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Hybrid Column Generation Approahes forSolving Real World Crew Management Problems�Tallys H. Yunes Arnaldo V. Moura Cid C. de SouzaAbstratThis artile onsiders the overall rew management problem that arises from the dailyoperation of an urban transit bus ompany that serves the metropolitan area of the ityof Belo Horizonte, in Brazil. Due to its intrinsi omplexity, the problem is divided intwo distint problems, namely: rew sheduling and rew rostering. We have takledeah one of these problems using Mathematial Programming (MP) and ConstraintLogi Programming (CLP) approahes. Besides, we also developed hybrid olumn gen-eration algorithms for solving these problems, ombining MP and CLP. The hybridalgorithms always performed better, when obtaining optimal solutions, than the twoprevious isolated approahes. In partiular, it proved muh faster for the shedulingproblem. All the proposed algorithms have been implemented and tested over realworld data obtained from the aforementioned ompany. The oeÆient matrix of thelinear program assoiated with some instanes of the sheduling problem ontains tensof millions of olumns, and this number is even larger for the rostering problem. Theanalysis of our experiments indiates that it was possible to �nd high quality, and manytimes optimal, solutions that were suitable for the ompany's needs. These solutionswere obtained within reasonable omputational times, on a typial desktop PC.IntrodutionThe overall rew management problem onerns the alloation of trips to rews within aertain planning horizon. In addition, it is neessary to respet a spei� set of operationalonstraints and minimize a ertain objetive funtion. Being a very hard problem, whentaken in its entirety, it is usually divided in two smaller problems: the rew shedulingproblem and the rew rostering problem (see [6℄). In the rew sheduling problem, the aimis to partition the initial set of trips into a minimal set of feasible duties. Eah suh duty isan ordered sequene of trips whih is to be performed by the same rew and that satis�esa subset of the original problem onstraints: those related to the sequening of trips duringa workday. The rew rostering problem takes as input the set of duties output by the rewsheduling phase and builds a roster spanning a longer period, e.g. months or years. Inthe latter ase, the roster must satisfy a di�erent set of onstraints: those related to restperiods, vaations and other long term operational restritions.�Researh supported by FAPESP (grants 97/10982-0 and 98/05999-4), CNPq (300883/94-3), FINEP(ProNEx 107/97), and CAPES. Submitted for publiation.1



2 T. Yunes, A. Moura and C. de SouzaThis artile desribes the rew management problem stemming from the operation of aBrazilian bus ompany that serves a major urban area in the ity of Belo Horizonte. Thisarea serves more than two million inhabitants, in entral Brazil. Sine employee wages maywell rise to 50 perent or more of the ompany's total expenditures, even small perentagesavings an be quite signi�ant. The related rew sheduling and rew rostering problemsare solved by means of hybrid olumn generation approahes involving both Integer Pro-gramming (IP) and Constraint Logi Programming (CLP) tehniques. We also present pureIP and CLP solutions for these problems.We started with the rew sheduling problem, applying a pure IP formulation, and us-ing a lassial branh-and-bound tehnique to solve the resulting set partitioning problem.Sine this method requires that all feasible duties are previously inserted into the problemformulation, all memory resoures were rapidly onsumed when we reahed half a millionfeasible duties. To irumvent this diÆulty, we implemented a olumn generation teh-nique. As suggested by [13℄, the subproblem of generating feasible duties with negativeredued ost was transformed into a onstrained shortest path problem over a diretedayli graph and then solved using Dynami Programming tehniques. However, due tothe size and idiosynrasies of our real problem instanes, this tehnique did not make muhprogress towards solving large instanes.In parallel, we also implemented a heuristi algorithm presented in [4℄ whih produedvery good results on some related large set overing problems. With this implementation,problems with up to two million feasible duties ould be solved to optimality. But this par-tiular heuristi also requires that all feasible duties be present in memory during exeution.Although some progress with respet to time eÆieny was ahieved, memory usage wasstill a formidable obstale.The diÆulties we faed when using the previous approahes almost disappeared whenwe turned to a language that supports onstraint spei�ation over �nite domain variables.We were able to develop and implement our models in a short time, produing ode thatwas both onise and lear. When exeuted, it ame as no surprise that the model showedtwo distint behaviors, mainly due to the huge size of the searh spae involved. It was veryfast when asked to ompute new feasible duties, but lagged behind the IP methods whenasked to obtain a provably optimal shedule. The searh spaes of our problem instanes areenormous and there are no strong loal onstraints available to help the resolution proess.Also a good heuristi to improve the searh strategy does not ome easily, as noted in [12℄.To harness the apabilities of both the IP and CLP tehniques, we resorted to a hybridapproah to solve the larger, more realisti, problem instanes. The main idea is to use thelinear relaxation of a smaller ore problem in order to eÆiently ompute good lower boundson the optimal solution value. Using the values of dual variables present in the solution ofthe linear relaxation, we an enter a generation phase that omputes new feasible duties.This phase is modeled as a onstraint satisfation problem that searhes for new feasibleduties with negative redued osts. This problem is submitted to the onstraint solver,whih returns new feasible duties. After introduing these new duties into the IP problemformulation, the initial phase an be taken again, restarting the yle. When the CLP solverannounes the inexistene of new feasible duties with negative redued ost, the optimalityof the urrent solution is proved. This algorithm seures the strengths of both the pure IP



Hybrid Approahes for Real World Crew Management Problems 3and the pure CLP approahes: only a small subset of all the feasible duties is eÆientlydealt with at a time, and new feasible duties are quikly omputed only when they willmake a di�erene. The resulting ode was tested on some large instanes, based on realdata. As of this writing, we an solve, in a reasonable time and with proven optimality,instanes of the rew sheduling problem with an exess of 150 trips and 12 million feasibleduties.Some quite spei� union regulations and operational onstraints make our rosteringproblem fairly distint from some other known rew rostering problems found in the lit-erature as [7℄ and [5℄. In general, it is suÆient to onstrut one initial roster onsistingof a feasible sequening of the duties that spans the least possible number of days. Theomplete roster is then built by just assigning shifted versions of that sequene of duties toeah rew so as to have every duty performed in eah day of the planning horizon. In otherommon ases suh as [19℄, [8℄ and [3℄, the main onern is to balane the workload amongthe rews involved. Although we also look for a roster with relatively balaned workloads,these approahes will not, in general, �nd the best solution for our purposes. We are notinterested in minimizing the number of days needed to exeute the roster, sine the lengthof the planning horizon is �xed in advane. Our objetive is to use the minimum numberof rews when onstruting the roster for the given period. Another diÆulty omes fromthe fat that some onstraints behave di�erently for eah rew, depending on the amountof work assigned to it in the previous month. Moreover, di�erent rews have di�erent needsfor days o�, imposed by personal requirements.Similarly to the rew sheduling problem, we started with models based on pure IP andCLP tehniques to solve the rostering problem. Again, we also developed a hybrid olumngeneration approah for this problem, whih follows the same basi ideas of the one appliedin the rew sheduling phase.This artile is organized as follows. Setion 1 desribes the rew sheduling problem,inluding a number of subsetions. In Set. 1.4, we disuss an IP approah and report on theimplementation of two alternative tehniques: standard olumn generation and heuristis.In Set. 1.5, we investigate a pure CLP approah and, in Set. 1.6, we present the hybridapproah. All the previous three setions report implementation details and omputationalresults on real data sets. Setion 2 gives a detailed desription of the rew rostering problem.Its subsetions present the di�erent solution tehniques that were investigated. Setion 2.4explains the format of the input data sets used in our experiments. In Set. 2.5, we presentan IP formulation of the problem, together with some omputational results. A pure CLPmodel for the rostering problem is desribed in Set. 2.6, where some experiments arealso onduted to evaluate its performane. The results ahieved with a hybrid olumngeneration approah appear in Set. 2.7. Finally, we draw the main onlusions and disussfurther issues in Set. 3.All omputation times presented in this text are given in CPU seonds of a PentiumII 350 MHz with 320 MB of RAM. Exeution times inferior to one minute are reported asss:, where ss denotes seonds and  denotes hundredths of seonds. For exeution timesthat exeed 60 seonds, we use the alternative notation hh:mm:ss, where hh, mm and ssrepresent hours, minutes and seonds, respetively.



4 T. Yunes, A. Moura and C. de Souza1 The Crew Sheduling ProblemIn a typial rew sheduling problem, a set of trips has to be assigned to some availablerews. The goal is to assign a subset of the trips to eah rew in suh a way that no tripis left unassigned. As usual, not every possible assignment is allowed sine a number ofonstraints must be observed. Additionally, a ost funtion has to be minimized.1.1 TerminologyAmong the following terms, some are of general use, while others reet spei�s of thetransportation servie for the urban area where the input data ame from. A relief pointis a loation where rews may hange buses and rest. The at of driving a bus from onerelief point to another relief point, passing by no intermediate relief point, is named a trip.Assoiated with a trip we have its start time, its duration, its departure relief point, andits arrival relief point. The duration of a trip is statistially alulated from �eld olleteddata, and depends on many fators, suh as the day of the week and the start time of thetrip along the day. A duty is a sequene of trips that are assigned to the same rew. By idletime we denote any of the time intervals between two onseutive trips in a duty. Wheneverthis idle time exeeds Idle Limit minutes, it is alled a long rest. A duty that ontains along rest is alled a split-shift duty or simply a split shift. The rest time of a duty is thesum of its idle times, not ounting long rests. The parameter Min Rest gives the minimumamount of rest time, in minutes, that eah rew is entitled to. The sum of the durationsof the trips in a duty is alled its working time. The sum of the working time and the resttime gives the total working time of a duty. The parameter Workday is spei�ed by unionregulations and limits the daily total working time.1.2 Input DataThe input data omes in the form of a two dimensional table where eah row representsone trip. For eah trip, the table lists: start time, measured in minutes after midnight,duration, measured in minutes, initial relief point and �nal relief point. We have used datathat reet the operational environment of two bus lines, Line 2222 and Line 3803, thatserve the metropolitan area around the ity of Belo Horizonte, in entral Brazil. Line 2222has 125 trips and one relief point and Line 3803 has 246 trips and two relief points. Theinput data tables for these lines are alled OS 2222 and OS 3803, respetively. Table 1(a)shows the �rst 10 rows of OS 3803. By onsidering initial segments taken from these twotables, we derived several other smaller problem instanes. For example, taking the �rst30 trips of OS 2222 gave us a new 30-trip problem instane. A measure of the number ofative trips along a typial day, for both Line 2222 and Line 3803, is shown in Table 1(b).This �gure was onstruted as follows. For eah (x; y) entry, we onsider a time windowT = [x; x+Workday℄. The ordinate y indiates how many trips there are with start time sand duration d suh that s 2 T or s+ d 2 T , i.e., how many trips are ative in T .



