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Parametri
 On-Line Algorithmsfor Pa
king Re
tangles and Boxes�F. K. Miyazaway Y. WakabayashizAbstra
tWe present approximation algorithms for the following problems: the two-dimensio-nal bin pa
king, the three-dimensional pa
king problem and the 
ontainer pa
king prob-lem. We 
onsider the spe
ial 
ase in whi
h the items to be pa
ked are small and mustbe pa
ked on-line. We say an item is small if ea
h of its dimension is at most 1m ofthe respe
tive dimension of the re
ipient, where m is an integer greater than 1. Toour knowledge, the asymptoti
 performan
e bound of these algorithms are the best sofar obtained for this spe
ial 
ase (parametri
 on-line). For the above problems, (in therespe
tive order) the algorithms we des
ribe have bounds 2.112, 2.112, and 3.112, form = 2; and bounds 1.73, 1.73 and 2.285, for m = 3.Keywords: Pa
king, on-line pa
king, parametri
 pa
king, approximation algorithms,three-dimensional pa
king.1 Introdu
tionWe present fast approximation algorithms for pa
king problems where the items tobe pa
ked are small 
ompared to the dimension of the re
ipient. More pre
isely, for ea
hpa
king problem a parameter (a positive integer), say m, is given meaning that the inputlist 
onsists of items whose ea
h of its dimension is at most 1=m of the respe
tive dimensionof the re
ipient. So if m = 2, the items have size at most half of the size of the re
ipient.In 
ase m � 2, we say that the item is small: this is the 
ase we are interested (the 
asem = 1 is just the general problem with no restri
tion on the input list).An algorithm to pa
k this kind of items is also said to be a parametri
 algorithm, due tothe parameter m. We 
onsider here on-line algorithms: given a list L = (e1; e2; : : : ; en) ofitems to be pa
ked, an algorithm A to pa
k L is said to be on-line if (i) A pa
ks items in theorder given by the list L; (ii) A pa
ks ea
h item ei without knowledge of any item ej , j > i;�This work has been partially supported by Proje
t ProNEx 107/97 (MCT/FINEP), FAPESP (Pro
.96/4505-2) and CNPq individual resear
h grants: Pro
. 300301/98-7 (fkm�d

.uni
amp.br) and Pro
.304527/89-0 (yw�ime.usp.br).yInstituto de Computa�
~ao | Universidade Estadual de Campinas | C. Postal 6176 | 13083-970 |Campinas{SP | Brazil.zInstituto de Matem�ati
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2 F.K. Miyazawa and Y. Wakabayashiand (iii) A never moves an item already pa
ked. An algorithm that is not on-line is 
alledo�-line. A pa
king problem for whi
h one is looking for an on-line or o�-line algorithm is
alled 
orrespondingly an on-line or o�-line problem.The problems we 
onsider have many appli
ations, in spe
ial in job s
heduling [16, 18,19℄. On-line algorithms are very important in these appli
ations, as most of the time, theoperating system must s
hedule jobs very fast and it does not know about further jobsusers 
an start. Therefore, the use of exa
t algorithms turn out to be infeasible, and fastapproximation algorithms are highly desirable for these appli
ations. Moreover, in most ofthe 
ases, ea
h job do not use the total resour
e it 
an use but a small part of it. Similarappli
ations 
an be found in pa
king problems.We 
onsider (parametri
 versions of) the following problems:1. Two-dimensional Bin Pa
king Problem (2BP): Given a list L of re
tangles, and re
t-angles of unit dimensions R = (1; 1), 
alled bins, pa
k the re
tangles of L into aminimum number of bins;2. Three-dimensional Pa
king Problem (TPP): Given a list L of boxes, and a box B ofwidth 1, length 1 and in�nite height, B = (1; 1;1), pa
