to the ontrary, that the other end of e is not an internal vertex of Pq. Oneof S[0; j℄ and S[j; 2n + 1℄ has odd length, the other has even length. Adjust notation, byreplaing Pq in P by its reversal, if neessary, so that the length of S[0; j℄ is even. Replae,in P, Pq by S[0; j℄ �Pq+1 and Pq+1 by S[j; 2n+1℄. Edge e lies inM , therefore E(S[j; 2n+1℄)is not a subset of M , whene P has not maximum index, a ontradition. As asserted, bothends of e are internal verties of Pq.Let vk be the other end of edge e. Assume, to the ontrary, that S[j; k℄ has odd length.Adjust notation so that j < k. Replae, in P, Pq by S[0; j℄ � Pq+1 � S[k; 2n + 1℄, and Pq+1by S[j; k℄, thereby obtaining an ear deomposition of G� v of index q+ 1, a ontradition.As asserted, S[j; k℄ has even length. 2Two upper edges e and f of P ross if the ends vi and vj of edge e and the ends vk and vlof edge f , with i < j and k < l, satisfy the inequality i < k < j < l.Proposition 5.8Let vi; vj be the ends of upper edge e and vk; vl the ends of upper edge f suh that i < k <j < l. Then, eah of S[i; k℄, S[k; j℄ and S[j; l℄ has even length.Proof: We may assume, by permuting upper edges, that e is the edge of Pq+1 and f the edgeof Pq+2. Path S[i; j℄ has even length, by (5.7). Therefore, the lengths of paths S[i; k℄ andS[k; j℄ have the same parity. Likewise, the lengths of paths S[k; j℄ and S[j; l℄ also have thesame parity. Thus, the three paths have lengths of the same parity. Assume, to the ontrary,that the ommon parity is odd. Replae, in P, Pq by S[0; i℄ �Pq+1 �S[k; j℄ �Pq+2 �S[l; 2n+1℄,Pq+1 by S[i; k℄ and Pq+2 by S[j; l℄. This replaement yields an ear deomposition of G� vof index q + 2, a ontradition. As asserted, the ommon parity is even. 2Proposition 5.9Let e be an upper edge of P, vi and vj its ends in V (Pq). Then, at least one internal vertexof S[i; j℄ is adjaent to vertex v.Proof: By indution on jj � ij. Adjust notation so that i < j. Vertex vi+1 has degree atleast three in G and is distint from vertex vj , beause j � i is even. If vi+1 is adjaent tovertex v then the assertion holds. Assume thus that vertex vi+1 is adjaent to an upperedge f of P. Path S[i; i+1℄ has odd length, therefore edge f annot ross edge e, by (5.8).We onlude that edge f has ends vi+1 and vk suh that i+ 1 < k < j. By indution, pathS[i+ 1; k℄ has at least one internal vertex adjaent to vertex v. 2Proposition 5.10Graph G2 � x is ritial.Proof: We assert that a spanning subgraph of G2 � x has an ear deomposition Q :=Q0 + Q1 + � � � + Qs, where s � 3. For this, reall �rst that graph G is a brik, thereforefv0; v2n+1g is not a 2-separation of G. No edge of G joins an internal vertex of Pq to vertiesof G1 � v. Therefore, at least one internal vertex of Pq is adjaent to vertex v. Let i be



22 C. N. Campos and C. L. Luhesithe smallest positive integer suh that i < 2n + 1 and vertex vi is adjaent to vertex v.Likewise, let j be the largest positive integer suh that j < 2n + 1 and vj is adjaent tovertex v. Thus, 0 < i � j < 2n + 1. Let ei and ej be edges of r(v) inident with vertiesvi and vj , respetively.Consider �rst the ase in whih i = 1 and j = 2n (Figure 9(a)). In this ase, theassertion holds, with s = 1 and Q1 := S[1; 2n℄ � (v2n; e2n; v; e1; v1). Consider next the ase inPSfrag replaementsei
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()Figure 9: An illustration for the proof of (5.10)whih i = 1 and j < 2n, or i > 1 and j = 2n. Adjust notation, by reversing Pq if neessary,so that j = 2n (Figure 9(b)). Then, i > 1. Graph G is biritial, therefore vertex v1 isadjaent to at least three verties of G. No edge of G joins vertex v1 to either v or anyvertex of X. Therefore, there is an upper edge of P inident with vertex v1. Let e denotethat upper edge. Let vk denote the other end of e. By (5.7), path S[1; k℄ has even length,whene path S[k; 2n℄ has odd length. Moreover, by (5.9) and by de�nition of i, i < k. Theassertion holds, with s = 2, Q1 := S[1; k℄ � (vk; e; v1) and Q2 := S[k; 2n℄ � (v2n; e2n; v; ei; vi).We may thus assume that 1 < i � j < 2n. Graph G is biritial, therefore both vertiesv1 and v2n are inident with upper edges of P, say e and f , respetively. Let vk be the endof e distint from v1, let vl denote the end of f distint from v2n. Then, by (5.9)and byde�nition of i and j, we have that 1 < i < k and l < j < 2n. Edges e and f annot ross.To see this, assume the ontrary. By (5.8), eah of the three segments S[1; l℄, S[k; 2n℄ andS[l; k℄ has even length. But the sum of the legnths of these three segments is odd, (2n� 1).This is a ontradition. We onlude that 1 < i < k < l < j < 2n (Figure 9()).Suppose that at least one of S[1; i℄ or S[j; 2n℄ has even length. Adjust the notation sothat the length of S[1; i℄ is even . In that ase, the assertion holds, with s = 3, Q1 :=S[l; 2n℄ � (v2n; f; vl), Q2 := (vj ; ej ; v; ei; vi) � S[i; l℄, and Q3 := (vk; e; v1) � S[1; i℄.Finally, if eah of S[1; i℄ and S[j; 2n℄ has odd length then so too have paths S[i; k℄ and



Separating uts on mathing overed graphs 23S[l; j℄. Then, the assertion holds with s = 3,Q1 := S[1; i℄ � (vi; ei; v; ej ; vj) � S[j; 2n℄ � (v2n; f; vl) � S[l; k℄ � (vk; e; v1);Q2 := S[i; k℄ and Q3 := S[l; j℄.As asserted, graph G2 � x has a ritial spanning subgraph. Therefore, G2 � x is alsoritial. 2As asserted, both G1 � x and G2 � x are ritial. The proof of Lemma 5.6 is omplete. 2Proposition 5.11Let D := r(Y ) be any odd ut of G, H := GfY ; yg. If graph H � y is ritial then H ismathing overed and biritial.Proof: For any vertex w of H distint from y, graph H � y � w has a perfet mathing.Thus, eah edge of H inident with vertex y is admissible in H. Therefore, graph H hasperfet mathings. Moreover, no nontrivial barrier of H ontains vertex y. Every barrier ofH that does not ontain vertex y is a barrier of G, therefore it is trivial. We onlude thatH is biritial. 2Graph G1 is a C-ontration of G in whih the vertex of ontration is x and graphG1 � x is ritial, by (5.6). Likewise, graph G2 is a C-ontration of G in whih the vertexof ontration is x and graph G2�x is ritial. Thus, both G1 and G2 are biritial mathingovered graphs, by(5.11). We onlude that ut C is a nontrivial separating ut of G. CutC is not tight, beause G is a brik. Therefore, G is not solid. The analysis of the last aseof the Theorem on Odd Wheels is omplete. 26 Proof of Theorem 1.1Theorem 1.1The harateristi �G(C) of any separating ut C of any near-brik G lies in f3; 5;1g.Moreover, if �G(C) = 5 then graph G has a tight ut minor P that is the Petersen graph,up to multiple edges, and ut C is stritly separating in P .Proof: By indution on the size of G. Let � denote the harateristi of C in G. We mayassume C to be nontrivial and G to be free of multiple edges.Case 1 Graph G has a nontrivial tight ut D that does not ross ut C.Let H1 and H2 denote the two D-ontrations of G. By hypothesis, graph G is a near-brik,therefore one of H1 and H2 is bipartite, the other is a near-brik. By hypothesis, uts Cand D do not ross, therefore C is a ut of one of H1 and H2. Adjust notation, so that Cis a ut of graph H1.