Hybrid Approahes for Real World Crew Management Problems 5Table 1: (a) Sample from OS 3803 (b) Distribution of trips along the day
(a)

Start Dur I. dep. F. dep.1 38 1 250 40 2 190 38 1 2130 38 2 1170 38 1 2210 38 2 1250 39 1 2290 38 2 1285 45 1 2335 45 2 1
(b)
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6080100120
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Time (minutes)
Number ofative trips

1.3 ConstraintsFor a duty to be feasible, it has to satisfy onstraints imposed by labor ontrats and unionregulations, among others. For eah duty we must observetotal working time � Workdayrest time � Min Rest :In eah duty and for eah pair (i; j) of onseutive trips, where i preedes j, we must have(start time )i + (duration )i � (start time )j(�nal relief point )i = (initial relief point )j :Also, at most one long rest is allowed in eah duty.Restritions from the operational environment impose Idle Limit = 120, Workday =440, and Min Rest = 30, measured in minutes. A feasible duty is a duty that satis�es allproblem onstraints. A shedule is a set of feasible duties and an aeptable shedule isany shedule that partitions the set of all trips. Sine the problem spei�ation treats allduties as indistinguishable, every duty is assigned a unit ost. The ost of a shedule isthe sum of the osts of all its duties. Hene, minimizing the ost of a shedule is the sameas minimizing the number of rews involved in the solution or, equivalently, the number ofduties it ontains. A minimal shedule is any aeptable shedule whose ost is minimal.



6 T. Yunes, A. Moura and C. de Souza1.4 Mathematial Programming ApproahesLet m be the number of trips and n be the total number of feasible duties. The pure IPformulation of the problem is: min nXj=1 xj (1)subjet to nXj=1 aijxj = 1; i = 1; 2; : : : ;m (2)xj 2 f0; 1g; j = 1; 2; : : : ; n : (3)The xj's are 0{1 deision variables that indiate whih duties belong to the solution. TheoeÆient aij equals 1 if duty j ontains trip i, otherwise, aij is 0. This is a lassialset partitioning problem where the rows represent all trips and the olumns represent allfeasible duties.We developed a onstraint program to ount all feasible duties both in OS 2222 and inOS 3803. Table 2 summarizes the results for inreasing initial setions (olumn \#Trips")of the input data. The time (olumn \Time") needed to ount the number of feasible duties(olumn \#FD") is also presented. For OS 2222, we get in exess of one million feasibleduties, and for OS 3803 we get more than 122 million feasible duties.It would be possible to adopt a set overing formulation if we replaed the `=' sign bya `�' sign in (2). In pratie, this results in having rews riding on buses just like ordinarypassengers. Despite the fat that a less expensive solution ould arise from the set overingmodel, the latter was not used in pratie sine it may bring diÆulties to the operationalontrol.1.4.1 A Pure Integer Programming ApproahIn the pure IP approah, we used a onstraint program to generate an output �le ontainingall feasible duties. A program was developed in C to make this �le onform to the CPLEXinput format (CPLEX is a registered trademark of ILOG, In.). The resulting �le was fedinto a CPLEX LP solver. The node seletion strategy used was best-�rst and branhingwas done upon the most frational variable. Every other setting of the branh-and-boundalgorithm used the standard default CPLEX on�guration.The main problem with the IP approah is lear: the number of feasible duties isenormous. Computational results for OS 2222 appear in Table 3, olumns under \Pure IP".In that table, olumns \Opt" and \Sol" indiate, respetively, the optimal and omputedvalues for the orresponding run. It soon beame apparent that the pure IP approahusing the CPLEX solver would not be apable of obtaining the optimal solution for theomplete OS 2222 problem instane. Besides, memory usage was also inreasing at analarming pae, and exeution time was lagging behind when ompared to other approahesthat were being developed in parallel. As an alternative, we deided to implement a olumngeneration approah.



Hybrid Approahes for Real World Crew Management Problems 7Table 2: Number of feasible duties for OS 2222 and OS 3803OS 2222 (1 relief point) OS 3803 (2 relief points)# Trips #FD Time # Trips #FD Time10 63 0.07 20 978 1.4020 306 0.33 40 6,705 5.9830 1,032 0.99 60 45,236 33.1940 5,191 5.38 80 256,910 00:03:1950 18,721 21.84 100 1,180,856 00:18:3460 42,965 00:01:09 120 3,225,072 00:57:5370 104,771 00:03:10 140 8,082,482 02:59:1780 212,442 00:05:40 160 18,632,680 08:12:2890 335,265 00:07:48 180 33,966,710 14:39:21100 496,970 00:10:49 200 54,365,975 17:55:26110 706,519 00:14:54 220 83,753,429 42:14:35125 1,067,406 01:00:27 246 122,775,538 95:49:541.4.2 Column Generation with Dynami ProgrammingColumn generation is a tehnique that is widely used to handle linear programs whih havea very large number of olumns in the oeÆient matrix (see [1℄). The method works byrepeatedly exeuting two phases. In a �rst phase, instead of solving a linear relaxation ofthe whole problem, in whih all olumns are required to be loaded in memory, we quiklysolve a smaller problem, alled the master problem, that deals only with a subset of theoriginal olumns. That smaller problem solved, we start phase two, looking for olumns withnegative redued osts. If there are no suh olumns, we have proved that the solution athand indeed minimizes the objetive funtion. Otherwise, we augment the master problemby bringing in a number of olumns with negative redued ost, and start over on phaseone. From the pure IP formulation above, the redued ost of a feasible duty d is givenby 1 �Pj2T uj, where T is the set of trips ontained in d and uj is the value of the dualvariable assoiated with trip j. The problem of omputing olumns with negative reduedosts is alled the slave subproblem. When the original variables have integer values, thisalgorithm must be embedded in a branh-and-bound strategy. The resulting algorithm isalso known as branh-and-prie.Initializing. In order to start the algorithm, one has to deide how to setup the �rstmaster problem. Aording to a general guideline from [29℄, one should avoid trivial olumnsand also some apparently good initial olletion of olumns that may ause the method towander into unpromising regions. In our ase, however, a trivial initialization worked best.In an attempt to ahieve a better performane, we augmented the initial identity matrixwith a set of olumns omputed using the onstraint program disussed in Set. 1.5.1.



8 T. Yunes, A. Moura and C. de SouzaTable 3: Computational results for OS 2222 (1 relief point)Pure IP CG+DP Heuristi# Trips #FD Opt Sol Time Sol Time Sol Time10 63 7 7 0.02 7 0.01 7 0.0520 306 11 11 0.03 11 0.07 11 0.3030 1,032 14 14 0.06 14 0.52 14 10.3740 5,191 14 14 3.04 14 9.10 14 13.0250 18,721 14 14 14.29 14 00:01:29 14 00:30:0060 42,965 14 14 00:01:37 14 00:07:54 14 00:30:2270 104,771 14 14 00:04:12 14 00:44:19 14 00:03:2880 212,442 16 16 00:33:52 16 03:53:58 16 00:16:2490 335,265 18 18 00:50:28 18 08:18:53 18 00:22:42100 496,970 20 20 02:06:32 20 15:08:55 20 00:50:01110 706,519 22 - - - - 22 01:06:17125 1,067,406 25 - - - - 25 01:55:12Computational results did not favor this alternative and we refrained from using it insubsequent experiments. The master problems were solved using the CPLEX LP solver.Generating Columns. In general, the slave subproblem an also be formulated as an-other IP problem. In our ase, onstraints like the one on split-shift duties substantiallyompliate the formulation of a pure IP model. As another approah, [13℄ suggest reduingthe slave subproblem to a onstrained shortest path problem, formulated over a relateddireted ayli graph G. When the algorithm for solving the slave problem is about tostart, the value of all the dual variables an be easily extrated from the linear relaxationsolution of the urrent master problem. For eah trip i, we inlude in G two nodes, Si andEi, representing the start and end times of i, respetively, and an ar alled a trip ar fromSi to Ei. Eah trip ar is assigned a ost ui, whih is the same as the urrent value of thedual variable assoiated with trip i. An ar with ost zero onnets the end vertex of atrip i to the start vertex of a trip j whenever the end time of i preedes the start time ofj. Also, zero ost ars onnet a soure node s to the start verties of all trips, and someother zero ost ars onnet the end verties of all trips to a sink node t. In this way, a pathp from s to t in G represents a duty D, and the ost assoiated to p is the sum Pi2D ui,sine only trip ars in p have nonzero osts. From the IP formulation, we know that theredued ost of a duty D is given by 1 �Pi2D ui. Hene, to obtain a duty with negativeredued ost we seek a path in G whose assoiated ost is greater than 1. But we also needto guarantee that suh a path represents a feasible duty. To this end, the algorithm keepstrak of the resoure onsumption of eah path it is dynamially onstruting. When thenext trip ar is added to a path, the latter beomes infeasible if this trip ar depletes anyresoure beyond its limits. If the path remains feasible, the resoures onsumed by the new