k the boxes of L into B su
hthat the height of the pa
king is minimized;3. Container Pa
king Problem (3BP): Given a list L of boxes, and boxes of unit dimen-sions B = (1; 1; 1), 
alled 
ontainers, pa
k the boxes of L into a minimum number of
ontainers.These problems are well known to be NP-hard. For a survey on approximation algo-rithms for pa
king problems the reader is referred to [3, 4℄. The approa
h used here to ta
klethese problems is to develop approximation algorithms: polynomial time fast algorithmsthat guarantee a 
ertain quality of the solution found, 
ompared to the optimum pa
king.Given an algorithm A for one of the above problems and a list of items L for the respe
tiveproblem, we denote by A(L) the height or the number of re
ipients (depending on whi
hproblem is 
onsidered) of the pa
king generated by the algorithm A applied to the list L.We denote by OPT(L) the 
orresponding value of an optimum pa
king. We say that analgorithm A has asymptoti
 performan
e bound � if there exists a 
onstant � su
h that forany instan
e L we have A(L) � � �OPT(L) + �.We mention here results on the parametri
 versions of these problems. O�-line algo-rithms for these problems have been more investigated than on-line algorithms. In the earlyseventies, Johnson [11, 12℄ presented several o�-line approximation algorithms for the one-dimensional 
ase, some with bounds (m+3)=(m+2). More re
ently, Csirik [7℄ proved thatthe First Fit De
reasing (FFD) algorithm has asymptoti
 performan
e bound (m+3)=(m+2) � 1=(m(m+ 1)(m+ 2)), when m is odd, and (m+ 3)=(m+ 2) � 2=(m(m + 1)(m + 2)),when m is even, m � 5. In [5℄ Co�man et al. presented an algorithm with asymptoti
 per-forman
e bound (m+2)=(m+1) for the Strip Pa
king Problem (SPP). In [15℄ Li and Chengpresented an algorithm for the TPP with asymptoti
 performan
e bound (m+ 1)=(m� 1),m � 2.



Parametri
 On-Line Pa
king 3Not as many results have been obtained for on-line problems. Johnson et al. [11, 13℄proved that for the on-line one-dimensional bin pa
king problem the asymptoti
 perfor-man
e bound of the First Fit (FF) and the Best Fit algorithm is (m+ 1)=m, m � 2.In [9℄, Galambos presents lower bounds for the on-line bin pa
king problem. For m = 2and m = 3 he shows that the Harmoni
 algorithm HM have bounds 1:423 and 1:302,respe
tively, for suÆ
iently large values of M .For the two-dimensional bin pa
king problem, and the three-dimensional pa
king problemwe present algorithms with asymptoti
 performan
e bound 
lose to ((m+ 2)=(m+ 1))2 +2=(m(m+ 1)). For the 
ontainer pa
king problem we des
ribe an algorithm with asymptoti
performan
e bound 
lose to (m4 + 5m3 + 10m2 + 7m+ 2)=(m2(m+ 1)2). These results ex-tend the results of Coppersmith and Raghavan [6℄ for the on-line parametri
 two-dimensionalbin pa
king and the 
ontainer pa
king problem.For the general 
ase, the best bounds known for (o�-line) algorithms for these problemsare the following. For SPP, an algorithm of Baker et. al. [1℄ with bound 1.25; for the 2BP,an algorithm of Chung et. al [2℄ with bound 2.125; for TPP, an algorithm of Miyazawa andWakabayashi [18℄ with bound 2.67; and for 3BP, algorithms with bound 4.84 of Csirik andvan Vliet [8℄ and of Li and Cheng [14℄.In the next se
tion we present some de�nitions and notation, and in the subsequentse
tions we present the algorithms.2 De�nitions and NotationWe 
onsider the Eu
lidean spa
e R3 with the xyz 
oordinate system to represent the pa
k-ings. An item (or re
ipient) e has its dimensions de�ned by x(e), y(e) and z(e), whereea
h of these dimensions is the measure in the 
