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Abstract

This article considers the overall crew management problem that arises from the daily
operation of an urban transit bus company that serves the metropolitan area of the city
of Belo Horizonte, in Brazil. Due to its intrinsic complexity, the problem is divided in
two distinct problems, namely: crew scheduling and crew rostering. We have tackled
each one of these problems using Mathematical Programming (MP) and Constraint
Logic Programming (CLP) approaches. Besides, we also developed hybrid column gen-
eration algorithms for solving these problems, combining MP and CLP. The hybrid
algorithms always performed better, when obtaining optimal solutions, than the two
previous isolated approaches. In particular, it proved much faster for the scheduling
problem. All the proposed algorithms have been implemented and tested over real
world data obtained from the aforementioned company. The coefficient matrix of the
linear program associated with some instances of the scheduling problem contains tens
of millions of columns, and this number is even larger for the rostering problem. The
analysis of our experiments indicates that it was possible to find high quality, and many
times optimal, solutions that were suitable for the company’s needs. These solutions
were obtained within reasonable computational times, on a typical desktop PC.

Introduction

The overall crew management problem concerns the allocation of trips to crews within a
certain planning horizon. In addition, it is necessary to respect a specific set of operational
constraints and minimize a certain objective function. Being a very hard problem, when
taken in its entirety, it is usually divided in two smaller problems: the crew scheduling
problem and the crew rostering problem (see [6]). In the crew scheduling problem, the aim
is to partition the initial set of trips into a minimal set of feasible duties. Each such duty is
an ordered sequence of trips which is to be performed by the same crew and that satisfies
a subset of the original problem constraints: those related to the sequencing of trips during
a workday. The crew rostering problem takes as input the set of duties output by the crew
scheduling phase and builds a roster spanning a longer period, e.g. months or years. In
the latter case, the roster must satisfy a different set of constraints: those related to rest
periods, vacations and other long term operational restrictions.

*Research supported by FAPESP (grants 97/10982-0 and 98/05999-4), CNPq (300883/94-3), FINEP
(ProNEx 107/97), and CAPES. Submitted for publication.
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This article describes the crew management problem stemming from the operation of a
Brazilian bus company that serves a major urban area in the city of Belo Horizonte. This
area serves more than two million inhabitants, in central Brazil. Since employee wages may
well rise to 50 percent or more of the company’s total expenditures, even small percentage
savings can be quite significant. The related crew scheduling and crew rostering problems
are solved by means of hybrid column generation approaches involving both Integer Pro-
gramming (IP) and Constraint Logic Programming (CLP) techniques. We also present pure
IP and CLP solutions for these problems.

We started with the crew scheduling problem, applying a pure IP formulation, and us-
ing a classical branch-and-bound technique to solve the resulting set partitioning problem.
Since this method requires that all feasible duties are previously inserted into the problem
formulation, all memory resources were rapidly consumed when we reached half a million
feasible duties. To circumvent this difficulty, we implemented a column generation tech-
nique. As suggested by [13], the subproblem of generating feasible duties with negative
reduced cost was transformed into a constrained shortest path problem over a directed
acyclic graph and then solved using Dynamic Programming techniques. However, due to
the size and idiosyncrasies of our real problem instances, this technique did not make much
progress towards solving large instances.

In parallel, we also implemented a heuristic algorithm presented in [4] which produced
very good results on some related large set covering problems. With this implementation,
problems with up to two million feasible duties could be solved to optimality. But this par-
ticular heuristic also requires that all feasible duties be present in memory during execution.
Although some progress with respect to time efficiency was achieved, memory usage was
still a formidable obstacle.

The difficulties we faced when using the previous approaches almost disappeared when
we turned to a language that supports constraint specification over finite domain variables.
We were able to develop and implement our models in a short time, producing code that
was both concise and clear. When executed, it came as no surprise that the model showed
two distinct behaviors, mainly due to the huge size of the search space involved. It was very
fast when asked to compute new feasible duties, but lagged behind the IP methods when
asked to obtain a provably optimal schedule. The search spaces of our problem instances are
enormous and there are no strong local constraints available to help the resolution process.
Also a good heuristic to improve the search strategy does not come easily, as noted in [12].

To harness the capabilities of both the IP and CLP techniques, we resorted to a hybrid
approach to solve the larger, more realistic, problem instances. The main idea is to use the
linear relaxation of a smaller core problem in order to efficiently compute good lower bounds
on the optimal solution value. Using the values of dual variables present in the solution of
the linear relaxation, we can enter a generation phase that computes new feasible duties.
This phase is modeled as a constraint satisfaction problem that searches for new feasible
duties with negative reduced costs. This problem is submitted to the constraint solver,
which returns new feasible duties. After introducing these new duties into the IP problem
formulation, the initial phase can be taken again, restarting the cycle. When the CLP solver
announces the inexistence of new feasible duties with negative reduced cost, the optimality
of the current solution is proved. This algorithm secures the strengths of both the pure IP
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and the pure CLP approaches: only a small subset of all the feasible duties is efficiently
dealt with at a time, and new feasible duties are quickly computed only when they will
make a difference. The resulting code was tested on some large instances, based on real
data. As of this writing, we can solve, in a reasonable time and with proven optimality,
instances of the crew scheduling problem with an excess of 150 trips and 12 million feasible
duties.

Some quite specific union regulations and operational constraints make our rostering
problem fairly distinct from some other known crew rostering problems found in the lit-
erature as [7] and [5]. In general, it is sufficient to construct one initial roster consisting
of a feasible sequencing of the duties that spans the least possible number of days. The
complete roster is then built by just assigning shifted versions of that sequence of duties to
each crew so as to have every duty performed in each day of the planning horizon. In other
common cases such as [19], [8] and [3], the main concern is to balance the workload among
the crews involved. Although we also look for a roster with relatively balanced workloads,
these approaches will not, in general, find the best solution for our purposes. We are not
interested in minimizing the number of days needed to execute the roster, since the length
of the planning horizon is fixed in advance. Our objective is to use the minimum number
of crews when constructing the roster for the given period. Another difficulty comes from
the fact that some constraints behave differently for each crew, depending on the amount
of work assigned to it in the previous month. Moreover, different crews have different needs
for days off, imposed by personal requirements.

Similarly to the crew scheduling problem, we started with models based on pure IP and
CLP techniques to solve the rostering problem. Again, we also developed a hybrid column
generation approach for this problem, which follows the same basic ideas of the one applied
in the crew scheduling phase.

This article is organized as follows. Section 1 describes the crew scheduling problem,
including a number of subsections. In Sect. 1.4, we discuss an IP approach and report on the
implementation of two alternative techniques: standard column generation and heuristics.
In Sect. 1.5, we investigate a pure CLP approach and, in Sect. 1.6, we present the hybrid
approach. All the previous three sections report implementation details and computational
results on real data sets. Section 2 gives a detailed description of the crew rostering problem.
Its subsections present the different solution techniques that were investigated. Section 2.4
explains the format of the input data sets used in our experiments. In Sect. 2.5, we present
an IP formulation of the problem, together with some computational results. A pure CLP
model for the rostering problem is described in Sect. 2.6, where some experiments are
also conducted to evaluate its performance. The results achieved with a hybrid column
generation approach appear in Sect. 2.7. Finally, we draw the main conclusions and discuss
further issues in Sect. 3.

All computation times presented in this text are given in CPU seconds of a Pentium
IT 350 MHz with 320 MB of RAM. Execution times inferior to one minute are reported as
ss.cc, where ss denotes seconds and cc denotes hundredths of seconds. For execution times
that exceed 60 seconds, we use the alternative notation hh:mm:ss, where hh, mm and ss
represent hours, minutes and seconds, respectively.
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1 The Crew Scheduling Problem

In a typical crew scheduling problem, a set of trips has to be assigned to some available
crews. The goal is to assign a subset of the trips to each crew in such a way that no trip
is left unassigned. As usual, not every possible assignment is allowed since a number of
constraints must be observed. Additionally, a cost function has to be minimized.

1.1 Terminology

Among the following terms, some are of general use, while others reflect specifics of the
transportation service for the urban area where the input data came from. A relief point
is a location where crews may change buses and rest. The act of driving a bus from one
relief point to another relief point, passing by no intermediate relief point, is named a trip.
Associated with a trip we have its start time, its duration, its departure relief point, and
its arrival relief point. The duration of a trip is statistically calculated from field collected
data, and depends on many factors, such as the day of the week and the start time of the
trip along the day. A duty is a sequence of trips that are assigned to the same crew. By idle
time we denote any of the time intervals between two consecutive trips in a duty. Whenever
this idle time exceeds Idle_Limit minutes, it is called a long rest. A duty that contains a
long rest is called a split-shift duty or simply a split shift. The rest time of a duty is the
sum of its idle times, not counting long rests. The parameter Min_Rest gives the minimum
amount of rest time, in minutes, that each crew is entitled to. The sum of the durations
of the trips in a duty is called its working time. The sum of the working time and the rest
time gives the total working time of a duty. The parameter Workday is specified by union
regulations and limits the daily total working time.

1.2 Input Data

The input data comes in the form of a two dimensional table where each row represents
one trip. For each trip, the table lists: start time, measured in minutes after midnight,
duration, measured in minutes, initial relief point and final relief point. We have used data
that reflect the operational environment of two bus lines, Line 2222 and Line 3803, that
serve the metropolitan area around the city of Belo Horizonte, in central Brazil. Line 2222
has 125 trips and one relief point and Line 3803 has 246 trips and two relief points. The
input data tables for these lines are called OS 2222 and OS 3803, respectively. Table 1(a)
shows the first 10 rows of OS 3803. By considering initial segments taken from these two
tables, we derived several other smaller problem instances. For example, taking the first
30 trips of OS 2222 gave us a new 30-trip problem instance. A measure of the number of
active trips along a typical day, for both Line 2222 and Line 3803, is shown in Table 1(b).
This figure was constructed as follows. For each (z,y) entry, we consider a time window
T = [z,z + Workday]. The ordinate y indicates how many trips there are with start time s
and duration d such that s € T or s +d € T, i.e., how many trips are active in 7.
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Table 1: (a) Sample from OS 3803 (b) Distribution of trips along the day

Start Dur I. dep. F. dep.

