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Abstract

We describe a program that builds contig scaffolds from contig assemblies, to be
used in a whole-genome sequencing project. Our program builds scaffolds based on
forward/reverse pair information (both from small clones, such as plasmids, and from
large clones, such as cosmids). The program assumes that a DNA assembly, preferably
with large repeats masked, is available. A scaffold is a path in a weighted graph, and
the main novelty of our approach is a careful weighting scheme for arcs in this graph,
such that heavier paths represent more reliable scaffolds. This weighting scheme takes
into account the presence of repeats, possible clone duplication, existence of different
clone libraries, and hybrid (small clones mixed with large clones) links between contigs.
The program provides two different algorithms for scaffold building: one that uses a
simple greedy strategy, and one that produces scaffolds that correspond to paths of
maximum weight. If |N| is the number of contigs and |L| is the number of F/R pairs,
the complexities are O(|N| + |L|log|L|) (greedy) and O(|N|*> + |L|log|L|) (maximum-
weight path). This program has been successfully used in a bacterial genome project.

1 Introduction

There seems to be a general agreement that the most efficient way to sequence the whole
genome of a prokariote is by doing shotgun sequencing. This technique was first effectively
demonstrated in the genome of Haemophilus influenzae [4], and has been used many times
since. We assume knowledge of this technique. The problem with using only shotgun
reads is the possible presence of long repeats in the genome. When one uses a “standard”
assembly software such as phrap [5] to assemble a genome using only shotgun reads, repeats
can cause the following problems:

1. Some contigs may be misassembled.

2. Two distinct regions that are very similar to one another may be merged into one
(this is a collapsed repeat).
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Example of misassembled contigs:

e result of incorrect assembly:
— Arrr-B...C—rrr-D
where A—rrr-B and C—rrr-D are contigs, and rrr is a repeat.

e correct assembly: A—rrr-D ...C-rrr-B.
Example of collapsed repeat:

e result of incorrect assembly:

1. A~rrr B-C-sss-D

2. sss-E-F-rrr

e correct assembly: A-rrr-B-C-sss-E-F-rrr-B-C-sss-D (note that the actual re-
peat is rrr-B-C-sss).

Other examples of problems in assembling in the presence of repeats are presented by
Myers [7].

To explain one way to deal with these problems we need the concept of a forward-reverse
pair (F/R pair for short). A given clone can be sequenced from either end. One end results
in the forward read and the other results in the reverse read. Given that sequencers can
read about 800 bp of sequence, then if the clone is larger than, say, 2 kbp, the sequences
derived from the end reads will not overlap. This information can be used to “virtually”
link contigs when read F from a clone is in one contig and read R is in another contig,
and each is “pointing” to the other (relying on F/R pairs in an assembly project is also
known as double-barreled sequencing, and has been described in [8]). This information can
also be used to span repeats, as follows. In addition to obtaining shotgun inserts cloned in
plasmids (whose size is no more than 5 kbp) the target DNA is cut in larger pieces. These
fragments can be cloned in cosmids (where average insert length is about 40 kbp) or in
BACs (average length 100 kbp). This means that these clones are able to span any repeats
that might reasonably be expected in prokariotes. One then sequences only the ends (but
both of them) of these large inserts. One then could use an assembly software that would
take into account the fact that certain reads belong to clones that are a certain distance
apart (the F/R pairs), and therefore deal correctly with repeats.

There are many assembly programs available. Three popular ones are: Staden [1],
phrap [5], and cAP3 [6]. Staden and phrap do not use information from F/R pairs in
determining contigs. CAP3 does, but in a limited fashion. This paper describes a program
that can be used in conjunction with any assembly program to build a scaffold of a genome
based on F/R pair information. A scaffold in this paper is an ordered sequence of contigs
given by links provided by F/R pairs. The use of F/R pair information is done in a much
more careful way than in the CAP3 program and results in better assemblies. On the
other hand, being an add-on to an assembly program our program relies on some manual
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intervention to be of any practical use in a real genome project. The program has been
successfully used in the Xanthomonas azonopodis pv citri genome project [2] in the following
way':

1. All reads are assembled using phrap.

2. repeats are identified by comparing contig sequences to one another (several tools are
available for this; one is cross_match [5]). Even collapsed repeats can be identified,
because usually differing flanking sequences will cause parts of the repeat to separate,
as shown in the example above.