24 C. N. Campos and C. L. LuhesiCut D is tight in G, therefore olletion fC;Dg is ohesive in G. By (4.5), ut C isseparating in H1. Moreover, the harateristi of C in H1 is equal to �. If graph H1 isbipartite then ut C is tight in H1, whene it is tight in G. In that ase, the assertion holds.Assume thus thatH1 is not bipartite. Then, H1 is a near-brik. By indution hypothesis,with graph H1 playing the role of G, � lies in f3; 5;1g. If � lies in f3;1g then we are donein this ase. Assume thus that � = 5. By indution hypothesis, graph H1 has a tight utminor P that is the Petersen graph, up to multiple edges, and ut C is stritly separatingin P . But graph H1 is a tight ut minor of G. Therefore graph P is also a tight ut minorof G. The analysis of this ase is omplete.Case 2 Graph G is not a brik and every nontrivial tight ut of G rosses C.We assert that � = 3 in this ase. Graph G is a near-brik that is not a brik, therefore ithas nontrivial tight uts. Let D be a nontrivial tight ut of G. Every nontrivial tight utof G rosses ut C, therefore uts C and D ross.Let X be a shore of C, Y be a shore of D. Adjust notation so that jX \ Y j is odd. LetI := r(X \ Y ); U := r(X \ Y );H1 := GfY ; yg;H2 := GfY ; yg:Colletion fC;Dg is ohesive. By (4.6), so too is olletion fC;D; I; Ug. Moreover,� = minf�I ; �Ug, where �I denotes the harateristi of ut I in H1 and �U denote theharateristi of ut U in H2. Graph G is a near-brik and ut D is nontrivial and tight inG. Therefore, one of H1 and H2 is bipartite, the other is a near-brik. Adjust notation sothat H2 is bipartite, whereupon H1 is a near-brik.Graph H2 is bipartite and ut U is separating in H2. Therefore, ut U is tight in H2.That is, �U =1, whene � = �I .Cut I annot be tight in H1, otherwise C would be a nontrivial tight ut that does notross itself. If �I = 3 then � = 3 and the assertion holds. Assume, to the ontrary, that3 < �I < 1. By indution hypothesis, with I playing the role of C and H1 that of G,graph H1 has a tight ut minor P that is the Petersen graph up to multiple edges, and utI is stritly separating in P .We assert that the subgraph Q of G spanned by X \ Y is a pentagon. To see this, letT be any tight ut of H1 that has a shore Z that is a subset of X \ Y . Then, T is a tightut of G. Moreover, uts C and T do not ross beause Z is a subset of X. Thus, ut T istrivial. That is, set Z is a singleton. We onlude that the verties of Q are all verties ofP . As asserted, the verties of Q span a pentagon in G.The Petersen graph is ubi, therefore preisely one vertex of Q is adjaent in G toverties of Y . Let i denote that vertex. Let Y 0 := fig [ (X \ Y ) , D0 := r(Y 0). Themodularity relating uts C, D, I and U implies that no edge of G joins verties of X \ Ywith verties of X \ Y . Observe thatY \ Y 0 = Y � i = (Q� i) [ (X \ Y ) and Y \ Y 0 = X \ Y :Therefore, no edge ofG joins verties of Y \ Y 0 with verties of Y \ Y 0 . Note that Y \ Y 0 =fig and Y \ Y 0 = X \ Y . Thus, modularity also relates uts D, D0, r(i) and U . But uts



Separating uts on mathing overed graphs 25D, r(i) and U are eah tight in G, therefore ut D0 is also tight in G. We onlude thatut D0 is a nontrivial tight ut of G that does not ross ut C, a ontradition. As asserted,� = �I = 3. The analysis of the ase is omplete.In view of Cases 1 and 2, we may assume graph G to be a brik. We now introdue aonept that will be quite important to redue the proof further, to the ase in whih eahC-ontration of G is a solid near-brik.A ut D of G is a witness for C if D is robust in G, olletion fC;Dg is ohesive anduts C and D are not mathing-equivalent,Case 3 Graph G is a brik and it has a witness for C that does not ross ut C.We assert that � = 3 in this ase. Let X be a shore of C. By hypothesis of the ase, at leastone C-ontration of G ontains a ut that is a witness. Adjust notation so that GfXg hasa ut that is a witness. Among the witnesses in GfXg, hoose one, D, suh that the shoreY of D that is a subset of X is maximal.Let H := GfY ; yg. Then, H is the D-ontration of G that ontains C. By de�nition ofwitness, ut D is robust and olletion fC;Dg is ohesive, whene graph H is a near-brikand ut C is separating in H. Let �H denote the harateristi of C in H. By indutionhypothesis, with H playing the role of G, �H lies in f3; 5;1g.We assert that ut C is not tight in H. Assume, to the ontrary, that C is tight in H.Cut C is not tight in G beause it is nontrivial in G and G is a brik. By (3.1), uts C andD are mathing-equivalent, in ontradition to the de�nition of witness. As asserted, C isnot tight in H. We onlude that �H lies in f3; 5g.By (4.5), � � �H . If �H = 3 then � = 3 and the assertion holds. Assume thus that�H = 5. By indution hypothesis, graph H has a tight ut minor P suh that ut C isstritly separating in P and P is the Petersen graph, up to multiple edges.We assert that H = P . Let T be any (possibly trivial) tight ut of H that does not rossut C. By the hypothesis of the ase, G is a brik; if T is tight in G then it is trivial in G,therefore trivial in H. Assume thus that T is not tight in G. By (3.1), ut T is robust in G,mathing-equivalent to D and the T -ontration of H that ontains vertex y is bipartite.Cuts C and D are not mathing-equivalent, whene neither are uts C and T . Let Z be theshore of T in H that ontains vertex y. Then, HfZg is bipartite. Every separating ut ofH that lies in HfZg is tight in GfZg, whene it is also tight in H. Cut C is not tight in H,therefore C is not a ut of GfZg. Thus, Y 0 := Y [ (Z � y) is the shore of T in G that is asubset of X. By the maximality of Y , it follows that Z = fyg. That is, D and T oinide.We onlude that every tight ut of H that does not ross C is trivial in H. Graph P is atight ut minor of H that has C as a ut. It follows that H = P , as asserted.Cut D is a trivial ut of H, but a robust ut of G. In partiular, ut D is not tight inG. By (2.7), � = 3. The analysis of this ase is omplete.Case 4 Graph G is a brik, every witness for C rosses C and G has a witness D.We assert that � = 3. By hypothesis of the ase, uts C and D ross. Let X be a shore of



