
OBSOLETE
SEE TR-IC-01-05

O 
onte�udo do presente relat�orio �e de �uni
a responsabilidade do(s) autor(es).The 
ontents of this report are the sole responsibility of the author(s).

A program for building 
ontig s
a�olds indouble-barreled shotgun genome sequen
ingJo~ao Carlos Setubal Renato F. Werne
kRelat�orio T�e
ni
o IC{00-20
Dezembro de 2000



OBSOLETE - SEE TR-IC-01-05

A program for building 
ontig s
a�olds in double-barreledshotgun genome sequen
ingJo~ao Carlos Setubal� Renato F. Werne
kyAbstra
tWe des
ribe a program that builds 
ontig s
a�olds from 
ontig assemblies, to beused in a whole-genome sequen
ing proje
t. Our program builds s
a�olds based onforward/reverse pair information (both from small 
lones, su
h as plasmids, and fromlarge 
lones, su
h as 
osmids). The program assumes that a DNA assembly, preferablywith large repeats masked, is available. A s
a�old is a path in a weighted graph, andthe main novelty of our approa
h is a 
areful weighting s
heme for ar
s in this graph,su
h that heavier paths represent more reliable s
a�olds. This weighting s
heme takesinto a

ount the presen
e of repeats, possible 
lone dupli
ation, existen
e of di�erent
lone libraries, and hybrid (small 
lones mixed with large 
lones) links between 
ontigs.The program provides two di�erent algorithms for s
a�old building: one that uses asimple greedy strategy, and one that produ
es s
a�olds that 
orrespond to paths ofmaximum weight. If jN j is the number of 
ontigs and jLj is the number of F/R pairs,the 
omplexities are O(jN j + jLj log jLj) (greedy) and O(jN j2 + jLj log jLj) (maximum-weight path). This program has been su

essfully used in a ba
terial genome proje
t.1 Introdu
tionThere seems to be a general agreement that the most eÆ
ient way to sequen
e the wholegenome of a prokariote is by doing shotgun sequen
ing. This te
hnique was �rst e�e
tivelydemonstrated in the genome of Haemophilus in
uenzae [4℄, and has been used many timessin
e. We assume knowledge of this te
hnique. The problem with using only shotgunreads is the possible presen
e of long repeats in the genome. When one uses a \standard"assembly software su
h as phrap [5℄ to assemble a genome using only shotgun reads, repeats
an 
ause the following problems:1. Some 
ontigs may be misassembled.2. Two distin
t regions that are very similar to one another may be merged into one(this is a 
ollapsed repeat).�setubal�i
.uni
amp.br. Institute of Computing, University of Campinas, 13083-970 Campinas, SP,Brazil. Resear
h supported in part by FAPESP and CNPq.yrwerne
k�inf.pu
-rio.br. Department of Informati
s, Pontif��
ia Universidade Cat�oli
a do Rio de Janeiro,Rio De janeiro, RJ, Brazil. Resear
h supported in part by CAPES.1



2 J. Setubal and R. Werne
kExample of misassembled 
ontigs:� result of in
orre
t assembly:{ A{rrr{B . . . C{rrr{Dwhere A{rrr{B and C{rrr{D are 
ontigs, and rrr is a repeat.� 
orre
t assembly: A{rrr{D . . . C{rrr{B.Example of 
ollapsed repeat:� result of in
orre
t assembly:1. A{rrr{B{C{sss{D2. sss{E{F{rrr� 
orre
t assembly: A{rrr{B{C{sss{E{F{rrr{B{C{sss{D (note that the a
tual re-peat is rrr{B{C{sss).Other examples of problems in assembling in the presen
e of repeats are presented byMyers [7℄.To explain one way to deal with these problems we need the 
on
ept of a forward-reversepair (F/R pair for short). A given 
lone 
an be sequen
ed from either end. One end resultsin the forward read and the other results in the reverse read. Given that sequen
ers 
anread about 800 bp of sequen
e, then if the 
lone is larger than, say, 2 kbp, the sequen
esderived from the end reads will not overlap. This information 
an be used to \virtually"link 
ontigs when read F from a 
lone is in one 
ontig and read R is in another 
ontig,and ea
h is \pointing" to the other (relying on F/R pairs in an assembly proje
t is alsoknown as double-barreled sequen
ing, and has been des
ribed in [8℄). This information 
analso be used to span repeats, as follows. In addition to obtaining shotgun inserts 
loned inplasmids (whose size is no more than 5 kbp) the target DNA is 
ut in larger pie
es. Thesefragments 
an be 
loned in 
osmids (where average insert length is about 40 kbp) or inBACs (average length 100 kbp). This means that these 
lones are able to span any repeatsthat might reasonably be expe
ted in prokariotes. One then sequen
es only the ends (butboth of them) of these large inserts. One then 
ould use an assembly software that wouldtake into a

ount the fa
t that 
ertain reads belong to 
lones that are a 
ertain distan
eapart (the F/R pairs), and therefore deal 
orre
tly with repeats.There are many assembly programs available. Three popular ones are: Staden [1℄,phrap [5℄, and 
ap3 [6℄. Staden and phrap do not use information from F/R pairs indetermining 
ontigs. 
ap3 does, but in a limited fashion. This paper des
ribes a programthat 
an be used in 
onjun
tion with any assembly program to build a s
a�old of a genomebased on F/R pair information. A s
a�old in this paper is an ordered sequen
e of 
ontigsgiven by links provided by F/R pairs. The use of F/R pair information is done in a mu
hmore 
areful way than in the 
ap3 program and results in better assemblies. On theother hand, being an add-on to an assembly program our program relies on some manual