3. After the longer (> 400 bp, i.e. larger than the average length of a read) repeats have
been identified, a new whole assembly should be done, but screening (masking) the
reads for those repeats.

4. Our program is applied on the resulting contigs.

In the remainder of this paper we describe the model upon which our program is based
and the scaffold construction algorithms. The appendix provides documentation for the
program.

2 Overview of Model and Algorithms

In this section we provide an overview that will be detailed in the following sections.

We model the problem of building a scaffold by the problem of finding paths in a
weighted directed graph. In this graph, nodes represent contigs and an arc exists between
nodes u and v if there is at least one F/R link between the corresponding contigs. Given
the assembly output, it is relatively straightforward to build such a graph, but one has to
be careful with read and contig orientation. One has also to deal with the possible many
F/R links between two nodes, and this is a crucial part of our program.

The novelty of our approach is in determining arc weights. The idea is that the weight
of an arc (u, v) represents the degree of confidence that we have that its u and v contigs are
indeed linked. Therefore, the program has a preprocessing step in which all F/R links for
each pair of nodes are carefully analyzed. The result of this analysis is the weight of the
arc, and is based on a simple scoring scheme.

Path finding can be done by two different algorithms, at the user’s choice. In one of the
algorithms, we determine maximum weight paths in the graph G. This algorithm assumes
G is acyclic. In the presence of repeats or errors the kind of graphs we build would not
necessarily be acyclic. We use our weighting scheme to throw away arcs that would make
G cyclic. In the other algorithm we greedily build vertex-disjoint paths by selecting heavier
edges first.

3 Arc List Construction

In this section we describe in detail how the list of arcs between nodes is constructed based
upon the DNA assembly and F/R link information.
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A basic aspect of this construction is that it relies on naming conventions for the reads
used in the assembly. This means that it is crucial for our program that most (but not all)
read names do correspond to the actual physical clones. It is well known that this practice
is subject to a number of errors, but this problem is becoming less of a concern with the
increased use of capillary sequencers. We require three pieces of information from a read
name: the clone end which it came from (either forward or reverse), the clone library which
it came from, and whether it is an sclone or an 1clone (see below). Most genome projects
nowadays include such information in read names.

Another basic aspect of our construction is that it makes a distinction between small
clones and large clones. We define an sclone as an F/R pair derived from a small clone (<
5 kbp); and an 1clone as an F/R pair derived from a large clone (in the range 30-55 kbp).
In practice sclones correspond to plasmids and lclones correspond to cosmids.

A third basic aspect of our construction has to do with the information we require from
the DNA assembly (step 1 in the process described at the end of Section 1). We will base
the description below on phrap, but other assembly programs should be able to provide the
same kind of information. If reads have been named according to the rules above, phrap
will list all F/R pairs that it has detected as part of its output. In particular it lists F/R
pairs whose components are in different contigs. For each such pair (ry,r,), it will output
(among other things) the following information, which is used by our program:

e The orientation of ry and of 7, with respect to the contigs where they have been
placed.

e Alignment position of the 5 end of each read.

e An estimate of the clone length (which is given by the sum of the distance between the
5" end of a read to the far end of the contig it has been placed in with the analogous
distance for the other read); we refer to this estimate as L.

e The primary and secondary alignment scores of each read. The primary score of a
read is the alignment score that the read has with respect to the contig to which it
belongs. The secondary score is defined by the phrap documentation [5] thus: “the
highest score of a match of the read against some other read in a different contig or
elsewhere in the same contig (so reads for which this number is non-zero are those
which overlap a repeat, or an incorrectly or incompletely assembled region).”