26 C. N. Campos and C. L. LuhesiC, Y a shore of D. Adjust the notation so that jX \ Y j be odd. LetI := r(X \ Y ); U := r(X \ Y );H1 := GfY ; yg;H2 := GfY ; yg:By de�nition of witness, olletion fC;Dg is ohesive. By (4.6), so too is olletionfC;D; I; Ug. Thus, ut I is separating in H1 and ut U is separating in H2. Let �Idenote the harateristi of I in H1, let �U denote the harateristi of U in H2. By (4.6),� � minf�I ; �Ug. If minf�I ; �Ug = 3 then � = 3 and the assertion holds.Assume, to the ontrary, that minf�I ; �Ug > 3. Cut D is robust, therefore graphs H1and H2 are both near-briks. By indution hypothesis, with H1 playing the role of G andI that of C, it follows that �I lies in f5;1g. Likewise, �U also lies in f5;1g. LetCI := fZ : Z � X \ Y ;r(Z) is a witness for C in Gg; andCU := fZ : Z � X \ Y ;r(Z) is a witness for C in Gg:Proposition 6.1Either set CI is nonnull or set X \ Y ontains a vertex, i, suh that no vertex of Y isadjaent to any vertex of X \ Y � i.Proof: Consider �rst the ase in whih there exists a nontrivial subset Z of X \ Y suhthat ut W := r(Z) is tight in H1. Graph G is a brik and ut W is nontrivial, thereforeW is not tight in G. By (3.1), ut W is robust in G and mathing-equivalent to D, wheneit is a witnessfor C. That is, Z lies in CI . The assertion holds in this ase.We may assume that for every separating ut r(Z), Z � X \ Y , ut r(Z) is not tightin H1. In partiular, this implies that either I is trivial or it is not tight in H1. If I is trivialthen the assertion holds, with i the only vertex of X \ Y .We may thus assume that I is not tight in H1. But �I lies in f5;1g. Therefore, �I = 5.By indution hypothesis, graph H1 has a tight ut minor P that is the Petersen graph,up to multiple edges, and ut I is stritly separating in P . We have assumed above thatno nontrivial separating ut of H1 whose shore is a subset of X \ Y is tight in H1. Weonlude that X \ Y spans a pentagon in G. Moreover, preisely one vertex of X \ Y isadjaent to verties in Y . Let i be that vertex. The assertion holds. 2Likewise, either set CU is nonnull or set X \ Y ontains a vertex, u, suh that no vertexof Y is adjaent to any vertex of X \ Y � u.If CI and CU are both empty then graph G has a 2-separation fi; ug, by (6.1). This is aontradition to the hypothesis that graph G is a brik. If at least one of CI or CU is nonnullthen G has a witness that does not ross C, in ontradition to the hypothesis of the ase.In both alternatives, we derive a ontradition. As asserted, � = minf�I ; �Ug = 3. Theanalysis of the ase is omplete.In view of Cases 1{4, we may assume that graph G is a brik free of witnesses for ut C.The next assertion implies then that ut C is robust and eah C-ontration of G is solid.Lemma 6.2Let G be a brik, C a nontrivial separating ut of G. Either G has a witness for C or utC is robust and eah C-ontration of G is solid.



Separating uts on mathing overed graphs 27Proof: We �rst onsider whether or not ut C is robust inG. Cut C is a nontrivial separatingut of G, in turn a brik. Therefore, ut C is not tight in G. Let M0 be a perfet mathingof G that ontains more than one edge in C. Let C be the olletion of those separatinguts D of G suh that D � C and jM0 \D j > 1. Colletion C is ohesive and ontainsut C. Let C0 be a ut in C that is minimal with respet to the relation of preedene.By (3.3), ut C0 is robust in G. Moreover, fC;C0g, a subolletion of C, is ohesive. Ifuts C and C0 are not mathing-equivalent then ut C0 is a witness for C. If uts C andC0 are mathing-equivalent then ut C is a ut of C that is also minimal with respet tothe relation of preedene; in that ase, C is robust in G. We onlude that either G has awitness for C or C is robust in G.We may thus assume that C is robust in G. We now onsider whether or not a C-ontration H of G is solid. Assume that it is not. Let D be a stritly separating ut of H.Then, olletion fC;Dg is ohesive. Cut C is robust in G, therefore H is a near-brik. CutD is stritly separating in H, therefore it is not tight. Let MD be a perfet mathing of Hthat ontains more than one edge inD. LetM1 be an extension ofMD to a perfet mathingof G. Let D be the olletion of those uts W of G suh that W � D and M1 has morethan one edge in W . Every perfet mathing that ontains just one edge in D ontains alsojust one edge in eah ut of D. Moreover, olletion fC;Dg is ohesive, therefore olletionfCg [ D is also ohesive. Let D1 be a ut of D that is minimal with respet to the relationof preedene. Cut D1 is robust in G and olletion fC;D1g, a subolletion of fCg [ D ,is ohesive. Moreover, ut D1 has more than one edge in M1, whereas ut C has just one.Thus, D1 is not mathing-equivalent to C, whene it is a witness for C. We onlude thateither near-brik H is solid or G has a witness for C. 2Case 5 Graph G is a brik, ut C is robust and one of the C-ontrations of G has aremovable doubleton.We assert that � = 3. For this, let X be a shore of C, H := GfX;xg be a C-ontration ofG that has a removable doubleton. Let e and f be the edges of the doubleton. By (2.10),graph H � e� f is bipartite. Let (A;B) be the bipartition of H � e � f . Adjust notationso that edge e has both ends in A, edge f has both ends in B and vertex x lies in A.Note that set B is a barrier of G�e. Every perfet mathing of G that does not ontainany of the edges e and f ontains preisely one edge in C. Every perfet mathing of Gthat ontains edge f ontains also just one edge in C. Cut C is not tight in G, thereforethere must exist in G a perfet mathing that ontains edge e but no edge f . Any suhmathing has preisely three edges in ut C. We onlude that � = 3. The analysis of thease is omplete.Case 6 Graph G is a brik and there exists a b-removable edge e of G suh that edge edoes not lie in C and ut C is separating in G� e.We assert that � = 3 in this ase. Cut C is not tight in G, therefore neither C-ontrationof G is bipartite. Thus, no C-ontration of G � e is bipartite. That is, ut C is stritlyseparating in G � e. We onlude that ut C is not tight in G � e. Let �0 denote the