orresponding axis of the xyz 
oordinatesystem. For the two-dimensional bin pa
king problem, one of these 
oordinate axis is not
onsidered, and for the one-dimensional bin pa
king problem only one of these 
oordinatesis 
onsidered.The area of a re
tangle r is denoted by S(r), and the volume of a box b is denoted byV (b). If P is a pa
king then we denote by H(P) the height of P, and by #(P) the numberof bins used by P. If P1;P2; : : : ;Pv are pa
kings of disjoint lists L1; L2; : : : ; Lv, respe
tively,we denote the 
on
atenation of these pa
kings by P1kP2k : : : kPv.When 
onsidering the three-dimensional pa
king problem we assume that there is nobox with height greater than a 
onstant Z.Given a fun
tion f : C ! R and a subset C 0 � C, we denote by f(C 0) the sumPe2C0 f(e).The notation below is 
onvenient to represent subsets of an input list.X [p; q℄ := fe : p < x(e) � qg ; Y [p; q℄ := fe : p < y(e) � qg ; Z [p; q℄ := fe : p < z(e) � qg ;C [p1; q1 ; p2; q2℄ := X [p1; q1℄ \ Y [p2; q2℄;C [p1; q1 ; p2; q2 ; p3; q3℄ := X [p1; q1℄ \ Y [p2; q2℄ \ Z [p3; q3℄;



4 F.K. Miyazawa and Y. WakabayashiCm := C �0; 1m ; 0; 1m�; Cxy := fe : x(e) � y(e)g; Cyx := fe : x(e) < y(e)g:We 
all the value s in inequalities of the form #(P) � 1s � S(L) + C, an area guaranteeof the pa
king P and the value v in inequalities of the form #(P) � 1v � V (L) +C a volumeguarantee of the pa
king P. Note that there is no loss of generality, to 
onsider (as we didin the de�nition of the problems) that the limited dimensions of the re
ipients are 1.2.1 One-dimensional Bin Pa
king ProblemIn the des
ription of an algorithm we may use some known on-line algorithms. Two of thesealgorithms are the NF (Next Fit) and the FF (First Fit) algorithms, both for the on-linebin pa
king problem. Their asymptoti
 performan
e bounds are 2 and 1:7, respe
tively[10, 11℄.Moreover, when using an on-line algorithm as a subroutine, for simpli
ity, we maydes
ribe the new algorithm as being o�-line, assuming impli
itly that a transformation intoan on-line algorithm 
an be done. The next example for the one-dimensional bin pa
kingproblem ilustrates one su
h transformation.The One-dimensional Bin Pa
king Problem (1BP) 
an be formulated as follows: givena list of items L = (e1; : : : ; en), ea
h with length x(ei), and bins B with length 1, �nd apa
king of the items of L into bins B that uses the smallest possible number of bins B.Let us �rst des
ribe the algorithm NF (Next Fit). Given a list of items L = (e1; : : : ; en),the algorithm 
onsiders ea
h item in the order given by L and veri�es whether it 
an bepa
ked into the 
urrent bin Bi (the �rst one being B1). While this is possible, the nextitems are pa
ked into Bi. When an item 
annot be pa
ked into Bi, this item is pa
ked intoa new bin Bi+1 that be
omes the 
urrent bin. The algorithm halts when all items havebeen pa
ked, returning the pa
king (B1; : : : ; Bm), where Bm is the last generated bin.Now 
onsider the algorithm MNF (Modi�ed Next Fit), also for 1BP, that uses algorithmNF as a subroutine. The input of this algorithm is a list with items whose dimensions arenot greater than 1m .Algorithm MNF// For the One-dimensional Bin Pa
king Problem (1BP).// Input: An input list L � X [0; 1m ℄.// Output: A pa
king of L into bins B.1 (Partition L into sublists) Let Li  L \ Ti; i = 1; 2; 3,where T1 = X [ 1m+1 ; 1m ℄, T2 = X [ 1m+2 ; 1m+1 ℄ and T3 = X [0; 1m+2 ℄.2 P  NF(L1)kNF(L2)kNF(L3).3 Return P.End Algorithm.Algorithm MNF is o�-line, but 
an be easily transformed into an on-line algorithm, asfollows (
onsider the sets Ti as above).