A final basic aspect of arc list construction has to do with the definition of an arc.
Contigs have an orientation with respect to each other. This means that each contig has
two ends: the left end and the right end. Given a contig ¢, we represent its left end by ¢,
and its right end by ¢],. The paths we will look for in the graph will always have to enter a
node (contig) by one of its ends (either left or right) and then leave by the other (right or
left). Therefore, an arc is a link between contig ends and not between contigs as a whole.
Given an F/R pair and their respective contigs, how do we know what ends to link? This
depends on the orientation of each read in its contig. Assuming contigs ¢, and ¢, and an
F/R pair (rp,ry), so that read 7, is in contig ¢, and read rg is in contig ¢,, we have arcs as
given by Table 1.
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Table 1: How links between contig ends are determined. ¢, and ¢, are contigs, and r,
and 7, are an F/R pair, such that r, is in ¢, and 74 is in ¢,. When arrows are in the
same direction it means that the direct sequence of the read was aligned; when arrows have
opposite orientation, it means that the reverse complement of the read was aligned.

ery | e | e d
ar, | ded|ded

Now we finally come to actual arc list construction. This is done in two phases. In the
first phase all F/R pairs whose components are in different contigs are scanned. F/R pairs
derived from lclones are retained only if their £ is < LMAX (user-defined). F/R pairs
derived from sclones are retained only if their £ is < SMAX (user-defined).

In the second phase all F/R links between the same pair of contig ends are analyzed, for
each pair of contig ends, with the aim of assigning a weight to the arc that will represent
this link. This is done by a simple scoring scheme in which a read can contribute at most
1.0 point to the total weight. When assigning points to links we look for events that confirm
the links and that are independent as much as possible from each other. The details are as
follows:

e First, F/R pairs in which one member of the pair (or both) have a secondary score
that is deemed too high are discarded. Secondary scores, as mentioned above, indicate
that the read probably overlaps a repeat, and we do not want repeats to interfere
with correct scaffold construction. Rather than dealing with high values of secondary
scores, we prefer to deal with what we call uniqueness:

secondary score

uniqueness = 1 — -
primary score
With this definition, well-anchored reads (secondary score = 0) have uniqueness = 1.
Reads for which the uniqueness is below a certain threshold (user-defined) are dis-
carded.

e Putative identical F/R pairs are identified, and only one copy is retained. An F/R
pair (rf,r{) is considered identical to another F/R pair (s%,s]) (where z and y are
the contigs), if the alignment positions of 72 and s? differ by at most 5 bp, and if the
alignment positions of 7 and si differ by at most 5 bp. Note that this check does not
take into account the name of the reads; i.e., two reads could have totally different
names and still be considered copies of each other. The value 5 bp is empirically

derived.

e The first F/R pair from a given library contributes 1.0 to the total weight; each
additional F/R pair from the same library contributes 0.5. We regard reads from
the same library as being events that are not as independent as reads from different
libraries.
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e If all links are just of one type (all sclones or all 1clones), then the weight of the
arc is determined by the above rules. If there are 1clones mixed with sclones, then
further processing is done as follows.

First a test is done to check whether each 1clone link yields a value for £ that is
not too small. Note that having links from sclones already indicates that the contigs
could be quite close to each other in the genome. This means that one or both ends
of 1clones should be quite a distance away from the contig end. To be consistent
with this an 1clone link must have £ larger than or equal to LMIN (user-defined).
If all 1clone links are consistent with small separation between contigs, then both
sets of links are considered valid, and an additional 1.0 is awarded to the arc weight.
This bonus point comes from the empirical observation that & consistent sclone and
lclone links give more credence to the contig link than & links of just one type.

If some lclones are long enough but some are not, then the ones for which £ is too
small are discarded (and their points are not counted), but an additional 1.0 is still
awarded to the arc weight.

If all 1clones seem to be too short, then the arc weight is determined by either
sclone links only or by 1clone links only. The set that has larger weight determines
the choice.

4 Algorithms

4.1 Description

This section describes the algorithms used to find scaffolds in the genome: Greedy Path
(¢p) and Mazimum Weight Path (MWP).