28 C. N. Campos and C. L. Luhesiharateristi of C in G � e. By indution hypothesis, �0 lies in f3; 5g. Every perfetmathing of G� e is a perfet mathing of G. Thus, if �0 = 3 then � = 3 and we are done.We may thus assume that �0 = 5. By indution hypothesis, graph G� e has a tight utminor P that is the Petersen graph, up to multiple edges, and ut C is stritly separatingin P .LetX be the shore of C that ontains both ends of e. Let D be the set of those nontrivial,disjoint subsets Y of any of X or X, suh that graph P is the result of the ontration ofeah set Y in D to a single vertex.Proposition 6.3Colletion D has at most two members, eah of whih is a subset of X. Moreover, for eahset Y in D, graph H := (G � e)[Y ℄ has a bipartition (A;B) suh that jBj = jAj + 1, andedge e is the only edge of G that is inident with some vertex of A but not inident withany vertex of B.Proof: Let Y be a member of D, D := r(Y ). By de�nition of D, ut D� e is tight in G� e,in turn a near-brik. Therefore one of the (D� e)-ontrations of G� e is bipartite. Cut Cis not tight in G�e, but is separating in the (D�e)-ontration (G�e)fY g in whih it lies.Thus, (G�e)fY g is not bipartite. Therefore, (G�e)fY g is bipartite. Thus, so too is graphH. Let (A;B) denote a bipartition of H. Adjust notation so that jBj = jAj+ 1. Then, noedge of G� e joins a vertex of A to a vertex of V (G) �B. If edge e is not inident with avertex of A, or if edge e is inident with a vertex of B, then ut D is tight in G, whene setY is trivial, a ontradition. Thus, edge e must be inident with at least one vertex of Aand to no vertex of B. Indeed, e is the only edge of G that satis�es this property. Finally,eah member of D ontains at least one end of edge e; both ends of e lie in X. We onludethat D has at most two members, eah of whih is a subset of shore X of C. 2Notation 6.4Let r := jDj. For 1 � i � r, let Yi denote an enumeration of the members of D, Hi :=(G � e)[Yi℄, (Ai; Bi) the bipartition of Hi suh that jBij = jAij + 1. Let vi and wi denotethe ends of e in G, suh that vertex vi lies in Ai. Let yi be the vertex of P obtained by theontration of Yi to a single vertex.If olletion D is empty, then graph G is P + e, up to multiple edges. By (2.8), � = 3. Wemay thus assume that D is nonempty. Consider next the ase in whih olletion D hasjust one member, Y1, and either (i) edge e has both ends in A1, or the end w1 of e, not inY1, is adjaent to y1 in P . If edge e has both ends in A1, then graph P is GfY1g; if w1is adjaent to y1 in P then edge e is a multiple edge in GfY1g. In both ases, graph P isGfY1g, up to multiple edges. Moreover, every perfet mathing of G that ontains edge ehas preisely three edges in r(Y1). By (2.7), � = 3 also in this ase.We are thus left with three ases to onsider: either (i) r = 1 and vertex w1 is notadjaent to vertex y1 in P , or (ii) r = 2 and verties y1 and y2 are not adjaent in P , or(iii) r = 2 and verties y1 and y2 are adjaent in P . The three possibilities are depited inFigure 10, up to automorphism that �x ut C.
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Figure 10: The three possibilities onsidered in Cases 6.1 and 6.2Case 6.1 Either r = 1 and vertex w1 is not adjaent to vertex y1 in P , or r = 2 andverties y1 and y2 are not adjaent in P .Proposition 6.5Under the hypothesis of Case 6.1, for eah member Yi of D and any two verties xi andyi of the set Zi of the three verties of V (G) \ V (P ) that are adjaent in G to verties ofBi, the subgraph Wi of G spanned by Yi [ fxi; yi; wig has a perfet mathing, Mi, thatontains preisely three edges in r(Yi), inident, respetively, to xi, yi, and wi.Proof: Let zi be the vertex of Zi�fxi; yig. Graph G a brik, is biritial. Therefore, graphG�fzi; vig has a perfet mathing, say, Ni. We have removed from G a vertex from Ai anda vertex not in Yi, therefore Ni has preisely two edges in r(Yi), eah of whih is inidentwith a vertex of Bi and a vertex of Zi. The vertex outside Yi removed from G is preiselyone of the three verties of Zi. We onlude that those two edges neessarily are inidentto xi and yi. Restrit Ni to E(Wi) and add to that restrition edge e. It is easy to hekthat the resulting set, Mi, is a perfet mathing of Wi that has the asserted properties. 2We now apply the assertion just proved to the ases under onsideration. In the ase inwhih r = 1, we hoose fxi; yig to be f000; 40g (see Figure 10); it is easy to hek that M1an be extended to a perfet mathing of G that ontains preisely three edges in C. Inthe ase in whih r = 2, the hoies are f00; 200g and f30; 300g (see Figure 10), and again, itis easy to hek that M1 [M2 may be extended to a perfet mathing of G that ontainspreisely three edges in C.Case 6.2 Colletion D has two members and verties y1 and y2 are adjaent in P .For i = 1; 2, Let Zi denote the set fxi; yig onsisting of the two verties of V (G) \ V (P )that are adjaent in P to yi. Let Z := Z1 [ Z2 . (In Figure 10, Z = f10; 40; 100; 400g).



30 C. N. Campos and C. L. LuhesiProposition 6.6The subgraph W of G spanned by Y1 [ Y2 [ Z has a perfet mathing that ontains pre-isely four edges in r(Y1 [ Y2 ), eah of whih is inident to one of the four verties ofZ.Proof: Graph G, a brik, is 3-onneted. Therefore, at least three verties of B1 [B2 areadjaent to verties of Z. Thus, either B1 has at least two verties that are adjaent toverties of Z1 or B2 has at least two verties that are adjaent to verties of Z2. Adjustnotation so that B1 has this property. Verties x1 and y1 are both adjaent to verties ofB1. Therefore, there exist two verties in B1, say x01 and y01, suh that x01 is adjaent to x1and y01 is adjaent to y1. Let e1 and f1 denote the orresponding edges that join those pairof verties.Graph G, a brik, is biritial, therefore graph G� fx01; y01g has a perfet mathing, N .Two verties of B1 have been removed from G, therefore edge e lies in N . Moreover, everyvertex of A1 other than the end v1 of e is mathed with a vertex of B1. Therefore, edge e isthe only edge of N \ Y1 . In partiular, no edge of N � e joins any vertex of Y1 to a vertexof Y2. Moreover, edge e lies in N , and is inident to vertex v2 of A2. We onlude thatN \r(Y2) ontains preisely three edges, one is edge e, the other two are edges inidentwith verties x2 and y2. Restrit N to W and add to that restrition edges e1 and f1. Theresulting mathing has the asserted properties. 2It is now easy to hek that the mathing thus obtained may be (uniquely) extended to aperfet mathing of G that ontains preisely three edges in C. The analysis of this ase isomplete.Case 7 None of the previous ases apply.We show that either � = 3 or G is the Petersen graph. Let X1 be a shore of C, let X2 bethe other shore of C. For i = 1; 2, letGi := GfXi; vig; ni := jXij :Proposition 6.7For i = 1; 2, Gi is an odd wheel of hub vi, up to multiple edges in r(vi).Proof: Cases 1 and 2 do not apply. Therefore, graph G is a brik. Cases 3 and 4 do notapply. Therefore, there are no witnesses for C in G. By (6.2), eah C-ontration of Gis a solid near-brik. Case 5 does not apply, therefore neither G1 nor G2 has a removabledoubleton.Cut C, a nontrivial separating ut of brik G, is not tight in G. Let M0 be a perfetmathing of G suh that jM0 \ C j > 1. For i = 1; 2, let Mi denote M0 \E(Gi) . Then,Mi is a vi-mathing of Gi, for i = 1; 2. By the Theorem on Odd Wheels, (5.1), one of thefollowing alternatives hold, for eah i = 1; 2:(i) Either Gi is an odd wheel of hub vi, up to multiple edges in r(vi),(ii) or Gi has a removable edge that does not lie in Mi [C .



Separating uts on mathing overed graphs 31Assume, to the ontrary, that G1 say, has a removable edge e that does not lie in M1 [C .Graph G1 is a solid near-brik. By (3.5), edge e is b-removable in G1. That is, graph G1�eis a near-brik. Edge e does not lie in C, therefore the two C-ontrations of G � e arenear-briks. Moreover, edge e does not lie in M1, a subset of M0. Therefore, ut C is nottight in G� e. In sum, C is a nontight ut of G � e and both C-ontrations of G� e arenear-briks. By (3.2), graph G � e is a near-brik. That is, edge e is b-removable in G.It follows that Case 6 applies, a ontradition. We onlude that for i = 1; 2, graph Gi isindeed an odd wheel of hub vi, up to multiple edges in C. 2We have de�ned ni = jXij and, by previous lemma, eah C-ontration is an odd wheel ofhub vi. Thus n1 and n2 are the order of wheels G1 and G2, respetively. If jM0 \ C j = 3then � = 3 and we are done. We may thus assume that M0 ontains at least 5 edges in C.In that ase, both n1 and n2 are at least 5. Thus, eah edge of C is removable in eah ofG1 and G2.Let e be any edge of C. For i = 1; 2, let pi(e) denote the end of e in the shore Xi of C.De�ne graph G0i(e) as follows.If the degree of pi(e) is greater than three then edge e is a multiple edge in Gi: in thatase, graph Gi � e is an odd wheel, let G0i(e) be Gi � e. If the degree of pi(e) is three thenpi(e) and its two neighbors in Gi � e onstitute the shore of a tight ut D of Gi � e. Thenonbipartite D-ontration of Gi � e is thus an odd wheel of hub vi, up to multiple edgesinident in vi, having two verties less than Gi. Let G0i(e) be that odd wheel. In the �rstase, let p0i(e) be pi(e). In the seond ase, let p0i(e) be the vertex of the ontration. Inboth ases, G0i(e) is an odd wheel of hub vi, up to multiple edges inident with vi. Finally,let G0(e) denote the graph whose (C � e)-ontrations are G01(e) and G02(e).Let H denote the (bipartite) subgraph of G spanned by the edges of C.Proposition 6.8Let e be any edge of C. Then, graph G0(e) is biritial. Moreover, if the degree of one ofp1(e) and p2(e) in H is at least two, or if edge e does not lie in M0, then graph G0(e) is abrik and graph G� e is a near-brik.Proof: The (C � e)-ontrations of G0(e) are both odd wheels. Odd wheels are biritialgraphs. Therefore, graph G0(e) is biritial, by (2.11).Assume further that either edge e does not lie in M0 or the degree in H of one of itsends is at least two.Consider �rst the ase in whih edge e does not lie inM0. Then,M0 is a perfet mathingof G � e that ontains more than one edge in G � e. Moreover, eah (C � e)-ontrationof G � e is a near-brik. Thus, ut C � e is robust in G � e. By (3.2), graph G � e is anear-brik. Graph G0(e) is obtained from G � e by the ontration of the bipartite shoresof two tight uts. Therefore, graph G0(e) is a near-brik. But G0(e) is biritial. Therefore,G0(e) is a brik.Consider next the ase in whih one of the ends of e has degree at least two in H. LetH 0(e) denote the bipartite subgraph of G0(e) spanned by the edges of C � e. Cut C � e hasat least four edges in M0. If the degree of p2(e) in H is also greater than one, then thosefour edges onstitute a mathing of H 0(e). If the degree of p2(e) in H is preisely one then



