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Hybrid Column Generation Approa
hes forSolving Real World Crew Management Problems�Tallys H. Yunes Arnaldo V. Moura Cid C. de SouzaAbstra
tThis arti
le 
onsiders the overall 
rew management problem that arises from the dailyoperation of an urban transit bus 
ompany that serves the metropolitan area of the 
ityof Belo Horizonte, in Brazil. Due to its intrinsi
 
omplexity, the problem is divided intwo distin
t problems, namely: 
rew s
heduling and 
rew rostering. We have ta
kledea
h one of these problems using Mathemati
al Programming (MP) and ConstraintLogi
 Programming (CLP) approa
hes. Besides, we also developed hybrid 
olumn gen-eration algorithms for solving these problems, 
ombining MP and CLP. The hybridalgorithms always performed better, when obtaining optimal solutions, than the twoprevious isolated approa
hes. In parti
ular, it proved mu
h faster for the s
hedulingproblem. All the proposed algorithms have been implemented and tested over realworld data obtained from the aforementioned 
ompany. The 
oeÆ
ient matrix of thelinear program asso
iated with some instan
es of the s
heduling problem 
ontains tensof millions of 
olumns, and this number is even larger for the rostering problem. Theanalysis of our experiments indi
ates that it was possible to �nd high quality, and manytimes optimal, solutions that were suitable for the 
ompany's needs. These solutionswere obtained within reasonable 
omputational times, on a typi
al desktop PC.Introdu
tionThe overall 
rew management problem 
on
erns the allo
ation of trips to 
rews within a
ertain planning horizon. In addition, it is ne
essary to respe
t a spe
i�
 set of operational
onstraints and minimize a 
ertain obje
tive fun
tion. Being a very hard problem, whentaken in its entirety, it is usually divided in two smaller problems: the 
rew s
hedulingproblem and the 
rew rostering problem (see [6℄). In the 
rew s
heduling problem, the aimis to partition the initial set of trips into a minimal set of feasible duties. Ea
h su
h duty isan ordered sequen
e of trips whi
h is to be performed by the same 
rew and that satis�esa subset of the original problem 
onstraints: those related to the sequen
ing of trips duringa workday. The 
rew rostering problem takes as input the set of duties output by the 
rews
heduling phase and builds a roster spanning a longer period, e.g. months or years. Inthe latter 
ase, the roster must satisfy a di�erent set of 
onstraints: those related to restperiods, va
ations and other long term operational restri
tions.�Resear
h supported by FAPESP (grants 97/10982-0 and 98/05999-4), CNPq (300883/94-3), FINEP(ProNEx 107/97), and CAPES. Submitted for publi
ation.1



2 T. Yunes, A. Moura and C. de SouzaThis arti
le des
ribes the 
rew management problem stemming from the operation of aBrazilian bus 
ompany that serves a major urban area in the 
ity of Belo Horizonte. Thisarea serves more than two million inhabitants, in 
entral Brazil. Sin
e employee wages maywell rise to 50 per
ent or more of the 
ompany's total expenditures, even small per
entagesavings 
an be quite signi�
ant. The related 
rew s
heduling and 
rew rostering problemsare solved by means of hybrid 
olumn generation approa
hes involving both Integer Pro-gramming (IP) and Constraint Logi
 Programming (CLP) te
hniques. We also present pureIP and CLP solutions for these problems.We started with the 
rew s
heduling problem, applying a pure IP formulation, and us-ing a 
lassi
al bran
h-and-bound te
hnique to solve the resulting set partitioning problem.Sin
e this method requires that all feasible duties are previously inserted into the problemformulation, all memory resour
es were rapidly 
onsumed when we rea
hed half a millionfeasible duties. To 
ir
umvent this diÆ
ulty, we implemented a 
olumn generation te
h-nique. As suggested by [13℄, the subproblem of generating feasible duties with negativeredu
ed 
ost was transformed into a 
onstrained shortest path problem over a dire
teda
y
li
 graph and then solved using Dynami
 Programming te
hniques. However, due tothe size and idiosyn
rasies of our real problem instan
es, this te
hnique did not make mu
hprogress towards solving large instan
es.In parallel, we also implemented a heuristi
 algorithm presented in [4℄ whi
h produ
edvery good results on some related large set 
overing problems. With this implementation,problems with up to two million feasible duties 
ould be solved to optimality. But this par-ti
ular heuristi
 also requires that all feasible duties be present in memory during exe
ution.Although some progress with respe
t to time eÆ
ien
y was a
hieved, memory usage wasstill a formidable obsta
le.The diÆ
ulties we fa
ed when using the previous approa
hes almost disappeared whenwe turned to a language that supports 
onstraint spe
i�
ation over �nite domain variables.We were able to develop and implement our models in a short time, produ
ing 
ode thatwas both 
on
ise and 
lear. When exe
uted, it 
ame as no surprise that the model showedtwo distin
t behaviors, mainly due to the huge size of the sear
h spa
e involved. It was veryfast when asked to 
ompute new feasible duties, but lagged behind the IP methods whenasked to obtain a provably optimal s
hedule. The sear
h spa
es of our problem instan
es areenormous and there are no strong lo
al 
onstraints available to help the resolution pro
ess.Also a good heuristi
 to improve the sear
h strategy does not 
ome easily, as noted in [12℄.To harness the 
apabilities of both the IP and CLP te
hniques, we resorted to a hybridapproa
h to solve the larger, more realisti
, problem instan
es. The main idea is to use thelinear relaxation of a smaller 
ore problem in order to eÆ
iently 
ompute good lower boundson the optimal solution value. Using the values of dual variables present in the solution ofthe linear relaxation, we 
an enter a generation phase that 
omputes new feasible duties.This phase is modeled as a 
onstraint satisfa
tion problem that sear
hes for new feasibleduties with negative redu
ed 
osts. This problem is submitted to the 
onstraint solver,whi
h returns new feasible duties. After introdu
ing these new duties into the IP problemformulation, the initial phase 
an be taken again, restarting the 
y
le. When the CLP solverannoun
es the inexisten
e of new feasible duties with negative redu
ed 
ost, the optimalityof the 
urrent solution is proved. This algorithm se
ures the strengths of both the pure IP



Hybrid Approa
hes for Real World Crew Management Problems 3and the pure CLP approa
hes: only a small subset of all the feasible duties is eÆ
ientlydealt with at a time, and new feasible duties are qui
kly 
omputed only when they willmake a di�eren
e. The resulting 
ode was tested on some large instan
es, based on realdata. As of this writing, we 
an solve, in a reasonable time and with proven optimality,instan
es of the 
rew s
heduling problem with an ex
ess of 150 trips and 12 million feasibleduties.Some quite spe
i�
 union regulations and operational 
onstraints make our rosteringproblem fairly distin
t from some other known 
rew rostering problems found in the lit-erature as [7℄ and [5℄. In general, it is suÆ
ient to 
onstru
t one initial roster 
onsistingof a feasible sequen
ing of the duties that spans the least possible number of days. The
omplete roster is then built by just assigning shifted versions of that sequen
e of duties toea
h 
rew so as to have every duty performed in ea
h day of the planning horizon. In other
ommon 
ases su
h as [19℄, [8℄ and [3℄, the main 
on
ern is to balan
e the workload amongthe 
rews involved. Although we also look for a roster with relatively balan
ed workloads,these approa
hes will not, in general, �nd the best solution for our purposes. We are notinterested in minimizing the number of days needed to exe
ute the roster, sin
e the lengthof the planning horizon is �xed in advan
e. Our obje
tive is to use the minimum numberof 
rews when 
onstru
ting the roster for the given period. Another diÆ
ulty 
omes fromthe fa
t that some 
onstraints behave di�erently for ea
h 
rew, depending on the amountof work assigned to it in the previous month. Moreover, di�erent 
rews have di�erent needsfor days o�, imposed by personal requirements.Similarly to the 
rew s
heduling problem, we started with models based on pure IP andCLP te
hniques to solve the rostering problem. Again, we also developed a hybrid 
olumngeneration approa
h for this problem, whi
h follows the same basi
 ideas of the one appliedin the 
rew s
heduling phase.This arti
le is organized as follows. Se
tion 1 des
ribes the 
rew s
heduling problem,in
luding a number of subse
tions. In Se
t. 1.4, we dis
uss an IP approa
h and report on theimplementation of two alternative te
hniques: standard 
olumn generation and heuristi
s.In Se
t. 1.5, we investigate a pure CLP approa
h and, in Se
t. 1.6, we present the hybridapproa
h. All the previous three se
tions report implementation details and 
omputationalresults on real data sets. Se
tion 2 gives a detailed des
ription of the 
rew rostering problem.Its subse
tions present the di�erent solution te
hniques that were investigated. Se
tion 2.4explains the format of the input data sets used in our experiments. In Se
t. 2.5, we presentan IP formulation of the problem, together with some 
omputational results. A pure CLPmodel for the rostering problem is des
ribed in Se
t. 2.6, where some experiments arealso 
ondu
ted to evaluate its performan
e. The results a
hieved with a hybrid 
olumngeneration approa
h appear in Se
t. 2.7. Finally, we draw the main 
on
lusions and dis
ussfurther issues in Se
t. 3.All 
omputation times presented in this text are given in CPU se
onds of a PentiumII 350 MHz with 320 MB of RAM. Exe
ution times inferior to one minute are reported asss:

, where ss denotes se
onds and 

 denotes hundredths of se
onds. For exe
ution timesthat ex
eed 60 se
onds, we use the alternative notation hh:mm:ss, where hh, mm and ssrepresent hours, minutes and se
onds, respe
tively.



4 T. Yunes, A. Moura and C. de Souza1 The Crew S
heduling ProblemIn a typi
al 
rew s
heduling problem, a set of trips has to be assigned to some available
rews. The goal is to assign a subset of the trips to ea
h 
rew in su
h a way that no tripis left unassigned. As usual, not every possible assignment is allowed sin
e a number of
onstraints must be observed. Additionally, a 
ost fun
tion has to be minimized.1.1 TerminologyAmong the following terms, some are of general use, while others re
e
t spe
i�
s of thetransportation servi
e for the urban area where the input data 
ame from. A relief pointis a lo
ation where 
rews may 
hange buses and rest. The a
t of driving a bus from onerelief point to another relief point, passing by no intermediate relief point, is named a trip.Asso
iated with a trip we have its start time, its duration, its departure relief point, andits arrival relief point. The duration of a trip is statisti
ally 
al
ulated from �eld 
olle
teddata, and depends on many fa
tors, su
h as the day of the week and the start time of thetrip along the day. A duty is a sequen
e of trips that are assigned to the same 
rew. By idletime we denote any of the time intervals between two 
onse
utive trips in a duty. Wheneverthis idle time ex
eeds Idle Limit minutes, it is 
alled a long rest. A duty that 
ontains along rest is 
alled a split-shift duty or simply a split shift. The rest time of a duty is thesum of its idle times, not 
ounting long rests. The parameter Min Rest gives the minimumamount of rest time, in minutes, that ea
h 
rew is entitled to. The sum of the durationsof the trips in a duty is 
alled its working time. The sum of the working time and the resttime gives the total working time of a duty. The parameter Workday is spe
i�ed by unionregulations and limits the daily total working time.1.2 Input DataThe input data 
omes in the form of a two dimensional table where ea
h row representsone trip. For ea
h trip, the table lists: start time, measured in minutes after midnight,duration, measured in minutes, initial relief point and �nal relief point. We have used datathat re
e
t the operational environment of two bus lines, Line 2222 and Line 3803, thatserve the metropolitan area around the 
ity of Belo Horizonte, in 
entral Brazil. Line 2222has 125 trips and one relief point and Line 3803 has 246 trips and two relief points. Theinput data tables for these lines are 
alled OS 2222 and OS 3803, respe
tively. Table 1(a)shows the �rst 10 rows of OS 3803. By 
onsidering initial segments taken from these twotables, we derived several other smaller problem instan
es. For example, taking the �rst30 trips of OS 2222 gave us a new 30-trip problem instan
e. A measure of the number ofa
tive trips along a typi
al day, for both Line 2222 and Line 3803, is shown in Table 1(b).This �gure was 
onstru
ted as follows. For ea
h (x; y) entry, we 
onsider a time windowT = [x; x+Workday℄. The ordinate y indi
ates how many trips there are with start time sand duration d su
h that s 2 T or s+ d 2 T , i.e., how many trips are a
tive in T .