They share a common basic structure. First, they read an input file describing the
problem by enumerating contigs and F/R links. Then, a set Ay of weighted arcs is built
according to the procedure described in Section 3. Starting from a graph G = (N, (), both
algorithms try to add arcs to G in a greedy fashion, scanning A in nondecreasing order
by weight. To be actually inserted, each arc must satisfy a given set of conditions. Finally,
both algorithms find “good” paths in G = (N, A), the resulting graph.

The essential difference between the algorithms is the set of conditions an arc a must
satisify in order to be inserted into G.

In the description below we use (c2,c?) to represent an arc, where c£ is end p (either

by
left or right) of contig/node z, and cf is end ¢ (either left or right) of contig/node y.

4.1.1 Greedy Path Algorithm

Let a = (c,cf) (with 1 < z,y < [N|) be an arc we want to insert into G. For a to be
actually inserted, two conditions must hold: (1) ¢, and ¢, must belong to different connected
components, and (2) both ¢? and ¢} must be free, i.e., there must be no arc incident to any

of them in G.



Scaffolds for Genome Sequencing 7

Note that this strategy is very restrictive. Not only does it avoid cycles, but it also
forbids parallel paths. By the end of the algorithm, the graph will become a collection of
vertex-disjoint paths, all of which are output.

4.1.2 Maximum Weight Path Algorithm

An arc a = (df, ¢]) (with 1 <,y < |N|) will be inserted into G by Mwp if (1) at least one
of {cf,cl} is free, (2) a’s orientation does not conflict with previously inserted arcs, and (3)
a does not create a cycle. Note that conditions (2) and (3) will be relevant only when ¢,
and ¢, belong to the same connected component.

Once the graph is built, the algorithm outputs a number of paths of different classes.
For each connected component, the procedure is the following. First, find the heaviest main
path p; and output it. Second, report all alternate paths between contigs in py, i.e., paths
that start and end in contigs that appear in p; but do not use any arc used by p;. Finally,
remove all arcs of p; from the graph and repeat the process, finding the second heaviest
main path po and the corresponding alternate paths. As an additional constraint, no contig
in p; may have appeared in p;, 7 < ¢. In other words, all main paths are vertex-disjoint.
The connected component will be fully processed only when every arc is either part of some
main path p; or has both ends in main paths (in this case, the arc is said to link the paths
and is listed accordingly in the output file).

4.2 Data Structures and Running Times

The first step of both GP and MWP is to build the set Ay of arcs from the set L of F/R
links read from the input file. The links that constitute the arcs can be determined in
O(|L|log |L|) total time: sort L according to link ends and build the arcs from consecutive
elements in L. Since the weight of each arc ¢ is heuristically determined in linear time w.r.t.
the number of links in a, O(|L|log |L|) is indeed the complexity of building Ay. Sorting this
set according to arc weights can be done in O(|A4g|log|Ap|) time. An empty graph G can
be built in O(|N|) time, |N| being the number of contigs.

Up to this point, the overall complexity of both algorithms is O(|N| + |L|log |L|), since
|L| > |Ap|. The following subsections analyze the remaining operations.

4.2.1 Greedy Path Algorithm

For each arc, two tests must be made for an arc a to be inserted. First, the ends of ¢ must
be in different connected components. Using a forest-based implementation of a union-find
data structure, we can check all arcs in O(|Ag| - a(|N| + |Ao|,|N|)) total time [9]. Second,
the ends of a must be free. Testing this is trivial and can be done in O(1) time. The
paths in the graph G build by GP can be found in O(|N]) time, since G is actually a
collection of vertex-disjoint paths. Therefore, the overall complexity of the algorithm is still
O(IN| + |L| log ).
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4.2.2 Maximum Weight Path Algorithm

Although MWP’s conditions are not as strict as GP’s, testing them is a more complex task.
Since contigs in the same connected component may be linked by a new arc, a union-find
data strucuture is not enough. Nevertheless, the algorithm does require a union-find data
strucuture. Since we sometimes need to know the complete list of contigs that are part of
a connected component, the list implementation [3, section 22.2] is the better choice in this
case.

