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A lower bound on the reversal and transposition diameterJ. Meidanis� M. E. M. T. Waltery Z. DiaszAbstra
tOne possible model to study genome evolution is to represent genomes as permu-tations of genes and 
ompute distan
es based on the minimum number of 
ertain op-erations (rearrangements) needed to transform one permutation into another. Underthis model, the shorter the distan
e, the 
loser the genomes are. Two operations thathave been extensively studied are the reversal and the transposition. A reversal is anoperation that reverses the order of the genes on a 
ertain portion of the permutation.A transposition is an operation that \
uts" a 
ertain portion of the permutation and\pastes" it elsewhere in the same permutation. In this paper we show that the reversaland transposition distan
e of the signed permutation �n = (�1 �2 : : : �(n� 1) �n)with respe
t to the identity is bn=2
+ 2 for all n � 3. We 
onje
ture that this value isthe diameter of the permutation group under these operations.1 Introdu
tionOne possible model to study genome evolution is to represent genomes as permutationsof genes and 
ompute distan
es based on the minimum number of 
ertain operations(rearrangements) needed to transform one permutation into another. Under this model,the shorter the distan
e, the 
loser the genomes are.In general, genes are represented as integers from 1 to n, and a permutation � :f1; 2; : : : ; ng 7! f1; 2; : : : ; ng by (�1 �2 : : : �n);where �i denotes �(i).Permutations 
an be signed, in whi
h 
ase ea
h �i has a positive or negative sign tomodel the orientation of genes. We will 
all permutation group the set of all permutationsof a given size n. The unsigned permutation group has n! elements, while the signed grouphas 2nn! elements.In this note we are interested in the diameter of permutation groups, that is, the maxi-mum distan
e possible between two permutations of size n, under several operation 
hoi
es.Two operations that have been extensively studied are the reversal and the transposition.A reversal is an operation that reverses the order of the genes on a 
ertain portion of the�Institute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.yDepartment of Informati
s, University of Brasilia, Brasilia, Brazil.zInstitute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil.1



permutation. A transposition is an operation that \
uts" a 
ertain portion of the per-mutation and \pastes" it elsewhere in the same permutation. (Refer to Se
tion 2 for moreformal de�nitions.) A transposition is also 
alled a blo
k move in the literature. A blo
kinter
hange operation ex
hanges two portions of a permutation (Christie, 1996). Trans-positions and blo
k inter
hanges never a�e
t the signs (if present) of a permutation. Forthis reason, they are studied in the unsigned 
ase only. We 
ould also 
on
eive an operationthat \
uts" a portion and \pastes" it elsewhere reversed. Call this a transversal.Table 1 shows what is 
urrently known about the diameter for signed and unsignedpermutations under various 
ombinations of the above operations. In this note we providea lower bound for the diameter in the 
ase of signed permutations evolving by transpositionsand reversals.Analyzing genomes evolving due to di�erent mutational events represents today a great
hallenge. Hannenhalli and others (Hannenhalli et al., 1995) analyzed genomes evolving bydi�erent events, parti
ularly reversals and transpositions. Hannenhalli and Pevzner (Han-nenhalli and Pevzner, 1995) presented a polynomial time algorithm for 
omparing genomesevolving by reversals, translo
ations, fusions and �ssions. Gu, Peng and Sudborough (Guet al., 1996) gave approximation algorithms to 
ompute the distan
e between two signedpermutations, allowing three operations, reversal, transposition and transversal.In this work we 
ontribute to the analysis of reversals and transpositions a
ting on asingle 
hromosome having genes with known orientation. We show a permutation �n thatneeds at least bn=2
 + 2 steps to be sorted, thus obtaining a lower bound on the diameterof the signed permutation group under these operations.2 De�nitionsIn this se
tion we formalize the problem of 
omputing the reversal and transposition distan
eof linear 
hromosomes.We assume that the order and orientation of genes in a 
hromosome are represented bya permutation � = (�1 �2 : : : �n), where ea
h �i is a signed integer su
h that 1 � j�ij � nand �i 6= �j for i 6= j.A reversal r(i; j) is de�ned by two integers i; j, su
h that 1 � i � j � n, reversing theorder and sign of �k, i � k � j. Thus we haver(i; j) � (�1 : : : �i�1 �i : : : �j �j+1 : : : �n) =(�1 : : : �i�1 �j : : : �i+1 �i �j+1 : : : �n)where �k means �k with opposite sign.A transposition t(i; j; k) is de�ned by three integers i; j, and k su
h that 1 � i < j �n + 1, and k 62 [i; j℄, in the following way. It \
uts" the portion between positions i andj � 1, in
luding the extremes, and \pastes" it just before position k. Thus, if i < j < k, we
an write t(i; j; k) � (�1 : : : �i�1 �i : : : �j�1 �j : : : �k�1 �k : : : �n) =(�1 : : : �i�1 �j : : : �k�1 �i : : : �j�1 �k : : : �n)2