Hybrid Approa
hes for Real World Crew Management Problems 5Table 1: (a) Sample from OS 3803 (b) Distribution of trips along the day
(a)

Start Dur I. dep. F. dep.1 38 1 250 40 2 190 38 1 2130 38 2 1170 38 1 2210 38 2 1250 39 1 2290 38 2 1285 45 1 2335 45 2 1
(b)

0 200 400 600 800 1000 1200 140002040
6080100120

OS 2222
OS 3803

Time (minutes)
Number ofa
tive trips

1.3 ConstraintsFor a duty to be feasible, it has to satisfy 
onstraints imposed by labor 
ontra
ts and unionregulations, among others. For ea
h duty we must observetotal working time � Workdayrest time � Min Rest :In ea
h duty and for ea
h pair (i; j) of 
onse
utive trips, where i pre
edes j, we must have(start time )i + (duration )i � (start time )j(�nal relief point )i = (initial relief point )j :Also, at most one long rest is allowed in ea
h duty.Restri
tions from the operational environment impose Idle Limit = 120, Workday =440, and Min Rest = 30, measured in minutes. A feasible duty is a duty that satis�es allproblem 
onstraints. A s
hedule is a set of feasible duties and an a

eptable s
hedule isany s
hedule that partitions the set of all trips. Sin
e the problem spe
i�
ation treats allduties as indistinguishable, every duty is assigned a unit 
ost. The 
ost of a s
hedule isthe sum of the 
osts of all its duties. Hen
e, minimizing the 
ost of a s
hedule is the sameas minimizing the number of 
rews involved in the solution or, equivalently, the number ofduties it 
ontains. A minimal s
hedule is any a

eptable s
hedule whose 
ost is minimal.



6 T. Yunes, A. Moura and C. de Souza1.4 Mathemati
al Programming Approa
hesLet m be the number of trips and n be the total number of feasible duties. The pure IPformulation of the problem is: min nXj=1 xj (1)subje
t to nXj=1 aijxj = 1; i = 1; 2; : : : ;m (2)xj 2 f0; 1g; j = 1; 2; : : : ; n : (3)The xj's are 0{1 de
ision variables that indi
ate whi
h duties belong to the solution. The
oeÆ
ient aij equals 1 if duty j 
ontains trip i, otherwise, aij is 0. This is a 
lassi
alset partitioning problem where the rows represent all trips and the 
olumns represent allfeasible duties.We developed a 
onstraint program to 
ount all feasible duties both in OS 2222 and inOS 3803. Table 2 summarizes the results for in
reasing initial se
tions (
olumn \#Trips")of the input data. The time (
olumn \Time") needed to 
ount the number of feasible duties(
olumn \#FD") is also presented. For OS 2222, we get in ex
ess of one million feasibleduties, and for OS 3803 we get more than 122 million feasible duties.It would be possible to adopt a set 
overing formulation if we repla
ed the `=' sign bya `�' sign in (2). In pra
ti
e, this results in having 
rews riding on buses just like ordinarypassengers. Despite the fa
t that a less expensive solution 
ould arise from the set 
overingmodel, the latter was not used in pra
ti
e sin
e it may bring diÆ
ulties to the operational
ontrol.1.4.1 A Pure Integer Programming Approa
hIn the pure IP approa
h, we used a 
onstraint program to generate an output �le 
ontainingall feasible duties. A program was developed in C to make this �le 
onform to the CPLEXinput format (CPLEX is a registered trademark of ILOG, In
.). The resulting �le was fedinto a CPLEX LP solver. The node sele
tion strategy used was best-�rst and bran
hingwas done upon the most fra
tional variable. Every other setting of the bran
h-and-boundalgorithm used the standard default CPLEX 
on�guration.The main problem with the IP approa
h is 
lear: the number of feasible duties isenormous. Computational results for OS 2222 appear in Table 3, 
olumns under \Pure IP".In that table, 
olumns \Opt" and \Sol" indi
ate, respe
tively, the optimal and 
omputedvalues for the 
orresponding run. It soon be
ame apparent that the pure IP approa
husing the CPLEX solver would not be 
apable of obtaining the optimal solution for the
omplete OS 2222 problem instan
e. Besides, memory usage was also in
reasing at analarming pa
e, and exe
ution time was lagging behind when 
ompared to other approa
hesthat were being developed in parallel. As an alternative, we de
ided to implement a 
olumngeneration approa
h.



Hybrid Approa
hes for Real World Crew Management Problems 7Table 2: Number of feasible duties for OS 2222 and OS 3803OS 2222 (1 relief point) OS 3803 (2 relief points)# Trips #FD Time # Trips #FD Time10 63 0.07 20 978 1.4020 306 0.33 40 6,705 5.9830 1,032 0.99 60 45,236 33.1940 5,191 5.38 80 256,910 00:03:1950 18,721 21.84 100 1,180,856 00:18:3460 42,965 00:01:09 120 3,225,072 00:57:5370 104,771 00:03:10 140 8,082,482 02:59:1780 212,442 00:05:40 160 18,632,680 08:12:2890 335,265 00:07:48 180 33,966,710 14:39:21100 496,970 00:10:49 200 54,365,975 17:55:26110 706,519 00:14:54 220 83,753,429 42:14:35125 1,067,406 01:00:27 246 122,775,538 95:49:541.4.2 Column Generation with Dynami
 ProgrammingColumn generation is a te
hnique that is widely used to handle linear programs whi
h havea very large number of 
olumns in the 
oeÆ
ient matrix (see [1℄). The method works byrepeatedly exe
uting two phases. In a �rst phase, instead of solving a linear relaxation ofthe whole problem, in whi
h all 
olumns are required to be loaded in memory, we qui
klysolve a smaller problem, 
alled the master problem, that deals only with a subset of theoriginal 
olumns. That smaller problem solved, we start phase two, looking for 
olumns withnegative redu
ed 
osts. If there are no su
h 
olumns, we have proved that the solution athand indeed minimizes the obje
tive fun
tion. Otherwise, we augment the master problemby bringing in a number of 
olumns with negative redu
ed 
ost, and start over on phaseone. From the pure IP formulation above, the redu
ed 
ost of a feasible duty d is givenby 1 �Pj2T uj, where T is the set of trips 
ontained in d and uj is the value of the dualvariable asso
iated with trip j. The problem of 
omputing 
olumns with negative redu
ed
osts is 
alled the slave subproblem. When the original variables have integer values, thisalgorithm must be embedded in a bran
h-and-bound strategy. The resulting algorithm isalso known as bran
h-and-pri
e.Initializing. In order to start the algorithm, one has to de
ide how to setup the �rstmaster problem. A

ording to a general guideline from [29℄, one should avoid trivial 
olumnsand also some apparently good initial 
olle
tion of 
olumns that may 
ause the method towander into unpromising regions. In our 
ase, however, a trivial initialization worked best.In an attempt to a
hieve a better performan
e, we augmented the initial identity matrixwith a set of 
olumns 
omputed using the 
onstraint program dis
ussed in Se
t. 1.5.1.



8 T. Yunes, A. Moura and C. de SouzaTable 3: Computational results for OS 2222 (1 relief point)Pure IP CG+DP Heuristi
# Trips #FD Opt Sol Time Sol Time Sol Time10 63 7 7 0.02 7 0.01 7 0.0520 306 11 11 0.03 11 0.07 11 0.3030 1,032 14 14 0.06 14 0.52 14 10.3740 5,191 14 14 3.04 14 9.10 14 13.0250 18,721 14 14 14.29 14 00:01:29 14 00:30:0060 42,965 14 14 00:01:37 14 00:07:54 14 00:30:2270 104,771 14 14 00:04:12 14 00:44:19 14 00:03:2880 212,442 16 16 00:33:52 16 03:53:58 16 00:16:2490 335,265 18 18 00:50:28 18 08:18:53 18 00:22:42100 496,970 20 20 02:06:32 20 15:08:55 20 00:50:01110 706,519 22 - - - - 22 01:06:17125 1,067,406 25 - - - - 25 01:55:12Computational results did not favor this alternative and we refrained from using it insubsequent experiments. The master problems were solved using the CPLEX LP solver.Generating Columns. In general, the slave subproblem 
an also be formulated as an-other IP problem. In our 
ase, 
onstraints like the one on split-shift duties substantially
ompli
ate the formulation of a pure IP model. As another approa
h, [13℄ suggest redu
ingthe slave subproblem to a 
onstrained shortest path problem, formulated over a relateddire
ted a
y
li
 graph G. When the algorithm for solving the slave problem is about tostart, the value of all the dual variables 
an be easily extra
ted from the linear relaxationsolution of the 
urrent master problem. For ea
h trip i, we in
lude in G two nodes, Si andEi, representing the start and end times of i, respe
tively, and an ar
 
alled a trip ar
 fromSi to Ei. Ea
h trip ar
 is assigned a 
ost ui, whi
h is the same as the 
urrent value of thedual variable asso
iated with trip i. An ar
 with 
ost zero 
onne
ts the end vertex of atrip i to the start vertex of a trip j whenever the end time of i pre
edes the start time ofj. Also, zero 
ost ar
s 
onne
t a sour
e node s to the start verti
es of all trips, and someother zero 
ost ar
s 
onne
t the end verti
es of all trips to a sink node t. In this way, a pathp from s to t in G represents a duty D, and the 
ost asso
iated to p is the sum Pi2D ui,sin
e only trip ar
s in p have nonzero 
osts. From the IP formulation, we know that theredu
ed 
ost of a duty D is given by 1 �Pi2D ui. Hen
e, to obtain a duty with negativeredu
ed 
ost we seek a path in G whose asso
iated 
ost is greater than 1. But we also needto guarantee that su
h a path represents a feasible duty. To this end, the algorithm keepstra
k of the resour
e 
onsumption of ea
h path it is dynami
ally 
onstru
ting. When thenext trip ar
 is added to a path, the latter be
omes infeasible if this trip ar
 depletes anyresour
e beyond its limits. If the path remains feasible, the resour
es 
onsumed by the new