32 C. N. Campos and C. L. Luhesitwo of the four edges might be inident with p02(e) in H 0(e). In both ases, we onlude thatgraph H 0(e) has a mathing of at least three edges. By (2.11), graph G0(e) is a brik. 2Reall that n1 and n2 are the order of wheels G1 and G2, respetively. We now adjustnotation, so that n1 � n2.Proposition 6.9If a vertex of X1 has degree at least four in G then � = 3.Proof: Let v denote vertex of X1 that has degree at least four in G. Then, ut C ontainsat least two edges inident with vertex v. Let e be an edge of C that is inident with vertexv. If possible, hoose an edge e suh that p2(e) has degree three in G.By (6.8), graph G0(e) is a brik. Let �0(e) denote the harateristi of ut C�e in G0(e).Every perfet mathing of G0(e) may be extended to a perfet mathing of G that has thesame set of edges in C. Thus, if �0(e) = 3, then � = 3 and we are done.Assume, to the ontrary, that �0(e) > 3. Graph G0(e) is a brik and ut C � e isseparating but not tight in G0(e). Therefore, brik G0(e) is the Petersen graph, up tomultiple edges, by indution hypothesis.Graph G01(e) is equal to G1 � e. Therefore, n1 = 5. We have assume that n1 � n2.Therefore, n2 � 5and then graph G02(e) has order 5. Therefore, G02(e) is equal to G2 � e.Thus, vertex p2(e) has degree four in G. We onlude that G0(e) = G � e, whene G � eis the Petersen graph, without multiple edges. Let f be any edge of C � e inident with v.The end p2(f) of f in X2 has degree three in G. This is a ontradition to the de�nition ofe. As asserted, � = 3. 2Proposition 6.10If a vertex v of X2 has degree at least four in G then � = 3.Proof: If a vertex of X1 has degree four in G then � = 3, by (6.9). We may thus assumethat eah vertex of X1 has degree three in G, whereupon jCj = n1.For eah edge e of C that is inident with vertex v, let w and x denote the two vertiesof X1 that are adjaent to p1(e). Let f and g denote the edges of C inident with w and x,respetively. If possible, hoose edge e suh that edges f and g are not adjaent in G.By (6.8), graph G0(e) is a brik. Let �0(e) denote the harateristi of ut C�e in G0(e).Every perfet mathing of G0(e) may be extended to a perfet mathing of G that has thesame set of edges in C. Thus, if �0(e) = 3, then � = 3 and we are done.Assume, to the ontrary, that �0(e) > 3. Graph G0(e) is a brik and ut C � e isseparating but not tight in G0(e). Therefore, brik G0(e) is the Petersen graph, up tomultiple edges, by indution hypothesis.Vertex p1(e) has degree three in G. Vertex p2(e) has degree greater than three in G,therefore G02(e) = G2�e. We onlude that n1 = 7 and n2 = 5. Moreover, sine jCj = n1, itfollows that either X2 has preisely two verties of degree greater than three, eah of whihhas degree 4, or X2 has just one vertex of degree greater than three, and it has degree 5.The ends of f and g in G0(e) oinide in the shore of C�e resulting from the ontrationof fp1(e); w; xg and graph G0(e) is the Petersen graph, up to multiples edges. Therefore,



Separating uts on mathing overed graphs 33edges f and g are multiple edges in G0(e). But G02(e) = G2� e, therefore, the ends of f andg in X2 oinide. Let v0 denote that ommon end of f and g.If v0 = v then the degree of v in G is 5, every vertex of G distint from v has degreethree. In that ase, both edges f and g ontradit the hoie of edge e. If v0 6= v, then v0and v eah have degree 4 in G, every vertex of G distint from v and v0 has degree three. Inthat ase, the edge of C that is distint from e and is inident with vertex v also ontraditsthe hoie of e. In both alternatives, we derive a ontradition. As asserted, � = 3. 2Proposition 6.11If ut C has a b-removable edge e then � = 3.Proof: By (6.9) and (6.10), we may assume G to be ubi. Thus, n1 = jCj = n2. If G0(e)is not the Petersen graph, up to multiple edges, then � = 3 and we are done. Assume thusthat G0(e) is the Petersen graph, up to multiple edges. Then, n1 = n2 = 7.Let w1 and x1 denote the two verties of X1 that are adjaent to p1(e). Let f and gdenote the edges of C that are inident with w1 and x1, respetively. Edges f and g share aommon end of degree four in G0(e). The underlying simple graph of G0(e) is the Petersengraph. Thus, edges f and g are multiple in G0(e). It follows that the ends p2(e), p2(f) andp2(g) of edges e, f and g are ylially onseutive in that order, in the heptagon spannedby X2. The same property holds for the ends of these three edges in G. Therefore, fe; f; ggmay be extended to a perfet mathing of G, by adding two edges in eah of the heptagonsspanned by X1 and X2, respetively. 2We may thus assume that graph G is ubi and no edge of C is b-removable in G. We assertthat G is the Petersen graph. For this, we observe �rst that every edge of C lies in M0, forany edge of C �M0 is b-removable in G, by (6.8). We onlude that M0 = CLet e be any edge of C. Graph G0(e) is not a brik. Eah (C � e)-ontration of G0(e)is an odd wheel, a brik. By (2.11), no mathing of H 0(e) has more than two edges, that isthe bipartite graph H 0(e) has a vertex over od edges osisiting of at most two edges.Perfet mathing M0 has at least 5 edges. Therefore, C � e has at least 4 edges. Itfollows that C has just 5 edges, and p01(e) and p02(e), the verties resulting from ontrationsin G1 � e and G2 � e, onstitute a 2-separation of H 0(e). This onlusion holds for eahedge e of C.Let us number the verties of the pentagons spanned by X1 and X2,(00; 10; 20; 30; 40) and (000; 100; 200; 300; 400);respetively. Adjust notation, by hanging the origin of those enumerations, if neessary,so that edge e is (00; 000). Then, the edge f of C inident with vertex 200 is inident withone of 10 and 40. Adjust notation, by adjusting the orientation of the enumeration of theverties of X1, so that f = (10; 200). The edge of C inident with 300 is thus inident with 40.The edge of C inident with vertex 100 annot be inident with vertex 20, otherwise (40; 300)would be b-removable in G. We onlude that the edges of C are of the form (i0; j00), wherej = 2i mod 5. Indeed, graph G is the Petersen graph. 2