S
a�olds for Genome Sequen
ing 3intervention to be of any pra
ti
al use in a real genome proje
t. The program has beensu

essfully used in the Xanthomonas axonopodis pv 
itri genome proje
t [2℄ in the followingway:1. All reads are assembled using phrap.2. repeats are identi�ed by 
omparing 
ontig sequen
es to one another (several tools areavailable for this; one is 
ross mat
h [5℄). Even 
ollapsed repeats 
an be identi�ed,be
ause usually di�ering 
anking sequen
es will 
ause parts of the repeat to separate,as shown in the example above.3. After the longer (� 400 bp, i.e. larger than the average length of a read) repeats havebeen identi�ed, a new whole assembly should be done, but s
reening (masking) thereads for those repeats.4. Our program is applied on the resulting 
ontigs.In the remainder of this paper we des
ribe the model upon whi
h our program is basedand the s
a�old 
onstru
tion algorithms. The appendix provides do
umentation for theprogram.2 Overview of Model and AlgorithmsIn this se
tion we provide an overview that will be detailed in the following se
tions.We model the problem of building a s
a�old by the problem of �nding paths in aweighted dire
ted graph. In this graph, nodes represent 
ontigs and an ar
 exists betweennodes u and v if there is at least one F/R link between the 
orresponding 
ontigs. Giventhe assembly output, it is relatively straightforward to build su
h a graph, but one has tobe 
areful with read and 
ontig orientation. One has also to deal with the possible manyF/R links between two nodes, and this is a 
ru
ial part of our program.The novelty of our approa
h is in determining ar
 weights. The idea is that the weightof an ar
 (u; v) represents the degree of 
on�den
e that we have that its u and v 
ontigs areindeed linked. Therefore, the program has a prepro
essing step in whi
h all F/R links forea
h pair of nodes are 
arefully analyzed. The result of this analysis is the weight of thear
, and is based on a simple s
oring s
heme.Path �nding 
an be done by two di�erent algorithms, at the user's 
hoi
e. In one of thealgorithms, we determine maximum weight paths in the graph G. This algorithm assumesG is a
y
li
. In the presen
e of repeats or errors the kind of graphs we build would notne
essarily be a
y
li
. We use our weighting s
heme to throw away ar
s that would makeG 
y
li
. In the other algorithm we greedily build vertex-disjoint paths by sele
ting heavieredges �rst.3 Ar
 List Constru
tionIn this se
tion we des
ribe in detail how the list of ar
s between nodes is 
onstru
ted basedupon the DNA assembly and F/R link information.



4 J. Setubal and R. Werne
kA basi
 aspe
t of this 
onstru
tion is that it relies on naming 
onventions for the readsused in the assembly. This means that it is 
ru
ial for our program that most (but not all)read names do 
orrespond to the a
tual physi
al 
lones. It is well known that this pra
ti
eis subje
t to a number of errors, but this problem is be
oming less of a 
on
ern with thein
reased use of 
apillary sequen
ers. We require three pie
es of information from a readname: the 
lone end whi
h it 
ame from (either forward or reverse), the 
lone library whi
hit 
ame from, and whether it is an s
lone or an l
lone (see below). Most genome proje
tsnowadays in
lude su
h information in read names.Another basi
 aspe
t of our 
onstru
tion is that it makes a distin
tion between small
lones and large 
lones. We de�ne an s
lone as an F/R pair derived from a small 
lone (�5 kbp); and an l
lone as an F/R pair derived from a large 
lone (in the range 30{55 kbp).In pra
ti
e s
lones 
orrespond to plasmids and l
lones 
orrespond to 
osmids.A third basi
 aspe
t of our 
onstru
tion has to do with the information we require fromthe DNA assembly (step 1 in the pro
ess des
ribed at the end of Se
tion 1). We will basethe des
ription below on phrap, but other assembly programs should be able to provide thesame kind of information. If reads have been named a