Hybrid Approahes for Real World Crew Management Problems 9trip ar adjoined to the path are subtrated from their respetive urrent values, its ostis added to the present ost of the path, and the algorithm resumes looking for the nexttrip ar. This yle terminates when the sink node is reahed. In our ase, besides theost, we used three resoures representing the total working time, the total rest time anda binary value that indiates if the path stands for a split-shift duty. To guarantee thatthe whole path an be reonstruted when the �nal node t is reahed, a bakward pointeris also maintained at eah node. Using �ui as the ost assoiated to trip ar i, a dynamiprogramming algorithm an be implemented to ompute a onstrained shortest path in G.Sine di�erent paths onsume resoures in di�erent amounts, the implementation is furtherompliated beause it is neessary to maintain, at eah node, a list of feasible paths thatan reah that node from s. A path that reahes a node an only be disarded if it is disad-vantageous, in terms of the onsumption of all resoures, with respet to another path thatalso reahes that same node. When this proess terminates, however, it is easy to extratnot only the shortest feasible path, but also a number of additional feasible paths, all withnegative redued osts. We omplemented these ideas with additional improvements from[2℄ and our own experiene.Implementation and Results. To implement the branh-and-prie strategy, the use ofthe ABACUS branh-and-prie framework saved a lot of programming time (ABACUS is aregistered trademark of OREAS GmbH). One of the important issues was the hoie of thebranhing rule. When applying a branh-and-bound algorithm to set partitioning problems,a simple branhing rule is to hoose a binary variable and set it to 1 on one branh and setit to 0 on the other branh, although [29℄ shows that there are situations where this mightnot be the best hoie. This simple branhing rule produed a very small number of nodesin the impliit enumeration tree (41 in the worst ase). Hene, we judged that any possiblemarginal gains did not justify the extra programming e�ort required to implement a moreelaborated branhing rule suh as the one developed by [26℄. In Table 3, olumns under\CG+DP", show the omputational results for OS 2222. This approah did not reah asatisfatory time performane, mainly beause the onstrained shortest path subproblem isrelatively loose. As a pseudo-polynomial algorithm, the state spae at eah node has thepotential of growing exponentially with the input size. The number of feasible paths thatthe algorithm has to maintain beame so large that the time spent looking for olumns withnegative redued ost is responsible for more than 90% of the total exeution time, on theaverage, over all instanes. Table 4 supports this observation.1.4.3 A Heuristi ApproahHeuristis o�er another approah to solve rew sheduling problems and there are manypossible variations. Initially, we set aside those heuristis that were unable to reah anoptimal solution. As a promising alternative, we deided to implement the set overingheuristi developed by [4℄. This heuristi won the FASTER ompetition jointly organizedby the Italian Railway Company and AIRO, solving, in a reasonable time, large set over-ing problems arising from rew sheduling. Using our own experiene and additional ideasfrom the hapter on Lagrangian Relaxation in [25℄, an implementation was written in C



10 T. Yunes, A. Moura and C. de SouzaTable 4: Priing time for the branh-and-prie algorithm in Setion 1.4.2 over OS 2222# Trips Priing Time Total Time Priing TimeTotal Time %20 0.04 0.07 57.130 0.43 0.52 82.740 8.82 9.10 96.950 00:01:26 00:01:29 96.960 00:07:45 00:07:54 98.270 00:43:58 00:44:19 99.280 03:53:06 03:53:58 99.690 08:18:11 08:18:53 99.9100 15:07:22 15:08:55 99.8
Table 5: Heuristi over OS 3803 (2 relief points)#Trips #FD Opt Sol Time20 978 6 6 0.3540 6,705 13 13 3.6060 45,236 15 15 52.0180 256,910 15 15 00:08:11100 1,180,856 15 15 00:13:51110 2,015,334 15 15 00:23:24

and went through a long period of testing and benhmarking. Tests exeuted on set over-ing instanes oming from the OR-Library showed that our implementation is ompetitivewith the original implementation in terms of solution quality. When this algorithm ter-minates, it also produes a lower bound for the optimal overing solution, whih ould beused as a bound for the partitioning problem as well. We veri�ed, however, that on thelarger instanes, the solution produed by the heuristi turned out to be a partition already.Computational results for OS 2222 appear in Table 3, olumns under \Heuristi". Com-paring all three implementations, it is lear that the heuristi approah produed the bestresults. However, applying this heuristi to the larger OS 3803 data set was problemati.Sine storage spae has to be alloated to aommodate all feasible olumns, memory usagebeomes prohibitive. It was possible to solve instanes with up to 2 million feasible duties,as indiated in Table 5. Beyond that limit, 320 MB of main memory were not enough forthe program to terminate.



Hybrid Approahes for Real World Crew Management Problems 111.5 A Constraint Logi Programming ApproahModeling with �nite domain onstraints is rapidly gaining aeptane as a promising pro-gramming environment to solve large ombinatorial problems. This led us to model therew sheduling problem using pure Constraint Logi Programming (CLP) tehniques aswell. All models desribed in this setion were formulated using the ECLiPSe syntax(http://www.ipar.i.a.uk/elipse). Due to its large size, the ECLiPSe formula-tion for eah run was obtained using a program generator that we developed in C.A simple pure CLP formulation was developed �rst. It used a list of items, eah itembeing itself a list desribing an atual duty. A number of reursive prediates guaranteedthat eah item would satisfy all labor and regulation onstraints (see Set. 1.3), and alsoenfored restritions of time and relief point ompatibility between onseutive trips. Thesefeasibility prediates iterated over all list items. The database ontained one fat for eahline of input data, as explained in Set. 1.2. The resulting model was very simple to programin a delarative environment. The formulation, however, did not reah satisfatory resultswhen submitted to the ECLiPSe solver, as shown in Table 6, olumns under \First Model".A number of di�erent labeling tehniques, di�erent lause orderings and several variants ononstraint representation were explored, to no avail. When proving optimality, the situationwas even worse. It was not possible to prove optimality for instanes with only 10 trips inless than an hour of exeution time. The main reason for this poor performane may resideon the reursiveness of the list representation, and on the absene of reasonable lower andupper bounds on the value of the optimal solution whih ould aid the solver to disardunpromising labelings.1.5.1 An Improved ModelThe new model is based on a two dimensional matrix X of integers. The number of olumns(rows) in X, UBdutyLen (UBnumDut ), is an upper bound on the size of any feasible duty(the total number of duties). To alulate UBdutyLen, we start by summing up the durationsof the trips, taken in non-dereasing order. When we reah a value that is greater thanmaximum working time minutes, UBdutyLen is set to the number of trips used in the sum.Initially, we used the number of trips as a rough estimate for UBnumDut. As the de�nitivevalue for UBnumDut we used the number of duties on the �rst feasible solution found bythe CLP solver. Eah Xij element represents a single trip and is a �nite domain variablewith domain [1::NT ℄, where NT = UBdutyLen � UBnumDut. Real trips are numberedfrom 1 to N , where N � NT . Trips numbered N + 1 to NT are dummy trips. To simplifythe writing of some onstraints, the last trip in eah line of X is always a dummy trip.A proper hoie of the start time, duration and relief points of the dummy trips avoidstime and relief point inompatibilities among them and, besides, prevents the ourreneof dummy trips between real trips. Moreover, the hoie of start times for all dummy tripsguarantees that they oupy onseutive ells at the end of every line in X. The start timeof the �rst dummy trip equals the arrival time of the last real trip plus one minute and itsduration is zero minutes. All the subsequent dummy trips also last zero minutes and theirstart times are suh that there is a one minute idle interval between onseutive dummy



12 T. Yunes, A. Moura and C. de SouzaTable 6: Pure CLP models, OS 2222 data setFirst Model Improved ModelFeasible Feasible Optimal#Trips #FD Opt Sol Time Sol Time Sol Time10 63 7 7 0.35 7 0.19 7 0.6320 306 11 11 12.21 11 0.47 11 9.2230 1,032 14 15 00:02:32 15 0.87 14 00:29:1740 5,191 14 15 00:14:27 15 0.88 - > 24:00:0050 18,721 14 15 00:53:59 15 0.97 - -60 42,965 14 - - 15 2.92 - -70 104,771 14 - - 16 3.77 - -80 212,442 16 - - 19 8.66 - -90 335,265 18 - - 24 17.97 - -100 496,970 20 - - 27 29.94 - -110 706,519 22 - - 27 39.80 - -125 1,067,406 25 - - 32 00:01:21 - -trips, i.e., they start at eah following minute. Their departure and arrival relief points areequal to 0. Using this representation, the set partitioning ondition an be easily met withan alldifferent onstraint applied to a list that ontains all the Xij variables.Five other matries were used: Start, End, Dur, DepRP and ArrRP. Cell (i; j) ofthese matries represents, respetively, the start time, the end time, the duration, and thedeparture and arrival relief points of the trip assigned to Xij . Next, we state onstraintsin the form element(Xij; S;Startij), where S is a list ontaining the start times of all theNT trips. The semantis of this onstraint assures that Startij is the k-th element of listS where k is the value in Xij . This maintains the desired relationship between matriesX and Start. Whenever Xij is updated, Startij is also modi�ed, and vie-versa. Similaronstraints are stated between X and eah one of the four other matries. Now, we anwrite Endij � Starti(j+1) (4)ArrRPij +DepRPi(j+1) 6= 3 (5)Idleij = BDij � �Starti(j+1) � Endij� (6)for all i 2 f1; : : : ;UBnumDutg and all j 2 f1; : : : ;UBdutyLen�1g. Equation (4) guaranteesthat trips overlapping in time are not in the same duty. Sine the maximum number ofrelief points is two, an inompatibility of two onseutive trips is prevented by (5). In (6),the binary variables BDij are suh that BDij = 1 if and only if Xi(j+1) ontains a real trip.