Operations Size Degree DiameterReversals (unsigned) a n! �n2� D = n� 1Reversals (signed) b 2nn! �n2�+ n D = n+ 1Transpositions 
 n! �n+13 � bn=2
+ 1 � D � b3n=4
Reversals, transpositions d 2nn! �n+13 �+ �n2�+ n bn=2
+ 2 � DBlo
k inter
hange e n! �n+14 � D = bn=2
a (Bafna and Pevzner, 1996)b (Hannenhalli and Pevzner, 1999; Meidanis et al., 1997a)
 (Bafna and Pevzner, 1998; Meidanis et al., 1997b; Christie, 1998)d This papere (Christie, 1996)Table 1: Results known about the diameter of permutation groups under genome rearrange-ment operations. The 
olumn \Size" refers to the size of the graph, i.e., the total numberof permutations for n elements. \Degree" is how many neighbors a permutation has. In the
olumn \Diameter" either the diameter is given or the known bounds, with D representingthe diameter.
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Given two permutations � and �, we want to 
ompute a shortest series of reversals andtranspositions that transforms � into �, that is, we want to �nd %1; %2; : : : ; %u, where %i isa reversal or a transposition, su
h that %u � %u�1 � : : : � %2 � %1 � � = � and u is minimum.We 
all u the reversal and transposition distan
e between � and � and denote it byd(�; �). Without loss of generality we 
an �x �. All our developments will be done with� being the identity permutation, whi
h is � = �n = (+1 : : : +n). In this 
ase we denoted(�; �n) simply by d(�).In the following an operation 
an be a reversal or a transposition.A powerful tool for studying the reversal and transposition distan
e is the reality anddesire diagram of two permutations. In the literature (Bafna and Pevzner, 1998; Hannenhalliand Pevzner, 1999; Hannenhalli and Pevzner, 1996) this is 
alled the breakpoint graph oftwo permutations, but we prefer to 
all it a diagram be
ause its graph stru
ture alone doesnot 
apture all the important information: the order of nodes is relevant too.We �rst extend a permutation � by adding �0 = +0 and �n+1 = +(n + 1). Theextended permutation will still be denoted by �. We 
onstru
t this diagram writing theoriginal permutation � in the following way. Repla
e ea
h integer i by a pair of points �iand +i, in this order. For instan
e +4 is repla
ed by �4 and +4; �7 is repla
ed by +7 and�7. Add two extra points, one 
alled +0 at the beginning of the sequen
e, and one 
alled�(n+1) at the end of the sequen
e. Now draw reality edges between +0 and ��1, between+�i�1 and ��i, and between +�n and �(n + 1). Finally, draw desire edges between +0and �1, between +(i � 1) and �i, and between +n and �(n + 1) (see Figure 1). Again,in the literature, reality edges are 
alled bla
k edges and desire edges are 
alled gray edges.We prefer the denominations reality and desire be
ause they are more informative: realityedges refer to the 
urrent permutation, that is, where we are, and desire edges refer to thetarget permutation, that is, where we would like to be. We denote G(�) the diagram of thepermutation � (with respe
t to the identity).Observe that the diagram is 
omposed of a number of 
y
les, with ea
h 
y
le alternatingbetween reality and desire edges. The length of a 
y
le is the number of reality edges init (whi
h is the same as the number of desire edges in it). The de
omposition of G(�) into
y
les is unique and we denote by 
(�) the number of 
y
les in G(�).The 
y
les of G(�) are denoted by a bra
ket notation as follows. We number the realityedges of G(�n) from 1 to n + 1 by assigning label i to the reality edge (�i; �i�1), with1 � i � n + 1. Besides, we will assign to the label i from 
y
le 
 an orientation +i or �i,de�ned with respe
t to the orientation of the greatest (in absolute value) label l from 
,whi
h is +l by 
onvention. So, taking these labels and their orientations, in the order theyappear in around the 
y
le, the unique 
y
le of the diagram in Figure 1 (
) is[+(n+ 1);+(n� 1); : : : ;+4;+2;�1;�3; : : : ;�n℄for n odd or [+(n+ 1);+(n� 1); : : : ;+3;+1;�2;�4; : : : ;�n℄for n even.The diagram has exa
tly n+ 1 reality edges and the same number of desire edges. Theidea is that reality edges indi
ate the situation as it is now, and desire edges indi
ate the4