Let a = (c?,¢?) be the arc we want to insert. The easier condition to test is whether

s Gy
at least one of {cf,c]} is free: this can be done in O(1) time. If the arc passes this test

and if its ends belong to different connected components (which can also be determined in
O(1) time using the list implementation of the union-find data structure), the insertion is
performed.

On the other hand, if the contigs are already connected, their relative orientation must
be consistent with that suggested by a. In order to make this test in O(1) time for each
arc, we keep, at all times, the relative orientation of all contigs. We start the algorithm
assuming that every contig has the same orientation (whether it is LR or RL is irrelevant).
This information is updated as needed, namely when we insert an arc joining different
connected components. For simplicity, we will use an example to explain how this is done.
Assume that arc a = {c, 5} is inserted between two different connected components and
that both ¢; and co have orientation LR. Arc a clearly shows that ¢; and co cannot have
the same orientation in the genome. Therefore, one of the contigs must be changed to RL.
Actually, if it is already linked to other contigs, the whole connected component is flipped:
RL contigs become LR and vice-versa. Although any of the connected components could be
flipped, we achieve better performance by choosing the one with fewer contigs. This ensures
that at most O(|N|log|N|) contig flips will be necessary during the algorithm. (The entire
flipping procedure can be interpreted as a subroutine of the union operation of the list-based
union-find data strucuture.)

The third and most costly condition to test is whether the new arc creates a cycle. Since
it would link & to ¢}, we have to check whether there is a path in G that starts in ¢} and
ends in c¢Z. This requires O(|A|) time in the worst case.

Once the graph G is built, MWP finds and reports the paths. Since the resulting graph is
directed and acyclic, maximum weight paths can be found in O(|A]) time (classic computer
science result; see for example [3, section 25.4]). There will be at most O(|/N|) main paths,
since they are all vertex-disjoint. Therefore, all O(]N|) main paths can be found in O(|N||A|)
time. The algorithm finds at most one alternate path starting at each contig, so O(|N||A])
is enough to find all alternate paths. Links can be easily found in O(]A]) time.

All steps considered, O(|L| log | L| +|A|? 4| N||A|+|N|log | N|)) is the worst case running
time of MWP. However, since each node in G has at most four arcs incident to it (two in
each end), |A| = O(]N|), no matter how large Ay or even L are. Therefore, the complexity
of MWP can be rewritten as O(|N|? + |L|log |L|).
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5 Final Remarks

As already remarked, the program described has been successfully used in a genome project [2].
The values for the various parameters were as follows:

e LMAX = 55 kbp

e LMIN = 30 kbp

e SMAX =5 kbp

e minimum uniqueness required: 0.8

The scaffold program takes a few seconds on a Compaq DS20 workstation, on a genome
project with around 100 contigs. This is insignificant compared to the time spent in assembly
(measured in hours). The program is available from the authors upon request.
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6 Program Documentation

6.1 Command Line Options

The program is called genscaff. The command line for genscaff has the following basic
format:

genscaff <input file> <1libfile> [-a <gp|mwp>]

The first two parameters are the file containing describing the F/R pairs (the “interme-
diary file”, described in Section 6.2) and the file containing information about the libraries
(Section 6.3). The optional parameter -a selects the algorithm to be executed, mwp or gp
(default is gp).

There are some additional optional parameters:

e -mrs %f: minimum uniqueness a read must have to be considered (default: 0.8);

e -ht %d: hybrid threshold (in base pairs). Clones whose maximum lengths are smaller
than this value will be considered sclone’s; clones whose minimum lengths are larger
than the threshold will be 1clone’s (default: 10,000).

e -maxaltdif %d: maximum percentual difference allowed between a consistent alter-
nate path and a main path (see Section 6.4.9). The parameter must be an integer
between 1 and 100.