Hybrid Approahes for Real World Crew Management Problems 13Hene, the onstraint on total working time, for eah duty i, is given byUBdutyLen�1Xj=1 (Durij +BIij � Idleij) �Workday ; (7)where BIij is a binary variable suh that BIij = 1 if and only if Idleij � Idle Limit. Theonstraint on total rest time isWorkday � UBdutyLen�1Xj=1 Durij + UBdutyLen�1Xj=1 (Idleij � BIij � Idleij) � Min Rest (8)for eah duty i. Note that Idle, BD and BI are also matries in the CLP program. Forsplit-shift duties, we also impose that at most one of the Idleij variables an assume a valuegreater than Idle Limit. This is done with an atmost onstraint in the following manner,for eah duty i: atmost(1; L; 0). If list L ontains all the BIij variables of (7), this meansthat at most one of them an assume the value zero.1.5.2 Re�nements and ResultsThe exeution time of this model was further improved by:Elimination of Symmetries | Solutions that are permutations of lines of X are equivalent.To bar suh equivalenes, the �rst olumn of the X matrix was kept sorted. Sineexhanging the position of dummy trips gives equivalent solutions, new onstraintswere used to prevent this from happening when baktraking.Domain Redution | Certain trips an only appear on a subset of the available ells. Forinstane, the �rst real trip an only appear in X1;1.Use of Another Viewpoint | As in [10℄, di�erent viewpoints were also used. New Yk vari-ables were introdued representing \the ell that stores trip k", as opposed to the Xijvariables that mean \the trip that is put in ell ij" (an ij ell an be representedby the number (i � 1) � UBdutyLen + j). The Yk variables were onneted to theXij variables through hanneling onstraints. The result is a redundant model withimproved propagation properties.Di�erent Labeling Strategies | Various labeling strategies were tried, inluding the one de-veloped by [20℄. The strategy of hoosing the next variable to label as the one withthe smallest domain (�rst-fail) was the most e�etive one. After hoosing a variable,it is neessary to selet a value from its domain following a spei� order, when bak-traking ours. We tested di�erent labeling orders, like inreasing, dereasing, andalso middle-out and its reverse. Experimentation showed that labeling by inreas-ing order ahieved the best results. On the other hand, when using viewpoints, theheuristi developed by [20℄ rendered the model roughly 15% faster. The basi idea isto label an X variable aording to the domain size of the assoiated Y variables. Inour ase, for instane, if the urrent domain of variable X2;5 is [1; 7; 8℄, the �rst value



14 T. Yunes, A. Moura and C. de Souzato be seleted for labeling will be 8 if and only if Y8 has the smallest domain amongvariables Y1, Y7 and Y8.The improved purely delarative model produed feasible shedules in a very good time,as indiated in Table 6, under olumns \Improved Model". Obtaining provably optimalsolutions, however, was still out of reah for this model. [18℄ and [12℄ have also reporteddiÆulties when trying to solve rew sheduling problems with a pure CLP approah. Find-ing the optimal shedule redues to hoosing, from an extremely large set of elements, aminimal subset that satis�es all the problem onstraints. The huge searh spaes involvedan only be dealt with satisfatorily when pruning is enfored by strong loal onstraints.Besides, a simple searh strategy, laking good problem spei� heuristis, is very unlikelyto sueed. When solving sheduling problems of this nature and size to optimality, noneof the these requirements an be met easily, rendering it intrinsially diÆult for pure CLPtehniques to produe satisfatory results in these ases.The omparative performane of the previous four isolated approahes an be morelearly appreiated through the graph in Fig. 1, whih summarizes the results for the OS2222 data set. The urves are identi�ed as follows: \CLP" is the Constraint Logi Program-ming approah; \CG+DP" is the olumn generation approah based on Dynami Program-ming; \IP" is the Integer Programming approah and \CFT" is the heuristi approah.
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Figure 1: Performane of the isolated approahes over OS 22221.6 A Hybrid Approah[15℄ has shown that, in some ases, neither the pure IP nor the pure CLP approahesare apable of solving ertain kinds of ombinatorial problems satisfatorily. But a hybrid



Hybrid Approahes for Real World Crew Management Problems 15strategy might outperform them.When ontemplating a hybrid strategy, it is neessary to deide whih part of the prob-lem will be handled by a onstraint solver, and whih part will be dealt with in a morelassial way. Given the huge number of olumns at hand, a olumn generation algorithmseemed to be almost mandatory. As reported in Set. 1.4.2, we already knew that the dy-nami programming olumn generator used in the pure IP approah did not perform well.On the other hand, a delarative language is partiularly suited to express not only theonstraints imposed by the original problem, but also the additional onstraints that mustbe satis�ed when looking for feasible duties with negative redued osts. Given that, it wasa natural deision to implement a olumn generation approah where new olumns weregenerated on demand by a onstraint program. Additionally, the disussion in Set. 1.5.2indiated that the CLP strategy implemented was very eÆient when identifying feasibleduties. It lagged behind only when omputing a provably optimal solution to the originalsheduling problem, due to the minimization onstraint. Sine it is not neessary to �nd aolumn with the most negative redued ost, the behavior of the CLP solver was deemedadequate. It remained to program the CLP solver to �nd a set of new feasible duties withthe extra requirement that their redued ost should be negative.There have been other attempts that somehow explore the idea of integrating IP andCLP into olumn generation algorithms. In the sequel, we identify their main similaritiesand di�erenes with respet to our approah.An early work whih deals with the ooperation of linear and �nite-domain onstraintsolvers for olumn generation is [23℄. The authors model a bin-paking on�guration prob-lem posting onstraints both to a linear solver (a revised Simplex algorithm) and to a�nite-domain onstraint solver. All possible bin on�gurations (olumns) are generated atthe start and then a pure integer linear problem is solved in order to �nd the right quantitiesfor eah type of bin.In [21℄, the authors solve an airline rew assignment problem where the olumn genera-tion subproblem is modeled as a Constrained Shortest Path Problem (CSPP) on a diretedayli graph (DAG). This subproblem is formulated as a onstraint satisfation problem.Nevertheless, although they argue that their results are enouraging, the models and om-putational results are not expliitly desribed. Moreover, they introdue some heuristipruning tehniques whih may prevent the algorithm from �nding a provably optimal solu-tion.[9℄ desribes an iterative ooperation between CLP and linear programming optimizersfor solving the pairing generation problem for airline ompanies. In this ase, the generationproess is guided by heuristis for hoosing \nie" pairings and meta-heuristis whih restritthe exploration of the searh tree. Also, this algorithm is not a branh-and-prie algorithmand the omputational experiments are not quite eluidative beause of the small numberof instanes.[22℄ present a general framework for olumn generation based on Constraint Program-ming. Sometimes, the subproblem of �nding new olumns with negative redued ost hap-pens to be too ompliated for traditional Operations Researh (OR) methods. In theseases, formulating the olumn generator as a onstraint satisfation problem may help. Thisis more or less the same idea presented in our previous work [30℄. It is interesting to note



16 T. Yunes, A. Moura and C. de Souzahere that these two investigations, although leading to similar proposals, have been devel-oped independently and in parallel, and did not borrow ideas from eah other. In [22℄, theframework is instantiated for solving a Crew Assignment problem and the implementationof an eÆient path onstraint for the subproblem is disussed. Their appliation does notgive rise to the need of integrating this framework inside a branh-and-prie algorithm but,aording to the authors, this would not be a problem.Both [14℄ and [27℄ make use of the onstraint-based olumn generation framework pre-sented in [22℄. In [14℄, the authors address one kind of Cutting Stok Problem where theolumn generation subproblem happens to be a Constrained Knapsak Problem (CKP)rather than the usual CSPP. However, the paper onentrates on solving the subproblemeÆiently and does not give details about the whole master-slave interation and the re-sults obtained for the overall Cutting Stok Problem. In [27℄, the authors desribe analgorithm whih integrates a Diret Constraint Programming Based Approah (DCPA)and a CP-based Column Generation Approah (CPCGA), in an iterative way, for the rewassignment problem. The pool of olumns for the master problem is initialized with a setof initial feasible solutions found by the DCPA. Then, the CPCGA �nds a solution for a setovering formulation and the DCPA tries to generate a set partitioning solution throughdeassignment of variables. Some loal re�nements on this solution are performed and theCPCGA is alled again. They show that, in the long run, this ooperation performs bet-ter than both the DCPA or CPCGA alone. However, it is diÆult to have a good notionwith respet to the e�etiveness of their approah sine the omputational experiments arerestrited to two instanes. Besides, there is no guarantee of optimality and no idea of thequality of the solutions is presented.Our hybrid approah di�ers from the aforementioned approahes due to the followingmain aspets: we make use of a omplete branh-and-prie framework, i.e. the linear relax-ation of every node of the branh-and-bound tree is solved by means of a Column Generationalgorithm; sine the total number of feasible olumns is enormous, we do not generate themall in advane; the subproblem of olumn generation is not formulated as a CSPP on aDAG; our experiments are onduted over large real-world data sets; and we guarantee theoptimality of the �nal solutions.1.6.1 Implementation IssuesThe basis of this new algorithm is the same as the one developed for the olumn generationapproah, desribed in Set. 1.4.2. The dynami programming routine is substituted for anECLiPSe proess that solves the slave subproblem and ommuniates with the ABACUSproess through a network onnetion. When the ABACUS proess has solved the urrentmaster problem to optimality, it sends the values of the dual variables to the CLP proess.If there remain some olumns with negative redued osts, some of them are aptured bythe CLP solver and are sent bak to the ABACUS proess, and the yle starts over. Ifthere are no suh olumns, the LP solver has found an optimal solution. Having foundthe optimal solution for this node of the enumeration tree, its dual bound has also beendetermined. The normal branh-and-bound algorithm an then proeed until it is time tosolve another LP. This interation is depited in Fig. 2.
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B&Bnew ols.dual vars.branh LP sol. urrenttreeRC < 0gen. ols.ECLiPSe optimal solution CPLEXmaster LPABACUS +new ols.dual vars.Figure 2: Simpli�ed sheme of the hybrid olumn generation methodThe ode for the CLP olumn generator is almost idential to the ode for the improvedCLP model, presented in Set. 1.5.1. There are three major di�erenes. Firstly, the matrixX now has only one row, sine we are interested in �nding one feasible duty and not aomplete solution. Seondly, there is an additional onstraint stating that the sum of thevalues of the dual variables assoiated with the trips in the duty being onstruted shouldrepresent a negative redued ost. Using the formula to alulate the redued ost of aolumn (feasible duty) given in Setion 1.4.2, this onstraint readsUBdutyLenXi=1 Ci > 1 : (9)For eah i, Ci is determined by element(Xi; U; Ci), where U is a list whose elements arethe values of the dual variables assoiated with eah trip. The dual variables assoiatedwith dummy trips are assigned the value zero.Finally, the minimization prediate was exhanged for a prediate that keeps on lookingfor new feasible duties until the desired number of feasible duties with negative redued ostshave been omputed, or until there are no more feasible assignments. By experimenting withthe data sets at hand, we determined that the number of olumns with negative reduedost to request at eah iteration of the CLP solver was best set to 53. The redundantmodeling, as well as the heuristi suggested by [20℄, both used to improve the performaneof the original CLP formulation, now represented unneessary overhead and were removed.1.6.2 Computational ResultsThe hybrid approah was able to onstrut an optimal solution to substantially largerinstanes of the problem, in a reasonable time. Computational results for OS 2222 andOS 3803 appear on Tables 7 and 8, respetively. Column headings #Trips, #FD, Opt,DBR, #CA, #LP and #Nodes stand for, respetively, number of trips, number of feasibleduties, optimal solution value, dual bound at the root node, number of olumns added,number of linear programming relaxations solved, and number nodes visited. The exeutiontimes are divided in three olumns: PrT, LPT and TT, meaning, respetively, time spentgenerating olumns, time spent solving linear programming relaxations, and total exeutiontime. In every instane, the dual bound at the root node was equal to the value of the