34 C. N. Campos and C. L. Luhesi7 Proof of Theorem 1.2Theorem 1.2The harateristi of any separating ut C := r(X) of any mathing overed graph G liesin f3; 5;1g. Moreover, �G(C) = 5 if, and only if, graph G has a tight ut minor H, inwhih ut C is stritly separating, suh that one of the following two alternatives holds:(i) Either graph H is the Petersen graph, up to multiple edges, or(ii) graph H is not a near-brik and there exist two uts in H, D1 := rH(Y1) andD2 := rH(Y2), eah of whih has harateristi 5 in G, set Y1 is a subset of X andset Y2 is a subset of X, olletion fD1;D2; Cg is ohesive, uts D1 and D2 are notdisjoint, and the graph obtained by the ontration of Y1 and Y2 is the Petersen graph,up to multiple edges.Proof: By indution on the size of G. Let � denote the harateristi of C in G. We mayassume C to be nontrivial and G to be free of multiple edges.Case 1 Graph G has a nontrivial tight ut that does not ross C.Let D be a nontrivial tight ut of G that does not ross C. Let H 0 be the C-ontration ofG that inludes C.Cut D is tight in G, therefore olletion fC;Dg is ohesive. By (4.5), ut C is separatingin H 0 and �H0(C) = �. By indution hypothesis with H 0 playing the role of G, we onludethat � lies in f3; 5;1g. If � lies in f3;1g then the assertion holds. We may assume that� = 5.By indution hypothesis, � = 5 if, and only if, H 0 has a tight ut minor H, in whihC is a stritly separating ut. Cut D is a tight ut and H is a tight ut minor of H 0,a D-ontration of G. Therefore, H is a tight ut minor of G. Moreover, by indutionhypothesis, one of the following alternatives holds:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-brik and there are two uts in H, D1 := rH(Y1) and D2 :=rH(Y2), eah of whih has harateristi 5 in G, set Y1 is a subset of X and set Y2is a subset of X, olletion fD1;D2; Cg is ohesive, uts D1 and D2 are not disjoint,and the graph obtained by the ontration of Y1 and Y2 is the Petersen graph, up tomultiple edges.Therefore, the analysis of this ase is omplete.Case 2 Every nontrivial tight ut of G rosses C.Let D := r(Y ) be a nontrivial tight ut of G. Adjust the notation so that jX \ Y j beodd. Among all nontrivial tight uts of G hoose one suh that Y is minimal. Therefore,graph GfY ; yg is free of nontrivial tight uts.



Separating uts on mathing overed graphs 35Let I := r(X \ Y ) and U := r(X \ Y ). Colletion fC;Dg is ohesive. Thus, by (4.6),fC;D; I; Ug is also ohesive, C,D, I and U are related by modularity, I and U are separatingin GfY ; yg and GfY ; yg, respetively, and � � minf�GfY g(I); �GfY g(U)g. By (4.5),�G(I) = �GfY g(I) and �G(U) = �GfY g(U):Let �I := �G(I) and �U := �G(U). Suppose that I is nontrivial, thus GfY g is nonbi-partite, whene a brik. By indution hypothesis, with GfY ; yg playing the role of G and Iplaying the role of C, �I lies in f3; 5;1g. In fat, we onlude that �I lies in f3; 5g beauseGfY g is free of nontrivial tight uts. Thus, � lies in f3; 5g beause � � �I . If �I = 3 then� = 3 and the assertion holds. We may assume that �I = 5By indution hypothesis, there exists a tight ut minor H of GfY ; yg, suh that:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-brik and there are two uts in H, D1 := rH(Y1) and D2 :=rH(Y2), eah of whih has harateristi 5 in G, set Y1 is a subset of X \ Y andset Y2 is a subset of X \ Y , olletion fD1;D2; Ig is ohesive, uts D1 and D2 arenot disjoint, and the graph obtained by the ontration of Y1 and Y2 is the Petersengraph, up to multiple edges.Graph GfY ; yg is a brik, thus, by indution hypothesis, it is the Petersen graph, upto multiple edges. Therefore I separates two pentagons in GfY ; yg. Moreover, Petersengraph is a ubi graph, thus eah vertex of eah pentagon is adjaent to exatly one vertexof the other pentagon. Let v be the the vertex that is adjaent to y in the other pentagon.Figure 11 depits graph G in this ase.PSfrag replaements U XY
DC D0vFigure 11: Graph G when I is nontrivial.Let D0 := r((X \ Y ) [ fvg). The modularity relating uts C, D, I and U implies thatno edge of G join verties of X \Y with verties of X \Y . Moreover, r(v)\r(X \Y ) = ;.Therefore, modularity relates D0, D, r((X \ Y ) n fvg) and U . That is, for eah perfetmathing M of G jM \D0j+ jM \Dj = jM \r(fvg)j + jM \ U j



36 C. N. Campos and C. L. LuhesiBoth D and r(fvg)are tight uts. Therefore, D0 and U are mathing equivalent. Weonlude that D0 is a separating ut of G and has the same harateristi of U .Suppose �rst that U is a tight ut, whene, D0 is also tight ut. By ase hypothesis,both uts are trivial. Thus, graph G is the Petersen graph, up to multiple edges and C isone of its stritly separating uts.Now, we may assume that �U < 1. Cut U is a separating ut of GfY ; yg. Thus, byindution hypothesis, �U lies in f3; 5;1g. Therefore, �U lies in f3; 5g. If �U = 3 then � = 3and we are done. So we may assume that �U = 5. Thus, �D0 = 5 beause it is mathingequivalent to U and � = 5, by modularity. Moreover, after ontration of U and D0 wehave, up to multiple edges, the Petersen graph with C as a stritly separating ut of thisgraph. The assertion follows in this ase.Now, we may assume that I is a trivial ut. Let i be the vertex of X \ Y . If U is atrivial ut then, by modularity, ut C is a tight ut and the assertion follows. Therefore,we may assume that U is nontrivial.By indution hypothesis, with GfY ; yg playing the role of G and U playing the role ofC, we onlude that �U lies in f3; 5g. If �U = 3 then the assertion holds. We may assumethat �U = 5, whene, � = 5.By indution hypothesis, �U = 5 if, and only if, GfY ; yg has a tight ut minor H, inwhih U is a stritly separating ut. Moreover, by indution hypothesis, one of the followingalternatives holds:(i) Either graph H is the Petersen graph up to multiple edges, or(ii) graph H is not a near-brik and there are two uts in H, D1 := rH(Y1) and D2 :=rH(Y2), eah of whih has harateristi 5 in GfY ; yg, set Y1 is a subset of X \Y andset Y2 is a subset of X [ Y , olletion fD1;D2; Ug is ohesive, uts D1 and D2 arenot disjoint, and the graph obtained by the ontration of Y1 and Y2 is the Petersengraph, up to multiple edges.Graph H is a tight ut minor of G. Let D0 := r(Z) be a tight ut of GfY ; yg used toobtain H that inludes set Y in one of its shores. Adjust the notation so that Y � Z.CutD0 does not ross D neither U , but it must ross C. Moreover D0 separates D and U , thatis Y � Z and X \ Y � Z. Therefore, the relative position of these uts are depited inFigure 12.Suppose �rst that H is the Petersen graph, up to multiple edges, with U a stritlyseparating ut of H. Then, U separates two pentagons in H. Moreover, Petersen graph isa ubi graph, whene eah vertex of eah pentagon is adjaent to exatly one vertex of theother pentagon. Let v be the vertex of X \Y suh that r(v)\D0 6= ;. Let H 0 be the splieof the GfZ ; zg and H. Figure 13 shows this graph.Set fi; vg is a 2-separation of G. Cut D is a 2-separation ut. The other tight ut ofthis 2-separation is r((X \ Y )[ fvg) that does not ross C. Therefore, by ase hypothesisX \ Y must be empty, but in this ase D is trivial. Contradition.Now, we may assume that H is not a near-brik and there exist two uts in H, D1 :=rH(Y1) and D2 := rH(Y2) satisfying ((ii)).