1 38 1 2 07 08 3803
50 40 2 1 100 -
90 38 1 2 80
130 38 2 1 Number of  gg -
(a.) 170 38 1 9 (b) active trips w0 0% 2995
210 38 2 1 20
250 39 1 2 0
290 38 2 1 0 200 400 G600 800 1000 1200 1400
285 45 1 2 Time (minutes)
335 45 2 1

1.3 Constraints

For a duty to be feasible, it has to satisfy constraints imposed by labor contracts and union
regulations, among others. For each duty we must observe

Workday
Min_Rest.

total working time

IV IA

rest time

In each duty and for each pair (i,7) of consecutive trips, where ¢ precedes j, we must have

(start time); + (duration); < (start time);

(final relief point); = (initial relief point); .

Also, at most one long rest is allowed in each duty.

Restrictions from the operational environment impose Idle_Limit = 120, Workday =
440, and Min_Rest = 30, measured in minutes. A feasible duty is a duty that satisfies all
problem constraints. A schedule is a set of feasible duties and an acceptable schedule is
any schedule that partitions the set of all trips. Since the problem specification treats all
duties as indistinguishable, every duty is assigned a unit cost. The cost of a schedule is
the sum of the costs of all its duties. Hence, minimizing the cost of a schedule is the same
as minimizing the number of crews involved in the solution or, equivalently, the number of
duties it contains. A minimal schedule is any acceptable schedule whose cost is minimal.
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1.4 Mathematical Programming Approaches

Let m be the number of trips and n be the total number of feasible duties. The pure IP
formulation of the problem is:

n
minZacj (1)
j=1
n
subject to Zaija;j =1, i=12,...,m (2)
j=1

z;€{0,1}, j=1,2,...,n. (3)

The z;’s are 0-1 decision variables that indicate which duties belong to the solution. The
coefficient a;; equals 1 if duty j contains trip 4, otherwise, a;; is 0. This is a classical
set partitioning problem where the rows represent all trips and the columns represent all
feasible duties.

We developed a constraint program to count all feasible duties both in OS 2222 and in
OS 3803. Table 2 summarizes the results for increasing initial sections (column “# Trips”)
of the input data. The time (column “Time”) needed to count the number of feasible duties
(column “# FD”) is also presented. For OS 2222, we get in excess of one million feasible
duties, and for OS 3803 we get more than 122 million feasible duties.

It would be possible to adopt a set covering formulation if we replaced the ‘=’ sign by
a ‘>’ sign in (2). In practice, this results in having crews riding on buses just like ordinary
passengers. Despite the fact that a less expensive solution could arise from the set covering
model, the latter was not used in practice since it may bring difficulties to the operational
control.

?

1.4.1 A Pure Integer Programming Approach

In the pure IP approach, we used a constraint program to generate an output file containing
all feasible duties. A program was developed in C to make this file conform to the CPLEX
input format (CPLEX is a registered trademark of ILOG, Inc.). The resulting file was fed
into a CPLEX LP solver. The node selection strategy used was best-first and branching
was done upon the most fractional variable. Every other setting of the branch-and-bound
algorithm used the standard default CPLEX configuration.

The main problem with the IP approach is clear: the number of feasible duties is
enormous. Computational results for OS 2222 appear in Table 3, columns under “Pure IP”.
In that table, columns “Opt” and “Sol” indicate, respectively, the optimal and computed
values for the corresponding run. It soon became apparent that the pure IP approach
using the CPLEX solver would not be capable of obtaining the optimal solution for the
complete OS 2222 problem instance. Besides, memory usage was also increasing at an
alarming pace, and execution time was lagging behind when compared to other approaches
that were being developed in parallel. As an alternative, we decided to implement a column
generation approach.
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Table 2: Number of feasible duties for OS 2222 and OS 3803

OS 2222 (1 relief point) ‘ OS 3803 (2 relief points)

# Trips #FD Time | # Trips #FD Time
10 63 0.07 20 978 1.40
20 306 0.33 40 6,705 5.98
30 1,032 0.99 60 45,236 33.19
40 5,191 5.38 80 256,910  00:03:19
50 18,721 21.84 100 1,180,856  00:18:34
60 42,965 00:01:09 120 3,225,072 00:57:53
70 104,771 00:03:10 140 8,082,482  02:59:17
80 212,442  00:05:40 160 18,632,680 08:12:28
90 335,265 00:07:48 180 33,966,710 14:39:21
100 496,970  00:10:49 200 54,365,975 17:55:26
110 706,519  00:14:54 220 83,753,429 42:14:35
125 1,067,406 01:00:27 246 122,775,538 95:49:54

1.4.2 Column Generation with Dynamic Programming

Column generation is a technique that is widely used to handle linear programs which have
a very large number of columns in the coefficient matrix (see [1]). The method works by
repeatedly executing two phases. In a first phase, instead of solving a linear relaxation of
the whole problem, in which all columns are required to be loaded in memory, we quickly
solve a smaller problem, called the master problem, that deals only with a subset of the
original columns. That smaller problem solved, we start phase two, looking for columns with
negative reduced costs. If there are no such columns, we have proved that the solution at
hand indeed minimizes the objective function. Otherwise, we augment the master problem
by bringing in a number of columns with negative reduced cost, and start over on phase
one. From the pure IP formulation above, the reduced cost of a feasible duty d is given
by 1 — ZjeT uj, where T is the set of trips contained in d and u; is the value of the dual
variable associated with trip j. The problem of computing columns with negative reduced
costs is called the slave subproblem. When the original variables have integer values, this
algorithm must be embedded in a branch-and-bound strategy. The resulting algorithm is
also known as branch-and-price.

Initializing. In order to start the algorithm, one has to decide how to setup the first
master problem. According to a general guideline from [29], one should avoid trivial columns
and also some apparently good initial collection of columns that may cause the method to
wander into unpromising regions. In our case, however, a trivial initialization worked best.
In an attempt to achieve a better performance, we augmented the initial identity matrix
with a set of columns computed using the constraint program discussed in Sect. 1.5.1.
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Table 3: Computational results for OS 2222 (1 relief point)

Pure IP CG+DP Heuristic
# Trips #FD Opt Sol Time Sol Time Sol Time
10 63 7 7 0.02 7 0.01 7 0.05
20 306 11 11 0.03 11 0.07 11 0.30
30 1,032 14 14 0.06 14 0.52 14 10.37
40 5,191 14 14 3.04 14 9.10 14 13.02
50 18,721 14 14 14.29 14 00:01:29 14 00:30:00
60 42,965 14 14 00:01:37 14 00:07:54 14 00:30:22
70 104,771 14 14 00:04:12 14 00:44:19 14 00:03:28
80 212,442 16 16 00:33:52 16 03:53:58 16 00:16:24
90 335,265 18 18  00:50:28 18 08:18:53 18  00:22:42
100 496,970 20 20 02:06:32 20 15:08:55 20 00:50:01
110 706,519 22 - - - - 22 01:06:17
125 1,067,406 25 - - - - 25 01:55:12

Computational results did not favor this alternative and we refrained from using it in
subsequent experiments. The master problems were solved using the CPLEX LP solver.

Generating Columns. In general, the slave subproblem can also be formulated as an-
other IP problem. In our case, constraints like the one on split-shift duties substantially
complicate the formulation of a pure IP model. As another approach, [13] suggest reducing
the slave subproblem to a constrained shortest path problem, formulated over a related
directed acyclic graph G. When the algorithm for solving the slave problem is about to
start, the value of all the dual variables can be easily extracted from the linear relaxation
solution of the current master problem. For each trip 4, we include in G two nodes, S; and
E;, representing the start and end times of ¢, respectively, and an arc called a trip arc from
S; to E;. Each trip arc is assigned a cost u;, which is the same as the current value of the
dual variable associated with trip 2. An arc with cost zero connects the end vertex of a
trip ¢ to the start vertex of a trip j whenever the end time of ¢ precedes the start time of
j. Also, zero cost arcs connect a source node s to the start vertices of all trips, and some
other zero cost arcs connect the end vertices of all trips to a sink node ¢t. In this way, a path
p from s to ¢ in G represents a duty D, and the cost associated to p is the sum » 7, u;,
since only trip arcs in p have nonzero costs. From the IP formulation, we know that the
reduced cost of a duty D is given by 1 — >,/ u;. Hence, to obtain a duty with negative
reduced cost we seek a path in G whose associated cost is greater than 1. But we also need
to guarantee that such a path represents a feasible duty. To this end, the algorithm keeps
track of the resource consumption of each path it is dynamically constructing. When the
next trip arc is added to a path, the latter becomes infeasible if this trip arc depletes any
resource beyond its limits. If the path remains feasible, the resources consumed by the new
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trip arc adjoined to the path are subtracted from their respective current values, its cost
is added to the present cost of the path, and the algorithm resumes looking for the next
trip arc. This cycle terminates when the sink node is reached. In our case, besides the
cost, we used three resources representing the total working time, the total rest time and
a binary value that indicates if the path stands for a split-shift duty. To guarantee that
the whole path can be reconstructed when the final node ¢ is reached, a backward pointer
is also maintained at each node. Using —u; as the cost associated to trip arc 4, a dynamic
programming algorithm can be implemented to compute a constrained shortest path in G.
Since different paths consume resources in different amounts, the implementation is further
complicated because it is necessary to maintain, at each node, a list of feasible paths that
can reach that node from s. A path that reaches a node can only be discarded if it is disad-
vantageous, in terms of the consumption of all resources, with respect to another path that
also reaches that same node. When this process terminates, however, it is easy to extract
not only the shortest feasible path, but also a number of additional feasible paths, all with
negative reduced costs. We complemented these ideas with additional improvements from
[2] and our own experience.