Parametri
 On-Line Pa
king 5Algorithm MNF0// For the One-dimensional Bin Pa
king Problem (1BP).// Input: An input list L � X [0; 1m ℄, L = (e1; : : : ; en).// Output: A pa
king of L into bins B.1 Pi  ;, i = 1; 2; 3. (Ea
h Pi will be a pa
king of the items in L \ Ti.)2 for k  1 to n do2.1 Let i be an integer su
h that ek 2 Ti , i 2 f1; 2; 3g.2.2 Pa
k ek into a bin in Pi using algorithm NF. That is, if possible pa
k the item ekinto the 
urrent bin in Pi; if ne
essary, take a new bin and makes it the 
urrentbin in Pi.3 Return P1kP2kP3.End algorithm.As mentioned previously, we shall present the forth
oming algorithms as o�-line algo-rithms. The idea of how to transform them into 
orresponding on-line algorithms is usuallystraighforward. However, the dire
t des
ription of on-line algorithms may hide the ideasbehind them, and makes the analysis more 
ompli
ated. So, we leave to the reader thedesign of the on-line versions, but refer to them in the statement of the theorems.Re
all that algorithm NF always tries to pa
k an item in the last bin (
urrent bin),and on
e it is not the 
urrent bin anymore, the algorithm never visits it again. AlgorithmFF 
an be seen as an improvement of algorithm NF, as it tries to pa
k an item in thepreviously generated bins. It 
an be des
ribed as follows. Let fB1; B2; : : : ; Bkg be thepa
king generated by the algorithm FF, where ei�1 is the last item that has been pa
ked.To pa
k the next item ei, the algorithm �nds the smallest index j, su
h that ei 
an bepa
ked into the bin Bj. If there is no su
h bin, the item ei is pa
ked into a new bin Bk+1.This pro
ess is repeated until all the items of L have been pa
ked.3 Two Dimensional Bin Pa
king ProblemIn this se
tion we present an on-line parametri
 algorithm to pa
k re
tangles into two-dimensional bins of unit 
apa
ity. The on-line algorithm with the best known asymptoti
performan
e bound for this problem is due to Li and Cheng [14℄ and Csirik and van Vliet[8℄ with bound that 
an be made as 
lose to 2:86 as desired. First, we des
ribe the familyof algorithms FF(2)p , with parameter 0 < p < 1, presented by Li and Cheng whi
h we use assubroutine for our algorithm. This algorithm use a rounding set Sp = f1; p; p2; : : : ; pi; : : :g.In these algorithms, the height y(r) of ea
h re
tangle r is rounded up to the nearest valuein Sp, say pi 2 Sp, and it is then 
alled an i-re
tangle. Considering their width x(r), su
hre
tangles are pa
ked (as one-dimensional items) into levels of height pi, 
alled i-levels. Inthe following, we des
ribe this algorithm.



6 F.K. Miyazawa and Y. WakabayashiAlgorithm FF(2)p// For the Two-dimensional Bin Pa
king Problem (2BP).// Input: A list of re
tangles L = (r1; : : : ; rn).// Output: A pa
king of L into bins R = (1; 1).1 For j  1 to n do1.1 Let i be an integer su
h that rj is an i-re
tangle.1.2 Consider the re
tangle rj as an item of width x(rj) and the i-levels generateduntil this step as one-dimensional bins of length 1. Use algorithm FF to pa
k rjinto the i-levels.1.3 If a new i-level is generated in step 1.2, say pi 2 Sp, then use algorithm FF topa
k this i-level inside the two dimensional bins. Otherwise, pa
k the level intoa new bin.2 Return the pa
king generated in step 1.End Algorithm.This algorithm pa
ks the re
tangles side by side along the x-axis. We also denote thisalgorithm as FF(x2)p . The analogous version of algorithm FF(2)p that generates a pa
kingwith strips in the y dire
tion is denoted by FF(y2)p .Li and Cheng proved that algorithm FF(2)p has an asymptoti
 performan
e bound that
an be made as 
lose to 2:89 as desired, but for that one has to take p 
lose to 1 and su
hthat ps = 12 for some s.Now, we des
ribe an algorithm to pa
k small re
tangles. The algorithm is des
ribedas an o�-line algorithm but it 
an be easily transformed into an on-line one, therefore, weassume the presentation of the on-line version. The basi
 idea is to guarantee a minimumarea utilization in ea
h bin, for re
tangles of relatively big size (using only list subdivision).For smaller re
tangles we use algorithm FF(2)p .In this algorithm the list L is subdivided into sublists L1; : : : ; L8, as indi
ated in Figure1 and a spe
ialized algorithm is exe
uted for ea
h of these lists....................................................................................................................