Separating uts on mathing overed graphs 37PSfrag replaements U
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D0DiFigure 13: Graph H', splie of GfZ ; zg and H.ContratingD1 andD2 we have the Petersen graph. The ontrated verties are adjaentin the Petersen graph and they are in di�erent shores of U . Petersen graph is ubi,therefore, eah vertex in eah pentagon of the shores of U is adjaent to only one vertex inthe other. Therefore, determination of position of D1 uniquely determines the position ofD2. We have two ases to analyze depending on whether the vertex y to be in Y2 or in Y2(see Figure 14). In both ases we derive a ontradition, whene the result follows.PSfrag replaements D0
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38 C. N. Campos and C. L. LuhesiIn �rst ase that y 2 Y2 (see Figure 14). Let D0 := r((X \Y )[Y1). Note that there areonly three verties that are inident with edges of D0 in shore Y [ fig. Cut D0 is nontrivialand does not ross C, therefore, by ase hypothesis, D0 an not be tight. Thus, �(D0) = 3.One of D0-ontration is the Petersen graph and D0 is non-tight, then by (2.7) we onludethat � = 3. Contradition.Suppose now that y 62 D1. Let v be the vertex adjaent to y in the other pentagon. Thus,fi; vg is a 2-separation of H 0. One of the tight uts assoiated with this 2-separation is D.The other is r((X\Y )[fvg). This ut is also a tight ut in G does not ross C. Therefore,by ase hypothesis, this ut must be trivial, whene D is also trivial. Contradition.To omplete the analysis of this ase we must show that if G has a tight ut minor H,in whih ut C is stritly separating ut and suh that either (i) or (ii) holds, then � = 5.Observe that in both alternatives, (i), or (ii), we have a Petersen graph as a minor and theharateristi of C in this minor is �ve, therefore � lies in f3; 5g.By hypothesis of the ase every nontrivial tight ut of G rosses C. So, the only tightut minor of G that inludes C is G itself. If G is a near-brik then, by (i), G is the Petersengraph, up multiple edges, and C is a nontrivial separating ut in G, whene � = 5.We may assume that G is not a near-brik. By hypothesis, there are two separating utsof harateristi 5 in G, say D1 := r(Y1) and D2 := r(Y2), suh that D1 and D2 are notdisjoint, C separates D1 and D2 and the graph obtained by the ontration of D1 and D2is the Petersen graph, up to multiple edges. Adjust the notation so that Y1 � X. Figure 15shows this graph.PSfrag replaements fgX D2D1C
Figure 15: Graph G is not a near-brik.Graph G is not a near-brik, therefore it has a nontrivial tight ut D. By hypothesis,every nontrivial tight ut rosses C. Let Y be a shore of D. Graph G[Y ℄ must be onnetedbeause GfY g is mathing overed. Adjust the notation so that jX \ Y j be odd. LetI := r(X \ Y ) and U := r(X \ Y ). Cut D is a tight ut of G and C is a separating ut ofG, thus fC;Dg is a ohesive olletion. By (4.6), modularity property holds with uts C,D, I and U and � = minf�(I); �(U)g.Suppose Y1 is a (proper) subset of X \ Y . In this ase there are edges from X \ Y toX \ Y , ontraditing modularity property. Therefore, Y1 \ (X \ Y ) 6= ;.Suppose that Y2 is a proper subset of X \ Y . Thus, beause D rosses C edges f andg lie in D. There exists a perfet mathing of the Petersen graph that uses edges f and g



Separating uts on mathing overed graphs 39(see Figure 15). This perfet mathing an be extended to a perfet mathing of G and hasthree edges in D. Contradition.Therefore, we onlude that E(G[Y1℄)\D 6= ; and E(G[Y2℄)\D 6= ;. Let Y1 := Y11[Y12and Y2 := Y21 [ Y22. Adjust the notation so that Y11 � X \ Y and Y22 � X \ Y . Figure 16shows graph G and uts C and D. By ounting, jY11j � 1 mod 2 and jY21j � 0 mod 2PSfrag replaements
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Figure 16: Graph G and uts C and D.Let e be an edge of r(Y22)\C. By hypothesis, olletion fC;D1;D2g is ohesive. Thus,there exists a perfet mathing of G that uses e and has exatly one edge in eah ut offC;D1;D2g. CutD is a tight ut, therefore jMe \r(Y21)j = 0 beause jMe \r(Y11) \Dj =1 and this edge is an edge of D, whene Me \E(G[Y21℄) is a perfet mathing of G[Y21℄.Suppose, by absurd, that � = 3. Let M be a perfet mathing of G with three edges inC. In this mathing,jM \D1 \ Cj = 3 and jM \r(Y21) \r(Y22)j = 0:Thus, M \E(G[X [ Y22℄) is a perfet mathing of G[X [ Y22℄. Therefore,(Me \E(G[Y21℄)) [ (M \E(G[X [ Y22℄) [ ff; gg)is a perfet mathing of G with three edges in D1. Contradition, the harateristi of D1is �ve. Thus � = 5 as we have asserted and the analysis of this ase is omplete.Case 3 Previous ases do not applyWe may assume now that graph G is a brik. By (1.1), � lies in f3; 5;1g and, if � = 5then graph G has a tight ut minor H that is the Petersen graph, up to multiple edges.To omplete the proof we need analyze the ase in whih H, that is a tight ut minor ofG, is isomorphi to Petersen graph, up to multiple edges, and C is a stritly separating utof H. Eah ut used to obtain H is a tight ut. Therefore by (4.5), � = 5 and the proof ofthe theorem is omplete. 2
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42 C. N. Campos and C. L. LuhesiCorollary 2.3 fseparating:bipartiteg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5In a bipartite graph G, a ut is tight if, and only if, it is separating in G.Lemma 2.4 fbipartite:bZerog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5A mathing overed graph G is bipartite if, and only if, it has b(G) = 0.Lemma 2.5 fstritly-separating-tightg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6A non-bipartite mathing overed graph G is a near-brik if, and only if, graph G is free ofstritly separating tight uts.Corollary 2.6 ftight:near-brikg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Graph G is a near brik if, and only if, for eah nontrivial tight ut of G one of the C-ontrations is a bipartite graph and the other is a near-brik. 2Lemma 2.7 fthree:extendsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Let G be a mathing overed graph, D be a non-tight ut of G. If a D-ontration H of Gis the Petersen graph, up to multiple edges, then every nontrivial separating ut of H is aseparating ut of G with harateristi three in G.Lemma 2.8 fPplus:eg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Let G be the simple graph obtained from the Petersen graph P by adding an edge e. LetC be a nontrivial separating ut of G suh that C � e is separating in G � e. Then, theharateristi of C in G is equal to three.Lemma 2.9 fmaximal:barrierg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9For any maximal barrier B of a mathing overed graph G, every bipartite (odd) omponentof G�B is trivial.Lemma 2.10 fnear-brik:atMostTwog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9For every 3-edge-onneted near-brik G, every equivalene lass Q with respet to thedependene relation ontains at most two edges, with equality only if graph G � Q isbipartite.Lemma 2.11 fspliing:briksg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Let G be a mathing overed graph, C := r(X) a separating ut of G. If eah C-ontrationof G is biritial then graph G is biritial. Moreover, if eah C-ontration of G is a brikthen, G is a brik if, and only if, subgraph G[C℄ of G spanned by C has a mathing withat least three edges.Lemma 2.12 fbipartite:atMostOneNonRemovableg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Let G be a brae with at least four verties. If G has at least six verties then every edgeis removable in G. If G has just four verties and is free of verties of degree two then, forevery vertex v of G, at most one edge of r(v) is not removable in G.Lemma 3.1 ftight:in:ontrationg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Let G be a mathing overed graph, D := r(Y ) a separating ut of G that is either tightor robust in G, H := GfY ; yg a D-ontration of G, C a tight ut of H. Then, either (i)