Implementation and Results. To implement the branch-and-price strategy, the use of
the ABACUS branch-and-price framework saved a lot of programming time (ABACUS is a
registered trademark of OREAS GmbH). One of the important issues was the choice of the
branching rule. When applying a branch-and-bound algorithm to set partitioning problems,
a simple branching rule is to choose a binary variable and set it to 1 on one branch and set
it to 0 on the other branch, although [29] shows that there are situations where this might
not be the best choice. This simple branching rule produced a very small number of nodes
in the implicit enumeration tree (41 in the worst case). Hence, we judged that any possible
marginal gains did not justify the extra programming effort required to implement a more
elaborated branching rule such as the one developed by [26]. In Table 3, columns under
“CG+DP”, show the computational results for OS 2222. This approach did not reach a
satisfactory time performance, mainly because the constrained shortest path subproblem is
relatively loose. As a pseudo-polynomial algorithm, the state space at each node has the
potential of growing exponentially with the input size. The number of feasible paths that
the algorithm has to maintain became so large that the time spent looking for columns with
negative reduced cost is responsible for more than 90% of the total execution time, on the
average, over all instances. Table 4 supports this observation.

1.4.3 A Heuristic Approach

Heuristics offer another approach to solve crew scheduling problems and there are many
possible variations. Initially, we set aside those heuristics that were unable to reach an
optimal solution. As a promising alternative, we decided to implement the set covering
heuristic developed by [4]. This heuristic won the FASTER competition jointly organized
by the Italian Railway Company and AIRO, solving, in a reasonable time, large set cover-
ing problems arising from crew scheduling. Using our own experience and additional ideas
from the chapter on Lagrangian Relaxation in [25], an implementation was written in C
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Table 4: Pricing time for the branch-and-price algorithm in Section 1.4.2 over OS 2222

T. Yunes, A. Moura and C. de Souza

# Trips Pricing Time Total Time % %
20 0.04 0.07 57.1
30 0.43 0.52 82.7
40 8.82 9.10 96.9
50 00:01:26 00:01:29 96.9
60 00:07:45 00:07:54 98.2
70 00:43:58 00:44:19 99.2
80 03:53:06 03:53:58 99.6
90 08:18:11 08:18:53 99.9
100 15:07:22 15:08:55 99.8

Table 5: Heuristic over OS 3803 (2 relief points)

# Trips #FD Opt Sol Time
20 978 6 6 0.35
40 6,706 13 13 3.60
60 45,236 15 15 52.01
80 256,910 15 15 00:08:11
100 1,180,856 15 15 00:13:51
110 2,015,334 15 15 00:23:24

and went through a long period of testing and benchmarking. Tests executed on set cover-
ing instances coming from the OR-Library showed that our implementation is competitive
with the original implementation in terms of solution quality. When this algorithm ter-
minates, it also produces a lower bound for the optimal covering solution, which could be
used as a bound for the partitioning problem as well. We verified, however, that on the
larger instances, the solution produced by the heuristic turned out to be a partition already.
Computational results for OS 2222 appear in Table 3, columns under “Heuristic”. Com-
paring all three implementations, it is clear that the heuristic approach produced the best
results. However, applying this heuristic to the larger OS 3803 data set was problematic.
Since storage space has to be allocated to accommodate all feasible columns, memory usage
becomes prohibitive. It was possible to solve instances with up to 2 million feasible duties,
as indicated in Table 5. Beyond that limit, 320 MB of main memory were not enough for
the program to terminate.
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1.5 A Constraint Logic Programming Approach

Modeling with finite domain constraints is rapidly gaining acceptance as a promising pro-
gramiming environment to solve large combinatorial problems. This led us to model the
crew scheduling problem using pure Constraint Logic Programming (CLP) techniques as
well. All models described in this section were formulated using the ECL‘PS® syntax
(http://www.icparc.ic.ac.uk/eclipse). Due to its large size, the ECL'PS® formula-
tion for each run was obtained using a program generator that we developed in C.

A simple pure CLP formulation was developed first. It used a list of items, each item
being itself a list describing an actual duty. A number of recursive predicates guaranteed
that each item would satisfy all labor and regulation constraints (see Sect. 1.3), and also
enforced restrictions of time and relief point compatibility between consecutive trips. These
feasibility predicates iterated over all list items. The database contained one fact for each
line of input data, as explained in Sect. 1.2. The resulting model was very simple to program
in a declarative environment. The formulation, however, did not reach satisfactory results
when submitted to the ECL!PS® solver, as shown in Table 6, columns under “First Model”.
A number of different labeling techniques, different clause orderings and several variants on
constraint representation were explored, to no avail. When proving optimality, the situation
was even worse. It was not possible to prove optimality for instances with only 10 trips in
less than an hour of execution time. The main reason for this poor performance may reside
on the recursiveness of the list representation, and on the absence of reasonable lower and
upper bounds on the value of the optimal solution which could aid the solver to discard
unpromising labelings.

1.5.1 An Improved Model

The new model is based on a two dimensional matrix X of integers. The number of columns
(rows) in X, UBdutyLen (UBnumDut ), is an upper bound on the size of any feasible duty
(the total number of duties). To calculate UBdutyLen, we start by summing up the durations
of the trips, taken in non-decreasing order. When we reach a value that is greater than
mazximum working time minutes, UBdutyLen is set to the number of trips used in the sum.
Initially, we used the number of trips as a rough estimate for UBnumDut. As the definitive
value for UBnumDut we used the number of duties on the first feasible solution found by
the CLP solver. Each X;; element represents a single trip and is a finite domain variable
with domain [1..NT], where NT = UBdutyLen x UBnumDut. Real trips are numbered
from 1 to N, where N < NT'. Trips numbered N + 1 to NT are dummy trips. To simplify
the writing of some constraints, the last trip in each line of X is always a dummy trip.
A proper choice of the start time, duration and relief points of the dummy trips avoids
time and relief point incompatibilities among them and, besides, prevents the occurrence
of dummy trips between real trips. Moreover, the choice of start times for all dummy trips
guarantees that they occupy consecutive cells at the end of every line in X. The start time
of the first dummy trip equals the arrival time of the last real trip plus one minute and its
duration is zero minutes. All the subsequent dummy trips also last zero minutes and their
start times are such that there is a one minute idle interval between consecutive dummy
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Table 6: Pure CLP models, OS 2222 data set

First Model Improved Model
Feasible Feasible Optimal
# Trips #FD Opt Sol Time Sol Time Sol Time
10 63 7 7 0.35 7 019 7 0.63
20 306 11 11 12.21 11 0.47 11 9.22
30 1,032 14 15 00:02:32 15 0.87 14 00:29:17
40 5,191 14 15 00:14:27 15 0.88 - > 24:00:00
50 18,721 14 15 00:53:59 15 097 - -
60 42,965 14 - - 15 292 - -
70 104,771 14 - - 16 3.77 - -
80 212,442 16 - - 19 8.66 - -
90 335,265 18 - - 24 1797 - -
100 496,970 20 - - 27 29.94 - -
110 706,519 22 - - 27 39.80 - -
125 1,067,406 25 - - 32 00:01:21 - -

trips, i.e., they start at each following minute. Their departure and arrival relief points are
equal to 0. Using this representation, the set partitioning condition can be easily met with
an alldifferent constraint applied to a list that contains all the X;; variables.

Five other matrices were used: Start, End, Dur, DepRP and ArrRP. Cell (i,j) of
these matrices represents, respectively, the start time, the end time, the duration, and the
departure and arrival relief points of the trip assigned to X;;. Next, we state constraints
in the form element (X;;, S, Start;;), where S is a list containing the start times of all the
NT trips. The semantics of this constraint assures that Start;; is the k-th element of list
S where £ is the value in Xj;. This maintains the desired relationship between matrices
X and Start. Whenever X;; is updated, Start;; is also modified, and vice-versa. Similar
constraints are stated between X and each one of the four other matrices. Now, we can

write
ArrRP;j + DepRPyj 1y # 3 (5)
Idleij = BDij X (Starti(jH) — Endij) (6)
foralli € {1,..., UBnumDut} and all j € {1,... , UBdutyLen—1}. Equation (4) guarantees

that trips overlapping in time are not in the same duty. Since the maximum number of
relief points is two, an incompatibility of two consecutive trips is prevented by (5). In (6),
the binary variables BD;; are such that BD;; =1 if and only if X;(;, ) contains a real trip.
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Hence, the constraint on total working time, for each duty %, is given by

U BdutyLen—1
Z (Durij + Bl x Idlej;) < Workday , (7)
7j=1

where BI;; is a binary variable such that BI;; = 1 if and only if Idle;; < Idle_Limit. The
constraint on total rest time is

UBdutyLen—1 UBdutyLen—1
Workday — Z Dur;j + Z (Idle;j — Bl;j x Idle;j;) > Min_Rest  (8)

for each duty . Note that Idle, BD and BI are also matrices in the CLP program. For
split-shift duties, we also impose that at most one of the Idle;; variables can assume a value
greater than Idle_Limit. This is done with an atmost constraint in the following manner,
for each duty i: atmost(l,L,0). If list L contains all the BI;; variables of (7), this means
that at most one of them can assume the value zero.