Hybrid Approa
hes for Real World Crew Management Problems 9trip ar
 adjoined to the path are subtra
ted from their respe
tive 
urrent values, its 
ostis added to the present 
ost of the path, and the algorithm resumes looking for the nexttrip ar
. This 
y
le terminates when the sink node is rea
hed. In our 
ase, besides the
ost, we used three resour
es representing the total working time, the total rest time anda binary value that indi
ates if the path stands for a split-shift duty. To guarantee thatthe whole path 
an be re
onstru
ted when the �nal node t is rea
hed, a ba
kward pointeris also maintained at ea
h node. Using �ui as the 
ost asso
iated to trip ar
 i, a dynami
programming algorithm 
an be implemented to 
ompute a 
onstrained shortest path in G.Sin
e di�erent paths 
onsume resour
es in di�erent amounts, the implementation is further
ompli
ated be
ause it is ne
essary to maintain, at ea
h node, a list of feasible paths that
an rea
h that node from s. A path that rea
hes a node 
an only be dis
arded if it is disad-vantageous, in terms of the 
onsumption of all resour
es, with respe
t to another path thatalso rea
hes that same node. When this pro
ess terminates, however, it is easy to extra
tnot only the shortest feasible path, but also a number of additional feasible paths, all withnegative redu
ed 
osts. We 
omplemented these ideas with additional improvements from[2℄ and our own experien
e.Implementation and Results. To implement the bran
h-and-pri
e strategy, the use ofthe ABACUS bran
h-and-pri
e framework saved a lot of programming time (ABACUS is aregistered trademark of OREAS GmbH). One of the important issues was the 
hoi
e of thebran
hing rule. When applying a bran
h-and-bound algorithm to set partitioning problems,a simple bran
hing rule is to 
hoose a binary variable and set it to 1 on one bran
h and setit to 0 on the other bran
h, although [29℄ shows that there are situations where this mightnot be the best 
hoi
e. This simple bran
hing rule produ
ed a very small number of nodesin the impli
it enumeration tree (41 in the worst 
ase). Hen
e, we judged that any possiblemarginal gains did not justify the extra programming e�ort required to implement a moreelaborated bran
hing rule su
h as the one developed by [26℄. In Table 3, 
olumns under\CG+DP", show the 
omputational results for OS 2222. This approa
h did not rea
h asatisfa
tory time performan
e, mainly be
ause the 
onstrained shortest path subproblem isrelatively loose. As a pseudo-polynomial algorithm, the state spa
e at ea
h node has thepotential of growing exponentially with the input size. The number of feasible paths thatthe algorithm has to maintain be
ame so large that the time spent looking for 
olumns withnegative redu
ed 
ost is responsible for more than 90% of the total exe
ution time, on theaverage, over all instan
es. Table 4 supports this observation.1.4.3 A Heuristi
 Approa
hHeuristi
s o�er another approa
h to solve 
rew s
heduling problems and there are manypossible variations. Initially, we set aside those heuristi
s that were unable to rea
h anoptimal solution. As a promising alternative, we de
ided to implement the set 
overingheuristi
 developed by [4℄. This heuristi
 won the FASTER 
ompetition jointly organizedby the Italian Railway Company and AIRO, solving, in a reasonable time, large set 
over-ing problems arising from 
rew s
heduling. Using our own experien
e and additional ideasfrom the 
hapter on Lagrangian Relaxation in [25℄, an implementation was written in C



10 T. Yunes, A. Moura and C. de SouzaTable 4: Pri
ing time for the bran
h-and-pri
e algorithm in Se
tion 1.4.2 over OS 2222# Trips Pri
ing Time Total Time Pri
ing TimeTotal Time %20 0.04 0.07 57.130 0.43 0.52 82.740 8.82 9.10 96.950 00:01:26 00:01:29 96.960 00:07:45 00:07:54 98.270 00:43:58 00:44:19 99.280 03:53:06 03:53:58 99.690 08:18:11 08:18:53 99.9100 15:07:22 15:08:55 99.8
Table 5: Heuristi
 over OS 3803 (2 relief points)#Trips #FD Opt Sol Time20 978 6 6 0.3540 6,705 13 13 3.6060 45,236 15 15 52.0180 256,910 15 15 00:08:11100 1,180,856 15 15 00:13:51110 2,015,334 15 15 00:23:24

and went through a long period of testing and ben
hmarking. Tests exe
uted on set 
over-ing instan
es 
oming from the OR-Library showed that our implementation is 
ompetitivewith the original implementation in terms of solution quality. When this algorithm ter-minates, it also produ
es a lower bound for the optimal 
overing solution, whi
h 
ould beused as a bound for the partitioning problem as well. We veri�ed, however, that on thelarger instan
es, the solution produ
ed by the heuristi
 turned out to be a partition already.Computational results for OS 2222 appear in Table 3, 
olumns under \Heuristi
". Com-paring all three implementations, it is 
lear that the heuristi
 approa
h produ
ed the bestresults. However, applying this heuristi
 to the larger OS 3803 data set was problemati
.Sin
e storage spa
e has to be allo
ated to a

ommodate all feasible 
olumns, memory usagebe
omes prohibitive. It was possible to solve instan
es with up to 2 million feasible duties,as indi
ated in Table 5. Beyond that limit, 320 MB of main memory were not enough forthe program to terminate.



Hybrid Approa
hes for Real World Crew Management Problems 111.5 A Constraint Logi
 Programming Approa
hModeling with �nite domain 
onstraints is rapidly gaining a

eptan
e as a promising pro-gramming environment to solve large 
ombinatorial problems. This led us to model the
rew s
heduling problem using pure Constraint Logi
 Programming (CLP) te
hniques aswell. All models des
ribed in this se
tion were formulated using the ECLiPSe syntax(http://www.i
par
.i
.a
.uk/e
lipse). Due to its large size, the ECLiPSe formula-tion for ea
h run was obtained using a program generator that we developed in C.A simple pure CLP formulation was developed �rst. It used a list of items, ea
h itembeing itself a list des
ribing an a
tual duty. A number of re
ursive predi
ates guaranteedthat ea
h item would satisfy all labor and regulation 
onstraints (see Se
t. 1.3), and alsoenfor
ed restri
tions of time and relief point 
ompatibility between 
onse
utive trips. Thesefeasibility predi
ates iterated over all list items. The database 
ontained one fa
t for ea
hline of input data, as explained in Se
t. 1.2. The resulting model was very simple to programin a de
larative environment. The formulation, however, did not rea
h satisfa
tory resultswhen submitted to the ECLiPSe solver, as shown in Table 6, 
olumns under \First Model".A number of di�erent labeling te
hniques, di�erent 
lause orderings and several variants on
onstraint representation were explored, to no avail. When proving optimality, the situationwas even worse. It was not possible to prove optimality for instan
es with only 10 trips inless than an hour of exe
ution time. The main reason for this poor performan
e may resideon the re
ursiveness of the list representation, and on the absen
e of reasonable lower andupper bounds on the value of the optimal solution whi
h 
ould aid the solver to dis
ardunpromising labelings.1.5.1 An Improved ModelThe new model is based on a two dimensional matrix X of integers. The number of 
olumns(rows) in X, UBdutyLen (UBnumDut ), is an upper bound on the size of any feasible duty(the total number of duties). To 
al
ulate UBdutyLen, we start by summing up the durationsof the trips, taken in non-de
reasing order. When we rea
h a value that is greater thanmaximum working time minutes, UBdutyLen is set to the number of trips used in the sum.Initially, we used the number of trips as a rough estimate for UBnumDut. As the de�nitivevalue for UBnumDut we used the number of duties on the �rst feasible solution found bythe CLP solver. Ea
h Xij element represents a single trip and is a �nite domain variablewith domain [1::NT ℄, where NT = UBdutyLen � UBnumDut. Real trips are numberedfrom 1 to N , where N � NT . Trips numbered N + 1 to NT are dummy trips. To simplifythe writing of some 
onstraints, the last trip in ea
h line of X is always a dummy trip.A proper 
hoi
e of the start time, duration and relief points of the dummy trips avoidstime and relief point in
ompatibilities among them and, besides, prevents the o

urren
eof dummy trips between real trips. Moreover, the 
hoi
e of start times for all dummy tripsguarantees that they o

upy 
onse
utive 
ells at the end of every line in X. The start timeof the �rst dummy trip equals the arrival time of the last real trip plus one minute and itsduration is zero minutes. All the subsequent dummy trips also last zero minutes and theirstart times are su
h that there is a one minute idle interval between 
onse
utive dummy



12 T. Yunes, A. Moura and C. de SouzaTable 6: Pure CLP models, OS 2222 data setFirst Model Improved ModelFeasible Feasible Optimal#Trips #FD Opt Sol Time Sol Time Sol Time10 63 7 7 0.35 7 0.19 7 0.6320 306 11 11 12.21 11 0.47 11 9.2230 1,032 14 15 00:02:32 15 0.87 14 00:29:1740 5,191 14 15 00:14:27 15 0.88 - > 24:00:0050 18,721 14 15 00:53:59 15 0.97 - -60 42,965 14 - - 15 2.92 - -70 104,771 14 - - 16 3.77 - -80 212,442 16 - - 19 8.66 - -90 335,265 18 - - 24 17.97 - -100 496,970 20 - - 27 29.94 - -110 706,519 22 - - 27 39.80 - -125 1,067,406 25 - - 32 00:01:21 - -trips, i.e., they start at ea
h following minute. Their departure and arrival relief points areequal to 0. Using this representation, the set partitioning 
ondition 
an be easily met withan alldifferent 
onstraint applied to a list that 
ontains all the Xij variables.Five other matri
es were used: Start, End, Dur, DepRP and ArrRP. Cell (i; j) ofthese matri
es represents, respe
tively, the start time, the end time, the duration, and thedeparture and arrival relief points of the trip assigned to Xij . Next, we state 
onstraintsin the form element(Xij; S;Startij), where S is a list 
ontaining the start times of all theNT trips. The semanti
s of this 
onstraint assures that Startij is the k-th element of listS where k is the value in Xij . This maintains the desired relationship between matri
esX and Start. Whenever Xij is updated, Startij is also modi�ed, and vi
e-versa. Similar
onstraints are stated between X and ea
h one of the four other matri
es. Now, we 
anwrite Endij � Starti(j+1) (4)ArrRPij +DepRPi(j+1) 6= 3 (5)Idleij = BDij � �Starti(j+1) � Endij� (6)for all i 2 f1; : : : ;UBnumDutg and all j 2 f1; : : : ;UBdutyLen�1g. Equation (4) guaranteesthat trips overlapping in time are not in the same duty. Sin
e the maximum number ofrelief points is two, an in
ompatibility of two 
onse
utive trips is prevented by (5). In (6),the binary variables BDij are su
h that BDij = 1 if and only if Xi(j+1) 
ontains a real trip.
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hes for Real World Crew Management Problems 13Hen
e, the 
onstraint on total working time, for ea
h duty i, is given byUBdutyLen�1Xj=1 (Durij +BIij � Idleij) �Workday ; (7)where BIij is a binary variable su
h that BIij = 1 if and only if Idleij � Idle Limit. The
onstraint on total rest time isWorkday � UBdutyLen�1Xj=1 Durij + UBdutyLen�1Xj=1 (Idleij � BIij � Idleij) � Min Rest (8)for ea
h duty i. Note that Idle, BD and BI are also matri
es in the CLP program. Forsplit-shift duties, we also impose that at most one of the Idleij variables 
an assume a valuegreater than Idle Limit. This is done with an atmost 
onstraint in the following manner,for ea
h duty i: atmost(1; L; 0). If list L 
ontains all the BIij variables of (7), this meansthat at most one of them 
an assume the value zero.1.5.2 Re�nements and ResultsThe exe
ution time of this model was further improved by:Elimination of Symmetries | Solutions that are permutations of lines of X are equivalent.To bar su
h equivalen
es, the �rst 
olumn of the X matrix was kept sorted. Sin
eex
hanging the position of dummy trips gives equivalent solutions, new 
onstraintswere used to prevent this from happening when ba
ktra
king.Domain Redu
tion | Certain trips 
an only appear on a subset of the available 
ells. Forinstan
e, the �rst real trip 
an only appear in X1;1.Use of Another Viewpoint | As in [10℄, di�erent viewpoints were also used. New Yk vari-ables were introdu
ed representing \the 
ell that stores trip k", as opposed to the Xijvariables that mean \the trip that is put in 
ell ij" (an ij 
ell 
an be representedby the number (i � 1) � UBdutyLen + j). The Yk variables were 
onne
ted to theXij variables through 
hanneling 
onstraints. The result is a redundant model withimproved propagation properties.Di�erent Labeling Strategies | Various labeling strategies were tried, in
luding the one de-veloped by [20℄. The strategy of 
hoosing the next variable to label as the one withthe smallest domain (�rst-fail) was the most e�e
tive one. After 
hoosing a variable,it is ne
essary to sele
t a value from its domain following a spe
i�
 order, when ba
k-tra
king o