18 T. Yunes, A. Moura and C. de SouzaTable 7: Hybrid algorithm, OS 2222 data set (1 relief point)#Trips #FD Opt DBR #CA #LP #Nodes PrT LPT TT10 63 7 7 53 2 1 0.08 0.02 0.1220 306 11 11 159 4 1 0.30 0.04 0.4230 1,032 14 14 504 11 1 1.48 0.11 2.0740 5,191 14 14 1,000 26 13 8.03 0.98 9.3750 18,721 14 14 1,773 52 31 40.97 3.54 45.2860 42,965 14 14 4,356 107 41 00:04:24 14.45 00:04:4070 104,771 14 14 2,615 58 7 00:01:36 4.96 00:01:4280 212,442 16 16 4,081 92 13 00:01:53 18.84 00:02:1390 335,265 18 18 6,455 141 11 00:02:47 31.88 00:03:22100 496,970 20 20 8,104 177 13 00:06:38 51.16 00:07:34110 706,519 22 22 11,864 262 21 00:16:53 00:02:28 00:19:31125 1,067,406 25 25 11,264 250 17 00:19:09 00:01:41 00:21:00optimal integer solution. Hene, the LP relaxation of the problem already provided thebest possible lower bound on the optimal solution value. Also note that the number ofnodes visited by the algorithm was kept small. The same behavior an be observed withrespet to the number of olumns added.The sizable gain in performane is shown in the last three olumns of eah table. Notethat the time to solve all linear relaxations of the problem was a small fration of the totalrunning time, for both data sets.It is also lear, from Table 7, that the hybrid approah was apable of onstruting aprovably optimal solution for the smaller data set using 21 minutes of running time on a 350MHz desktop PC. That problem involved in exess of one million feasible olumns and wassolved onsiderably faster when ompared with the best performer (see Set. 1.4.3) amongall the previous approahes.The strutural di�erene between both data sets an be observed by looking at the 100trip row, in Table 8. The number of feasible duties on this line is, approximately, the samenumber of one million feasible duties that are present in the totality of 125 trips of the �rstdata set, OS 2222. Yet, the algorithm used roughly twie as muh time to onstrut theoptimal solution for the �rst 100 trips of the larger data set, as it did when taking the 125trips of the smaller data set. Also, the algorithm lagged behind the heuristi for OS 3803,although the latter was unable to go beyond 110 trips, due to exessive memory usage.Finally, when we �xed a maximum running time of 24 hours, the algorithm was apableof onstruting a solution, and prove its optimality, for as many as 150 trips taken from thelarger data set. This orresponds to an exess of 12 million feasible duties. It is noteworthythat less than 60 MB of main memory were needed for this run. A problem instane withas many as 150 � (12:5 � 106) entries would require over 1.8 GB when loaded into main



Hybrid Approahes for Real World Crew Management Problems 19Table 8: Hybrid algorithm, OS 3803 data set (2 relief points)#Trips #FD Opt DBR #CA #LP #Nodes PrT LPT TT20 978 6 6 278 7 1 2.11 0.08 2.2430 2,890 10 10 852 19 1 9.04 0.20 9.3840 6,705 13 13 2,190 48 1 28.60 1.03 30.1450 17,334 14 14 4,220 94 3 00:01:22 3.95 00:01:2760 45,236 15 15 8,027 175 1 00:03:48 14.81 00:04:0670 107,337 15 15 11,622 258 1 00:07:42 40.59 00:08:3780 256,910 15 15 8,553 225 1 00:10:07 47.12 00:10:5890 591,536 15 15 9,827 269 1 00:14:34 00:02:04 00:16:43100 1,180,856 15 15 13,330 375 1 00:39:03 00:04:37 00:43:49110 2,015,334 15 15 13,717 387 1 01:19:55 00:03:12 01:23:19120 3,225,072 16 16 18,095 543 13 04:02:18 00:09:09 04:11:50130 5,021,936 17 17 28,345 874 23 06:59:53 00:30:16 07:30:56140 8,082,482 18 18 27,492 886 25 13:29:51 00:28:56 13:59:40150 12,697,909 19 19 37,764 1,203 25 21:04:28 00:49:13 21:55:25memory. By eÆiently dealing with a small subset of the feasible duties, our algorithmmanaged to surpass the memory bottlenek and solve instanes that were very large. Thisobservation supports our view that a CLP formulation of olumn generation was the rightapproah to solve these very large rew sheduling problems.The omparative performane of the hybrid model against the isolated IP model overthe OS 2222 and OS 3803 data sets is depited in Figs. 3 and 4, respetively. We hosethe IP approah for this omparison for it was the best one among the exat isolatedapproahes. The urves are identi�ed as follows: \IP" is the Integer Programming approahand \Hybrid" is the hybrid olumn generation approah.2 The Crew Rostering ProblemThe duties obtained as output from the solution of the rew sheduling phase must beassigned to rews day after day, throughout an entire planning horizon. This sequeninghas to obey a set of onstraints that di�ers from the onstraints whih are relevant to therew sheduling problem. This set inludes, for example, the need for days o�, with aertain periodiity, and a minimum rest time between onseutive workdays.2.1 Input DataThe set of duties to be performed on weekdays is di�erent from the set of duties to beperformed on weekends or holidays, due to utuations on ustomer demand. Therefore,
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Figure 3: Hybrid olumn generation vs. Integer Programming over OS 2222
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Figure 4: Hybrid olumn generation vs. Integer Programming over OS 3803



Hybrid Approahes for Real World Crew Management Problems 21the rew sheduling problem gives as input for the rostering problem a number of distintsets of duties.The planning horizon we are interested in spans one omplete month. It is importantto take into aount as input data many features of the month under onsideration, suhas: the total number of days, whih days are holidays and whih day of the week is the �rstday of the month (the remaining weekdays an be easily �gured out from this information).The di�erenes in the input data from one month to the next one may lead to variationson the number of rews atually working in eah month. Consequently, some rules mustbe observed in order to selet the rews that are going to be e�etively used. If, say, inmonth m 40 rews were needed, and in month m+1 only 38 will be neessary, how to seletthe 2 rews that are going to be left out? Furthermore, suppose that, after eliminatingthose rews that annot work on the urrent month for some reason, the ompany has 50rews available. Even if the number of rews remains the same, e.g. 40, from one monthto the next one, it is important to evenly distribute the work among them. This balanean be obtained onsidering the number of days eah rew has worked sine the beginningof the year, for example, or with the aid of another kind of ranking funtion for the rews.Finally, sine some onstraints refer to a time window that spans more than one month(see Set. 2.2) some attributes, for eah rew, have to be arried over between suessivemonths.The input data needed to build the roster for month m is the following:� The sets of duties Dwk, Dsa, Dsu and Dho whih have to be performed on weekdays,Saturdays, Sundays and on holidays, respetively;� The number of days, d, in month m;� The ourrene of holidays in month m;� The day of the week orresponding to the �rst day in month m;� The whole set of rews, C, employed by the ompany;� For eah rew i in C:{ The set of days, OFFi, in whih i is o� duty (e.g. vaations, sikness), exludingits ordinary weekly rests;{ The number of days, lsi, between the last Sunday i was o� duty and the �rst dayof month m;{ A binary ag, wri, that is equal to 1 if and only if i had a weekly rest in the lastweek of month m� 1;{ A binary ag, sli, that is equal to 1 if and only if i performed a split-shift dutyduring the last week of month m� 1;{ The di�erene in minutes, lwi, between the last minute i was working in monthm� 1 and the �rst minute of the �rst day of month m;� For eah duty k in Dwk [Dsa [Dsu [Dho:



22 T. Yunes, A. Moura and C. de Souza{ The start and end times of k (tsk and tek, respetively), given in minutes aftermidnight;{ A binary ag, ssk, that equals 1 if and only if k is a split-shift duty;� A list of all rews in C sorted aording to a ertain ranking funtion. This orderingwill be used to assign priorities to the rews when identifying the subset of C that isgoing to work in month m.2.2 Problem ConstraintsThe onstraints assoiated to the sequening of the duties are:(a) The minimum rest time between onseutive workdays is 11 hours;(b) Every employee must have at least one day o� per week. Moreover, for every timewindow spanning 7 weeks, at least one of these days o� must be on a Sunday;() When an employee performs one or more split-shift duties during a week, his day o�in that week must be on Sunday;(d) In every 24-hour period starting at midnight, within the whole planning horizon, eahrew an start to work on at most one duty.2.3 ObjetivesFor eah month, we are looking for the heapest solution in terms of the number of rewsneeded to perform all the duties requested. Additionally, it is desirable to have balanedworkloads among all the rews involved, but the models we present in this artile are notonerned with this issue yet.2.4 The Format of the Input Data SetsBefore desribing the IP and CLP models for the rostering problem, it is important tounderstand the format of the instanes used in the omputational experiments. Theseinstanes orrespond to the atual shedules onstruted by the rew sheduling phasedesribed in Set. 1. Using the duties built during the rew sheduling phase, we haveonstruted a set of instanes ranging from small ones up to large-sized ones, typiallyenountered by the management personnel in the bus ompany. The main features of theseinstanes appear in Table 9.The Name is just a string identifying the instane. The number of rews available for theroster, , appears under the heading #Crews. The olumn #Days shows the number ofdays in the planning horizon in the format d (h), where d is the total number of days and hindiates how many of those d days are holidays. The next four olumns show the numberof duties that must be performed in eah kind of the possible working days: weekdays,Saturdays, Sundays and holidays, respetively. The format used is ss/tt, where tt is thetotal number of duties and ss represents how many of the tt duties are split-shift duties. To