1.5.2 Refinements and Results
The execution time of this model was further improved by:

Elimination of Symmetries — Solutions that are permutations of lines of X are equivalent.
To bar such equivalences, the first column of the X matrix was kept sorted. Since
exchanging the position of dummy trips gives equivalent solutions, new constraints
were used to prevent this from happening when backtracking.

Domain Reduction — Certain trips can only appear on a subset of the available cells. For
instance, the first real trip can only appear in Xy ;.

Use of Another Viewpoint — As in [10], different viewpoints were also used. New Y}, vari-
ables were introduced representing “the cell that stores trip £”, as opposed to the Xj;;
variables that mean “the trip that is put in cell 45”7 (an 45 cell can be represented
by the number (i — 1) x UBdutyLen + j). The Y} variables were connected to the
Xij; variables through channeling constraints. The result is a redundant model with
improved propagation properties.

Different Labeling Strategies — Various labeling strategies were tried, including the one de-
veloped by [20]. The strategy of choosing the next variable to label as the one with
the smallest domain (first-fail) was the most effective one. After choosing a variable,
it is necessary to select a value from its domain following a specific order, when back-
tracking occurs. We tested different labeling orders, like increasing, decreasing, and
also middle-out and its reverse. Experimentation showed that labeling by increas-
ing order achieved the best results. On the other hand, when using viewpoints, the
heuristic developed by [20] rendered the model roughly 15% faster. The basic idea is
to label an X variable according to the domain size of the associated Y variables. In
our case, for instance, if the current domain of variable Xy 5 is [1,7,8], the first value
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to be selected for labeling will be 8 if and only if Yg has the smallest domain among
variables Y7, Y7 and Yg.

The improved purely declarative model produced feasible schedules in a very good time,
as indicated in Table 6, under columns “Improved Model”. Obtaining provably optimal
solutions, however, was still out of reach for this model. [18] and [12] have also reported
difficulties when trying to solve crew scheduling problems with a pure CLP approach. Find-
ing the optimal schedule reduces to choosing, from an extremely large set of elements, a
minimal subset that satisfies all the problem constraints. The huge search spaces involved
can only be dealt with satisfactorily when pruning is enforced by strong local constraints.
Besides, a simple search strategy, lacking good problem specific heuristics, is very unlikely
to succeed. When solving scheduling problems of this nature and size to optimality, none
of the these requirements can be met easily, rendering it intrinsically difficult for pure CLP
techniques to produce satisfactory results in these cases.

The comparative performance of the previous four isolated approaches can be more
clearly appreciated through the graph in Fig. 1, which summarizes the results for the OS
2222 data set. The curves are identified as follows: “CLP” is the Constraint Logic Program-
ming approach; “CG+DP” is the column generation approach based on Dynamic Program-
ming; “IP” is the Integer Programming approach and “CFT” is the heuristic approach.
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Figure 1: Performance of the isolated approaches over OS 2222

1.6 A Hybrid Approach

[15] has shown that, in some cases, neither the pure IP nor the pure CLP approaches
are capable of solving certain kinds of combinatorial problems satisfactorily. But a hybrid
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strategy might outperform them.

When contemplating a hybrid strategy, it is necessary to decide which part of the prob-
lem will be handled by a constraint solver, and which part will be dealt with in a more
classical way. Given the huge number of columns at hand, a column generation algorithm
seemed to be almost mandatory. As reported in Sect. 1.4.2, we already knew that the dy-
namic programming column generator used in the pure IP approach did not perform well.
On the other hand, a declarative language is particularly suited to express not only the
constraints imposed by the original problem, but also the additional constraints that must
be satisfied when looking for feasible duties with negative reduced costs. Given that, it was
a natural decision to implement a column generation approach where new columns were
generated on demand by a constraint program. Additionally, the discussion in Sect. 1.5.2
indicated that the CLP strategy implemented was very efficient when identifying feasible
duties. It lagged behind only when computing a provably optimal solution to the original
scheduling problem, due to the minimization constraint. Since it is not necessary to find a
column with the most negative reduced cost, the behavior of the CLP solver was deemed
adequate. It remained to program the CLP solver to find a set of new feasible duties with
the extra requirement that their reduced cost should be negative.

There have been other attempts that somehow explore the idea of integrating IP and
CLP into column generation algorithms. In the sequel, we identify their main similarities
and differences with respect to our approach.

An early work which deals with the cooperation of linear and finite-domain constraint
solvers for column generation is [23]. The authors model a bin-packing configuration prob-
lem posting constraints both to a linear solver (a revised Simplex algorithm) and to a
finite-domain constraint solver. All possible bin configurations (columns) are generated at
the start and then a pure integer linear problem is solved in order to find the right quantities
for each type of bin.

In [21], the authors solve an airline crew assignment problem where the column genera-
tion subproblem is modeled as a Constrained Shortest Path Problem (CSPP) on a directed
acyclic graph (DAG). This subproblem is formulated as a constraint satisfaction problem.
Nevertheless, although they argue that their results are encouraging, the models and com-
putational results are not explicitly described. Moreover, they introduce some heuristic
pruning techniques which may prevent the algorithm from finding a provably optimal solu-
tion.

[9] describes an iterative cooperation between CLP and linear programming optimizers
for solving the pairing generation problem for airline companies. In this case, the generation
process is guided by heuristics for choosing “nice” pairings and meta-heuristics which restrict
the exploration of the search tree. Also, this algorithm is not a branch-and-price algorithm
and the computational experiments are not quite elucidative because of the small number
of instances.

[22] present a general framework for column generation based on Constraint Program-
ming. Sometimes, the subproblem of finding new columns with negative reduced cost hap-
pens to be too complicated for traditional Operations Research (OR) methods. In these
cases, formulating the column generator as a constraint satisfaction problem may help. This
is more or less the same idea presented in our previous work [30]. It is interesting to note
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here that these two investigations, although leading to similar proposals, have been devel-
oped independently and in parallel, and did not borrow ideas from each other. In [22], the
framework is instantiated for solving a Crew Assignment problem and the implementation
of an efficient path constraint for the subproblem is discussed. Their application does not
give rise to the need of integrating this framework inside a branch-and-price algorithm but,
according to the authors, this would not be a problem.

Both [14] and [27] make use of the constraint-based column generation framework pre-
sented in [22]. In [14], the authors address one kind of Cutting Stock Problem where the
column generation subproblem happens to be a Constrained Knapsack Problem (CKP)
rather than the usual CSPP. However, the paper concentrates on solving the subproblem
efficiently and does not give details about the whole master-slave interaction and the re-
sults obtained for the overall Cutting Stock Problem. In [27], the authors describe an
algorithm which integrates a Direct Constraint Programming Based Approach (DCPA)
and a CP-based Column Generation Approach (CPCGA), in an iterative way, for the crew
assignment problem. The pool of columns for the master problem is initialized with a set
of initial feasible solutions found by the DCPA. Then, the CPCGA finds a solution for a set
covering formulation and the DCPA tries to generate a set partitioning solution through
deassignment of variables. Some local refinements on this solution are performed and the
CPCGA is called again. They show that, in the long run, this cooperation performs bet-
ter than both the DCPA or CPCGA alone. However, it is difficult to have a good notion
with respect to the effectiveness of their approach since the computational experiments are
restricted to two instances. Besides, there is no guarantee of optimality and no idea of the
quality of the solutions is presented.

Our hybrid approach differs from the aforementioned approaches due to the following
main aspects: we make use of a complete branch-and-price framework, i.e. the linear relax-
ation of every node of the branch-and-bound tree is solved by means of a Column Generation
algorithm; since the total number of feasible columns is enormous, we do not generate them
all in advance; the subproblem of column generation is not formulated as a CSPP on a
DAG; our experiments are conducted over large real-world data sets; and we guarantee the
optimality of the final solutions.

1.6.1 Implementation Issues

The basis of this new algorithm is the same as the one developed for the column generation
approach, described in Sect. 1.4.2. The dynamic programming routine is substituted for an
ECL/PS® process that solves the slave subproblem and communicates with the ABACUS
process through a network connection. When the ABACUS process has solved the current
master problem to optimality, it sends the values of the dual variables to the CLP process.
If there remain some columns with negative reduced costs, some of them are captured by
the CLP solver and are sent back to the ABACUS process, and the cycle starts over. If
there are no such columns, the LP solver has found an optimal solution. Having found
the optimal solution for this node of the enumeration tree, its dual bound has also been
determined. The normal branch-and-bound algorithm can then proceed until it is time to
solve another LP. This interaction is depicted in Fig. 2.
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Figure 2: Simplified scheme of the hybrid column generation method

The code for the CLP column generator is almost identical to the code for the improved
CLP model, presented in Sect. 1.5.1. There are three major differences. Firstly, the matrix
X now has only one row, since we are interested in finding one feasible duty and not a
complete solution. Secondly, there is an additional constraint stating that the sum of the
values of the dual variables associated with the trips in the duty being constructed should
represent a negative reduced cost. Using the formula to calculate the reduced cost of a
column (feasible duty) given in Section 1.4.2, this constraint reads

UBdutyLen

>G>l (9)
=1

For each ¢, C; is determined by element (X;, U, C;), where U is a list whose elements are
the values of the dual variables associated with each trip. The dual variables associated
with dummy trips are assigned the value zero.

Finally, the minimization predicate was exchanged for a predicate that keeps on looking
for new feasible duties until the desired number of feasible duties with negative reduced costs
have been computed, or until there are no more feasible assignments. By experimenting with
the data sets at hand, we determined that the number of columns with negative reduced
cost to request at each iteration of the CLP solver was best set to 53. The redundant
modeling, as well as the heuristic suggested by [20], both used to improve the performance
of the original CLP formulation, now represented unnecessary overhead and were removed.