0 +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 6

(a)

0 +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 +6 -6 7

(b)

0 +1 -1 +2 -2 +3 -3 . . . -(n-1)+(n-1) +n -n

. . .

. . .

(c)

(n+1)Figure 1: (a) The diagram for � = (�1 �2 �3 �4 �5). (b) The diagram for� = (�1 �2 �3 �4 �5 �6). (
) The general diagram for � = (�1 �2 : : : �(n� 1) �n),for all n.
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situation sought. When reality equals desire in all edges, we have � = �n and d(�) = 0.Therefore, our goal is to apply reversals and transpositions so that reality be
omes desire.Note that the diagram G(�n) is the only one having n + 1 
y
les. So, the sequen
e ofreversals and transpositions transforming � into �n must take the number of 
y
les from
(�) to n+ 1. For a permutation �, and an operation %, denote by �
(�; %) the di�eren
e
(% � �)� 
(�). This is the gain in the number of 
y
les due to operation % applied to �.Theorem 1 �
(�; %) 2 f�2;�1; 0; 1; 2gProof: We note �rst that % 
an be a reversal or a transposition.Ea
h reversal a
ts on two reality edges belonging to at most two 
y
les, 
reating ordestroying at most one 
y
le. Hannenhalli and Pevzner (Hannenhalli and Pevzner, 1999)have shown that, for a reversal, �
(�; %) 2 f�1; 0; 1g.Ea
h transposition a
ts on three reality edges belonging to at most three 
y
les. Figure 2shows all possible a
tions of a transposition on a signed permutation. As we 
an see, thereare 
ases where the number of 
y
les stays the same, or in
reases by one or two. So, for atransposition, �
(�; %) 2 f�2;�1; 0; 1;+2g. 2For x 2 f�2;�1; 0; 1; 2g, de�ne an x-move on � as an operation % su
h that �
(�; %) = x.Noti
e that, in Figure 2, there is only one pattern 
orresponding to a 2-move (or �2-move),three patterns 
orresponding to a 1-move (or �1-move), and the others 
orresponding to0-moves.The entire distan
e problem 
an be seen as �nding shortest paths in a dire
ted graphwhere a vertex 
orresponds to a permutation �, and there is an edge (�; �) from � to � whenthere is an operation (reversal or transposition) % su
h that � = % � �. We are interestedin shortest dire
ted paths from � to �n, where the length of a path is just its number ofedges. However, we 
an assign weights to the edges in a way that will help us investigatethe problem. In the sequel we will de�ne the weight of an edge and of a path, on that graph.De�nition 1.1 Given the permutations � and �, su
h that � = % � � for some operation %,we de�ne the weight of the edge (�; �) asw(�; �) = 2 + 
(�)� 
(�):Noti
e that w(�; �) � 0 for all edges (Theorem 1). The weight w(�; �) 
an be alsowritten as 2 ��
(�; %), where % is the operation that transforms � into �. Sin
e 2 is thehighest value that �
(�; %) 
an take, and we know that high values of �
(�; %) will get us
loser to our goal, we 
an think of the weight as a measure of \waste" in ea
h operation wedo.De�nition 1.2 Given a path p = �0�1�2 : : : �k�1�k, we de�ne the weight of p asw(p) = kXi=1w(�i�1; �i):6



d b fa e c a b c d e f a d e b c fd e fcba

a b c d e f a d e b c f a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f a b c d e f a d e b c f