ording to the rules above, phrapwill list all F/R pairs that it has dete
ted as part of its output. In parti
ular it lists F/Rpairs whose 
omponents are in di�erent 
ontigs. For ea
h su
h pair (rf ; rr), it will output(among other things) the following information, whi
h is used by our program:� The orientation of rf and of rr with respe
t to the 
ontigs where they have beenpla
ed.� Alignment position of the 50 end of ea
h read.� An estimate of the 
lone length (whi
h is given by the sum of the distan
e between the50 end of a read to the far end of the 
ontig it has been pla
ed in with the analogousdistan
e for the other read); we refer to this estimate as L.� The primary and se
ondary alignment s
ores of ea
h read. The primary s
ore of aread is the alignment s
ore that the read has with respe
t to the 
ontig to whi
h itbelongs. The se
ondary s
ore is de�ned by the phrap do
umentation [5℄ thus: \thehighest s
ore of a mat
h of the read against some other read in a di�erent 
ontig orelsewhere in the same 
ontig (so reads for whi
h this number is non-zero are thosewhi
h overlap a repeat, or an in
orre
tly or in
ompletely assembled region)."A �nal basi
 aspe
t of ar
 list 
onstru
tion has to do with the de�nition of an ar
.Contigs have an orientation with respe
t to ea
h other. This means that ea
h 
ontig hastwo ends: the left end and the right end. Given a 
ontig 
u we represent its left end by 
luand its right end by 
ru. The paths we will look for in the graph will always have to enter anode (
ontig) by one of its ends (either left or right) and then leave by the other (right orleft). Therefore, an ar
 is a link between 
ontig ends and not between 
ontigs as a whole.Given an F/R pair and their respe
tive 
ontigs, how do we know what ends to link? Thisdepends on the orientation of ea
h read in its 
ontig. Assuming 
ontigs 
u and 
v and anF/R pair (rp; rq), so that read rp is in 
ontig 
u and read rq is in 
ontig 
v, we have ar
s asgiven by Table 1.



S
a�olds for Genome Sequen
ing 5Table 1: How links between 
ontig ends are determined. 
u and 
v are 
ontigs, and rpand rq are an F/R pair, su
h that rp is in 
u and rq is in 
v . When arrows are in thesame dire
tion it means that the dire
t sequen
e of the read was aligned; when arrows haveopposite orientation, it means that the reverse 
omplement of the read was aligned.�!
v�!rq �!
v �rq�!
u�!rp 
ru $ 
rv 
ru $ 
lv�!
u �rp 
lu $ 
rv 
lu $ 
lvNow we �nally 
ome to a
tual ar
 list 
onstru
tion. This is done in two phases. In the�rst phase all F/R pairs whose 
omponents are in di�erent 
ontigs are s
anned. F/R pairsderived from l
lones are retained only if their L is � LMAX (user-de�ned). F/R pairsderived from s
lones are retained only if their L is � SMAX (user-de�ned).In the se
ond phase all F/R links between the same pair of 
ontig ends are analyzed, forea
h pair of 
ontig ends, with the aim of assigning a weight to the ar
 that will representthis link. This is done by a simple s
oring s
heme in whi
h a read 
an 
ontribute at most1.0 point to the total weight. When assigning points to links we look for events that 
on�rmthe links and that are independent as mu
h as possible from ea
h other. The details are asfollows:� First, F/R pairs in whi
h one member of the pair (or both) have a se
ondary s
orethat is deemed too high are dis
arded. Se
ondary s
ores, as mentioned above, indi
atethat the read probably overlaps a repeat, and we do not want repeats to interferewith 
orre
t s
a�old 
onstru
tion. Rather than dealing with high values of se
ondarys
ores, we prefer to deal with what we 
all uniqueness:uniqueness = 1� se
ondary s
oreprimary s
oreWith this de�nition, well-an
hored reads (se
ondary s
ore = 0) have uniqueness = 1.Reads for whi
h the uniqueness is below a 
ertain threshold (user-de�ned) are dis-
arded.� Putative identi
al F/R pairs are identi�ed, and only one 
opy is retained. An F/Rpair (rpx; rqy) is 
onsidered identi
al to another F/R pair (spx; sqy) (where x and y arethe 
ontigs), if the alignment positions of rpx and spx di�er by at most 5 bp, and if thealignment positions of rqy and sqy di�er by at most 5 bp. Note that this 
he
k does nottake into a

ount the name of the reads; i.e., two reads 
ould have totally di�erentnames and still be 
onsidered 
opies of ea
h other. The value 5 bp is empiri
allyderived.� The �rst F/R pair from a given library 
ontributes 1.0 to the total weight; ea
hadditional F/R pair from the same library 
ontributes 0.5. We regard reads fromthe same library as being events that are not as independent as reads from di�erentlibraries.



6 J. Setubal and R. Werne
k� If all links are just of one type (all s
lones or all l
lones), then the weight of thear
 is determined by the above rules. If there are l
lones mixed with s
lones, thenfurther pro
essing is done as follows.First a test is done to 
he
k whether ea
h l
lone link yields a value for L that isnot too small. Note that having links from s
lones already indi
ates that the 
ontigs
ould be quite 
lose to ea
h other in the genome. This means that one or both endsof l
lones should be quite a distan
e away from the 
ontig end. To be 
onsistentwith this an l
lone link must have L larger than or equal to LMIN (user-de�ned).If all l
lone links are 
onsistent with small separation between 
ontigs, then bothsets of links are 
onsidered valid, and an additional 1.0 is awarded to the ar
 weight.This bonus point 
omes from the empiri
al observation that k 
onsistent s
lone andl
lone links give more 
reden
e to the 
ontig link than k links of just one type.If some l
lones are long enough but some are not, then the ones for whi
h L is toosmall are dis
arded (and their points are not 
ounted), but an additional 1.0 is stillawarded to the ar
 weight.If all l
lones seem to be too short, then the ar
 weight is determined by eithers
lone links only or by l
lone links only. The set that has larger weight determinesthe 
hoi
e.4 Algorithms4.1 Des
riptionThis se
tion des
ribes the algorithms used to �nd s
a�olds in the genome: Greedy Path(gp) and Maximum Weight Path (mwp).They share a 
ommon basi
 stru
ture. First, they read an input �le des
ribing theproblem by enumerating 
ontigs and F/R links. Then, a set A0 of weighted ar
s is builta