6.2 Intermediary File

This file is in extended DIMACS format. There are three types of lines, identified by their
first character. Lines beginning with c are reserved for comments and may be ignored.
Lines with v represent contigs (the vertices of the graph). Each such line contains only two
fields:

v (contig label) (contig length)

Links are represented in a lines, since they will constitute the arcs of the graph. Each
line is made up by 14 fields,

a (c1) (c2) (r1) (r2) (RIL) (U[C) (length) (d1) (d2) (p1) (s1) (p2) (s2) (lib),
meaning:

e (c1) and (c2): contig labels;

e (r;): string representing the read aligned with cy;

e (R|IL) and (U|C): together, these fields define the relative orientation of ¢; and ¢y
induced by the link (see Section 3);

e (length): lower bound on the length (in base pairs) of the clone;
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e (d;): distance (in bp) between the first aligned base at the 5" end of 7, with respect
to ¢, and the far end of c¢,;

e (p;) and (s;): primary and secondary scores of r;

e (lib): string representing the name of the library to which the clone belongs.

6.3 Library File

This file contains information about the libraries mentioned in the intermediary file. There
are just two types of lines, each identified by its first character: ¢ lines contain comments
and may be ignored; 1 lines describe the libraries. Each 1 line contains the name of the
library (an arbitrary string) and three integers representing clone sizes (in bp): minimum,
mean and maximum. Minimum and maximum sizes are used to determine whether a clone
is an 1clone or an sclone. The mean size is used to estimate the length of the paths found
by the algorithms. A typical 1 line looks like this:

1 c01 30000 40000 55000

According to this line, library c01 contains clones with sizes varying from 30 kbp to 55 kbp;
the mean clone size in this library is 40 kbp.

6.4 Output File

Each line in the output file has its structure defined by the first character. Some types of
lines appear in several sections:

e f (free line): doesn’t have a specific format and should be ignored by parsers (free
lines with no text are often used to format the output — there are no blank lines);

e s (section line): marks the beginning of a section (the output is divided into sections).
Everything after s represents the name of the section, as in

s INPUT DATA

e d (data line): has a well-defined format, but it depends on the context (section) in
which the line appears;

e t (tagged data line): has a well-defined format and contains a globally unique tag right
after the letter t indicating what piece of information is represented. For instance,

t contigs 987

indicates that there are 987 contigs in the graph. Global uniqueness is useful to build
simples parsers.
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Other types of lines only occur in section SCAFFOLDS, which reports the scaffolds them-
selves: ¢ (connected component), p (main path), q (alternate path), a (arc) and 1 (link).
Their formats will be described in Section 6.4.9.

In some sections, the output file reports information on individual arcs. As already
mentioned, an arc is made up by one or more clones. We use the clone with the highest
uniqueness, considering the minimum of both ends, to represent the arc (ties are broken
lexicographically). In case of hybrid arcs, an asterisk is appended to the name: while
A0QH6313D02 represents a simple arc, AOQH6313D02* represents a hybrid one.

The remainder of this section describes the individual sections of the output file.

6.4.1 INPUT DATA

This section summarizes the input information (files and parameters) used to build the
scaffolds. It contains the following t lines:

e file: name of the input file, as it appeared in the commmand line;
e lclones: number of large clones read;

e sclones: number of small clones read;

e clones: total number of clones read;

e contigs: number of contigs read;

e algorithm: either mwp or gp;

e minrelscore: minimum uniqueness for an arc to be considered;

e maxaltdif: minimum percentual difference between an alternate and a main path
(see Section 6.4.9).

Reports, in t lines, the number of large clones (1clones), the number of small clones
(sclones), the total number of clones (clones) and the number of contigs (contigs) read.
There are t lines describing all the parameters used in the execution: algorithm (mwp
or gp), input (name of the input file), minrelscore (minimum uniqueness), maxaltdif
(maximum alternate path difference; see 6.4.9).