a b c d e f a d e b c f a b c d e f a d e b c f

Figure 2: This �gure shows all possible a
tions of a transposition on a signed permutation.Only a�e
ted 
y
les are shown. A dashed line indi
ates a path formed by one or more desireand reality edges. Sin
e the inverse of a transposition is a transposition, the transformationsare reversible.
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Note that w(p) � 0 for all paths. We 
an now relate the length of a path with theweight of the same path, with important 
onsequen
es on the distan
e. Let jpj denote thelength of a path p.Theorem 2 Let p = �0�1�2 : : : �k�1�k be a path. We havew(p) = 2jpj+ 
(�0)� 
(�k):The proof is just an indu
tion on k. An important 
orollary is the following.Corollary 2.1 For any permutation � and any shortest path p from � to �n we haved(�) = w(p)� 
(�) + n+ 12 :The proof is immediate from the theorem, using �0 = � and �k = �n.3 The reversal and transposition diameterTaking Sn as the set of all signed permutations with size n, de�ne D(n) = max�2Sn d(�; �n)as the reversal and transposition diameter of signed permutations. In this se
tion wepresent a lower bound on this number, based on the distan
es of parti
ular permutationsfor ea
h integer n.This parti
ular permutation is �n = (�1 �2 : : : �(n� 1) �n). We will 
ompute itsreversal and transpositions distan
e, whi
h will give a lower bound for the diameter D(n).We start by showing an upper bound for d(�n), for all n � 3.Theorem 3 We have d(�n) � �n2 �+ 2 for n � 3.Proof: First we apply the reversal r(1; n) on �n, obtaining� = r(1; n) � �n = (+n +(n� 1) : : : +2 +1);a permutation with positive signs only.After that we re
all a result from Meidanis, Walter and Dias (Meidanis et al., 1997b),independently shown by Christie (Christie, 1998), proving that the transposition distan
edt(�n) is bn2 
+ 1, for n > 2.The total number of operations is then bn2 
+2, whi
h is an upper bound on the distan
ed(�n) for n � 3. 2Our strategy to show that this upper bound is a lower bound as well will be to provethat every path p from �n to �n satis�es w(p) � 3. Then, by for
e of Corollary 2.1 andLemma 3.1, we will have the desired result (see Theorem 6).The general form of the diagram generated by this permutation is given in Figure 1 (
).The number of 
y
les is always 1, and we state this as our next lemma.Lemma 3.1 We have 
(�n) = 1 for all n. 8



We need auxiliary results to support our 
laims. One that appears with frequen
y is asuÆ
ient 
ondition for the la
k of 2-moves. Re
all the format of the 
y
les in the diagramof �n: 
 = [+(n+ 1);+(n� 1); : : : ;+2;�1;�3; : : : ;�n℄;for n odd and 
 = [+(n+ 1);+(n� 1); : : : ;+3;+1;�2; : : : ;�n℄for n even. Noti
e that regardless of the parity of n these 
y
les are formed by two de
reasingsubsequen
es. We 
all bimonotonous the 
y
les formed by two de
reasing subsequen
es,the �rst made of positive elements, and the se
ond formed by negative elements. Su
h
y
les 
annot be broken by a transposition, as the following results show.Lemma 3.2 A permutation � admits a 2-move if and only if there are three reality edgeslabeled i, j and k with i < j < k, belonging to the same 
y
le in G(�), and appearing inthat 
y
le either in the order k; i; j (or i; j; k or j; k; i) with orientation +, or in the orderk; j; i (or j; i; k or i; k; j) with orientation �.Proof: Theorem 1 shows that there is just one pattern 
orresponding to a 2-move. In thispattern (see Figure 2), we 
an verify that, taking the three labels (belonging to the same
y
le) i, j and k su
h that i < j < k, and assigning to label k the orientation +k, we for
ethe orientations of i and j to be respe
tively +i and +j, implying that these three labelsappear in the 
y
le with the order k; i; j (or i; j; k or j; k; i), and all three with the sameorientation. Analogously, if we assign to k the orientation �k, the orientations of i and jbe
ome �i and �j, implying the order k; j; i (or j; i; k or i; k; j), with i, j and k with thesame orientation.The proof on the other side is immediate. We apply t(i; j; k) on �, with i; j and kfollowing the 
onditions of the lemma, and obtain the desired result. 2Theorem 4 Let � be a permutation for whi
h all 
y
les in its reality and desire diagramare bimonotonous. Then w(�; %�) � 1 for all operations %.Proof: Of 
ourse, w(�; %�) = 0 is equivalent to saying that % is a 2-move on �. A 2-movehas to be a transposition, and a
ting on three reality edges of the same 
y
le. However, bythe bimonotoni
ity of the 
y
les of �, we 
annot 
hoose three labels following the 
onditionsof Lemma 3.2, 
onsidering just one of these two subsequen
es. Another way to get theselabels would be to 
hoose them from both subsequen
es. But then they will not have thesame orientation, so also in this 
ase we 
annot have the 
onditions of Lemma 3.2. 2We are now ready for our main theorem.Theorem 5 Let p = �0�1 : : : �k be any path from �n = �0 to �n = �k. Then we have, forn � 3:1. w(�0�1) � 12. if w(�0�1) = 1, then w(�1�2) � 1 9