ording to the pro
edure des
ribed in Se
tion 3. Starting from a graph G = (N; ;), bothalgorithms try to add ar
s to G in a greedy fashion, s
anning A0 in nonde
reasing orderby weight. To be a
tually inserted, ea
h ar
 must satisfy a given set of 
onditions. Finally,both algorithms �nd \good" paths in G = (N;A), the resulting graph.The essential di�eren
e between the algorithms is the set of 
onditions an ar
 a mustsatisify in order to be inserted into G.In the des
ription below we use (
px; 
qy) to represent an ar
, where 
px is end p (eitherleft or right) of 
ontig/node x, and 
qy is end q (either left or right) of 
ontig/node y.4.1.1 Greedy Path AlgorithmLet a = (
px; 
qy) (with 1 � x; y � jN j) be an ar
 we want to insert into G. For a to bea
tually inserted, two 
onditions must hold: (1) 
x and 
y must belong to di�erent 
onne
ted
omponents, and (2) both 
px and 
qy must be free, i.e., there must be no ar
 in
ident to anyof them in G.



S
a�olds for Genome Sequen
ing 7Note that this strategy is very restri
tive. Not only does it avoid 
y
les, but it alsoforbids parallel paths. By the end of the algorithm, the graph will be
ome a 
olle
tion ofvertex-disjoint paths, all of whi
h are output.4.1.2 Maximum Weight Path AlgorithmAn ar
 a = (
px; 
qy) (with 1 � x; y � jN j) will be inserted into G by mwp if (1) at least oneof f
px; 
qyg is free, (2) a's orientation does not 
on
i
t with previously inserted ar
s, and (3)a does not 
reate a 
y
le. Note that 
onditions (2) and (3) will be relevant only when 
xand 
y belong to the same 
onne
ted 
omponent.On
e the graph is built, the algorithm outputs a number of paths of di�erent 
lasses.For ea
h 
onne
ted 
omponent, the pro
edure is the following. First, �nd the heaviest mainpath p1 and output it. Se
ond, report all alternate paths between 
ontigs in p1, i.e., pathsthat start and end in 
ontigs that appear in p1 but do not use any ar
 used by p1. Finally,remove all ar
s of p1 from the graph and repeat the pro
ess, �nding the se
ond heaviestmain path p2 and the 
orresponding alternate paths. As an additional 
onstraint, no 
ontigin pi may have appeared in pj, j < i. In other words, all main paths are vertex-disjoint.The 
onne
ted 
omponent will be fully pro
essed only when every ar
 is either part of somemain path pi or has both ends in main paths (in this 
ase, the ar
 is said to link the pathsand is listed a

ordingly in the output �le).4.2 Data Stru
tures and Running TimesThe �rst step of both gp and mwp is to build the set A0 of ar
s from the set L of F/Rlinks read from the input �le. The links that 
onstitute the ar
s 
an be determined inO(jLj log jLj) total time: sort L a

ording to link ends and build the ar
s from 
onse
utiveelements in L. Sin
e the weight of ea
h ar
 a is heuristi
ally determined in linear time w.r.t.the number of links in a, O(jLj log jLj) is indeed the 
omplexity of building A0. Sorting thisset a

ording to ar
 weights 
an be done in O(jA0j log jA0j) time. An empty graph G 
anbe built in O(jN j) time, jN j being the number of 
ontigs.Up to this point, the overall 
omplexity of both algorithms is O(jN j+ jLj log jLj), sin
ejLj � jA0j. The following subse
tions analyze the remaining operations.4.2.1 Greedy Path AlgorithmFor ea
h ar
, two tests must be made for an ar
 a to be inserted. First, the ends of a mustbe in di�erent 
onne
ted 
omponents. Using a forest-based implementation of a union-�nddata stru
ture, we 
an 
he
k all ar
s in O(jA0j � �(jN j + jA0j; jN j)) total time [9℄. Se
ond,the ends of a must be free. Testing this is trivial and 
an be done in O(1) time. Thepaths in the graph G build by gp 
an be found in O(jN j) time, sin
e G is a
tually a
olle
tion of vertex-disjoint paths. Therefore, the overall 
omplexity of the algorithm is stillO(jN j+ jLj log jLj).