1.6.2 Computational Results

The hybrid approach was able to construct an optimal solution to substantially larger
instances of the problem, in a reasonable time. Computational results for OS 2222 and
OS 3803 appear on Tables 7 and 8, respectively. Column headings # Trips, # FD, Opt,
DBR, # CA, # LP and # Nodes stand for, respectively, number of trips, number of feasible
duties, optimal solution value, dual bound at the root node, number of columns added,
number of linear programming relaxations solved, and number nodes visited. The execution
times are divided in three columns: PrT, LPT and TT, meaning, respectively, time spent
generating columns, time spent solving linear programming relaxations, and total execution
time. In every instance, the dual bound at the root node was equal to the value of the
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Table 7: Hybrid algorithm, OS 2222 data set (1 relief point)

# Trips #FD Opt DBR #CA #LP # Nodes PrT LPT TT
10 63 7 7 53 2 1 0.08 0.02 0.12
20 306 11 11 159 4 1 0.30 0.04 0.42
30 1,032 14 14 504 11 1 1.48 0.11 2.07
40 5191 14 14 1,000 26 13 8.03 0.98 9.37
50 18,721 14 14 1,773 52 31 40.97 3.54 45.28
60 42,965 14 14 4,356 107 41 00:04:24 14.45 00:04:40
70 104,771 14 14 2,615 58 7 00:01:36 4.96 00:01:42
80 212,442 16 16 4,081 92 13 00:01:53 18.84 00:02:13
90 335,265 18 18 6,455 141 11 00:02:47 31.88 00:03:22
100 496,970 20 20 8,104 177 13 00:06:38 51.16 00:07:34
110 706,519 22 22 11,864 262 21 00:16:53 00:02:28 00:19:31

125 1,067,406 25 25 11,264 250 17 00:19:09 00:01:41 00:21:00

optimal integer solution. Hence, the LP relaxation of the problem already provided the
best possible lower bound on the optimal solution value. Also note that the number of
nodes visited by the algorithm was kept small. The same behavior can be observed with
respect to the number of columns added.

The sizable gain in performance is shown in the last three columns of each table. Note
that the time to solve all linear relaxations of the problem was a small fraction of the total
running time, for both data sets.

It is also clear, from Table 7, that the hybrid approach was capable of constructing a
provably optimal solution for the smaller data set using 21 minutes of running time on a 350
MHz desktop PC. That problem involved in excess of one million feasible columns and was
solved considerably faster when compared with the best performer (see Sect. 1.4.3) among
all the previous approaches.

The structural difference between both data sets can be observed by looking at the 100
trip row, in Table 8. The number of feasible duties on this line is, approximately, the same
number of one million feasible duties that are present in the totality of 125 trips of the first
data set, OS 2222. Yet, the algorithm used roughly twice as much time to construct the
optimal solution for the first 100 trips of the larger data set, as it did when taking the 125
trips of the smaller data set. Also, the algorithm lagged behind the heuristic for OS 3803,
although the latter was unable to go beyond 110 trips, due to excessive memory usage.

Finally, when we fixed a maximum running time of 24 hours, the algorithm was capable
of constructing a solution, and prove its optimality, for as many as 150 trips taken from the
larger data set. This corresponds to an excess of 12 million feasible duties. It is noteworthy
that less than 60 MB of main memory were needed for this run. A problem instance with
as many as 150 x (12.5 x 10°) entries would require over 1.8 GB when loaded into main
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Table 8: Hybrid algorithm, OS 3803 data set (2 relief points)

19

# Trips #FD Opt DBR #CA #LP +# Nodes PrT LPT TT
20 978 6 6 278 7 1 2.11 0.08 2.24
30 2,890 10 10 852 19 1 9.04 0.20 9.38
40 6,706 13 13 2,190 48 1 28.60 1.03 30.14
50 17,334 14 14 4,220 94 3 00:01:22 3.95 00:01:27
60 45,236 15 15 8,027 175 1 00:03:48 14.81 00:04:06
70 107,337 15 15 11,622 258 1 00:07:42 40.59 00:08:37
80 256,910 15 15 8,553 225 1 00:10:07 47.12 00:10:58
90 591,536 15 15 9,827 269 1 00:14:34 00:02:04 00:16:43
100 1,180,856 15 15 13,330 375 1 00:39:03 00:04:37 00:43:49
110 2,015,334 15 15 13,717 387 1 01:19:55 00:03:12 01:23:19
120 3,225,072 16 16 18,095 543 13 04:02:18 00:09:09 04:11:50
130 5,021,936 17 17 28,345 874 23 06:59:53 00:30:16 07:30:56
140 8,082,482 18 18 27,492 886 25 13:29:51  00:28:56  13:59:40
150 12,697,909 19 19 37,764 1,203 25 21:04:28 00:49:13 21:55:25

memory. By efficiently dealing with a small subset of the feasible duties, our algorithm
managed to surpass the memory bottleneck and solve instances that were very large. This
observation supports our view that a CLP formulation of column generation was the right
approach to solve these very large crew scheduling problems.

The comparative performance of the hybrid model against the isolated IP model over
the OS 2222 and OS 3803 data sets is depicted in Figs. 3 and 4, respectively. We chose
the TP approach for this comparison for it was the best one among the exact isolated
approaches. The curves are identified as follows: “IP” is the Integer Programming approach
and “Hybrid” is the hybrid column generation approach.

2 The Crew Rostering Problem

The duties obtained as output from the solution of the crew scheduling phase must be
assigned to crews day after day, throughout an entire planning horizon. This sequencing
has to obey a set of constraints that differs from the constraints which are relevant to the
crew scheduling problem. This set includes, for example, the need for days off, with a
certain periodicity, and a minimum rest time between consecutive workdays.

2.1 Input Data

The set of duties to be performed on weekdays is different from the set of duties to be
performed on weekends or holidays, due to fluctuations on customer demand. Therefore,
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the crew scheduling problem gives as input for the rostering problem a number of distinct
sets of duties.

The planning horizon we are interested in spans one complete month. It is important
to take into account as input data many features of the month under consideration, such
as: the total number of days, which days are holidays and which day of the week is the first
day of the month (the remaining weekdays can be easily figured out from this information).
The differences in the input data from one month to the next one may lead to variations
on the number of crews actually working in each month. Consequently, some rules must
be observed in order to select the crews that are going to be effectively used. If, say, in
month m 40 crews were needed, and in month m + 1 only 38 will be necessary, how to select
the 2 crews that are going to be left out? Furthermore, suppose that, after eliminating
those crews that cannot work on the current month for some reason, the company has 50
crews available. Even if the number of crews remains the same, e.g. 40, from one month
to the next one, it is important to evenly distribute the work among them. This balance
can be obtained considering the number of days each crew has worked since the beginning
of the year, for example, or with the aid of another kind of ranking function for the crews.
Finally, since some constraints refer to a time window that spans more than one month
(see Sect. 2.2) some attributes, for each crew, have to be carried over between successive
months.

The input data needed to build the roster for month m is the following:

e The sets of duties Dyy, Dga, Dsy and Dy, which have to be performed on weekdays,
Saturdays, Sundays and on holidays, respectively;

e The number of days, d, in month m;
e The occurrence of holidays in month m;
e The day of the week corresponding to the first day in month m;
e The whole set of crews, C', employed by the company;
e For each crew ¢ in C":
— The set of days, OFF}, in which i is off duty (e.g. vacations, sickness), excluding

its ordinary weekly rests;

— The number of days, Is;, between the last Sunday ¢ was off duty and the first day
of month m;

— A binary flag, wr;, that is equal to 1 if and only if 7 had a weekly rest in the last
week of month m — 1;

— A binary flag, sl;, that is equal to 1 if and only if 7 performed a split-shift duty
during the last week of month m — 1;

— The difference in minutes, [w;, between the last minute ¢ was working in month
m — 1 and the first minute of the first day of month m;

e For each duty £ in Dy U Dgy U Dy, U Dy
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— The start and end times of k (¢s; and teg, respectively), given in minutes after
midnight;

— A binary flag, ssi, that equals 1 if and only if &k is a split-shift duty;

e A list of all crews in C sorted according to a certain ranking function. This ordering
will be used to assign priorities to the crews when identifying the subset of C' that is
going to work in month m.

2.2 Problem Constraints

The constraints associated to the sequencing of the duties are:
(a) The minimum rest time between consecutive workdays is 11 hours;

(b) Every employee must have at least one day off per week. Moreover, for every time
window spanning 7 weeks, at least one of these days off must be on a Sunday;

(c) When an employee performs one or more split-shift duties during a week, his day off
in that week must be on Sunday;

(d) In every 24-hour period starting at midnight, within the whole planning horizon, each
crew can start to work on at most one duty.

2.3 Objectives

For each month, we are looking for the cheapest solution in terms of the number of crews
needed to perform all the duties requested. Additionally, it is desirable to have balanced
workloads among all the crews involved, but the models we present in this article are not
concerned with this issue yet.

2.4 The Format of the Input Data Sets

Before describing the TP and CLP models for the rostering problem, it is important to
understand the format of the instances used in the computational experiments. These
instances correspond to the actual schedules constructed by the crew scheduling phase
described in Sect. 1. Using the duties built during the crew scheduling phase, we have
constructed a set of instances ranging from small ones up to large-sized ones, typically
encountered by the management personnel in the bus company. The main features of these
instances appear in Table 9.