3. if w(�0�1�2) = 2, then w(�2 : : : �k) � 1Proof: The �rst 
laim is true be
ause the weight is always greater than or equal to zero,and it is zero only if the operation is a 2-move. However, �0 = �n has only one 
y
le, andthis 
y
le is bimonotonous. Our 
laim then follows from Theorem 4.For the se
ond 
laim, observe that w(�0�1) = 1 exa
tly when the operation % that a
tedon �0 = �n was a 1-move. Both reversals and transpositions 
an be 1-moves in the signed
ase, so we need to analyze these two 
ases.Let us deal with reversals �rst. It is well known (Meidanis and Setubal, 1997) that areversal breaks a 
y
le (that is, is a 1-move) if and only if the two reality edges where ita
ts have opposite orientations. Sin
e r(i; j) a
ts on reality edges i and j + 1, this meansthat r(i; j) is a 1-move if and only if i and j have the same parity. The diagram of thepermutation r(i; j) ��n in this 
ase has two 
y
les. The exa
t pattern of the resulting 
y
lesdepends on the relative parity of i, j, and n, but in all 
ases they are bimonotonous. Forinstan
e, if i, j, and n are all odd, these 
y
les are
1 = [+j;+(j � 2); : : : ;+(i+ 2);+i;+(i� 2); : : : ;+3;+1;�2;�4; : : : ;�(i� 1)℄;
2 = [+(n+ 1);+(n� 1); : : : ;+(j + 1);+(j � 1);+(j � 3); : : : ;+(i+ 1);�(j + 2);�(j + 4); : : : ;�n℄:It is apparent that these two 
y
les are bimonotonous. The other 
ases 
an be veri�edanalogously. Therefore w(�1�2) � 1 if % is a reversal.The 
ase where % is a transposition t(i; j; k) also requires an analysis based on the parityof i, j, k, and n. From Figure 1 and Figure 2 we see that this operation is a 1-move if andonly if i and k have the same parity, and j has the opposite parity from i and k. Forinstan
e, in the 
ase of i, k, and n all odd and j even, we have a diagram G(t(i; j; k) � �n)formed by two 
y
les, whi
h are
1 = [+(k � 1);+(k � 3); : : : ;+j;+(j � 2); : : : ;+(i+ 1)℄
2 = [+(n+ 1);+(n� 1); : : : ;+(k + 1);+(i+ k � j � 1);+(i+ k � j � 3); : : : ;+(i+ 2);+i;+(i� 2); : : : ;+3;+1;�2;�4; : : : ;�(i� 1);�(i+ k � j + 1);�(i+ k � j + 3); : : : ;�k;�(k + 2); : : : ;�n℄:The �rst 
y
le is monotonous and therefore does not admit a 2-move. The se
ond 
y
le isbimonotonous, and, by Theorem 4, does not admit a 2-move either. The other 
ases 
anbe veri�ed analogously.Let us now turn to the third 
laim. Again we divide the proof into two 
ases: eitherthere is a negative element in �2 or all elements there are positive. If there is at least onenegative element, then w(�2 : : : �k) � 1 be
ause otherwise only transpositions would beapplied until we rea
h �n, but �n does not have negative elements and transpositions do not
hange signs. 10