8 J. Setubal and R. Werne
k4.2.2 Maximum Weight Path AlgorithmAlthough mwp's 
onditions are not as stri
t as gp's, testing them is a more 
omplex task.Sin
e 
ontigs in the same 
onne
ted 
omponent may be linked by a new ar
, a union-�nddata stru
uture is not enough. Nevertheless, the algorithm does require a union-�nd datastru
uture. Sin
e we sometimes need to know the 
omplete list of 
ontigs that are part ofa 
onne
ted 
omponent, the list implementation [3, se
tion 22.2℄ is the better 
hoi
e in this
ase.Let a = (
px; 
qy) be the ar
 we want to insert. The easier 
ondition to test is whetherat least one of f
px; 
qyg is free: this 
an be done in O(1) time. If the ar
 passes this testand if its ends belong to di�erent 
onne
ted 
omponents (whi
h 
an also be determined inO(1) time using the list implementation of the union-�nd data stru
ture), the insertion isperformed.On the other hand, if the 
ontigs are already 
onne
ted, their relative orientation mustbe 
onsistent with that suggested by a. In order to make this test in O(1) time for ea
har
, we keep, at all times, the relative orientation of all 
ontigs. We start the algorithmassuming that every 
ontig has the same orientation (whether it is LR or RL is irrelevant).This information is updated as needed, namely when we insert an ar
 joining di�erent
onne
ted 
omponents. For simpli
ity, we will use an example to explain how this is done.Assume that ar
 a = f
r1; 
r2g is inserted between two di�erent 
onne
ted 
omponents andthat both 
1 and 
2 have orientation LR. Ar
 a 
learly shows that 
1 and 
2 
annot havethe same orientation in the genome. Therefore, one of the 
ontigs must be 
hanged to RL.A
tually, if it is already linked to other 
ontigs, the whole 
onne
ted 
omponent is 
ipped:RL 
ontigs be
ome LR and vi
e-versa. Although any of the 
onne
ted 
omponents 
ould be
ipped, we a
hieve better performan
e by 
hoosing the one with fewer 
ontigs. This ensuresthat at most O(jN j log jN j) 
ontig 
ips will be ne
essary during the algorithm. (The entire
ipping pro
edure 
an be interpreted as a subroutine of the union operation of the list-basedunion-�nd data stru
uture.)The third and most 
ostly 
ondition to test is whether the new ar
 
reates a 
y
le. Sin
eit would link 
px to 
qy, we have to 
he
k whether there is a path in G that starts in 
py andends in 
qx. This requires O(jAj) time in the worst 
ase.On
e the graph G is built, mwp �nds and reports the paths. Sin
e the resulting graph isdire
ted and a
y
li
, maximum weight paths 
an be found in O(jAj) time (
lassi
 
omputers
ien
e result; see for example [3, se
tion 25.4℄). There will be at most O(jN j) main paths,sin
e they are all vertex-disjoint. Therefore, allO(jN j) main paths 
an be found inO(jN jjAj)time. The algorithm �nds at most one alternate path starting at ea
h 
ontig, so O(jN jjAj)is enough to �nd all alternate paths. Links 
an be easily found in O(jAj) time.All steps 
onsidered, O(jLj log jLj+ jAj2+ jN jjAj+ jN j log jN j)) is the worst 
ase runningtime of mwp. However, sin
e ea
h node in G has at most four ar
s in
ident to it (two inea
h end), jAj = O(jN j), no matter how large A0 or even L are. Therefore, the 
omplexityof mwp 
an be rewritten as O(jN j2 + jLj log jLj).



S
a�olds for Genome Sequen
ing 95 Final RemarksAs already remarked, the program des
ribed has been su

essfully used in a genome proje
t [2℄.The values for the various parameters were as follows:� LMAX = 55 kbp� LMIN = 30 kbp� SMAX = 5 kbp� minimum uniqueness required: 0.8The s
a�old program takes a few se
onds on a Compaq DS20 workstation, on a genomeproje
t with around 100 
ontigs. This is insigni�
ant 
ompared to the time spent in assembly(measured in hours). The program is available from the authors upon request.Referen
es[1℄ J. K. Bon�eld, K. F. Smith, and R. Staden. A new DNA sequen
e assembly program.Nu
lei
 A
ids Resear
h, 23:4992{4999, 1995.[2℄ ONSA 
onsortium. Xanthomonas axonopodis pv 
itri genome proje
t.www.lbi.i
.uni
amp.br.[3℄ T. Cormen, C. Leiserson, and R. Rivest. Introdu
tion to Algorithms. MITPress/M
Graw-Hill, 1990.[4℄ R. D. Fleishmann et al. Whole-genome random sequen
ing and assembly ofHaemophilus in
uenzae Rd. S
ien
e, 269:496{512, 1995.[5℄ P. Green. Phrap do
umentation. www.phrap.org.[6℄ X. Huang and A. Madan. CAP3: A DNA sequen
e assembly program. GenomeResear
h, 9:868{877, 1999.[7℄ E. W. Myers et al. A whole-genome assembly of Drosophila. S
ien
e, 287:2196{2204,2000.[8℄ J. C. Roa
h, C. Boysen, K. Wang, and L. Hood. Pairwise end sequen
ing: a uni�edapproa
h to genomi
 mapping and sequen
ing. Genomi
s, 26:345{353, 1995.[9℄ Robert E. Tarjan. EÆ
ien
y of a good but not linear set union algorithm. Journal ofthe Asso
iation for Computing Ma
hinery, 2:212{225, 1975.