The Name is just a string identifying the instance. The number of crews available for the
roster, ¢, appears under the heading #Crews. The column #Days shows the number of
days in the planning horizon in the format d (h), where d is the total number of days and h
indicates how many of those d days are holidays. The next four columns show the number
of duties that must be performed in each kind of the possible working days: weekdays,
Saturdays, Sundays and holidays, respectively. The format used is ss/tt, where ¢t is the
total number of duties and ss represents how many of the ¢f duties are split-shift duties. To
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Table 9: Description of the instances for the experiments

# Duties
Name #Crews #Days Week Sat Sun Holy
string c d (h) ‘ SSwk/ttwk  SSsa/tlsa  SSsu/ttsu  SSho/ttho

begin with, we set the following parameters, for every crew i: OFF; = 0, Is; = 0, wr; = 1,
sl; = 0 and lw; = 660. This is the same as ignoring any information from the previous
month when constructing the roster for the current month.

2.5 An Integer Programming Approach

Let n be the total number of crews available and let d be the number of days in the
current month m. Moreover, let p, ¢, r and s be the numbers of duties to be performed
on weekdays, Saturdays, Sundays and holidays, respectively (i.e. |Dyk| = p, |Dsal = ¢,
| Dsy| = r and | Dyo| = s).

The IP formulation of the rostering problem is based on z;j; binary variables which are
equal to 1 if and only if crew ¢ performs duty k£ on day j. If j is a weekday, k belongs
to {0,1,...,p}. Analogously, if j is a Saturday, Sunday or holiday, k ranges over {0,p +
L....,p+q}, {0,p+q+1,... ,p+qg+r}or{0,p+q+r+1,... ,p+q+r+s}, respectively.
The duty numbered 0 is a special duty indicating that the crew is off duty on the given day.
Thus, if x;j0 = 1 it means that crew ¢ is not working on day j. For modeling purposes, we
set tsg to a very large number, teg = 0 and ssg = 0.

Given a day j in m, K represents its set of duty indexes, except for the duty 0. For
instance, if j is a Saturday then K; = {p+1,... ,p+q}.

2.5.1 The Model

The main objective is to minimize the number of crews working during the present month.
This is equivalent to maximizing the number of crews which are idle during the whole
month. Let us define new variables y; € IR™, for all i € {1,... ,n}, which are equal to 1 if
zijo = 1, for all j € {1,... ,d}, and are equal to 0 otherwise. To achieve this behavior for
the y; variables, it is necessary to set the objective function as max ., ; y; and to impose
the following constraints

yi < wijo, Vi, Vi . (10)

Equations (10) combined with the objective function force a y; variable to be equal to 1 if
and only if crew ¢ is idle during the entire month.

The occurrence of days on which the crews are known to be off duty (e.g. previously
assigned vacations) is satisfied by setting

zijo = 1, Vi, Vje OFF; . (11)
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The subsequent formulas take care of the feasibility of the roster (see Sect. 2.2).

Constraints (a) are dealt with in two steps. Equation (12) takes care of the assignment
of duties for the first day in month m. For the other days, assume that a crew ¢ does duty k
on day j — 1. The set K ]’ [k] of other duties that cannot be taken by the same crew i on day
Jj because of the 660-minute minimum rest time is given by {k’ € K; | tsp — (tey, — 1440) <
660}. Therefore, (13) guarantees the minimum rest time between successive days in month
m.

ziy = 0, Vi, Vke Ky s.t. tsg+lw; <660 , (12)

Ti(j—1)k T+ Z Tij <1, Vi, Vje{2,...,d}, Vk¢€ Kj; . (13)
ke K [k]

Let us define a complete week as seven consecutive days, inside month m, ranging from
Monday to Sunday. For every complete week, W, in m, we impose the mandatory day off
as

Y wigo>1, Vi (14)
JjEW

If month m does not start with a complete week, let W' be the set of days in the first week
of m up to Sunday. Each crew ¢ with wr; = 0 needs to rest in W’ and this is achieved with

Z Zi50 Z 1, Vi s.t. wr; = 0. (15)
JeEW’
The constraint stating that for each period of time spanning 7 weeks each crew must have
at least one day off on Sunday can be described as follows. For each crew i such that

ls; +d > 49, we construct the set 7; containing the Sundays in the first (49 — ls;) days of
m. Then, we impose

Z Zij0 > 1, Vi s.t. Is;+d>49 . (16)
JET;

Together, (14) to (16) represent constraints (b).
Suppose that the first day of month m is not Monday and let j* be the first Sunday in
m. To satisfy constraint (c) for each crew ¢ such that sl; = 1, we must state that

Let S), be the set of Sundays in m after its sixth day and let P; be the set of split-shift
duties on day j. For these Sundays, we respect constraint (c¢) with

Tijo > Y TiGopyky Vi, VjE Sp, Vre{l,... 6} . (18)
ker—r



Hybrid Approaches for Real World Crew Management Problems 25

Table 10: Computational experiments with the IP model

# Duties
Name #Crews #Days Week  Sat Sun  Holy LB Sol Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 6 0.62
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 7 1.50
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 6 2.00
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 6 4.33
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 8 2091
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 6 9.06
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 6 10.61
s08 10 30 (2) 03/04 00/01 00/01 00/01 4 7 6.81
s09 10 30 (2) 04/04 00/01 00/01 00/01 4 8 9.21
s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 5.05
sl1 10 30 (2) 04/04 01/01 00/01 01/01 4 8 8.35
s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 8.90

Equation (19) guarantees that each crew is assigned exactly one duty in each day, thus
satisfying constraints (d). Additionally, (20) represents the implicit constraint that every
duty must be performed in each day, except for the special duty 0.

sgo+ Y mige = 1, Vi, Vj, (19)
keK;
n
agr = 1, Vi, VEEK, . (20)
i=1

2.5.2 Computational Results

The computational results obtained with the IP model are shown in Table 10. The figures
under the heading LB come from lower bounds on the value of the optimal solution returned
by the linear programming relaxation of the IP model. Notice however that the objective
function described in Sect. 2.5.1 asks for the maximization of the number of idle crews,
which is equivalent to minimizing the number of crews needed to compose the roster. For
the purpose of comparison with the CLP model, the values in the LB and Sol columns of
Table 10 represent the number of crews actually working, i.e. the total number of crews
available minus the value of the objective function. Finding the optimal solution of the
instances in Table 10 turned out to be a very difficult task, despite their relatively small
size. Hence, the solution value in column Sol corresponds to the first integer solution found
by the model, for each instance. The linear relaxations and the integer programs were solved
with the CPLEX Solver. Although the computation times for the first integral solution are
quite small, the gap between the values of the lower bounds and the feasible solutions is
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noticeable. Further, these values are still not a good indication of the quality of the model,
since we are dealing with very small instances. Yet, when trying to find integer solutions
for instances with tens of duties in a workday, this model performed very poorly and no
answer could be found within 30 minutes of computation time. Therefore, we decided to
experiment with a pure Constraint Logic Programming formulation of the problem.

2.6 A Constraint Logic Programming Approach

Having found difficulties when solving the crew rostering problem with a pure IP model,
as described in Sect. 2.5, we decided to try a constraint-based formulation. We used the
ECL'PS€ finite domain constraint solver to construct and solve the model.

2.6.1 The Model

Let n, d, p, q,  and s be defined as in Sect. 2.5. The main idea of the CLP model for the
rostering problem is to represent the final roster as a two-dimensional matrix, X, where
each cell X;; contains the duty performed by crew i on day j, for i € {1,...,n} and
jed{l,...,d}.

The X;;’s are finite domain variables whose domains depend on the value of j. As in
Sect. 2.5, the duties obtained from the crew scheduling phase are numbered according to
their classification as duties for weekdays, Saturdays, Sundays or holidays. In this model,
we will not have the concept of a special duty for idleness, as the duty numbered 0 in the IP
model. In fact, we will have, for each day, a set of dummy duties which tell that a certain
crew is off duty.

It is easy to see that the number of crews needed to construct a roster must be at least
the maximum number of duties that may be present in any given day of the current month.
Thus, we can state that n > max{p,q,r,s}. Consequently, as the number of X variables
for each day j is equal to n, if the domains of these variables were restricted to be the set
of duties for day j, some of them would have the same value in the final solution. As we
will see later, modeling can be simplified if we avoid this situation and here comes the need
for the dummy duties. Let K; be defined as in Sect. 2.5. Moreover, let the total number
of duties be calculated as tnd = p + ¢+ r + s. The domains of the X;; variables are then
defined as

Xij 2 KjU{tnd+1,tnd+2,... ,tnd+ (n—|Kj|)} Vi, Vj . (21)

If X;; is assigned a duty whose number is greater than ¢nd, it means that crew ¢ is idle on
day j.

Three other sets of variables have to be defined in order to facilitate the representation
of the constraints. For all k in {1,... ,tnd}, let TS, TE and S5 be lists of integers defined
as follows: TS[k] = tsy, TE[k] = tey, — 1440, SS[k] = ssi. The values of ts, te and ss for the
dummy duties are +o0o, 0 and 0, respectively. The new variables are called Start;;, End;;



Hybrid Approaches for Real World Crew Management Problems 27

and Split;; and relate to the X;; variables through element constraints:

element (X;;, T'S, Start;;)
element (Xija TE, Endij) ,
element (X;;, 55, Split;;) .

Now we can state the constraints (a) through (d) in the ECL!PS® notation.
Equations (22) and (23) assure that the minimum rest time between consecutive duties
is 11 hours. Note the special case for the first day of month m.