We 
on
entrate then in the 
ase where �2 has all elements positive. Sin
e �0 = �n has allelements negative, there are only four possible ways of rea
hing an all-positive permutationin two steps:1. �2 = r(1; i) � r(i+ 1; n) � �0, for some i between 1 and n� 1, in
luding extremes.2. �2 = r(i+ 1; n) � r(1; i) � �0, for some i between 1 and n� 1, in
luding extremes.3. �2 = t(i; j; k) � r(1; n) � �0, for some triple i, j, k with 1 � i < j < k � n+ 1.4. �2 = r(1; n) � t(i; j; k) � �0, for some triple i, j, k with 1 � i < j < k � n+ 1.The �rst two 
ases are a
tually the same, sin
e r(1; i) and r(i+1; n) 
ommute. In fa
t,we will show that all 
ases 
an be redu
ed to the third one. The key to this fa
t is to noti
ethat any transposition 
an be written as the produ
t of three reversals:t(i; j; k) = r(i; k � 1) � r(i; j � 1) � r(j; k � 1): (1)This 
an be easily veri�ed from the de�nitions. If we use i = 1 and k = n + 1 in thisequation, we get: t(1; j; n + 1) = r(1; n) � r(1; j � 1) � r(j; n);showing that Cases 1 and 2 are indeed parti
ular instan
es of Case 4 (re
all that r(1; n)2 =I). On the other hand, r(1; n) � t(i; j; k) � r(1; n) = t(k0; j0; i0);where i0 = n + 2 � i, j0 = n+ 2 � j, and k0 = n+ 2 � k, whi
h shows that Case 4 
an beredu
ed to Case 3.Let us then 
on
entrate on Case 3. Noti
e that in this 
ase �1 is the permutation(+n +(n� 1) : : : +2 +1). A 
onsequen
e of the work by Meidanis, Walter, and Dias (Mei-danis et al., 1997b) and that of Christie (Christie, 1998), whi
h 
omputed the transpositiondistan
e of su
h permutations, is that w(�1 : : : �n) � 2 for any path 
onsisting of transposi-tions only. Now if w(�2 : : : �k) = 0, this would refer to a path using transpositions only, andtherefore we 
an 
on
lude that w(�1�2) = 2 and that w(�0�1) = 0, a 
ontradi
tion sin
ethe �rst step r(1; n) was a reversal. It follows that w(�2 : : : �k) � 1 as 
laimed. 2Theorem 6 We have d(�n) � bn2 
+ 2 for n � 3.Proof: Theorem 5 guarantees that w(p) � 3 for any path from �n to �n. Plugging thisinto the formula of Corollary 2.1 we 
on
lude thatd(�n) � n+ 32 ;whi
h implies d(�n) � bn2 
+ 2 sin
e d(�n) is an integer. 2The next theorem 
omes dire
tly from Theorems 6 and 3.11



Theorem 7 Given the permutations �n and �n, for all n, then we haved(�n) = ( bn2 
+ 1 if n = 1; 2bn2 
+ 2 if n � 3Proof: For n = 1 it is obvious that d(�n) = 1 sin
e �n 6= �n and a reversal will do. Forn = 2 a minimum series of operations transforming �n into �n 
onsists of two operations.For n � 3, the result follows from Theorems 3 and 6. 24 Con
lusionsIn this work we extend the analysis of transpositions done by Bafna and Pevzner (1995) tosigned permutations, and 
ompute the the reversal and transposition distan
e of the signedpermutation (�1 �2 : : : �(n� 1) �n) with respe
t to the identity (+1 +2 : : : +n� 1 +n).The proof is based on the number of 
y
les that 
an be 
reated, on the �rst two steps, inthe diagrams generated on any sequen
e of operations transforming �n on �n. Obviouslythis result gives a lower bound for the diameter. We 
onje
ture that this is also an upperbound. We remark that the exa
t value of the transposition diameter is still unknown (seeTable 1).An interesting point to be studied later is the diameter of signed permutations underreversals, transpositions, and transversals. A transversal a
ts by moving a blo
k of genes toanother pla
e on the permutation, but with the genes reversed. This operation is biologi
allyas natural as the transposition.Another line of study is to 
onsider di�erent weights for transpositions and reversals.With equal weights, as done here, the minimum path 
onsists predominantly of transpo-sitions. It would be interesting to use weights suggested by what has been observed inpra
ti
e. Apparently, transpositions should weigh about twi
e as mu
h as reversals.A
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