Hybrid Approahes for Real World Crew Management Problems 23Table 9: Desription of the instanes for the experiments# DutiesName #Crews #Days Week Sat Sun Holystring  d (h) sswk/ttwk sssa/ttsa sssu/ttsu ssho/tthobegin with, we set the following parameters, for every rew i: OFFi = ;, lsi = 0, wri = 1,sli = 0 and lwi = 660. This is the same as ignoring any information from the previousmonth when onstruting the roster for the urrent month.2.5 An Integer Programming ApproahLet n be the total number of rews available and let d be the number of days in theurrent month m. Moreover, let p, q, r and s be the numbers of duties to be performedon weekdays, Saturdays, Sundays and holidays, respetively (i.e. jDwkj = p, jDsaj = q,jDsuj = r and jDhoj = s).The IP formulation of the rostering problem is based on xijk binary variables whih areequal to 1 if and only if rew i performs duty k on day j. If j is a weekday, k belongsto f0; 1; : : : ; pg. Analogously, if j is a Saturday, Sunday or holiday, k ranges over f0; p +1; : : : ; p+ qg, f0; p+ q+1; : : : ; p+ q+ rg or f0; p+ q+ r+1; : : : ; p+ q+ r+ sg, respetively.The duty numbered 0 is a speial duty indiating that the rew is o� duty on the given day.Thus, if xij0 = 1 it means that rew i is not working on day j. For modeling purposes, weset ts0 to a very large number, te0 = 0 and ss0 = 0.Given a day j in m, Kj represents its set of duty indexes, exept for the duty 0. Forinstane, if j is a Saturday then Kj = fp+ 1; : : : ; p+ qg.2.5.1 The ModelThe main objetive is to minimize the number of rews working during the present month.This is equivalent to maximizing the number of rews whih are idle during the wholemonth. Let us de�ne new variables yi 2 IR+, for all i 2 f1; : : : ; ng, whih are equal to 1 ifxij0 = 1, for all j 2 f1; : : : ; dg, and are equal to 0 otherwise. To ahieve this behavior forthe yi variables, it is neessary to set the objetive funtion as maxPni=1 yi and to imposethe following onstraints yi � xij0; 8 i; 8 j : (10)Equations (10) ombined with the objetive funtion fore a yi variable to be equal to 1 ifand only if rew i is idle during the entire month.The ourrene of days on whih the rews are known to be o� duty (e.g. previouslyassigned vaations) is satis�ed by settingxij0 = 1; 8 i; 8 j 2 OFFi : (11)



24 T. Yunes, A. Moura and C. de SouzaThe subsequent formulas take are of the feasibility of the roster (see Set. 2.2).Constraints (a) are dealt with in two steps. Equation (12) takes are of the assignmentof duties for the �rst day in month m. For the other days, assume that a rew i does duty kon day j� 1. The set K 0j[k℄ of other duties that annot be taken by the same rew i on dayj beause of the 660-minute minimum rest time is given by fk0 2 Kj j tsk0 � (tek � 1440) <660g. Therefore, (13) guarantees the minimum rest time between suessive days in monthm. xi1k = 0; 8 i; 8 k 2 K1 s.t. tsk + lwi < 660 ; (12)xi(j�1)k + Xk02K0j [k℄xijk0 � 1; 8 i; 8 j 2 f2; : : : ; dg; 8 k 2 Kj�1 : (13)Let us de�ne a omplete week as seven onseutive days, inside month m, ranging fromMonday to Sunday. For every omplete week, W , in m, we impose the mandatory day o�as Xj2W xij0 � 1; 8 i : (14)If month m does not start with a omplete week, let W 0 be the set of days in the �rst weekof m up to Sunday. Eah rew i with wri = 0 needs to rest in W 0 and this is ahieved withXj2W 0 xij0 � 1; 8 i s.t. wri = 0 : (15)The onstraint stating that for eah period of time spanning 7 weeks eah rew must haveat least one day o� on Sunday an be desribed as follows. For eah rew i suh thatlsi + d � 49, we onstrut the set Ti ontaining the Sundays in the �rst (49 � lsi) days ofm. Then, we impose Xj2Ti xij0 � 1; 8 i s.t. lsi + d � 49 : (16)Together, (14) to (16) represent onstraints (b).Suppose that the �rst day of month m is not Monday and let j� be the �rst Sunday inm. To satisfy onstraint () for eah rew i suh that sli = 1, we must state thatxij�0 = 1 : (17)Let Sm be the set of Sundays in m after its sixth day and let Pj be the set of split-shiftduties on day j. For these Sundays, we respet onstraint () withxij0 � Xk2Pj�r xi(j�r)k; 8 i; 8 j 2 Sm; 8 r 2 f1; : : : ; 6g : (18)



Hybrid Approahes for Real World Crew Management Problems 25Table 10: Computational experiments with the IP model# DutiesName #Crews #Days Week Sat Sun Holy LB Sol Times01 10 10 (1) 00/04 00/01 00/01 00/01 4 6 0.62s02 10 15 (2) 00/04 00/01 00/01 00/01 4 7 1.50s03 10 20 (2) 00/04 00/01 00/01 00/01 4 6 2.00s04 10 25 (2) 00/04 00/01 00/01 00/01 4 6 4.33s05 10 30 (2) 00/04 00/01 00/01 00/01 4 8 20.91s06 10 30 (2) 01/04 00/01 00/01 00/01 4 6 9.06s07 10 30 (2) 02/04 00/01 00/01 00/01 4 6 10.61s08 10 30 (2) 03/04 00/01 00/01 00/01 4 7 6.81s09 10 30 (2) 04/04 00/01 00/01 00/01 4 8 9.21s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 5.05s11 10 30 (2) 04/04 01/01 00/01 01/01 4 8 8.35s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 8.90Equation (19) guarantees that eah rew is assigned exatly one duty in eah day, thussatisfying onstraints (d). Additionally, (20) represents the impliit onstraint that everyduty must be performed in eah day, exept for the speial duty 0.xij0 + Xk2Kj xijk = 1; 8 i; 8 j ; (19)nXi=1 xijk = 1; 8 j; 8 k 2 Kj : (20)2.5.2 Computational ResultsThe omputational results obtained with the IP model are shown in Table 10. The �guresunder the heading LB ome from lower bounds on the value of the optimal solution returnedby the linear programming relaxation of the IP model. Notie however that the objetivefuntion desribed in Set. 2.5.1 asks for the maximization of the number of idle rews,whih is equivalent to minimizing the number of rews needed to ompose the roster. Forthe purpose of omparison with the CLP model, the values in the LB and Sol olumns ofTable 10 represent the number of rews atually working, i.e. the total number of rewsavailable minus the value of the objetive funtion. Finding the optimal solution of theinstanes in Table 10 turned out to be a very diÆult task, despite their relatively smallsize. Hene, the solution value in olumn Sol orresponds to the �rst integer solution foundby the model, for eah instane. The linear relaxations and the integer programs were solvedwith the CPLEX Solver. Although the omputation times for the �rst integral solution arequite small, the gap between the values of the lower bounds and the feasible solutions is



26 T. Yunes, A. Moura and C. de Souzanotieable. Further, these values are still not a good indiation of the quality of the model,sine we are dealing with very small instanes. Yet, when trying to �nd integer solutionsfor instanes with tens of duties in a workday, this model performed very poorly and noanswer ould be found within 30 minutes of omputation time. Therefore, we deided toexperiment with a pure Constraint Logi Programming formulation of the problem.2.6 A Constraint Logi Programming ApproahHaving found diÆulties when solving the rew rostering problem with a pure IP model,as desribed in Set. 2.5, we deided to try a onstraint-based formulation. We used theECLiPSe �nite domain onstraint solver to onstrut and solve the model.2.6.1 The ModelLet n, d, p, q, r and s be de�ned as in Set. 2.5. The main idea of the CLP model for therostering problem is to represent the �nal roster as a two-dimensional matrix, X, whereeah ell Xij ontains the duty performed by rew i on day j, for i 2 f1; : : : ; ng andj 2 f1; : : : ; dg.The Xij's are �nite domain variables whose domains depend on the value of j. As inSet. 2.5, the duties obtained from the rew sheduling phase are numbered aording totheir lassi�ation as duties for weekdays, Saturdays, Sundays or holidays. In this model,we will not have the onept of a speial duty for idleness, as the duty numbered 0 in the IPmodel. In fat, we will have, for eah day, a set of dummy duties whih tell that a ertainrew is o� duty.It is easy to see that the number of rews needed to onstrut a roster must be at leastthe maximum number of duties that may be present in any given day of the urrent month.Thus, we an state that n � maxfp; q; r; sg. Consequently, as the number of X variablesfor eah day j is equal to n, if the domains of these variables were restrited to be the setof duties for day j, some of them would have the same value in the �nal solution. As wewill see later, modeling an be simpli�ed if we avoid this situation and here omes the needfor the dummy duties. Let Kj be de�ned as in Set. 2.5. Moreover, let the total numberof duties be alulated as tnd = p+ q + r + s. The domains of the Xij variables are thende�ned as Xij :: Kj [ ftnd+ 1; tnd + 2; : : : ; tnd+ (n� jKj j)g 8 i; 8 j : (21)If Xij is assigned a duty whose number is greater than tnd, it means that rew i is idle onday j.Three other sets of variables have to be de�ned in order to failitate the representationof the onstraints. For all k in f1; : : : ; tndg, let TS, TE and SS be lists of integers de�nedas follows: TS[k℄ = tsk, TE[k℄ = tek� 1440, SS[k℄ = ssk. The values of ts, te and ss for thedummy duties are +1, 0 and 0, respetively. The new variables are alled Startij , Endij