0 1m+2 1m+1 1m

1m L2 L1L3
L7L8L6 L4L51m+11m+2

Figure 1: Partition of the list L performed by algorithm O2Dm.



Parametri
 On-Line Pa
king 7Algorithm O2Dm// For the Two-dimensional Bin Pa
king Problem (2BP).// Input: A list of re
tangles L = (r1; : : : ; rn) � Cm.// Output: A pa
king of L into bins R = (1; 1).1 Subdivide the list L into sublists L1; : : : ; L6 in the following way:L1  L \ C h 1m+1 ; 1m ; 1m+1 ; 1mi;L2  L \ C h 1m+2 ; 1m+1 ; 1m+1 ; 1mi;L3  L \ C h0; 1m+2 ; 1m+1 ; 1mi;L4  L \ C h 1m+1 ; 1m ; 1m+2 ; 1m+1i;L5  L \ C h 1m+1 ; 1m ; 0; 1m+2i;L6  L \ C h0; 1m+1 ; 1m+2 ; 1m+1i \ Cyx;L7  L \ C h 1m+2 ; 1m+1 ; 0; 1m+1i \ Cxy ;L8  L \ Cm+2:2 Pi  FF(x2)1=m(Li); i = 1; 2; 3.3 Pi  FF(y2)1=m(Li); i = 4; 5.4 P6  FF(x2)1=(m+1)(L6).5 P7  FF(y2)1=(m+1)(L7).6 P8  FF(2)p (L8); for pm = m(m+2)(m+1)2 .7 P  P1 [ : : : [ P8.8 Return P.End Algorithm.The following theorem shows that algorithm O2Dm has an asymptoti
 performan
ebound �m+2m+1�2 + 2m(m+1) . The drawba
k of this algorithm is the additive 
onstant � thatdepends on m. When m in
reases, the asymptoti
 performan
e bound be
omes very 
loseto 1, but the value of � in
reases. For simpli
ity, we denote the value pm without thesubs
ript m. Note that �xing p as a 
onstant|instead of a fun
tion of m|the fa
tor weloose be
ause of the rounding also turns out to be 
onstant.Theorem 3.1 For any list L of re
tangles with dimensions at most 1m ,O2Dm(L) � �m �OPT(L) + �m;where �m � �m+2m+1�2 + 2m(m+1) and �m = (m+ 1)2 + 7.



8 F.K. Miyazawa and Y. WakabayashiProof. Denote by P2�8 the pa
king P2 [ : : : [ P8. For the list L1 the algorithm pa
ks m2re
tangles in ea
h bin, ex
ept perhaps in the last. In this 
ase we have an optimum pa
kingfor the list L1 with area guarantee (m=(m+ 1))2. Therefore, the following inequalities 
anbe obtained: OPT(L1) = #(P1); (1)#(P1) � �m+ 1m �2 S(L1) + 1: (2)For the lists L2; : : : ; L7, the algorithm applies a version of algorithm FF(2)p for ea
hsublist obtaining an area guarantee of at least m=(m+ 2). That is,#(Pi) � �m+ 2m �S(Li) + 1 ; i = 2; : : : ; 7: (3)For the pa
king P8, we prove, in what follows, the following inequality:#(P8) � �m+ 2m �S(L8) + (m+ 1)2: (4)Let Lk8 be the set of re
tangles in L8 with width in (pk+1; pk℄, k � 0, p = m(m+2)(m+1)2 andnk the number of strips generated. Sin
e ea
h strip, ex
ept perhaps the last, is �lled withboxes until the length 1� 1m+2 ,S(Lk8) = Xr2Lk8 x(r) � y(r)> pk+1 ��1� 1m+ 2� � (nk � 1)> pk+1 ��m+ 1m+ 2� � (nk � 1) :Therefore, S(L8) = Xk�0S(Lk8)> Xk�0 pk+1 � �m+ 1m+ 2� � (nk � 1)= �m+ 1m+ 2� p0�Xk�0 pknk �Xk�0 pk1A :Sin
e Pk�0 pknk is the sum of widths of all strips in ea
h bin and the width �lled bystrips in ea
h bin is at least �1� 1m+2�, ex
ept perhaps in the last, we have:
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S(L8) � �m+ 1m+ 2� p��1� 1m+ 2� (#(P8)� 1)� 11� p�� � mm+ 2� �#(P8)� (m+ 1)2 :From inequalities (3) and (4), we haveS(L n L1) � � mm+ 2�#(P2 [ : : : [ P8)� (m+ 1)2 � 6: (5)Note that we have the �nal pa