6.4.2 CLONE SIZES

This section contains the information read from the library file. There is a d line for each
library. A line contains four fields: a string representing the name of the library followed
by the minumum, the mean and the maximum sizes of its clones. For example,

d 07 4000 5000 7000

indicates that clones in library 07 have sizes ranging from 4 kbp to 7 kpb and their average
length is 5 kbp.
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6.4.3 UNRELIABLE CLONES

This section presents clones that should not be trusted upon, since they have primary scores
that are smaller than their secondary scores.

The first line in this section is a t line reporting the total number of unreliable clones
(unreliable). Then, each such clone is reported in a d line with four fields: the name of
the clone, its primary score, its secondary score and the label of the contig to which the
clone is unreliably linked.

A typical section would look like this:

s UNRELIABLE CLONES

t unreliable 3

d A0JJ-0DG12-LA0OO 344 347 510
d AOQR5508D04 515 516 494

d A0JJ-0IA02-LAOO 158 260 543

6.4.4 INCOMPATIBLE LINKS

This section presents all pairs of contigs linked to each other in more than one way (i.e.,
with different pairs of ends involved). The first line in the section is a t line reporting the
total number of contig pairs with incompatible links (incompatiblelinks). A series of d
lines follows, each containing at least four fields and at most six. The first two are the labels
of the contigs; the others represent all possible ways of linking the contigs found. Consider
the following example:

d 310 396 LL RL

This line refers to contigs c310 and c39. While at least one clone indicates that Cl310 is linked
to chgg, there is at least another one in the input file stating that the link is between cj;
and chgg. Clearly, they can’t both be correct.

6.4.5 ARC WEIGHTS

This section shows some statistics about the arcs created (regardless of whether they are
actually inserted in the graph or not). The first line is a t line with three fields (other
than the tag itself, arcs): the number of arcs created, the weight of the lighter arc and the
weight of the heavier arc. This is followed by a series of d lines, each with two fields: the
first represents a weight and the second the number of arcs with such weight. A typical
output looks like this:

ARC WEIGHTS

arcs 585 1.0 4.0
1.0 426

1.5 17

2.0 130

2.5 8

[oPR o Py o Py o FRNS V)]
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d 3.03
d 4.01

In this example, there are 426 arcs with weight 1.0, 17 with weight 1.5, and so on. Note
that if there is no arc with a given weight in the range, the corresponding d line may be
omitted (this is the case of weight 3.5 in the example).
6.4.6 HYBRID ARCS

This section reports the number of hybrid arcs, arcs that contain both sclone’s and
lclone’s. Consistent and inconsistent hybrid arcs also have their number reported sep-
arately. The information is presented in t lines, with tags hybridarcs, consistenthybrid
and inconsistenthybrid. A typical section is:

s HYBRID ARCS

t hybridarcs 18

t consistenthybrid 13
t inconsistenthybrid 5

6.4.7 ARCS NOT INSERTED

This section lists all arcs not inserted into the graph alongside with the reason why they
were kept out. A typical line looks like this:

d A0JJ1388B03* 390 477 degree

There are four fields: the first is the name of the arc, the next two are the contigs it
connects, and the last one is the reason why the arc could not be inserted. There are five
possible reasons:

e degree: at least one end of the arc was already connected to other arcs;

e score: the uniqueness of the arc is lower than the mininum threshold (a fifth field
presents the score of the rejected arc);

e cycle: the arc would create a cycle if inserted?;

e orientation: the relative orientation of the ends induced by the arc is incompatible
with the orientation induced by previously inserted arcs;

e weight: both ends of the arc were already connected to heavier arcs.

Only score and cycle can occur in both algorithms; degree applies exclusively to GP,
while orientation and weight may happen only in MWP.

! Algorithm MWwP adds an f line right after the d line to list the vertices of the cycle. GP doesn’t do this,
since it can detect cycles using a union-find data structure; finding the actual cycles would be too costly.
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6.4.8 INSERTION STATISTICS

This section summarizes, in t lines, the information presented in the previous section. It
reports how many arcs were not inserted due to each of the five types of problems mentioned.
The total number of arcs inserted and not inserted is also shown. All quantities are expressed
both as absolute values (first field after the tag) and as percentages (third field after the
tag). A typical output would be:

INSERTION STATISTICS
inserted 218 29.1
notinserted 531 70.9
weight 0 0.0
orientation 0 0.0
score 131 17.5

cycle 1 0.1

degree 399 53.3

[ = A B S L

Note that all five types of problems are always listed, regardless of the algorithm.