Hybrid Approahes for Real World Crew Management Problems 27and Splitij and relate to the Xij variables through element onstraints:element(Xij ;TS;Startij) ;element(Xij ;TE;Endij) ;element(Xij ;SS;Splitij) :Now we an state the onstraints (a) through (d) in the ECLiPSe notation.Equations (22) and (23) assure that the minimum rest time between onseutive dutiesis 11 hours. Note the speial ase for the �rst day of month m.Starti1 + lwi � 660; 8 i ; (22)Startij � Endi(j�1) � 660; 8 i; 8 j 2 f2; : : : ; dg : (23)Similarly to what was de�ned in Set. 2.5.1, we use the onept of a omplete week, Wi,for eah rew i, as a list of variables [Xit;Xi(t+1); : : : ;Xi(t+6)℄, where t is any Monday andt+ 6 is its subsequent Sunday, both in month m. The need for at least one day o� duringeah week is represented by (24), for omplete weeks. Notie that this onstraint must berepeated for eah omplete week Wi assoiated with every rew i. If wri = 0 and the �rstday of m is not Monday, we also need to impose (25), for eah rew i and initial week W 0i .atmost less(6;Wi; tnd + 1) ; (24)atmost less(jW 0i j � 1;W 0i ; tnd+ 1) : (25)In (25), jW 0i j denotes the number of elements in the list W 0i . To state that at most Nelements of list L an be smaller than V we use the prediate atmost less(N;L; V ). Thisbehavior is ahieved with the de�nitions belowflags_less([℄,_,[℄) :- !.flags_less([X|Y℄,Val,[B|R℄) :- #<(X,Val,B), flags_less(Y,Val,R).atmost_less(N,L,Val) :- flags_less(L,Val,BF), atmost(N,BF,1).To satisfy onstraints (b), there is one ondition missing, besides (24) and (25), whihassumes at least one day o� on Sunday, every seven weeks, for every rew. For eah rew i,if lsi + d � 49, then atmost less(jLij � 1; Li; tnd + 1) ; (26)where Li is a list ontaining the Xij 's assoiated with the Sundays present in the �rst(49� lsi) days of month m.Constraints () also use the onept of omplete weeks, but do not inlude Sundays. Wedenote this redued omplete week W �i as the list [Splitit;Spliti(t+1); : : : ;Spliti(t+5)℄. Notiethat we now onsider the Split variables instead of the X variables, as when representingonstraints (b).Splitit + � � �+ Spliti(t+5) #> 0 #=> Xi(t+6) #> tnd; 8 i; 8W �i ; (27)Xik #> tnd; 8 i : (28)



28 T. Yunes, A. Moura and C. de SouzaBy (27), if one of the Splitit; : : : ;Spliti(t+5) variables equals 1, then rew i must rest on thenext Sunday, whih orresponds to Xi(t+6). The speial ase of the �rst week of m, whenthe month does not start on Monday and sli = 1, is dealt with by (28). Here, k stands forthe �rst Sunday of month m.Our hoie of variables already guarantees that eah rew starts only one duty per day.But we must also make sure that every duty is assigned to one rew on eah day. Beauseof the dummy duties, this ondition an be met easily just by foring the Xij variables tobe pairwise distint, for eah day j:alldifferent([X1j ; : : : ;Xnj ℄); 8 j : (29)Finally, we need to preassign the rest days whih are known in advaneXij #> tnd; 8 i; 8 j 2 OFFi : (30)Labeling is done over the Xij variables using the �rst-fail priniple.Sine there are di�erent numbers that represent dummy duties, we an have manysymmetri solutions. In other words, two rosters that di�er only by the plaement ofdummy duties onstitute the same solution. To avoid this problem and redue the searhspae, additional onstraints had to be inserted into the CLP program. The idea is thefollowing. For eah rew i, if j is the �rst day in the planning horizon when i does notwork, then Xij #= tnd + 1. In general, we enfore that Xij #= tnd + k whenever j is thek-th day on whih rew i is o� duty.2.6.2 Computational ResultsWhen ompared to the IP model of Set. 2.5, this model performed muh better both interms of solution quality and omputation time. As an be seen in Table 11, it was possibleto �nd feasible solutions for fairly large instanes in a few seonds. Again, no minimizationprediate was used and the solutions presented here are the �rst feasible rosters enounteredby the model.Some speial ases deserve further onsideration. When providing 15 rews to build therosters for instanes s16 and s17, the model ould not �nd a feasible solution even after10 hours of searh. Then, after raising the number of available rews in these instanesto 16 (s16a) and 18 (s17a), respetively, solutions were easily found. Another interestingobservation arises from instane s19. This instane omes from the solution of a ompletereal world rew sheduling problem. In this problem, the optimal solution for weekdaysontains 25 duties, 22 of whih are split shifts. As we did not have aess to the inputdata sets for the other workdays, the sets of duties for Saturdays, Sundays and holidaysare subsets of the solution given by the sheduling algorithm for a weekday. Instane s19ais made up of the same duties, exept that all of them are arti�ially onsidered non-splitshifts. Notie that the value of the �rst solution found is signi�antly smaller for instanes19a than it is for instane s19. This is an indiation of how severe is the inuene of theonstraints () introdued in Set. 2.2. Moreover, we an see from Table 11 that the valuesof the solutions grow quikly as the number of split-shift duties inreases. With this point



Hybrid Approahes for Real World Crew Management Problems 29
Table 11: Computational experiments with the CLP model# DutiesName #Crews #Days Week Sat Sun Holy LB Sol Times01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.08s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.18s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.23s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.36s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.48s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.52s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.50s08 10 30 (2) 03/04 00/01 00/01 00/01 4 6 0.52s09 10 30 (2) 04/04 00/01 00/01 00/01 4 7 0.52s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 0.52s11 10 30 (2) 04/04 01/01 00/01 01/01 4 7 0.53s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 0.90s13 15 30 (2) 00/10 00/06 00/05 00/05 10 13 1.22s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 0.28s14 15 30 (2) 03/10 01/06 00/05 01/05 10 13 1.35s15 15 30 (2) 03/10 03/06 00/05 03/05 10 15 1.36s16 15 30 (2) 05/10 03/06 00/05 03/05 10 ? > 10:00:00s16a 16 30 (2) 05/10 03/06 00/05 03/05 10 16 1.49s17 15 30 (2) 07/10 03/06 00/05 03/05 10 ? > 10:00:00s17a 18 30 (2) 07/10 03/06 00/05 03/05 10 18 1.78s18 30 30 (2) 00/20 00/10 00/10 00/10 20 25 4.96s18a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 1.09s19 50 30 (2) 22/25 12/15 12/15 12/15 25 47 14.46s19a 40 30 (2) 00/25 00/15 00/15 00/15 25 33 9.36s20 40 30 (2) 06/26 02/15 02/15 02/15 26 34 10.50s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 34 1.56s21 36 30 (2) 00/31 00/20 00/20 00/20 31 36 8.30s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 34 1.29
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IP CLPFigure 5: IP vs. CLP in terms of solution qualityin mind, we generated two other solutions for the same rew sheduling problem where thetotal number of duties used was inreased in favor of a smaller number of split shifts. Theseare s20 and s21. Despite the larger number of duties in the input, the �nal roster for theseinstanes uses less rews than it did for instane s19. This strengthens the remark madeby [6℄ that, ideally, the sheduling and rostering phases should work ylily, with somefeedbak between them.All instanes in Table 11 do not take into onsideration information from the previousmonth, as mentioned in Set. 2.4. In order to test the CLP model further, we reated onenew instane for eah instane of Table 11. For these new instanes, the values of lsi, wri, sliand lwi, for eah rew i, are set taking the feasible solutions of Table 11 as the work pro�lesof eah rew in the preeding month. The behavior of the CLP program was not a�etedby these more diÆult input data sets and we ould still �nd feasible solutions within veryshort omputational times.Figures 5 and 6 ompare the Integer Programming (IP) and Constraint Logi Program-ming (CLP) models in terms of solution quality and time performane, respetively. Theinstanes on the horizontal axis are named after the same instanes from Table 11, exeptfor the letter \s". It is important to remember that, with the IP model, it was only possibleto �nd feasible solutions for instanes s01 through s12.Similarly to the IP approah, this CLP model was not eÆient to ompute optimalsolutions. Being limited to run for 24 hours, we ould only �nd provably optimal solutionsfor instanes s01, s02 and s03.2.7 Proving OptimalityIn Sets. 2.5 and 2.6, we showed that �nding provably optimal solutions for this rosteringproblem is a diÆult task. Moreover, it is possible to see from Table 11 that the lowerbound provided by the Linear Programming relaxation of the problem is always equal to
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IP CLPFigure 6: IP vs. CLP in terms of time performanethe largest number of duties that must be performed on a workday. This is learly a triviallower bound and probably not a very good one. We deided then to try another formulationfor the problem, so as to �nd better lower bounds or, at least, better feasible solutions.2.7.1 A Hybrid ModelAnother possible mathematial model for the rostering problem turns out to be a typialset partitioning formulation: min nXj=1 xjsubjet to nXj=1 aijxj = 1; 8 i 2 f1; : : : ; egxj 2 f0; 1g; 8 j 2 f1; : : : ; ng :All numbers aij in the oeÆient matrix A are 0 or 1 and its olumns are onstruted asshown in Fig. 7. Eah olumn is omposed of d sequenes of numbers, where d is the numberof days in the planning horizon. For eah k 2 f1; : : : ; dg, the k-th sequene, lk, has lengthhk, where hk is the number of duties that must be performed on day k. Also, at most onenumber inside eah sequene is equal to 1. The number of lines e, in A, equals Pdk=1 hk.( h1z }| {0 � � � 0 1 0 � � � 0 h2z }| {0 � � � 0 1 0 � � � 0 � � � hiz }| {0 � � � 0 � � � hdz }| {0 � � � 0 1 0 � � � 0 )TFigure 7: A olumn in the oeÆient matrix of the set partitioning formulationBesides having the previous harateristis, a olumn in A must represent a feasibleroster for one rew. More preisely, let t = (u1; u2; : : : ; ud) be a feasible roster for a rew,