10 J. Setubal and R. Werne
k6 Program Do
umentation6.1 Command Line OptionsThe program is 
alled gens
aff. The 
ommand line for gens
aff has the following basi
format: gens
aff <input file> <libfile> [-a <gp|mwp>℄The �rst two parameters are the �le 
ontaining des
ribing the F/R pairs (the \interme-diary �le", des
ribed in Se
tion 6.2) and the �le 
ontaining information about the libraries(Se
tion 6.3). The optional parameter -a sele
ts the algorithm to be exe
uted, mwp or gp(default is gp).There are some additional optional parameters:� -mrs %f: minimum uniqueness a read must have to be 
onsidered (default: 0.8);� -ht %d: hybrid threshold (in base pairs). Clones whose maximum lengths are smallerthan this value will be 
onsidered s
lone's; 
lones whose minimum lengths are largerthan the threshold will be l
lone's (default: 10,000).� -maxaltdif %d: maximum per
entual di�eren
e allowed between a 
onsistent alter-nate path and a main path (see Se
tion 6.4.9). The parameter must be an integerbetween 1 and 100.6.2 Intermediary FileThis �le is in extended DIMACS format. There are three types of lines, identi�ed by their�rst 
hara
ter. Lines beginning with 
 are reserved for 
omments and may be ignored.Lines with v represent 
ontigs (the verti
es of the graph). Ea
h su
h line 
ontains only two�elds:v h
ontig labeli h
ontig lengthiLinks are represented in a lines, sin
e they will 
onstitute the ar
s of the graph. Ea
hline is made up by 14 �elds,a h
1i h
2i hr1i hr2i hRjLi hUjCi hlengthi hd1i hd2i hp1i hs1i hp2i hs2i hlibi,meaning:� h
1i and h
2i: 
ontig labels;� hrxi: string representing the read aligned with 
x;� hRjLi and hUjCi: together, these �elds de�ne the relative orientation of 
1 and 
2indu
ed by the link (see Se
tion 3);� hlengthi: lower bound on the length (in base pairs) of the 
lone;



S
a�olds for Genome Sequen
ing 11� hdxi: distan
e (in bp) between the �rst aligned base at the 50 end of rx with respe
tto 
x and the far end of 
x;� hpxi and hsxi: primary and se
ondary s
ores of rx;� hlibi: string representing the name of the library to whi
h the 
lone belongs.6.3 Library FileThis �le 
ontains information about the libraries mentioned in the intermediary �le. Thereare just two types of lines, ea
h identi�ed by its �rst 
hara
ter: 
 lines 
ontain 
ommentsand may be ignored; l lines des
ribe the libraries. Ea
h l line 
ontains the name of thelibrary (an arbitrary string) and three integers representing 
lone sizes (in bp): minimum,mean and maximum. Minimum and maximum sizes are used to determine whether a 
loneis an l
lone or an s
lone. The mean size is used to estimate the length of the paths foundby the algorithms. A typi
al l line looks like this:l 
01 30000 40000 55000A

ording to this line, library 
01 
ontains 
lones with sizes varying from 30 kbp to 55 kbp;the mean 
lone size in this library is 40 kbp.6.4 Output FileEa
h line in the output �le has its stru
ture de�ned by the �rst 
hara
ter. Some types oflines appear in several se
tions:� f (free line): doesn't have a spe
i�
 format and should be ignored by parsers (freelines with no text are often used to format the output | there are no blank lines);� s (se
tion line): marks the beginning of a se
tion (the output is divided into se
tions).Everything after s represents the name of the se
tion, as ins INPUT DATA� d (data line): has a well-de�ned format, but it depends on the 
ontext (se
tion) inwhi
h the line appears;� t (tagged data line): has a well-de�ned format and 
ontains a globally unique tag rightafter the letter t indi
ating what pie
e of information is represented. For instan
e,t 
ontigs 987indi
ates that there are 987 
ontigs in the graph. Global uniqueness is useful to buildsimples parsers.