6.4.9 SCAFFOLDS

This is the section that actually presents the scaffolds. It begins with a t line reporting the
number of connected components in the graph (components). Then the components them-
selves are listed in nonincreasing order of size (number of vertices/contig ends). Components
with no arcs (i.e., only one contig) are omitted.

The description of a single connected component can be rather lengthy. It starts, with a
c line with three fields: the label of the connected component (a sequential number starting
at one), the number of contigs, the number of arcs and the number of main paths built. An
example:

c 2 117 151 31

This connected component (component 2) has 117 vertices (contig ends) and 151 arcs;
31 main paths were found by the algorithm (note that for Gp the third field will always be
1).

This line is followed by a description of the paths in the connected component, listed in
nondecreasing order by weight. A typical path looks like this:

2 6 41.0 330993

497 U AOUV5307G09* 8.5
431 U A0JJ-1BF10-LAOO 2.0
432 U AOQH6313D02* 5.0
484 U AOAC6408A07 5.5

397 C AOAM1319C05 1.0

424 U A0JJ-1CC12-LAOO 2.0

(SRR R OB R o]
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509 U AOQR6366E09* 11.0

532 U AOQR5323G03 4.0

313 C AOQR6330C0O7 2.0

401 C END 0.0

525 1 A0JJ-0IHO8-LAOO 497 6
397 6 A0OJJ-0ABO1-LAOO 511 5
155068 155410 C

497 U A0JJ-1AHO2-LAOO 2.0
499 C A0JJ-OEG12-LAOO 2.0
484 U END 0.0

P Pt PP

Main path According to the p line, this is the sixth heaviest path in its connected
component (component 2). Its weight is 41.0 and its estimated length is 330,993 bp.

The first field in each a line represents the label of a contig in the path. This particular
one is made up by 10 contigs (c497, 431, C432, - - -, C401, in this order). The second field is
either C or U, depending on whether the contig is complemented or not in the path (in the
example, c397, €313, and cqp1 are complemented). The name and the weight of the arc linking
a pair of contigs are reported in the third and fourth fields, respectively. For instance, c430
and cygq4 are linked by arc AOQH6313D02, whose weight is 5.0. Note that the last a line is
special; the word END replaces the arc name and marks the last contig of the path (to make
parsing easier, a meaningless 0.0 is placed on the fourth field).

Links After the path itself is printed, its links to previously reported main paths are
listed in 1 lines. In our example, two links are reported. Arc AQJJ-0IHO8-LAOO links css5,
which belongs to path 1, to c¢497, which belongs to the current path (path 6). The other
link is between c397 in path 6 and c51; in path 5. The order in which the contigs appear is
important. Were cs05 to be inserted in path 6, it would appear before cq97. On the other
hand, c511 would come after csg7 in this path.

Alternate paths Finally, alternate paths (if any) are reported. Each one is introduced
by a q line, which has three fields. The first two are the length of the alternate path (¢,)
and the length of the corresponding portion of the original main path (4,). The last one is
either C (consistent) or I (inconsistent), depending on how ¢, and /¢, relate to each other. If
they differ by no more than 20% (¢, being the base value), the path is said to be consistent;
otherwise, the path will be inconsistent. (Actually, 20 is just the default percentage; the
actual value, maxaltdif, is user-defined.) Each t line is followed by a lines describing the
path (exactly like in the main path).

In our example, only one alternate path was found. Since its length is 155,068 bp and
it corresponds to 155,410 bp in the original path, the path is consistent. The path contains
three contigs, c497, C499, and cgg4. Note that the first and the last contigs of an alternate
path must also belong to the original path, while all others must not.