32 T. Yunes, A. Moura and C. de Souzawhere uk, k 2 f1; : : : ; dg, is the number of the duty performed on day k. Rememberfrom Set. 2.5.1 that uk 2 Dk [ f0g, where Dk is equal to f1; : : : ; pg, fp + 1; : : : ; p + qg,fp+ q + 1; : : : ; p+ q + rg or fp+ q + r + 1; : : : ; p+ q + r + sg, depending on whether k isa weekday, a Saturday, a Sunday or a holiday, respetively. For every suh feasible rostert, A will have a olumn where, in eah sequene lk, the i-th number will be equal to 1(i 2 f1; : : : ; hkg) if and only if uk is the i-th duty of Dk. In ase uk = 0, all numbers insequene lk are set to 0.With this representation, the objetive is to �nd a subset of the olumns of A, withminimum size, suh that eah line is overed exatly one. This is equivalent to �nding anumber of feasible rosters whih exeute all the duties in eah day of the planning horizon.It is not diÆult to see that the number of olumns in the oeÆient matrix is enormousand it is hopeless to try to generate them all in advane. For example, the oeÆientmatrix for an instane as small as s03 already has billions of olumns. Hene, we deided toimplement a branh-and-prie algorithm to solve this problem, generating olumns as theyare needed. This approah is onsidered hybrid beause the olumn generation subproblemis solved by a CLP model. The whole algorithm follows the same basi ideas desribed inSet. 1.6. The model for the olumn generator is a variation of the CLP model of Set. 2.6.Now, instead of looking for a omplete solution for the rostering problem, we are onlyinterested in �nding, at eah time, feasible rosters orresponding to olumns in A withnegative redued osts.2.7.2 Preliminary ResultsThe best results for the hybrid model were ahieved when setting the initial olumns ofmatrix A as the olumns orresponding to the �rst solution found by the CLP model ofSet. 2.6. Also, the ordinary labeling mehanism worked better than labeling aording tothe �rst-fail priniple.With this model, we ould �nd provably optimal solutions for small instanes of therostering problem, as shown in Table 12, where olumn Opt gives the optimal value. By\small instanes" we mean either instanes with a small number of duties to be exeuted ineah day or instanes with a short planning horizon. This is already a notieable improve-ment over the pure IP model of Set. 2.5, whih was not able to �nd any optimal solution,even for the smallest instanes. Besides, when omparing Tables 11 and 12, we an see thatthe �rst solutions found by the pure CLP model for instanes s01 to s04, s13a and s18a areindeed optimal.We believe that the main reason for the poor performane of this algorithm over largerinstanes resides on the fat that the IP formulation of Set. 2.7.1 leads to a highly de-generate problem. When trying to solve larger instanes, the priing subroutine keeps ongenerating olumns inde�nitely, with no improvements on the value of the objetive fun-tion. This is beause there are many basi variables with value zero whih are replaed byother olumns that enter the basis with value zero as well. As a onsequene, the linear re-laxation of the �rst node of the branh-and-prie enumeration tree ould not be ompletelysolved in the medium and large-sized instanes. Thus, in order to obtain better linearprogramming lower bounds, we need to address these degeneray problems more losely.



Hybrid Approahes for Real World Crew Management Problems 33Table 12: Computational experiments with the hybrid model# DutiesName #Crews #Days Week Sat Sun Holy Opt Times01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.66s02 10 15 (2) 00/04 00/01 00/01 00/01 5 2.12s03 10 20 (2) 00/04 00/01 00/01 00/01 5 4.56s04 10 25 (2) 00/04 00/01 00/01 00/01 5 16.72s13a 15 10 (1) 00/10 00/06 00/05 00/05 13 12.73s18a 30 10 (1) 00/20 00/10 00/10 00/10 25 00:04:03s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 21:23:36s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 05:39:50Another problem onerns the labeling poliy whih follows the simplest possible strategy.In the next setion, we present some ideas that were implemented with these de�ienies inmind.2.7.3 Performane ImprovementsWe implemented three major modi�ations in the hybrid algorithm presented so far withthe intent to �nd provably optimal solutions for larger instanes of the rostering problem.These modi�ations are outlined below.Cost Perturbation. Sine the ost of all the olumns in our formulation is equal to 1,we have an undesirable symmetry in the sense that any olumn is, in priniple, as suitablefor the solution as any other. This fat ontributes to intensify the yling behavior of ourhighly degenerate model. We deided then to implement one strategy similar to what waspresented in [17℄ and [28℄. The basi idea is to add a small perturbation, " 2 [�Æ; Æ℄, tothe ost of eah olumn. For this mehanism to funtion orretly, the value of Æ may notbe hosen arbitrarily. The rule is simple: one solution S with k + 1 olumns must alwaysost more than one solution S0 with k olumns. The most ritial situation ours when allolumns in S ost 1� Æ and all olumns in S0 ost 1 + Æ. Then, we must have(k + 1)(1 � Æ) > k(1 + Æ)or, equivalently, Æ < 12k + 1 : (31)As the number of olumns in an optimal solution will never be greater than the total numberof lines, e, in the oeÆient matrix, we set k = e in (31). One �nal observation is relevant.If we were solving an integer program with all olumns loaded in memory, the value of ",



34 T. Yunes, A. Moura and C. de Souzafor eah olumn, ould be randomly hosen inside the interval [�Æ; Æ℄. However, as we aregenerating olumns on demand and the negative redued ost onstraint depends on theost of the olumn in the objetive funtion, the hoie of " must be deterministi. Ourapproah was to divide the [�Æ; Æ℄ interval into p disrete values and then use a mod-typehash funtion to map eah olumn to a spei� value of perturbation ". [11℄ suggest that pshould be a prime number not too lose to a power of 2. We deided then to set p = 1531.Set Covering Formulation. With the problem onstraints desribed in Set. 2.2, it iseasy to see that any sub-roster of a feasible roster is itself another feasible roster. Hene,if we hange the set partitioning formulation of Set. 2.7.1 to a set overing formulation,the �nal overing solution an be transformed in a partition just by removing from somerosters those duties that are performed more than one, if any. This idea was motivated bythe fat that, in general, a set overing formulation of a problem is easier to solve than aset partitioning formulation for the same problem.New Labeling Criterion. Reall from Set. 1.4.2 that the redued ost onstraint forolumn  reads Xj2D uj > Cost ; (32)where D is the set of duties overed by , uj is the value of the dual variable assoiated toduty j and Cost is the oeÆient of  in the objetive funtion. Following a greedy riterion,we deided to label the variables in the CLP olumn generator taking into aount theirontribution to the left hand side of (32). In other words, after hoosing one variable tolabel next, the values in its domain are initially sorted aording to the non-inreasing orderof their orresponding uj values. That is, the duties with the largest orresponding dualvalues are tried �rst. As the sum of uj 's must be greater than Cost, if the largest uj valuesare not large enough, then there is no need to test the smallest values.2.7.4 Computational Results with the Improved AlgorithmThe inlusion or exlusion of eah one of the previous three suggested improvements, lead toeight possible versions of the hybrid algorithm. After omparing the results obtained withall these possible ombinations, the best overall performane was ahieved by an algorithmusing the simplest labeling strategy over a set overing formulation without perturbations onthe osts. These results are summarized in Table 13. On the other hand, when takling thespei� instane s20a, the best overall performane was ahieved by an algorithm using theimproved labeling strategy over a set partitioning formulation without ost perturbation.The latter on�guration ould �nd an optimal solution for instane s20a in less than 16minutes, whereas Table 13 reports more than 12 hours of omputation for the same instane.When omparing Tables 12 and 13, we notie signi�ant gains both in terms of the timeneeded to �nd the optimal solutions and in terms of the sizes of the instanes that wereoptimally solved by the algorithm. The improved versions of the hybrid algorithm still do



Hybrid Approahes for Real World Crew Management Problems 35Table 13: Computational results with the best on�guration of the improved hybrid model# DutiesName #Crews #Days Week Sat Sun Holy Opt Times01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.31s02 10 15 (2) 00/04 00/01 00/01 00/01 5 0.47s03 10 20 (2) 00/04 00/01 00/01 00/01 5 0.62s04 10 25 (2) 00/04 00/01 00/01 00/01 5 0.73s05 10 30 (2) 00/04 00/01 00/01 00/01 5 0.85s06 10 30 (2) 01/04 00/01 00/01 00/01 5 0.89s07 10 30 (2) 02/04 00/01 00/01 00/01 5 0.87s13a 15 10 (1) 00/10 00/06 00/05 00/05 13 7.34s18a 30 10 (1) 00/20 00/10 00/10 00/10 25 20.05s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 12:40:42s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 00:17:19not sale up to an entire planning horizon of one omplete month with a large number ofduties in eah day. Nevertheless, we were able to onstrut optimal weekly rosters for realworld instanes. We believe that further developments on the labeling strategy through theinlusion of more sophistiated guiding heuristis an be used to improve the performaneof this algorithm.3 Conlusions and Future WorkReal world rew management problems often give rise to large set overing or set partitioningformulations. We have given a detailed desription of urban transit rew managementproblems that are part of the daily operation of a medium-sized Brazilian bus ompany. Inpartiular, their rostering problem is rather di�erent from some other bus rew rosteringproblems found in the literature.We have shown a way to integrate pure IP and delarative CLP tehniques into hybridolumn generation algorithms that solved, to optimality, huge instanes of these real worldrew management problems. Obtaining provably optimal solutions for these problems wasa very diÆult task for both IP and CLP approahes when taken in isolation. Our hybridmethodology ombines the strengths of both sides, while getting over their main weaknesses.Another ruial advantage of our hybrid approah over a number of previous attempts isthat it onsiders all feasible duties. Therefore, the need does not arise to use spei� rules toselet, at the start, a subset of \good" feasible duties (or rosters). This kind of preproessingould prevent the optimal solution from being found. Instead, our algorithm impliitlylooks at the set of all feasible duties (rosters), when ativating the olumn generationmethod. When delarative onstraint satisfation formulations are applied to generate newolumns on demand, they have shown to be a very eÆient strategy, in ontrast to Dynami
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