12 J. Setubal and R. Werne
kOther types of lines only o

ur in se
tion SCAFFOLDS, whi
h reports the s
a�olds them-selves: 
 (
onne
ted 
omponent), p (main path), q (alternate path), a (ar
) and l (link).Their formats will be des
ribed in Se
tion 6.4.9.In some se
tions, the output �le reports information on individual ar
s. As alreadymentioned, an ar
 is made up by one or more 
lones. We use the 
lone with the highestuniqueness, 
onsidering the minimum of both ends, to represent the ar
 (ties are brokenlexi
ographi
ally). In 
ase of hybrid ar
s, an asterisk is appended to the name: whileA0QH6313D02 represents a simple ar
, A0QH6313D02* represents a hybrid one.The remainder of this se
tion des
ribes the individual se
tions of the output �le.6.4.1 INPUT DATAThis se
tion summarizes the input information (�les and parameters) used to build thes
a�olds. It 
ontains the following t lines:� file: name of the input �le, as it appeared in the 
ommmand line;� l
lones: number of large 
lones read;� s
lones: number of small 
lones read;� 
lones: total number of 
lones read;� 
ontigs: number of 
ontigs read;� algorithm: either mwp or gp;� minrels
ore: minimum uniqueness for an ar
 to be 
onsidered;� maxaltdif: minimum per
entual di�eren
e between an alternate and a main path(see Se
tion 6.4.9).Reports, in t lines, the number of large 
lones (l
lones), the number of small 
lones(s
lones), the total number of 
lones (
lones) and the number of 
ontigs (
ontigs) read.There are t lines des
ribing all the parameters used in the exe
ution: algorithm (mwpor gp), input (name of the input �le), minrels
ore (minimum uniqueness), maxaltdif(maximum alternate path di�eren
e; see 6.4.9).6.4.2 CLONE SIZESThis se
tion 
ontains the information read from the library �le. There is a d line for ea
hlibrary. A line 
ontains four �elds: a string representing the name of the library followedby the minumum, the mean and the maximum sizes of its 
lones. For example,d 07 4000 5000 7000indi
ates that 
lones in library 07 have sizes ranging from 4 kbp to 7 kpb and their averagelength is 5 kbp.



S
a�olds for Genome Sequen
ing 136.4.3 UNRELIABLE CLONESThis se
tion presents 
lones that should not be trusted upon, sin
e they have primary s
oresthat are smaller than their se
ondary s
ores.The �rst line in this se
tion is a t line reporting the total number of unreliable 
lones(unreliable). Then, ea
h su
h 
lone is reported in a d line with four �elds: the name ofthe 
lone, its primary s
ore, its se
ondary s
ore and the label of the 
ontig to whi
h the
lone is unreliably linked.A typi
al se
tion would look like this:s UNRELIABLE CLONESt unreliable 3d A0JJ-0DG12-LA00 344 347 510d A0QR5508D04 515 516 494d A0JJ-0IA02-LA00 158 260 5436.4.4 INCOMPATIBLE LINKSThis se
tion presents all pairs of 
ontigs linked to ea
h other in more than one way (i.e.,with di�erent pairs of ends involved). The �rst line in the se
tion is a t line reporting thetotal number of 
ontig pairs with in
ompatible links (in
ompatiblelinks). A series of dlines follows, ea
h 
ontaining at least four �elds and at most six. The �rst two are the labelsof the 
ontigs; the others represent all possible ways of linking the 
ontigs found. Considerthe following example: d 310 396 LL RLThis line refers to 
ontigs 
310 and 
396. While at least one 
lone indi
ates that 
l310 is linkedto 
l396, there is at least another one in the input �le stating that the link is between 
r310and 
l396. Clearly, they 
an't both be 
orre
t.6.4.5 ARC WEIGHTSThis se
tion shows some statisti
s about the ar
s 
reated (regardless of whether they area
tually inserted in the graph or not). The �rst line is a t line with three �elds (otherthan the tag itself, ar
s): the number of ar
s 
reated, the weight of the lighter ar
 and theweight of the heavier ar
. This is followed by a series of d lines, ea
h with two �elds: the�rst represents a weight and the se
ond the number of ar
s with su
h weight. A typi
aloutput looks like this:s ARC WEIGHTSt ar
s 585 1.0 4.0d 1.0 426d 1.5 17d 2.0 130d 2.5 8



14 J. Setubal and R. Werne
kd 3.0 3d 4.0 1In this example, there are 426 ar
s with weight 1.0, 17 with weight 1.5, and so on. Notethat if there is no ar
 with a given weight in the range, the 
orresponding d line may beomitted (this is the 
ase of weight 3.5 in the example).6.4.6 HYBRID ARCSThis se
tion reports the number of hybrid ar
s, ar
s that 
ontain both s
lone's andl
lone's. Consistent and in
onsistent hybrid ar
s also have their number reported sep-arately. The information is presented in t lines, with tags hybridar
s, 
onsistenthybridand in
onsistenthybrid. A typi
al se
tion is:s HYBRID ARCSt hybridar
s 18t 
onsistenthybrid 13t in
onsistenthybrid 56.4.7 ARCS NOT INSERTEDThis se
tion lists all ar
s not inserted into the graph alongside with the reason why theywere kept out. A typi
al line looks like this:d A0JJ1388B03* 390 477 degreeThere are four �elds: the �rst is the name of the ar
, the next two are the 
ontigs it
onne
ts, and the last one is the reason why the ar
 
ould not be inserted. There are �vepossible reasons:� degree: at least one end of the ar
 was already 
onne
ted to other ar
s;� s
ore: the uniqueness of the ar
 is lower than the mininum threshold (a �fth �eldpresents the s
ore of the reje
ted ar
);� 
y
le: the ar
 would 
reate a 
y
le if inserted1;� orientation: the relative orientation of the ends indu
ed by the ar
 is in
ompatiblewith the orientation indu
ed by previously inserted ar
s;� weight: both ends of the ar
 were already 
onne
ted to heavier ar
s.Only s
ore and 
y
le 
an o

ur in both algorithms; degree applies ex
lusively to gp,while orientation and weight may happen only in mwp.1Algorithm mwp adds an f line right after the d line to list the verti
es of the 
y
le. gp doesn't do this,sin
e it 
an dete
t 
y
les using a union-�nd data stru
ture; �nding the a
tual 
y
les would be too 
ostly.