urs. We tested di�erent labeling orders, like in
reasing, de
reasing, andalso middle-out and its reverse. Experimentation showed that labeling by in
reas-ing order a
hieved the best results. On the other hand, when using viewpoints, theheuristi
 developed by [20℄ rendered the model roughly 15% faster. The basi
 idea isto label an X variable a

ording to the domain size of the asso
iated Y variables. Inour 
ase, for instan
e, if the 
urrent domain of variable X2;5 is [1; 7; 8℄, the �rst value
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ted for labeling will be 8 if and only if Y8 has the smallest domain amongvariables Y1, Y7 and Y8.The improved purely de
larative model produ
ed feasible s
hedules in a very good time,as indi
ated in Table 6, under 
olumns \Improved Model". Obtaining provably optimalsolutions, however, was still out of rea
h for this model. [18℄ and [12℄ have also reporteddiÆ
ulties when trying to solve 
rew s
heduling problems with a pure CLP approa
h. Find-ing the optimal s
hedule redu
es to 
hoosing, from an extremely large set of elements, aminimal subset that satis�es all the problem 
onstraints. The huge sear
h spa
es involved
an only be dealt with satisfa
torily when pruning is enfor
ed by strong lo
al 
onstraints.Besides, a simple sear
h strategy, la
king good problem spe
i�
 heuristi
s, is very unlikelyto su

eed. When solving s
heduling problems of this nature and size to optimality, noneof the these requirements 
an be met easily, rendering it intrinsi
ally diÆ
ult for pure CLPte
hniques to produ
e satisfa
tory results in these 
ases.The 
omparative performan
e of the previous four isolated approa
hes 
an be more
learly appre
iated through the graph in Fig. 1, whi
h summarizes the results for the OS2222 data set. The 
urves are identi�ed as follows: \CLP" is the Constraint Logi
 Program-ming approa
h; \CG+DP" is the 
olumn generation approa
h based on Dynami
 Program-ming; \IP" is the Integer Programming approa
h and \CFT" is the heuristi
 approa
h.
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Figure 1: Performan
e of the isolated approa
hes over OS 22221.6 A Hybrid Approa
h[15℄ has shown that, in some 
ases, neither the pure IP nor the pure CLP approa
hesare 
apable of solving 
ertain kinds of 
ombinatorial problems satisfa
torily. But a hybrid
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hes for Real World Crew Management Problems 15strategy might outperform them.When 
ontemplating a hybrid strategy, it is ne
essary to de
ide whi
h part of the prob-lem will be handled by a 
onstraint solver, and whi
h part will be dealt with in a more
lassi
al way. Given the huge number of 
olumns at hand, a 
olumn generation algorithmseemed to be almost mandatory. As reported in Se
t. 1.4.2, we already knew that the dy-nami
 programming 
olumn generator used in the pure IP approa
h did not perform well.On the other hand, a de
larative language is parti
ularly suited to express not only the
onstraints imposed by the original problem, but also the additional 
onstraints that mustbe satis�ed when looking for feasible duties with negative redu
ed 
osts. Given that, it wasa natural de
ision to implement a 
olumn generation approa
h where new 
olumns weregenerated on demand by a 
onstraint program. Additionally, the dis
ussion in Se
t. 1.5.2indi
ated that the CLP strategy implemented was very eÆ
ient when identifying feasibleduties. It lagged behind only when 
omputing a provably optimal solution to the originals
heduling problem, due to the minimization 
onstraint. Sin
e it is not ne
essary to �nd a
olumn with the most negative redu
ed 
ost, the behavior of the CLP solver was deemedadequate. It remained to program the CLP solver to �nd a set of new feasible duties withthe extra requirement that their redu
ed 
ost should be negative.There have been other attempts that somehow explore the idea of integrating IP andCLP into 
olumn generation algorithms. In the sequel, we identify their main similaritiesand di�eren
es with respe
t to our approa
h.An early work whi
h deals with the 
ooperation of linear and �nite-domain 
onstraintsolvers for 
olumn generation is [23℄. The authors model a bin-pa
king 
on�guration prob-lem posting 
onstraints both to a linear solver (a revised Simplex algorithm) and to a�nite-domain 
onstraint solver. All possible bin 
on�gurations (
olumns) are generated atthe start and then a pure integer linear problem is solved in order to �nd the right quantitiesfor ea
h type of bin.In [21℄, the authors solve an airline 
rew assignment problem where the 
olumn genera-tion subproblem is modeled as a Constrained Shortest Path Problem (CSPP) on a dire
teda
y
li
 graph (DAG). This subproblem is formulated as a 
onstraint satisfa
tion problem.Nevertheless, although they argue that their results are en
ouraging, the models and 
om-putational results are not expli
itly des
ribed. Moreover, they introdu
e some heuristi
pruning te
hniques whi
h may prevent the algorithm from �nding a provably optimal solu-tion.[9℄ des
ribes an iterative 
ooperation between CLP and linear programming optimizersfor solving the pairing generation problem for airline 
ompanies. In this 
ase, the generationpro
ess is guided by heuristi
s for 
hoosing \ni
e" pairings and meta-heuristi
s whi
h restri
tthe exploration of the sear
h tree. Also, this algorithm is not a bran
h-and-pri
e algorithmand the 
omputational experiments are not quite elu
idative be
ause of the small numberof instan
es.[22℄ present a general framework for 
olumn generation based on Constraint Program-ming. Sometimes, the subproblem of �nding new 
olumns with negative redu
ed 
ost hap-pens to be too 
ompli
ated for traditional Operations Resear
h (OR) methods. In these
ases, formulating the 
olumn generator as a 
onstraint satisfa
tion problem may help. Thisis more or less the same idea presented in our previous work [30℄. It is interesting to note



16 T. Yunes, A. Moura and C. de Souzahere that these two investigations, although leading to similar proposals, have been devel-oped independently and in parallel, and did not borrow ideas from ea
h other. In [22℄, theframework is instantiated for solving a Crew Assignment problem and the implementationof an eÆ
ient path 
onstraint for the subproblem is dis
ussed. Their appli
ation does notgive rise to the need of integrating this framework inside a bran
h-and-pri
e algorithm but,a

ording to the authors, this would not be a problem.Both [14℄ and [27℄ make use of the 
onstraint-based 
olumn generation framework pre-sented in [22℄. In [14℄, the authors address one kind of Cutting Sto
k Problem where the
olumn generation subproblem happens to be a Constrained Knapsa
k Problem (CKP)rather than the usual CSPP. However, the paper 
on
entrates on solving the subproblemeÆ
iently and does not give details about the whole master-slave intera
tion and the re-sults obtained for the overall Cutting Sto
k Problem. In [27℄, the authors des
ribe analgorithm whi
h integrates a Dire
t Constraint Programming Based Approa
h (DCPA)and a CP-based Column Generation Approa
h (CPCGA), in an iterative way, for the 
rewassignment problem. The pool of 
olumns for the master problem is initialized with a setof initial feasible solutions found by the DCPA. Then, the CPCGA �nds a solution for a set
overing formulation and the DCPA tries to generate a set partitioning solution throughdeassignment of variables. Some lo
al re�nements on this solution are performed and theCPCGA is 
alled again. They show that, in the long run, this 
ooperation performs bet-ter than both the DCPA or CPCGA alone. However, it is diÆ
ult to have a good notionwith respe
t to the e�e
tiveness of their approa
h sin
e the 
omputational experiments arerestri
ted to two instan
es. Besides, there is no guarantee of optimality and no idea of thequality of the solutions is presented.Our hybrid approa
h di�ers from the aforementioned approa
hes due to the followingmain aspe
ts: we make use of a 
omplete bran
h-and-pri
e framework, i.e. the linear relax-ation of every node of the bran
h-and-bound tree is solved by means of a Column Generationalgorithm; sin
e the total number of feasible 
olumns is enormous, we do not generate themall in advan
e; the subproblem of 
olumn generation is not formulated as a CSPP on aDAG; our experiments are 
ondu
ted over large real-world data sets; and we guarantee theoptimality of the �nal solutions.1.6.1 Implementation IssuesThe basis of this new algorithm is the same as the one developed for the 
olumn generationapproa
h, des
ribed in Se
t. 1.4.2. The dynami
 programming routine is substituted for anECLiPSe pro
ess that solves the slave subproblem and 
ommuni
ates with the ABACUSpro
ess through a network 
onne
tion. When the ABACUS pro
ess has solved the 
urrentmaster problem to optimality, it sends the values of the dual variables to the CLP pro
ess.If there remain some 
olumns with negative redu
ed 
osts, some of them are 
aptured bythe CLP solver and are sent ba
k to the ABACUS pro
ess, and the 
y
le starts over. Ifthere are no su
h 
olumns, the LP solver has found an optimal solution. Having foundthe optimal solution for this node of the enumeration tree, its dual bound has also beendetermined. The normal bran
h-and-bound algorithm 
an then pro
eed until it is time tosolve another LP. This intera
tion is depi
ted in Fig. 2.
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B&Bnew 
ols.dual vars.bran
h LP sol. 
urrenttreeRC < 0gen. 
ols.ECLiPSe optimal solution CPLEXmaster LPABACUS +new 
ols.dual vars.Figure 2: Simpli�ed s
heme of the hybrid 
olumn generation methodThe 
ode for the CLP 
olumn generator is almost identi
al to the 
ode for the improvedCLP model, presented in Se
t. 1.5.1. There are three major di�eren
es. Firstly, the matrixX now has only one row, sin
e we are interested in �nding one feasible duty and not a
omplete solution. Se
ondly, there is an additional 
onstraint stating that the sum of thevalues of the dual variables asso
iated with the trips in the duty being 
onstru
ted shouldrepresent a negative redu
ed 
ost. Using the formula to 
al
ulate the redu
ed 
ost of a
olumn (feasible duty) given in Se
tion 1.4.2, this 
onstraint readsUBdutyLenXi=1 Ci > 1 : (9)For ea
h i, Ci is determined by element(Xi; U; Ci), where U is a list whose elements arethe values of the dual variables asso
iated with ea
h trip. The dual variables asso
iatedwith dummy trips are assigned the value zero.Finally, the minimization predi
ate was ex
hanged for a predi
ate that keeps on lookingfor new feasible duties until the desired number of feasible duties with negative redu
ed 
ostshave been 
omputed, or until there are no more feasible assignments. By experimenting withthe data sets at hand, we determined that the number of 
olumns with negative redu
ed
ost to request at ea
h iteration of the CLP solver was best set to 53. The redundantmodeling, as well as the heuristi
 suggested by [20℄, both used to improve the performan
eof the original CLP formulation, now represented unne
essary overhead and were removed.1.6.2 Computational ResultsThe hybrid approa
h was able to 
onstru
t an optimal solution to substantially largerinstan
es of the problem, in a reasonable time. Computational results for OS 2222 andOS 3803 appear on Tables 7 and 8, respe
tively. Column headings #Trips, #FD, Opt,DBR, #CA, #LP and #Nodes stand for, respe
tively, number of trips, number of feasibleduties, optimal solution value, dual bound at the root node, number of 
olumns added,number of linear programming relaxations solved, and number nodes visited. The exe
utiontimes are divided in three 
olumns: PrT, LPT and TT, meaning, respe
tively, time spentgenerating 
olumns, time spent solving linear programming relaxations, and total exe
utiontime. In every instan
e, the dual bound at the root node was equal to the value of the