Separating uts on mathing overed graphs 43ut C is tight in G or (ii) uts C and D are mathing-equivalent in G, ut C is robust in Gand the C-ontration of H that ontains vertex y is bipartite.Lemma 3.2 fsubadditivityg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See [2℄, Theorem 4.3) If a mathing overed graph has a robust ut then it is anear-brik. 2Lemma 3.3 frobustg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See [3℄, Corollary 2.4) Let C be a separating ut of a brik G, let M0 be a perfetmathing of G that ontains more than one edge in C. Let C be the olletion of separatinguts D of G suh that jM0 \D j > 1 and D � C. Then, every ut of C that is minimal withrespet to the relation of preedene is robust in G. 2Lemma 3.4 fmonotoniity:lambdag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13(See the proof of Theorem 2.23 in [2℄) Let e be a removable edge of a mathingovered graph G, let C be a ut of G suh that C � e is stritly separating in G� e. Let Cbe the olletion of those uts D of G suh that D � e is stritly separating in G � e andD � C. Then, every ut of C that is minimal with respet to the relation of preedene isstritly separating in G.Corollary 3.5 fsolid:removableg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14If a near-brik G is solid then every removable edge of G is b-removable in G.Lemma 4.1 fseparating:harag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15A ut C of a mathing overed graph G is separating if, and only if, every edge of G lies ina perfet mathing of G that ontains preisely one edge in C.Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Every tight ut of a mathing overed graph is separating.Corollary 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15A ut C of a mathing overed graph G is separating, if, and only if, olletion fCg isohesive.Corollary 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15For eah ohesive olletion C of a mathing overed graph G and every tight ut C of G,olletion fCg [ C is also ohesive.Lemma 4.5 flambda:laminarg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15For any ohesive laminar olletion fC;Dg of uts of a mathing overed graph G, letH denote the D-ontration of G that ontains ut C. Then, ut C is separating in H.Moreover, �G(C) � �H(C), with equality if ut D is tight in G.Lemma 4.6 flambda:rossg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Let C := r(X) and D := r(Y ) be two rossing uts of a mathing overed graph G. Adjustnotation so that jX \ Y j be odd. Let I := r(X \ Y ), let U := r(X \ Y ). If olletionfC;Dg is ohesive, then the following properties hold:



44 C. N. Campos and C. L. Luhesi(i) For every set F of edges of G, the following relation of modularity holds:jF \ C j+ jF \D j = jF \ I j+ jF \ U j :(ii) Colletion fC;D; I; Ug is ohesive.(iii) Let �I denote the harateristi of ut I in GfY g and �U denote the harateristi ofut U in GfY g. Then, �C(G) � minf�I ; �Ug, with equality if ut D is tight in G.Theorem 5.1 foddWheelsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17(Theorem on Odd Wheels) For any vertex v of a 3-edge-onneted near-brik G andany v-mathing M of G, one of the following properties holds:(i) Either graph G is an odd wheel of hub v, up to multiple edges inident with vertex v,(ii) or graph G is not solid,(iii) or graph G has a removable singleton or doubleton that is disjoint with M [r(v) .Theorem 5.2 fthm:lovaszCritialg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Every ritial graph G an be represented asG = P0 + P1 + � � � + Pr; (4)where P0 is K1 and eah Pi (1 � i � r) is either an odd path or an odd iruit havingpreisely its origin and terminus in ommon with P0 + P1 + � � �+ Pi�1.Proposition 5.3 fonverse:lovaszCritialg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18If a graph G has an ear deomposition as in (4), then it is ritial. 2Proposition 5.4 fallInMg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19For eah integer i, (q < i � r), ear Pi has length one, its only edge, pi, lies inM . Therefore,for any permutation (P 0q+1; � � � ; P 0r) of (Pq+1; � � � ; Pr), sequene (P0; P1; � � � ; Pq; P 0q+1; � � � ; P 0r)is an ear deomposition of G� v of index q.Proposition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19No edge f of S lies in M [r(v) .Lemma 5.6 fboth:ritialg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Eah of G1 � x and G2 � x is ritial.Proposition 5.7 fbothEndsInPqg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Let e be any upper edge of P. Then, both ends of edge e are internal verties of V (Pq).Moreover, if vj and vk denote the two ends of e in V (Pq), path S[j; k℄ has even length.Proposition 5.8 frossg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Let vi; vj be the ends of upper edge e and vk; vl the ends of upper edge f suh that i < k <j < l. Then, eah of S[i; k℄, S[k; j℄ and S[j; l℄ has even length.



Separating uts on mathing overed graphs 45Proposition 5.9 fadjTo:vg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Let e be an upper edge of P, vi and vj its ends in V (Pq). Then, at least one internal vertexof S[i; j℄ is adjaent to vertex v.Proposition 5.10 fGtwoMinusxCritialg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Graph G2 � x is ritial.Proposition 5.11 fontra:biritialg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Let D := r(Y ) be any odd ut of G, H := GfY ; yg. If graph H � y is ritial then H ismathing overed and biritial.Proposition 6.1 fCInonnullg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Either set CI is nonnull or set X \ Y ontains a vertex, i, suh that no vertex of Y isadjaent to any vertex of X \ Y � i.Lemma 6.2 fnoWitnessesg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Let G be a brik, C a nontrivial separating ut of G. Either G has a witness for C or utC is robust and eah C-ontration of G is solid.Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Colletion D has at most two members, eah of whih is a subset of X. Moreover, for eahset Y in D, graph H := (G � e)[Y ℄ has a bipartition (A;B) suh that jBj = jAj + 1, andedge e is the only edge of G that is inident with some vertex of A but not inident withany vertex of B.Notation 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Let r := jDj. For 1 � i � r, let Yi denote an enumeration of the members of D, Hi :=(G � e)[Yi℄, (Ai; Bi) the bipartition of Hi suh that jBij = jAij + 1. Let vi and wi denotethe ends of e in G, suh that vertex vi lies in Ai. Let yi be the vertex of P obtained by theontration of Yi to a single vertex.Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Under the hypothesis of Case 6.1, for eah member Yi of D and any two verties xi andyi of the set Zi of the three verties of V (G) \ V (P ) that are adjaent in G to verties ofBi, the subgraph Wi of G spanned by Yi [ fxi; yi; wig has a perfet mathing, Mi, thatontains preisely three edges in r(Yi), inident, respetively, to xi, yi, and wi.Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30The subgraph W of G spanned by Y1 [ Y2 [ Z has a perfet mathing that ontains pre-isely four edges in r(Y1 [ Y2 ), eah of whih is inident to one of the four verties ofZ.Proposition 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30For i = 1; 2, Gi is an odd wheel of hub vi, up to multiple edges in r(vi).Proposition 6.8 fspliing:oddWheelsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Let e be any edge of C. Then, graph G0(e) is biritial. Moreover, if the degree of one ofp1(e) and p2(e) in H is at least two, or if edge e does not lie in M0, then graph G0(e) is abrik and graph G� e is a near-brik.



46 C. N. Campos and C. L. LuhesiProposition 6.9 ffourNotOneg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32If a vertex of X1 has degree at least four in G then � = 3.Proposition 6.10 ffourNotTwog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32If a vertex v of X2 has degree at least four in G then � = 3.Proposition 6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33If ut C has a b-removable edge e then � = 3.