S
a�olds for Genome Sequen
ing 156.4.8 INSERTION STATISTICSThis se
tion summarizes, in t lines, the information presented in the previous se
tion. Itreports how many ar
s were not inserted due to ea
h of the �ve types of problems mentioned.The total number of ar
s inserted and not inserted is also shown. All quantities are expressedboth as absolute values (�rst �eld after the tag) and as per
entages (third �eld after thetag). A typi
al output would be:s INSERTION STATISTICSt inserted 218 29.1t notinserted 531 70.9t weight 0 0.0t orientation 0 0.0t s
ore 131 17.5t 
y
le 1 0.1t degree 399 53.3Note that all �ve types of problems are always listed, regardless of the algorithm.6.4.9 SCAFFOLDSThis is the se
tion that a
tually presents the s
a�olds. It begins with a t line reporting thenumber of 
onne
ted 
omponents in the graph (
omponents). Then the 
omponents them-selves are listed in nonin
reasing order of size (number of verti
es/
ontig ends). Componentswith no ar
s (i.e., only one 
ontig) are omitted.The des
ription of a single 
onne
ted 
omponent 
an be rather lengthy. It starts, with a
 line with three �elds: the label of the 
onne
ted 
omponent (a sequential number startingat one), the number of 
ontigs, the number of ar
s and the number of main paths built. Anexample: 
 2 117 151 31This 
onne
ted 
omponent (
omponent 2) has 117 verti
es (
ontig ends) and 151 ar
s;31 main paths were found by the algorithm (note that for gp the third �eld will always be1). This line is followed by a des
ription of the paths in the 
onne
ted 
omponent, listed innonde
reasing order by weight. A typi
al path looks like this:p 2 6 41.0 330993a 497 U A0UV5307G09* 8.5a 431 U A0JJ-1BF10-LA00 2.0a 432 U A0QH6313D02* 5.0a 484 U A0AC6408A07 5.5a 397 C A0AM1319C05 1.0a 424 U A0JJ-1CC12-LA00 2.0



16 J. Setubal and R. Werne
ka 509 U A0QR6366E09* 11.0a 532 U A0QR5323G03 4.0a 313 C A0QR6330C07 2.0a 401 C END 0.0l 525 1 A0JJ-0IH08-LA00 497 6l 397 6 A0JJ-0AB01-LA00 511 5t 155068 155410 Ca 497 U A0JJ-1AH02-LA00 2.0a 499 C A0JJ-0EG12-LA00 2.0a 484 U END 0.0Main path A

ording to the p line, this is the sixth heaviest path in its 
onne
ted
omponent (
omponent 2). Its weight is 41.0 and its estimated length is 330,993 bp.The �rst �eld in ea
h a line represents the label of a 
ontig in the path. This parti
ularone is made up by 10 
ontigs (
497; 
431; 
432; : : : ; 
401, in this order). The se
ond �eld iseither C or U, depending on whether the 
ontig is 
omplemented or not in the path (in theexample, 
397, 
313, and 
401 are 
omplemented). The name and the weight of the ar
 linkinga pair of 
ontigs are reported in the third and fourth �elds, respe
tively. For instan
e, 
432and 
484 are linked by ar
 A0QH6313D02, whose weight is 5.0. Note that the last a line isspe
ial; the word END repla
es the ar
 name and marks the last 
ontig of the path (to makeparsing easier, a meaningless 0.0 is pla
ed on the fourth �eld).Links After the path itself is printed, its links to previously reported main paths arelisted in l lines. In our example, two links are reported. Ar
 A0JJ-0IH08-LA00 links 
525,whi
h belongs to path 1, to 
497, whi
h belongs to the 
urrent path (path 6). The otherlink is between 
397 in path 6 and 
511 in path 5. The order in whi
h the 
ontigs appear isimportant. Were 
525 to be inserted in path 6, it would appear before 
497. On the otherhand, 
511 would 
ome after 
397 in this path.Alternate paths Finally, alternate paths (if any) are reported. Ea
h one is introdu
edby a q line, whi
h has three �elds. The �rst two are the length of the alternate path (`a)and the length of the 
orresponding portion of the original main path (`o). The last one iseither C (
onsistent) or I (in
onsistent), depending on how `o and `a relate to ea
h other. Ifthey di�er by no more than 20% (`a being the base value), the path is said to be 
onsistent;otherwise, the path will be in
onsistent. (A
tually, 20 is just the default per
entage; thea
tual value, maxaltdif, is user-de�ned.) Ea
h t line is followed by a lines des
ribing thepath (exa
tly like in the main path).In our example, only one alternate path was found. Sin
e its length is 155,068 bp andit 
orresponds to 155,410 bp in the original path, the path is 
onsistent. The path 
ontainsthree 
ontigs, 
497, 
499, and 
484. Note that the �rst and the last 
ontigs of an alternatepath must also belong to the original path, while all others must not.