18 T. Yunes, A. Moura and C. de SouzaTable 7: Hybrid algorithm, OS 2222 data set (1 relief point)#Trips #FD Opt DBR #CA #LP #Nodes PrT LPT TT10 63 7 7 53 2 1 0.08 0.02 0.1220 306 11 11 159 4 1 0.30 0.04 0.4230 1,032 14 14 504 11 1 1.48 0.11 2.0740 5,191 14 14 1,000 26 13 8.03 0.98 9.3750 18,721 14 14 1,773 52 31 40.97 3.54 45.2860 42,965 14 14 4,356 107 41 00:04:24 14.45 00:04:4070 104,771 14 14 2,615 58 7 00:01:36 4.96 00:01:4280 212,442 16 16 4,081 92 13 00:01:53 18.84 00:02:1390 335,265 18 18 6,455 141 11 00:02:47 31.88 00:03:22100 496,970 20 20 8,104 177 13 00:06:38 51.16 00:07:34110 706,519 22 22 11,864 262 21 00:16:53 00:02:28 00:19:31125 1,067,406 25 25 11,264 250 17 00:19:09 00:01:41 00:21:00optimal integer solution. Hen
e, the LP relaxation of the problem already provided thebest possible lower bound on the optimal solution value. Also note that the number ofnodes visited by the algorithm was kept small. The same behavior 
an be observed withrespe
t to the number of 
olumns added.The sizable gain in performan
e is shown in the last three 
olumns of ea
h table. Notethat the time to solve all linear relaxations of the problem was a small fra
tion of the totalrunning time, for both data sets.It is also 
lear, from Table 7, that the hybrid approa
h was 
apable of 
onstru
ting aprovably optimal solution for the smaller data set using 21 minutes of running time on a 350MHz desktop PC. That problem involved in ex
ess of one million feasible 
olumns and wassolved 
onsiderably faster when 
ompared with the best performer (see Se
t. 1.4.3) amongall the previous approa
hes.The stru
tural di�eren
e between both data sets 
an be observed by looking at the 100trip row, in Table 8. The number of feasible duties on this line is, approximately, the samenumber of one million feasible duties that are present in the totality of 125 trips of the �rstdata set, OS 2222. Yet, the algorithm used roughly twi
e as mu
h time to 
onstru
t theoptimal solution for the �rst 100 trips of the larger data set, as it did when taking the 125trips of the smaller data set. Also, the algorithm lagged behind the heuristi
 for OS 3803,although the latter was unable to go beyond 110 trips, due to ex
essive memory usage.Finally, when we �xed a maximum running time of 24 hours, the algorithm was 
apableof 
onstru
ting a solution, and prove its optimality, for as many as 150 trips taken from thelarger data set. This 
orresponds to an ex
ess of 12 million feasible duties. It is noteworthythat less than 60 MB of main memory were needed for this run. A problem instan
e withas many as 150 � (12:5 � 106) entries would require over 1.8 GB when loaded into main
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hes for Real World Crew Management Problems 19Table 8: Hybrid algorithm, OS 3803 data set (2 relief points)#Trips #FD Opt DBR #CA #LP #Nodes PrT LPT TT20 978 6 6 278 7 1 2.11 0.08 2.2430 2,890 10 10 852 19 1 9.04 0.20 9.3840 6,705 13 13 2,190 48 1 28.60 1.03 30.1450 17,334 14 14 4,220 94 3 00:01:22 3.95 00:01:2760 45,236 15 15 8,027 175 1 00:03:48 14.81 00:04:0670 107,337 15 15 11,622 258 1 00:07:42 40.59 00:08:3780 256,910 15 15 8,553 225 1 00:10:07 47.12 00:10:5890 591,536 15 15 9,827 269 1 00:14:34 00:02:04 00:16:43100 1,180,856 15 15 13,330 375 1 00:39:03 00:04:37 00:43:49110 2,015,334 15 15 13,717 387 1 01:19:55 00:03:12 01:23:19120 3,225,072 16 16 18,095 543 13 04:02:18 00:09:09 04:11:50130 5,021,936 17 17 28,345 874 23 06:59:53 00:30:16 07:30:56140 8,082,482 18 18 27,492 886 25 13:29:51 00:28:56 13:59:40150 12,697,909 19 19 37,764 1,203 25 21:04:28 00:49:13 21:55:25memory. By eÆ
iently dealing with a small subset of the feasible duties, our algorithmmanaged to surpass the memory bottlene
k and solve instan
es that were very large. Thisobservation supports our view that a CLP formulation of 
olumn generation was the rightapproa
h to solve these very large 
rew s
heduling problems.The 
omparative performan
e of the hybrid model against the isolated IP model overthe OS 2222 and OS 3803 data sets is depi
ted in Figs. 3 and 4, respe
tively. We 
hosethe IP approa
h for this 
omparison for it was the best one among the exa
t isolatedapproa
hes. The 
urves are identi�ed as follows: \IP" is the Integer Programming approa
hand \Hybrid" is the hybrid 
olumn generation approa
h.2 The Crew Rostering ProblemThe duties obtained as output from the solution of the 
rew s
heduling phase must beassigned to 
rews day after day, throughout an entire planning horizon. This sequen
inghas to obey a set of 
onstraints that di�ers from the 
onstraints whi
h are relevant to the
rew s
heduling problem. This set in
ludes, for example, the need for days o�, with a
ertain periodi
ity, and a minimum rest time between 
onse
utive workdays.2.1 Input DataThe set of duties to be performed on weekdays is di�erent from the set of duties to beperformed on weekends or holidays, due to 
u
tuations on 
ustomer demand. Therefore,
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hes for Real World Crew Management Problems 21the 
rew s
heduling problem gives as input for the rostering problem a number of distin
tsets of duties.The planning horizon we are interested in spans one 
omplete month. It is importantto take into a

ount as input data many features of the month under 
onsideration, su
has: the total number of days, whi
h days are holidays and whi
h day of the week is the �rstday of the month (the remaining weekdays 
an be easily �gured out from this information).The di�eren
es in the input data from one month to the next one may lead to variationson the number of 
rews a
tually working in ea
h month. Consequently, some rules mustbe observed in order to sele
t the 
rews that are going to be e�e
tively used. If, say, inmonth m 40 
rews were needed, and in month m+1 only 38 will be ne
essary, how to sele
tthe 2 
rews that are going to be left out? Furthermore, suppose that, after eliminatingthose 
rews that 
annot work on the 
urrent month for some reason, the 
ompany has 50
rews available. Even if the number of 
rews remains the same, e.g. 40, from one monthto the next one, it is important to evenly distribute the work among them. This balan
e
an be obtained 
onsidering the number of days ea
h 
rew has worked sin
e the beginningof the year, for example, or with the aid of another kind of ranking fun
tion for the 
rews.Finally, sin
e some 
onstraints refer to a time window that spans more than one month(see Se
t. 2.2) some attributes, for ea
h 
rew, have to be 
arried over between su

essivemonths.The input data needed to build the roster for month m is the following:� The sets of duties Dwk, Dsa, Dsu and Dho whi
h have to be performed on weekdays,Saturdays, Sundays and on holidays, respe
tively;� The number of days, d, in month m;� The o

urren
e of holidays in month m;� The day of the week 
orresponding to the �rst day in month m;� The whole set of 
rews, C, employed by the 
ompany;� For ea
h 
rew i in C:{ The set of days, OFFi, in whi
h i is o� duty (e.g. va
ations, si
kness), ex
ludingits ordinary weekly rests;{ The number of days, lsi, between the last Sunday i was o� duty and the �rst dayof month m;{ A binary 
ag, wri, that is equal to 1 if and only if i had a weekly rest in the lastweek of month m� 1;{ A binary 
ag, sli, that is equal to 1 if and only if i performed a split-shift dutyduring the last week of month m� 1;{ The di�eren
e in minutes, lwi, between the last minute i was working in monthm� 1 and the �rst minute of the �rst day of month m;� For ea
h duty k in Dwk [Dsa [Dsu [Dho:



22 T. Yunes, A. Moura and C. de Souza{ The start and end times of k (tsk and tek, respe
tively), given in minutes aftermidnight;{ A binary 
ag, ssk, that equals 1 if and only if k is a split-shift duty;� A list of all 
rews in C sorted a

ording to a 
ertain ranking fun
tion. This orderingwill be used to assign priorities to the 
rews when identifying the subset of C that isgoing to work in month m.2.2 Problem ConstraintsThe 
onstraints asso
iated to the sequen
ing of the duties are:(a) The minimum rest time between 
onse
utive workdays is 11 hours;(b) Every employee must have at least one day o� per week. Moreover, for every timewindow spanning 7 weeks, at least one of these days o� must be on a Sunday;(
) When an employee performs one or more split-shift duties during a week, his day o�in that week must be on Sunday;(d) In every 24-hour period starting at midnight, within the whole planning horizon, ea
h
rew 
an start to work on at most one duty.2.3 Obje
tivesFor ea
h month, we are looking for the 
heapest solution in terms of the number of 
rewsneeded to perform all the duties requested. Additionally, it is desirable to have balan
edworkloads among all the 
rews involved, but the models we present in this arti
le are not
on
erned with this issue yet.2.4 The Format of the Input Data SetsBefore des
ribing the IP and CLP models for the rostering problem, it is important tounderstand the format of the instan
es used in the 
omputational experiments. Theseinstan
es 
orrespond to the a
tual s
hedules 
onstru
ted by the 
rew s
heduling phasedes
ribed in Se
t. 1. Using the duties built during the 
rew s
heduling phase, we have
onstru
ted a set of instan
es ranging from small ones up to large-sized ones, typi
allyen
ountered by the management personnel in the bus 
ompany. The main features of theseinstan
es appear in Table 9.The Name is just a string identifying the instan
e. The number of 
rews available for theroster, 
, appears under the heading #Crews. The 
olumn #Days shows the number ofdays in the planning horizon in the format d (h), where d is the total number of days and hindi
ates how many of those d days are holidays. The next four 
olumns show the numberof duties that must be performed in ea
h kind of the possible working days: weekdays,Saturdays, Sundays and holidays, respe
tively. The format used is ss/tt, where tt is thetotal number of duties and ss represents how many of the tt duties are split-shift duties. To
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ription of the instan
es for the experiments# DutiesName #Crews #Days Week Sat Sun Holystring 
 d (h) sswk/ttwk sssa/ttsa sssu/ttsu ssho/tthobegin with, we set the following parameters, for every 
rew i: OFFi = ;, lsi = 0, wri = 1,sli = 0 and lwi = 660. This is the same as ignoring any information from the previousmonth when 
onstru
ting the roster for the 
urrent month.2.5 An Integer Programming Approa
hLet n be the total number of 
rews available and let d be the number of days in the
urrent month m. Moreover, let p, q, r and s be the numbers of duties to be performedon weekdays, Saturdays, Sundays and holidays, respe
tively (i.e. jDwkj = p, jDsaj = q,jDsuj = r and jDhoj = s).The IP formulation of the rostering problem is based on xijk binary variables whi
h areequal to 1 if and only if 
rew i performs duty k on day j. If j is a weekday, k belongsto f0; 1; : : : ; pg. Analogously, if j is a Saturday, Sunday or holiday, k ranges over f0; p +1; : : : ; p+ qg, f0; p+ q+1; : : : ; p+ q+ rg or f0; p+ q+ r+1; : : : ; p+ q+ r+ sg, respe
tively.The duty numbered 0 is a spe
ial duty indi
ating that the 
rew is o� duty on the given day.Thus, if xij0 = 1 it means that 
rew i is not working on day j. For modeling purposes, weset ts0 to a very large number, te0 = 0 and ss0 = 0.Given a day j in m, Kj represents its set of duty indexes, ex
ept for the duty 0. Forinstan
e, if j is a Saturday then Kj = fp+ 1; : : : ; p+ qg.2.5.1 The ModelThe main obje
tive is to minimize the number of 
rews working during the present month.This is equivalent to maximizing the number of 
rews whi
h are idle during the wholemonth. Let us de�ne new variables yi 2 IR+, for all i 2 f1; : : : ; ng, whi
h are equal to 1 ifxij0 = 1, for all j 2 f1; : : : ; dg, and are equal to 0 otherwise. To a
hieve this behavior forthe yi variables, it is ne
essary to set the obje
tive fun
tion as maxPni=1 yi and to imposethe following 
onstraints yi � xij0; 8 i; 8 j : (10)Equations (10) 
ombined with the obje
tive fun
tion for
e a yi variable to be equal to 1 ifand only if 
rew i is idle during the entire month.The o

urren
e of days on whi
h the 
rews are known to be o� duty (e.g. previouslyassigned va
ations) is satis�ed by settingxij0 = 1; 8 i; 8 j 2 OFFi : (11)



24 T. Yunes, A. Moura and C. de SouzaThe subsequent formulas take 
are of the feasibility of the roster (see Se
t. 2.2).Constraints (a) are dealt with in two steps. Equation (12) takes 
are of the assignmentof duties for the �rst day in month m. For the other days, assume that a 
rew i does duty kon day j� 1. The set K 0j[k℄ of other duties that 
annot be taken by the same 
rew i on dayj be
ause of the 660-minute minimum rest time is given by fk0 2 Kj j tsk0 � (tek � 1440) <660g. Therefore, (13) guarantees the minimum rest time between su

essive days in monthm. xi1k = 0; 8 i; 8 k 2 K1 s.t. tsk + lwi < 660 ; (12)xi(j�1)k + Xk02K0j [k℄xijk0 � 1; 8 i; 8 j 2 f2; : : : ; dg; 8 k 2 Kj�1 : (13)Let us de�ne a 
omplete week as seven 
onse
utive days, inside month m, ranging fromMonday to Sunday. For every 
omplete week, W , in m, we impose the mandatory day o�as Xj2W xij0 � 1; 8 i : (14)If month m does not start with a 
omplete week, let W 0 be the set of days in the �rst weekof m up to Sunday. Ea
h 
rew i with wri = 0 needs to rest in W 0 and this is a
hieved withXj2W 0 xij0 � 1; 8 i s.t. wri = 0 : (15)The 
onstraint stating that for ea
h period of time spanning 7 weeks ea
h 
rew must haveat least one day o� on Sunday 
an be des
ribed as follows. For ea
h 
rew i su
h thatlsi + d � 49, we 
onstru
t the set Ti 
ontaining the Sundays in the �rst (49 � lsi) days ofm. Then, we impose Xj2Ti xij0 � 1; 8 i s.t. lsi + d � 49 : (16)Together, (14) to (16) represent 
onstraints (b).Suppose that the �rst day of month m is not Monday and let j� be the �rst Sunday inm. To satisfy 
onstraint (
) for ea
h 
rew i su
h that sli = 1, we must state thatxij�0 = 1 : (17)Let Sm be the set of Sundays in m after its sixth day and let Pj be the set of split-shiftduties on day j. For these Sundays, we respe
t 
onstraint (
) withxij0 � Xk2Pj�r xi(j�r)k; 8 i; 8 j 2 Sm; 8 r 2 f1; : : : ; 6g : (18)
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hes for Real World Crew Management Problems 25Table 10: Computational experiments with the IP model# DutiesName #Crews #Days Week Sat Sun Holy LB Sol Times01 10 10 (1) 00/04 00/01 00/01 00/01 4 6 0.62s02 10 15 (2) 00/04 00/01 00/01 00/01 4 7 1.50s03 10 20 (2) 00/04 00/01 00/01 00/01 4 6 2.00s04 10 25 (2) 00/04 00/01 00/01 00/01 4 6 4.33s05 10 30 (2) 00/04 00/01 00/01 00/01 4 8 20.91s06 10 30 (2) 01/04 00/01 00/01 00/01 4 6 9.06s07 10 30 (2) 02/04 00/01 00/01 00/01 4 6 10.61s08 10 30 (2) 03/04 00/01 00/01 00/01 4 7 6.81s09 10 30 (2) 04/04 00/01 00/01 00/01 4 8 9.21s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 5.05s11 10 30 (2) 04/04 01/01 00/01 01/01 4 8 8.35s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 8.90Equation (19) guarantees that ea
h 
rew is assigned exa
tly one duty in ea
h day, thussatisfying 
onstraints (d). Additionally, (20) represents the impli
it 
onstraint that everyduty must be performed in ea
h day, ex
ept for the spe
ial duty 0.xij0 + Xk2Kj xijk = 1; 8 i; 8 j ; (19)nXi=1 xijk = 1; 8 j; 8 k 2 Kj : (20)2.5.2 Computational ResultsThe 
omputational results obtained with the IP model are shown in Table 10. The �guresunder the heading LB 
ome from lower bounds on the value of the optimal solution returnedby the linear programming relaxation of the IP model. Noti
e however that the obje
tivefun
tion des
ribed in Se
t. 2.5.1 asks for the maximization of the number of idle 
rews,whi
h is equivalent to minimizing the number of 
rews needed to 
ompose the roster. Forthe purpose of 
omparison with the CLP model, the values in the LB and Sol 
olumns ofTable 10 represent the number of 
rews a
tually working, i.e. the total number of 
rewsavailable minus the value of the obje
tive fun
tion. Finding the optimal solution of theinstan
es in Table 10 turned out to be a very diÆ
ult task, despite their relatively smallsize. Hen
e, the solution value in 
olumn Sol 
orresponds to the �rst integer solution foundby the model, for ea
h instan
e. The linear relaxations and the integer programs were solvedwith the CPLEX Solver. Although the 
omputation times for the �rst integral solution arequite small, the gap between the values of the lower bounds and the feasible solutions is
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eable. Further, these values are still not a good indi
ation of the quality of the model,sin
e we are dealing with very small instan
es. Yet, when trying to �nd integer solutionsfor instan
es with tens of duties in a workday, this model performed very poorly and noanswer 
ould be found within 30 minutes of 
omputation time. Therefore, we de
ided toexperiment with a pure Constraint Logi
 Programming formulation of the problem.2.6 A Constraint Logi
 Programming Approa
hHaving found diÆ
ulties when solving the 
rew rostering problem with a pure IP model,as des
ribed in Se
t. 2.5, we de
ided to try a 
onstraint-based formulation. We used theECLiPSe �nite domain 
onstraint solver to 
onstru
t and solve the model.2.6.1 The ModelLet n, d, p, q, r and s be de�ned as in Se
t. 2.5. The main idea of the CLP model for therostering problem is to represent the �nal roster as a two-dimensional matrix, X, whereea
h 
ell Xij 
ontains the duty performed by 
rew i on day j, for i 2 f1; : : : ; ng andj 2 f1; : : : ; dg.The Xij's are �nite domain variables whose domains depend on the value of j. As inSe
t. 2.5, the duties obtained from the 
rew s
heduling phase are numbered a