Start;1 + lw;
Sta?”tij - Endl(]_l)

660, Vi , (22)

>
> 660, Vi, Vje{2,....,d} . (23)

Similarly to what was defined in Sect. 2.5.1, we use the concept of a complete week, W;,
for each crew i, as a list of variables [Xit, Xj(41),--- , Xj46)], where ¢ is any Monday and
t + 6 is its subsequent Sunday, both in month m. The need for at least one day off during
each week is represented by (24), for complete weeks. Notice that this constraint must be
repeated for each complete week W; associated with every crew ¢. If wr; = 0 and the first
day of m is not Monday, we also need to impose (25), for each crew ¢ and initial week W/.

atmost_less (6, W;, tnd + 1) (24)
atmost_less(|W)| — 1, W/, tnd+ 1) . (25)

n (25), |W/| denotes the number of elements in the list W/. To state that at most N
elements of list L can be smaller than V' we use the predicate atmost_less (N, L, V). This
behavior is achieved with the definitions below

flags_less([1,_,[1) :- !.
flags_less([X|Y],Val, [B|R]) :- #<(X,Val,B), flags_less(Y,Val,R).
atmost_less(N,L,Val) :- flags_less(L,Val,BF), atmost(N,BF,1).

To satisfy constraints (b), there is one condition missing, besides (24) and (25), which
assumes at least one day off on Sunday, every seven weeks, for every crew. For each crew 7,
if ls; +d > 49, then

atmost_less(|L;| — 1, L;, tnd + 1) (26)

where L; is a list containing the Xj;;’s associated with the Sundays present in the first
(49 — Is;) days of month m.

Constraints (c¢) also use the concept of complete weeks, but do not include Sundays. We
denote this reduced complete week W as the list [Splitis, Spliti¢41y, - - -, Splity115)]. Notice
that we now consider the Split variables instead of the X variables, as when representing
constraints (b).

Sphtlt + L + Splzt’t(t+5) #> 0 #=> Xi(t+6) #> tnd, V 'L', V W’L* ) (27)
Xpe #  tnd, Vi . (28)
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By (27), if one of the Splity, ... , Splity;,5) variables equals 1, then crew 7 must rest on the
next Sunday, which corresponds to X;;y6). The special case of the first week of m, when
the month does not start on Monday and si; = 1, is dealt with by (28). Here, k stands for
the first Sunday of month m.

Our choice of variables already guarantees that each crew starts only one duty per day.
But we must also make sure that every duty is assigned to one crew on each day. Because
of the dummy duties, this condition can be met easily just by forcing the X;; variables to
be pairwise distinct, for each day j:

alldifferent ([Xyj,... , X)), Vj . (29)
Finally, we need to preassign the rest days which are known in advance
Xij #> tnd, Vi, Vj€ OFF; . (30)

Labeling is done over the X;; variables using the first-fail principle.

Since there are different numbers that represent dummy duties, we can have many
symmetric solutions. In other words, two rosters that differ only by the placement of
dummy duties constitute the same solution. To avoid this problem and reduce the search
space, additional constraints had to be inserted into the CLP program. The idea is the
following. For each crew i, if j is the first day in the planning horizon when 7 does not
work, then X;; #= tnd + 1. In general, we enforce that X;; #= tnd + k whenever j is the
k-th day on which crew : is off duty.

2.6.2 Computational Results

When compared to the IP model of Sect. 2.5, this model performed much better both in
terms of solution quality and computation time. As can be seen in Table 11, it was possible
to find feasible solutions for fairly large instances in a few seconds. Again, no minimization
predicate was used and the solutions presented here are the first feasible rosters encountered
by the model.

Some special cases deserve further consideration. When providing 15 crews to build the
rosters for instances s16 and s17, the model could not find a feasible solution even after
10 hours of search. Then, after raising the number of available crews in these instances
to 16 (sl6a) and 18 (s17a), respectively, solutions were easily found. Another interesting
observation arises from instance s19. This instance comes from the solution of a complete
real world crew scheduling problem. In this problem, the optimal solution for weekdays
contains 25 duties, 22 of which are split shifts. As we did not have access to the input
data sets for the other workdays, the sets of duties for Saturdays, Sundays and holidays
are subsets of the solution given by the scheduling algorithm for a weekday. Instance s19a
is made up of the same duties, except that all of them are artificially considered non-split
shifts. Notice that the value of the first solution found is significantly smaller for instance
s19a than it is for instance s19. This is an indication of how severe is the influence of the
constraints (c) introduced in Sect. 2.2. Moreover, we can see from Table 11 that the values
of the solutions grow quickly as the number of split-shift duties increases. With this point
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Table 11: Computational experiments with the CLP model

# Duties
Name #Crews #Days Week  Sat Sun  Holy LB Sol Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.08
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.18
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.23
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.36
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.48
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.52
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.50
s08 10 30 (2) 03/04 00/01 00/01 00/01 4 6 0.52
s09 10 30 (2) 04/04 00/01 00/01 00/01 4 7 0.52
s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 0.52
sll 10 30 (2) 04/04 01/01 00/01 01/01 4 7 0.53
s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 0.90
s13 15 30 (2) 00/10 00/06 00/05 00/05 10 13 1.22
s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 0.28
sl4 15 30 (2) 03/10 01/06 00/05 01/05 10 13 1.35
s1b 15 30 (2) 03/10 03/06 00/05 03/05 10 15 1.36
s16 15 30 (2) 05/10 03/06 00/05 03/05 10 7 > 10:00:00
sl6a 16 30 (2) 05/10 03/06 00/05 03/05 10 16 1.49
s17 15 30 (2) 07/10 03/06 00/05 03/05 10 7 > 10:00:00
sl7a 18 30 (2) 07/10 03/06 00/05 03/05 10 18 1.78
s18 30 30 (2) 00/20 00/10 00/10 00/10 20 25 4.96
sl8a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 1.09
s19 50 30 (2) 22/25 12/15 12/15 12/15 25 47 14.46
s19a 40 30 (2) 00/25 00/15 00/15 00/15 25 33 9.36
s20 40 30 (2) 06/26 02/15 02/15 02/15 26 34 10.50
s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 34 1.56
s21 36 30 (2) 00/31 00/20 00/20 00/20 31 36 8.30
s2la 36 7 (1) 00/31 00/20 00/20 00/20 31 34 1.29




30 T. Yunes, A. Moura and C. de Souza

Solution value

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16a 17a 18 19 19a 20 21

Instances

L] 1P Bl cr

Figure 5: IP vs. CLP in terms of solution quality

in mind, we generated two other solutions for the same crew scheduling problem where the
total number of duties used was increased in favor of a smaller number of split shifts. These
are s20 and s21. Despite the larger number of duties in the input, the final roster for these
instances uses less crews than it did for instance s19. This strengthens the remark made
by [6] that, ideally, the scheduling and rostering phases should work cyclicly, with some
feedback between them.

All instances in Table 11 do not take into consideration information from the previous
month, as mentioned in Sect. 2.4. In order to test the CLP model further, we created one
new instance for each instance of Table 11. For these new instances, the values of Is;, wr;, si;
and [w;, for each crew ¢, are set taking the feasible solutions of Table 11 as the work profiles
of each crew in the preceding month. The behavior of the CLP program was not affected
by these more difficult input data sets and we could still find feasible solutions within very
short computational times.

Figures 5 and 6 compare the Integer Programming (IP) and Constraint Logic Program-
ming (CLP) models in terms of solution quality and time performance, respectively. The
instances on the horizontal axis are named after the same instances from Table 11, except
for the letter “s”. It is important to remember that, with the IP model, it was only possible
to find feasible solutions for instances s01 through s12.

Similarly to the IP approach, this CLP model was not efficient to compute optimal
solutions. Being limited to run for 24 hours, we could only find provably optimal solutions
for instances s01, s02 and s03.

2.7 Proving Optimality

In Sects. 2.5 and 2.6, we showed that finding provably optimal solutions for this rostering
problem is a difficult task. Moreover, it is possible to see from Table 11 that the lower
bound provided by the Linear Programming relaxation of the problem is always equal to
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Figure 6: IP vs. CLP in terms of time performance

Instances

the largest number of duties that must be performed on a workday. This is clearly a trivial
lower bound and probably not a very good one. We decided then to try another formulation
for the problem, so as to find better lower bounds or, at least, better feasible solutions.

2.7.1 A Hybrid Model

Another possible mathematical model for the rostering problem turns out to be a typical
set partitioning formulation:

n
min E x]
=1

n
subject to Zaij%‘ =1, Vie{l,... e}
=1

z; €{0,1}, Vje{l,... ,n} .

All numbers a;; in the coeflicient matrix A are 0 or 1 and its columns are constructed as

shown in Fig. 7. Each column is composed of d sequences of numbers, where d is the number

of days in the planning horizon. For each k € {1,... ,d}, the k-th sequence, [, has length

hi, where hy is the number of duties that must be performed on day k. Also, at most one

number inside each sequence is equal to 1. The number of lines e, in A, equals Ezzl h.
h1 ha hi hd

- "\ ~ S N— Pt

Figure 7: A column in the coefficient matrix of the set partitioning formulation

Besides having the previous characteristics, a column in A must represent a feasible
roster for one crew. More precisely, let ¢ = (uj,ug,... ,uq) be a feasible roster for a crew,
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where ug, k£ € {1,...,d}, is the number of the duty performed on day k. Remember
from Sect. 2.5.1 that u; € Dy U {0}, where Dy is equal to {1,... ,p}, {p+1,... ,p+q},
{p+qg+1,...,p+qg+r}or{p+q+r+1,...,p+q+r+s}, depending on whether k is
a weekday, a Saturday, a Sunday or a holiday, respectively. For every such feasible roster
t, A will have a column where, in each sequence [, the i-th number will be equal to 1
(1 € {1,... ,hg}) if and only if uy is the i-th duty of Dy. In case uy = 0, all numbers in
sequence [ are set to 0.