ording totheir 
lassi�
ation as duties for weekdays, Saturdays, Sundays or holidays. In this model,we will not have the 
on
ept of a spe
ial duty for idleness, as the duty numbered 0 in the IPmodel. In fa
t, we will have, for ea
h day, a set of dummy duties whi
h tell that a 
ertain
rew is o� duty.It is easy to see that the number of 
rews needed to 
onstru
t a roster must be at leastthe maximum number of duties that may be present in any given day of the 
urrent month.Thus, we 
an state that n � maxfp; q; r; sg. Consequently, as the number of X variablesfor ea
h day j is equal to n, if the domains of these variables were restri
ted to be the setof duties for day j, some of them would have the same value in the �nal solution. As wewill see later, modeling 
an be simpli�ed if we avoid this situation and here 
omes the needfor the dummy duties. Let Kj be de�ned as in Se
t. 2.5. Moreover, let the total numberof duties be 
al
ulated as tnd = p+ q + r + s. The domains of the Xij variables are thende�ned as Xij :: Kj [ ftnd+ 1; tnd + 2; : : : ; tnd+ (n� jKj j)g 8 i; 8 j : (21)If Xij is assigned a duty whose number is greater than tnd, it means that 
rew i is idle onday j.Three other sets of variables have to be de�ned in order to fa
ilitate the representationof the 
onstraints. For all k in f1; : : : ; tndg, let TS, TE and SS be lists of integers de�nedas follows: TS[k℄ = tsk, TE[k℄ = tek� 1440, SS[k℄ = ssk. The values of ts, te and ss for thedummy duties are +1, 0 and 0, respe
tively. The new variables are 
alled Startij , Endij
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hes for Real World Crew Management Problems 27and Splitij and relate to the Xij variables through element 
onstraints:element(Xij ;TS;Startij) ;element(Xij ;TE;Endij) ;element(Xij ;SS;Splitij) :Now we 
an state the 
onstraints (a) through (d) in the ECLiPSe notation.Equations (22) and (23) assure that the minimum rest time between 
onse
utive dutiesis 11 hours. Note the spe
ial 
ase for the �rst day of month m.Starti1 + lwi � 660; 8 i ; (22)Startij � Endi(j�1) � 660; 8 i; 8 j 2 f2; : : : ; dg : (23)Similarly to what was de�ned in Se
t. 2.5.1, we use the 
on
ept of a 
omplete week, Wi,for ea
h 
rew i, as a list of variables [Xit;Xi(t+1); : : : ;Xi(t+6)℄, where t is any Monday andt+ 6 is its subsequent Sunday, both in month m. The need for at least one day o� duringea
h week is represented by (24), for 
omplete weeks. Noti
e that this 
onstraint must berepeated for ea
h 
omplete week Wi asso
iated with every 
rew i. If wri = 0 and the �rstday of m is not Monday, we also need to impose (25), for ea
h 
rew i and initial week W 0i .atmost less(6;Wi; tnd + 1) ; (24)atmost less(jW 0i j � 1;W 0i ; tnd+ 1) : (25)In (25), jW 0i j denotes the number of elements in the list W 0i . To state that at most Nelements of list L 
an be smaller than V we use the predi
ate atmost less(N;L; V ). Thisbehavior is a
hieved with the de�nitions belowflags_less([℄,_,[℄) :- !.flags_less([X|Y℄,Val,[B|R℄) :- #<(X,Val,B), flags_less(Y,Val,R).atmost_less(N,L,Val) :- flags_less(L,Val,BF), atmost(N,BF,1).To satisfy 
onstraints (b), there is one 
ondition missing, besides (24) and (25), whi
hassumes at least one day o� on Sunday, every seven weeks, for every 
rew. For ea
h 
rew i,if lsi + d � 49, then atmost less(jLij � 1; Li; tnd + 1) ; (26)where Li is a list 
ontaining the Xij 's asso
iated with the Sundays present in the �rst(49� lsi) days of month m.Constraints (
) also use the 
on
ept of 
omplete weeks, but do not in
lude Sundays. Wedenote this redu
ed 
omplete week W �i as the list [Splitit;Spliti(t+1); : : : ;Spliti(t+5)℄. Noti
ethat we now 
onsider the Split variables instead of the X variables, as when representing
onstraints (b).Splitit + � � �+ Spliti(t+5) #> 0 #=> Xi(t+6) #> tnd; 8 i; 8W �i ; (27)Xik #> tnd; 8 i : (28)



28 T. Yunes, A. Moura and C. de SouzaBy (27), if one of the Splitit; : : : ;Spliti(t+5) variables equals 1, then 
rew i must rest on thenext Sunday, whi
h 
orresponds to Xi(t+6). The spe
ial 
ase of the �rst week of m, whenthe month does not start on Monday and sli = 1, is dealt with by (28). Here, k stands forthe �rst Sunday of month m.Our 
hoi
e of variables already guarantees that ea
h 
rew starts only one duty per day.But we must also make sure that every duty is assigned to one 
rew on ea
h day. Be
auseof the dummy duties, this 
ondition 
an be met easily just by for
ing the Xij variables tobe pairwise distin
t, for ea
h day j:alldifferent([X1j ; : : : ;Xnj ℄); 8 j : (29)Finally, we need to preassign the rest days whi
h are known in advan
eXij #> tnd; 8 i; 8 j 2 OFFi : (30)Labeling is done over the Xij variables using the �rst-fail prin
iple.Sin
e there are di�erent numbers that represent dummy duties, we 
an have manysymmetri
 solutions. In other words, two rosters that di�er only by the pla
ement ofdummy duties 
onstitute the same solution. To avoid this problem and redu
e the sear
hspa
e, additional 
onstraints had to be inserted into the CLP program. The idea is thefollowing. For ea
h 
rew i, if j is the �rst day in the planning horizon when i does notwork, then Xij #= tnd + 1. In general, we enfor
e that Xij #= tnd + k whenever j is thek-th day on whi
h 
rew i is o� duty.2.6.2 Computational ResultsWhen 
ompared to the IP model of Se
t. 2.5, this model performed mu
h better both interms of solution quality and 
omputation time. As 
an be seen in Table 11, it was possibleto �nd feasible solutions for fairly large instan
es in a few se
onds. Again, no minimizationpredi
ate was used and the solutions presented here are the �rst feasible rosters en
ounteredby the model.Some spe
ial 
ases deserve further 
onsideration. When providing 15 
rews to build therosters for instan
es s16 and s17, the model 
ould not �nd a feasible solution even after10 hours of sear
h. Then, after raising the number of available 
rews in these instan
esto 16 (s16a) and 18 (s17a), respe
tively, solutions were easily found. Another interestingobservation arises from instan
e s19. This instan
e 
omes from the solution of a 
ompletereal world 
rew s
heduling problem. In this problem, the optimal solution for weekdays
ontains 25 duties, 22 of whi
h are split shifts. As we did not have a

ess to the inputdata sets for the other workdays, the sets of duties for Saturdays, Sundays and holidaysare subsets of the solution given by the s
heduling algorithm for a weekday. Instan
e s19ais made up of the same duties, ex
ept that all of them are arti�
ially 
onsidered non-splitshifts. Noti
e that the value of the �rst solution found is signi�
antly smaller for instan
es19a than it is for instan
e s19. This is an indi
ation of how severe is the in
uen
e of the
onstraints (
) introdu
ed in Se
t. 2.2. Moreover, we 
an see from Table 11 that the valuesof the solutions grow qui
kly as the number of split-shift duties in
reases. With this point
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Table 11: Computational experiments with the CLP model# DutiesName #Crews #Days Week Sat Sun Holy LB Sol Times01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.08s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.18s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.23s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.36s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.48s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.52s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.50s08 10 30 (2) 03/04 00/01 00/01 00/01 4 6 0.52s09 10 30 (2) 04/04 00/01 00/01 00/01 4 7 0.52s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 0.52s11 10 30 (2) 04/04 01/01 00/01 01/01 4 7 0.53s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 0.90s13 15 30 (2) 00/10 00/06 00/05 00/05 10 13 1.22s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 0.28s14 15 30 (2) 03/10 01/06 00/05 01/05 10 13 1.35s15 15 30 (2) 03/10 03/06 00/05 03/05 10 15 1.36s16 15 30 (2) 05/10 03/06 00/05 03/05 10 ? > 10:00:00s16a 16 30 (2) 05/10 03/06 00/05 03/05 10 16 1.49s17 15 30 (2) 07/10 03/06 00/05 03/05 10 ? > 10:00:00s17a 18 30 (2) 07/10 03/06 00/05 03/05 10 18 1.78s18 30 30 (2) 00/20 00/10 00/10 00/10 20 25 4.96s18a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 1.09s19 50 30 (2) 22/25 12/15 12/15 12/15 25 47 14.46s19a 40 30 (2) 00/25 00/15 00/15 00/15 25 33 9.36s20 40 30 (2) 06/26 02/15 02/15 02/15 26 34 10.50s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 34 1.56s21 36 30 (2) 00/31 00/20 00/20 00/20 31 36 8.30s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 34 1.29
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Instan
es

Solution value

IP CLPFigure 5: IP vs. CLP in terms of solution qualityin mind, we generated two other solutions for the same 
rew s
heduling problem where thetotal number of duties used was in
reased in favor of a smaller number of split shifts. Theseare s20 and s21. Despite the larger number of duties in the input, the �nal roster for theseinstan
es uses less 
rews than it did for instan
e s19. This strengthens the remark madeby [6℄ that, ideally, the s
heduling and rostering phases should work 
y
li
ly, with somefeedba
k between them.All instan
es in Table 11 do not take into 
onsideration information from the previousmonth, as mentioned in Se
t. 2.4. In order to test the CLP model further, we 
reated onenew instan
e for ea
h instan
e of Table 11. For these new instan
es, the values of lsi, wri, sliand lwi, for ea
h 
rew i, are set taking the feasible solutions of Table 11 as the work pro�lesof ea
h 
rew in the pre
eding month. The behavior of the CLP program was not a�e
tedby these more diÆ
ult input data sets and we 
ould still �nd feasible solutions within veryshort 
omputational times.Figures 5 and 6 
ompare the Integer Programming (IP) and Constraint Logi
 Program-ming (CLP) models in terms of solution quality and time performan
e, respe
tively. Theinstan
es on the horizontal axis are named after the same instan
es from Table 11, ex
eptfor the letter \s". It is important to remember that, with the IP model, it was only possibleto �nd feasible solutions for instan
es s01 through s12.Similarly to the IP approa
h, this CLP model was not eÆ
ient to 
ompute optimalsolutions. Being limited to run for 24 hours, we 
ould only �nd provably optimal solutionsfor instan
es s01, s02 and s03.2.7 Proving OptimalityIn Se
ts. 2.5 and 2.6, we showed that �nding provably optimal solutions for this rosteringproblem is a diÆ
ult task. Moreover, it is possible to see from Table 11 that the lowerbound provided by the Linear Programming relaxation of the problem is always equal to
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IP CLPFigure 6: IP vs. CLP in terms of time performan
ethe largest number of duties that must be performed on a workday. This is 
learly a triviallower bound and probably not a very good one. We de
ided then to try another formulationfor the problem, so as to �nd better lower bounds or, at least, better feasible solutions.2.7.1 A Hybrid ModelAnother possible mathemati
al model for the rostering problem turns out to be a typi
alset partitioning formulation: min nXj=1 xjsubje
t to nXj=1 aijxj = 1; 8 i 2 f1; : : : ; egxj 2 f0; 1g; 8 j 2 f1; : : : ; ng :All numbers aij in the 
oeÆ
ient matrix A are 0 or 1 and its 
olumns are 
onstru
ted asshown in Fig. 7. Ea
h 
olumn is 
omposed of d sequen
es of numbers, where d is the numberof days in the planning horizon. For ea
h k 2 f1; : : : ; dg, the k-th sequen
e, lk, has lengthhk, where hk is the number of duties that must be performed on day k. Also, at most onenumber inside ea
h sequen
e is equal to 1. The number of lines e, in A, equals Pdk=1 hk.( h1z }| {0 � � � 0 1 0 � � � 0 h2z }| {0 � � � 0 1 0 � � � 0 � � � hiz }| {0 � � � 0 � � � hdz }| {0 � � � 0 1 0 � � � 0 )TFigure 7: A 
olumn in the 
oeÆ
ient matrix of the set partitioning formulationBesides having the previous 
hara
teristi
s, a 
olumn in A must represent a feasibleroster for one 
rew. More pre
isely, let t = (u1; u2; : : : ; ud) be a feasible roster for a 
rew,