With this representation, the objective is to find a subset of the columns of A, with
minimum size, such that each line is covered exactly once. This is equivalent to finding a
number of feasible rosters which execute all the duties in each day of the planning horizon.

It is not difficult to see that the number of columuns in the coefficient matrix is enormous
and it is hopeless to try to generate them all in advance. For example, the coefficient
matrix for an instance as small as s03 already has billions of columns. Hence, we decided to
implement a branch-and-price algorithm to solve this problem, generating columns as they
are needed. This approach is considered hybrid because the column generation subproblem
is solved by a CLP model. The whole algorithm follows the same basic ideas described in
Sect. 1.6. The model for the column generator is a variation of the CLP model of Sect. 2.6.
Now, instead of looking for a complete solution for the rostering problem, we are only
interested in finding, at each time, feasible rosters corresponding to columns in A with
negative reduced costs.

2.7.2 Preliminary Results

The best results for the hybrid model were achieved when setting the initial columns of
matrix A as the columns corresponding to the first solution found by the CLP model of
Sect. 2.6. Also, the ordinary labeling mechanism worked better than labeling according to
the first-fail principle.

With this model, we could find provably optimal solutions for small instances of the
rostering problem, as shown in Table 12, where column Opt gives the optimal value. By
“small instances” we mean either instances with a small number of duties to be executed in
each day or instances with a short planning horizon. This is already a noticeable improve-
ment over the pure IP model of Sect. 2.5, which was not able to find any optimal solution,
even for the smallest instances. Besides, when comparing Tables 11 and 12, we can see that
the first solutions found by the pure CLP model for instances s01 to s04, s13a and s18a are
indeed optimal.

We believe that the main reason for the poor performance of this algorithm over larger
instances resides on the fact that the IP formulation of Sect. 2.7.1 leads to a highly de-
generate problem. When trying to solve larger instances, the pricing subroutine keeps on
generating columns indefinitely, with no improvements on the value of the objective func-
tion. This is because there are many basic variables with value zero which are replaced by
other columns that enter the basis with value zero as well. As a consequence, the linear re-
laxation of the first node of the branch-and-price enumeration tree could not be completely
solved in the medium and large-sized instances. Thus, in order to obtain better linear
programming lower bounds, we need to address these degeneracy problems more closely.
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Table 12: Computational experiments with the hybrid model

# Duties
Name #Crews #Days Week  Sat Sun  Holy Opt Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.66
s02 10 15 (2 00/04 00/01 00/01 00/01 5 2.12
s03 10 20 (2 00/04 00/01 00/01 00/01 5 4.56
5 16.72

s13a 15 10 ( 00/10 00/06 00/05 00/05 | 13 12.73
s18a 30 10 ( 00/20 00/10 00/10 00/10 | 25  00:04:03
s20a 40 7 (1) 06/26 02/15 02/15 02/15 | 26 21:23:36
s21a 36 7(1) 00/31 00/20 00/20 00/20 | 31  05:39:50

)
)
504 10 25(2) | 00/04 00/01 00/01 00/01
)
)

Another problem concerns the labeling policy which follows the simplest possible strategy.
In the next section, we present some ideas that were implemented with these deficiencies in
mind.

2.7.3 Performance Improvements

We implemented three major modifications in the hybrid algorithm presented so far with
the intent to find provably optimal solutions for larger instances of the rostering problem.
These modifications are outlined below.

Cost Perturbation. Since the cost of all the columns in our formulation is equal to 1,
we have an undesirable symmetry in the sense that any column is, in principle, as suitable
for the solution as any other. This fact contributes to intensify the cycling behavior of our
highly degenerate model. We decided then to implement one strategy similar to what was
presented in [17] and [28]. The basic idea is to add a small perturbation, ¢ € [—4,d], to
the cost of each column. For this mechanism to function correctly, the value of § may not
be chosen arbitrarily. The rule is simple: one solution S with k£ 4+ 1 columns must always
cost more than one solution S’ with & columns. The most critical situation occurs when all
columns in S cost 1 — ¢ and all columns in S’ cost 1+ §. Then, we must have

(k+1)(1 - 0) > k(1 +0)

or, equivalently,

1

5<2k+1 '

(31)

As the number of columns in an optimal solution will never be greater than the total number
of lines, e, in the coefficient matrix, we set &k = e in (31). One final observation is relevant.
If we were solving an integer program with all columns loaded in memory, the value of ¢,
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for each column, could be randomly chosen inside the interval [—4, §]. However, as we are
generating columns on demand and the negative reduced cost constraint depends on the
cost of the column in the objective function, the choice of ¢ must be deterministic. Our
approach was to divide the [—d, J] interval into p discrete values and then use a mod-type
hash function to map each column to a specific value of perturbation e. [11] suggest that p
should be a prime number not too close to a power of 2. We decided then to set p = 1531.

Set Covering Formulation. With the problem constraints described in Sect. 2.2, it is
easy to see that any sub-roster of a feasible roster is itself another feasible roster. Hence,
if we change the set partitioning formulation of Sect. 2.7.1 to a set covering formulation,
the final covering solution can be transformed in a partition just by removing from some
rosters those duties that are performed more than once, if any. This idea was motivated by
the fact that, in general, a set covering formulation of a problem is easier to solve than a
set partitioning formulation for the same problem.

New Labeling Criterion. Recall from Sect. 1.4.2 that the reduced cost constraint for
column c reads

Z uj > Cost. , (32)
JE€Dc

where D, is the set of duties covered by ¢, u; is the value of the dual variable associated to
duty j and Cost, is the coefficient of ¢ in the objective function. Following a greedy criterion,
we decided to label the variables in the CLP column generator taking into account their
contribution to the left hand side of (32). In other words, after choosing one variable to
label next, the values in its domain are initially sorted according to the non-increasing order
of their corresponding u; values. That is, the duties with the largest corresponding dual
values are tried first. As the sum of u;’s must be greater than Cost,, if the largest u; values
are not large enough, then there is no need to test the smallest values.

2.7.4 Computational Results with the Improved Algorithm

The inclusion or exclusion of each one of the previous three suggested improvements, lead to
eight possible versions of the hybrid algorithm. After comparing the results obtained with
all these possible combinations, the best overall performance was achieved by an algorithm
using the simplest labeling strategy over a set covering formulation without perturbations on
the costs. These results are summarized in Table 13. On the other hand, when tackling the
specific instance s20a, the best overall performance was achieved by an algorithm using the
improved labeling strategy over a set partitioning formulation without cost perturbation.
The latter configuration could find an optimal solution for instance s20a in less than 16
minutes, whereas Table 13 reports more than 12 hours of computation for the same instance.

When comparing Tables 12 and 13, we notice significant gains both in terms of the time
needed to find the optimal solutions and in terms of the sizes of the instances that were
optimally solved by the algorithm. The improved versions of the hybrid algorithm still do
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Table 13: Computational results with the best configuration of the improved hybrid model

# Duties
Name #Crews #Days Week Sat Sun  Holy Opt Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.31
s02 10 15 (2) 00/04 00/01 00/01 00/01 5 0.47
s03 10 20 (2) 00/04 00/01 00/01 00/01 5 0.62
s04 10 25 (2) 00/04 00/01 00/01 00/01 5 0.73
s05 10 30 (2) 00/04 00/01 00/01 00/01 5 0.85
s06 10 30 (2) 01/04 00/01 00/01 00/01 5 0.89
s07 10 30 (2) 02/04 00/01 00/01 00/01 5 0.87
sl3a 15 10 (1) 00/10 00/06 00/05 00/05 13 7.34
s18a 30 10 (1) 00/20 00/10 00/10 00/10 25 20.05
s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 12:40:42
s2la 36 7 (1) 00/31 00/20 00/20 00/20 31 00:17:19

not scale up to an entire planning horizon of one complete month with a large number of
duties in each day. Nevertheless, we were able to construct optimal weekly rosters for real
world instances. We believe that further developments on the labeling strategy through the
inclusion of more sophisticated guiding heuristics can be used to improve the performance
of this algorithm.

3 Conclusions and Future Work

Real world crew management problems often give rise to large set covering or set partitioning
formulations. We have given a detailed description of urban transit crew management
problems that are part of the daily operation of a medium-sized Brazilian bus company. In
particular, their rostering problem is rather different from some other bus crew rostering
problems found in the literature.

We have shown a way to integrate pure IP and declarative CLP techniques into hybrid
column generation algorithms that solved, to optimality, huge instances of these real world
crew management problems. Obtaining provably optimal solutions for these problems was
a very difficult task for both IP and CLP approaches when taken in isolation. Our hybrid
methodology combines the strengths of both sides, while getting over their main weaknesses.

Another crucial advantage of our hybrid approach over a number of previous attempts is
that it considers all feasible duties. Therefore, the need does not arise to use specific rules to
select, at the start, a subset of “good” feasible duties (or rosters). This kind of preprocessing
could prevent the optimal solution from being found. Instead, our algorithm implicitly
looks at the set of all feasible duties (rosters), when activating the column generation
method. When declarative constraint satisfaction formulations are applied to generate new
columns on demand, they have shown to be a very efficient strategy, in contrast to Dynamic
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Programming, for example.

We believe that our CLP formulations can be further improved. In particular, the
search strategy deserves more attention. Earlier identification of unpromising branches
in the search tree can reduce the number of backtracks and lead to substantial savings in
computational time. Techniques such as dynamic backtracking ([16]) and the use of nogoods
([24]) can be applied to traverse the search tree more efficiently, thereby avoiding useless
work.

Finally, we would like to thank the Pioneira Bus Company from the city of Belo Hori-
zonte, in Brazil, for kindly providing us with the real world experimental data.
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