32 T. Yunes, A. Moura and C. de Souzawhere uk, k 2 f1; : : : ; dg, is the number of the duty performed on day k. Rememberfrom Se
t. 2.5.1 that uk 2 Dk [ f0g, where Dk is equal to f1; : : : ; pg, fp + 1; : : : ; p + qg,fp+ q + 1; : : : ; p+ q + rg or fp+ q + r + 1; : : : ; p+ q + r + sg, depending on whether k isa weekday, a Saturday, a Sunday or a holiday, respe
tively. For every su
h feasible rostert, A will have a 
olumn where, in ea
h sequen
e lk, the i-th number will be equal to 1(i 2 f1; : : : ; hkg) if and only if uk is the i-th duty of Dk. In 
ase uk = 0, all numbers insequen
e lk are set to 0.With this representation, the obje
tive is to �nd a subset of the 
olumns of A, withminimum size, su
h that ea
h line is 
overed exa
tly on
e. This is equivalent to �nding anumber of feasible rosters whi
h exe
ute all the duties in ea
h day of the planning horizon.It is not diÆ
ult to see that the number of 
olumns in the 
oeÆ
ient matrix is enormousand it is hopeless to try to generate them all in advan
e. For example, the 
oeÆ
ientmatrix for an instan
e as small as s03 already has billions of 
olumns. Hen
e, we de
ided toimplement a bran
h-and-pri
e algorithm to solve this problem, generating 
olumns as theyare needed. This approa
h is 
onsidered hybrid be
ause the 
olumn generation subproblemis solved by a CLP model. The whole algorithm follows the same basi
 ideas des
ribed inSe
t. 1.6. The model for the 
olumn generator is a variation of the CLP model of Se
t. 2.6.Now, instead of looking for a 
omplete solution for the rostering problem, we are onlyinterested in �nding, at ea
h time, feasible rosters 
orresponding to 
olumns in A withnegative redu
ed 
osts.2.7.2 Preliminary ResultsThe best results for the hybrid model were a
hieved when setting the initial 
olumns ofmatrix A as the 
olumns 
orresponding to the �rst solution found by the CLP model ofSe
t. 2.6. Also, the ordinary labeling me
hanism worked better than labeling a

ording tothe �rst-fail prin
iple.With this model, we 
ould �nd provably optimal solutions for small instan
es of therostering problem, as shown in Table 12, where 
olumn Opt gives the optimal value. By\small instan
es" we mean either instan
es with a small number of duties to be exe
uted inea
h day or instan
es with a short planning horizon. This is already a noti
eable improve-ment over the pure IP model of Se
t. 2.5, whi
h was not able to �nd any optimal solution,even for the smallest instan
es. Besides, when 
omparing Tables 11 and 12, we 
an see thatthe �rst solutions found by the pure CLP model for instan
es s01 to s04, s13a and s18a areindeed optimal.We believe that the main reason for the poor performan
e of this algorithm over largerinstan
es resides on the fa
t that the IP formulation of Se
t. 2.7.1 leads to a highly de-generate problem. When trying to solve larger instan
es, the pri
ing subroutine keeps ongenerating 
olumns inde�nitely, with no improvements on the value of the obje
tive fun
-tion. This is be
ause there are many basi
 variables with value zero whi
h are repla
ed byother 
olumns that enter the basis with value zero as well. As a 
onsequen
e, the linear re-laxation of the �rst node of the bran
h-and-pri
e enumeration tree 
ould not be 
ompletelysolved in the medium and large-sized instan
es. Thus, in order to obtain better linearprogramming lower bounds, we need to address these degenera
y problems more 
losely.
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hes for Real World Crew Management Problems 33Table 12: Computational experiments with the hybrid model# DutiesName #Crews #Days Week Sat Sun Holy Opt Times01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.66s02 10 15 (2) 00/04 00/01 00/01 00/01 5 2.12s03 10 20 (2) 00/04 00/01 00/01 00/01 5 4.56s04 10 25 (2) 00/04 00/01 00/01 00/01 5 16.72s13a 15 10 (1) 00/10 00/06 00/05 00/05 13 12.73s18a 30 10 (1) 00/20 00/10 00/10 00/10 25 00:04:03s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 21:23:36s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 05:39:50Another problem 
on
erns the labeling poli
y whi
h follows the simplest possible strategy.In the next se
tion, we present some ideas that were implemented with these de�
ien
ies inmind.2.7.3 Performan
e ImprovementsWe implemented three major modi�
ations in the hybrid algorithm presented so far withthe intent to �nd provably optimal solutions for larger instan
es of the rostering problem.These modi�
ations are outlined below.Cost Perturbation. Sin
e the 
ost of all the 
olumns in our formulation is equal to 1,we have an undesirable symmetry in the sense that any 
olumn is, in prin
iple, as suitablefor the solution as any other. This fa
t 
ontributes to intensify the 
y
ling behavior of ourhighly degenerate model. We de
ided then to implement one strategy similar to what waspresented in [17℄ and [28℄. The basi
 idea is to add a small perturbation, " 2 [�Æ; Æ℄, tothe 
ost of ea
h 
olumn. For this me
hanism to fun
tion 
orre
tly, the value of Æ may notbe 
hosen arbitrarily. The rule is simple: one solution S with k + 1 
olumns must always
ost more than one solution S0 with k 
olumns. The most 
riti
al situation o

urs when all
olumns in S 
ost 1� Æ and all 
olumns in S0 
ost 1 + Æ. Then, we must have(k + 1)(1 � Æ) > k(1 + Æ)or, equivalently, Æ < 12k + 1 : (31)As the number of 
olumns in an optimal solution will never be greater than the total numberof lines, e, in the 
oeÆ
ient matrix, we set k = e in (31). One �nal observation is relevant.If we were solving an integer program with all 
olumns loaded in memory, the value of ",
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h 
olumn, 
ould be randomly 
hosen inside the interval [�Æ; Æ℄. However, as we aregenerating 
olumns on demand and the negative redu
ed 
ost 
onstraint depends on the
ost of the 
olumn in the obje
tive fun
tion, the 
hoi
e of " must be deterministi
. Ourapproa
h was to divide the [�Æ; Æ℄ interval into p dis
rete values and then use a mod-typehash fun
tion to map ea
h 
olumn to a spe
i�
 value of perturbation ". [11℄ suggest that pshould be a prime number not too 
lose to a power of 2. We de
ided then to set p = 1531.Set Covering Formulation. With the problem 
onstraints des
ribed in Se
t. 2.2, it iseasy to see that any sub-roster of a feasible roster is itself another feasible roster. Hen
e,if we 
hange the set partitioning formulation of Se
t. 2.7.1 to a set 
overing formulation,the �nal 
overing solution 
an be transformed in a partition just by removing from somerosters those duties that are performed more than on
e, if any. This idea was motivated bythe fa
t that, in general, a set 
overing formulation of a problem is easier to solve than aset partitioning formulation for the same problem.New Labeling Criterion. Re
all from Se
t. 1.4.2 that the redu
ed 
ost 
onstraint for
olumn 
 reads Xj2D
 uj > Cost
 ; (32)where D
 is the set of duties 
overed by 
, uj is the value of the dual variable asso
iated toduty j and Cost
 is the 
oeÆ
ient of 
 in the obje
tive fun
tion. Following a greedy 
riterion,we de
ided to label the variables in the CLP 
olumn generator taking into a

ount their
ontribution to the left hand side of (32). In other words, after 
hoosing one variable tolabel next, the values in its domain are initially sorted a

ording to the non-in
reasing orderof their 
orresponding uj values. That is, the duties with the largest 
orresponding dualvalues are tried �rst. As the sum of uj 's must be greater than Cost
, if the largest uj valuesare not large enough, then there is no need to test the smallest values.2.7.4 Computational Results with the Improved AlgorithmThe in
lusion or ex
lusion of ea
h one of the previous three suggested improvements, lead toeight possible versions of the hybrid algorithm. After 
omparing the results obtained withall these possible 
ombinations, the best overall performan
e was a
hieved by an algorithmusing the simplest labeling strategy over a set 
overing formulation without perturbations onthe 
osts. These results are summarized in Table 13. On the other hand, when ta
kling thespe
i�
 instan
e s20a, the best overall performan
e was a
hieved by an algorithm using theimproved labeling strategy over a set partitioning formulation without 
ost perturbation.The latter 
on�guration 
ould �nd an optimal solution for instan
e s20a in less than 16minutes, whereas Table 13 reports more than 12 hours of 
omputation for the same instan
e.When 
omparing Tables 12 and 13, we noti
e signi�
ant gains both in terms of the timeneeded to �nd the optimal solutions and in terms of the sizes of the instan
es that wereoptimally solved by the algorithm. The improved versions of the hybrid algorithm still do
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hes for Real World Crew Management Problems 35Table 13: Computational results with the best 
on�guration of the improved hybrid model# DutiesName #Crews #Days Week Sat Sun Holy Opt Times01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.31s02 10 15 (2) 00/04 00/01 00/01 00/01 5 0.47s03 10 20 (2) 00/04 00/01 00/01 00/01 5 0.62s04 10 25 (2) 00/04 00/01 00/01 00/01 5 0.73s05 10 30 (2) 00/04 00/01 00/01 00/01 5 0.85s06 10 30 (2) 01/04 00/01 00/01 00/01 5 0.89s07 10 30 (2) 02/04 00/01 00/01 00/01 5 0.87s13a 15 10 (1) 00/10 00/06 00/05 00/05 13 7.34s18a 30 10 (1) 00/20 00/10 00/10 00/10 25 20.05s20a 40 7 (1) 06/26 02/15 02/15 02/15 26 12:40:42s21a 36 7 (1) 00/31 00/20 00/20 00/20 31 00:17:19not s
ale up to an entire planning horizon of one 
omplete month with a large number ofduties in ea
h day. Nevertheless, we were able to 
onstru
t optimal weekly rosters for realworld instan
es. We believe that further developments on the labeling strategy through thein
lusion of more sophisti
ated guiding heuristi
s 
an be used to improve the performan
eof this algorithm.3 Con
lusions and Future WorkReal world 
rew management problems often give rise to large set 
overing or set partitioningformulations. We have given a detailed des
ription of urban transit 
rew managementproblems that are part of the daily operation of a medium-sized Brazilian bus 
ompany. Inparti
ular, their rostering problem is rather di�erent from some other bus 
rew rosteringproblems found in the literature.We have shown a way to integrate pure IP and de
larative CLP te
hniques into hybrid
olumn generation algorithms that solved, to optimality, huge instan
es of these real world
rew management problems. Obtaining provably optimal solutions for these problems wasa very diÆ
ult task for both IP and CLP approa
hes when taken in isolation. Our hybridmethodology 
ombines the strengths of both sides, while getting over their main weaknesses.Another 
ru
ial advantage of our hybrid approa
h over a number of previous attempts isthat it 
onsiders all feasible duties. Therefore, the need does not arise to use spe
i�
 rules tosele
t, at the start, a subset of \good" feasible duties (or rosters). This kind of prepro
essing
ould prevent the optimal solution from being found. Instead, our algorithm impli
itlylooks at the set of all feasible duties (rosters), when a
tivating the 
olumn generationmethod. When de
larative 
onstraint satisfa
tion formulations are applied to generate new
olumns on demand, they have shown to be a very eÆ
ient strategy, in 
ontrast to Dynami




36 T. Yunes, A. Moura and C. de SouzaProgramming, for example.We believe that our CLP formulations 
an be further improved. In parti
ular, thesear
h strategy deserves more attention. Earlier identi�
ation of unpromising bran
hesin the sear
h tree 
an redu
e the number of ba
ktra
ks and lead to substantial savings in
omputational time. Te
hniques su
h as dynami
 ba
ktra
king ([16℄) and the use of nogoods([24℄) 
an be applied to traverse the sear
h tree more eÆ
iently, thereby avoiding uselesswork.Finally, we would like to thank the Pioneira Bus Company from the 
ity of Belo Hori-zonte, in Brazil, for kindly providing us with the real world experimental data.Referen
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