king of L divided into two parts. For one part we have anasymptoti
 optimum pa
king with area guarantee (m=(m+ 1))2, and for the other part wehave a pa
king with area guarantee m=(m+ 2).Let n1 := #(P1)� 1 and n2 := #(P2 [ : : : [ P8) � (m + 1)2 � 6. From inequalities (1)and (9), we have OPT(L) � max(n1;� mm+ 1�2 n1 +� mm+ 2�n2) : (6)Sin
e #(P) = #(P1) + #(P2k : : : kP8) = n1 + n2 + (m+ 1)2 + 7, we have#(P) � �m �OPT(L) + �m;where �m = (n1 + n2)=maxfn1;� mm+1�2 n1 + � mm+2�n2g and �m = (m+ 1)2 + 7.Considering the two 
ases where the denominator attains the maximum value, we obtain�m � �m+2m+1�2 + 2m(m+1) .4 Three Dimensional Pa
king ProblemLi and Cheng [15℄ were the �rst authors to develop approximation algorithms for thisproblem. In [17℄ they present an on-line algorithm with asymptoti
 performan
e boundthat 
an be made as 
lose to 2:89 as desired, the best one so far. In this se
tion we presenta family of algorithms, denoted by OTPm;p, for pa
king boxes with bottom dimensions notgreater than 1m , whose asymptoti
 performan
e bound 
an be made as 
lose to ((m+2)(m+1))2 + 2=(m(m+ 1)) as desired.Algorithm OTPm;p uses a rounding strategy in the same way as used by Li and Chengin [17℄. That is, the height of ea
h box is rounded up to the nearest value pi � Z, for i � 0and 0 < p < 1. The value Z is an upper bound for the height of any box in L. Ea
h box ofheight pi � Z, 
alled i-box, is pa
ked into a level of height pi � Z, 
alled i-level. The pa
kingin levels is made by algorithm O2Dm (for 2BP).



10 F.K. Miyazawa and Y. WakabayashiAlgorithm OTPm;p// For the Three-dimensional Pa
king Problem (TPP).// Input: A list of boxes L = (b1; : : : ; bn), bi 2 Cm.// Output: A pa
king of boxes in L into a box B = (1; 1;1).1 P  ;.2 For i 1 to n do2.1 Let j � 0 be an integer su
h that bi is a j-box.2.2 Let Nj be the set of j-levels generated so far.2.3 Use the algorithm O2Dm to pa
k bi in levels Nj, visualizing ea
h level of Nj as are
tangle (bin) of unit dimensions and bi as a re
tangle (x(bi); y(bi)). If ne
essary,generate a new j-level into P to pa
k bi.3 Return P.End algorithm.The pa
king generated of OTPm;p is 
onstituted by two parts. A partial pa
king withasymptoti
 bound that 
an be made very 
lose to the optimum and volume guarantee1p � mm+1�2, of boxes in L\C h 1m+1 ; 1m ; 1m+1 ; 1mi; and another pa
king with volume guarantee1p � mm+2�, of the remaining boxes. As p 
an be taken very 
lose to 1, we 
an have aperforman
e bound 
lose to the one obtained for algorithm O2Dm. The following result 
anbe proved about algorithm OTPm;p.Theorem 4.1 Let L be a list of boxes with bottom dimensions at most 1m and height atmost Z. Then, for any real number p, 0 < p < 1, the following holds:OTPm;p(L) � �m;p �OPT(L) + �m;pZ;where limp!1 �m;p = �(OTPm;p) � �m+2m+1�2 + 2m(m+1) and �m;p = (m+1)2+71�p .Proof. For j � 0 let Lj be the set of j-boxes. For i = 1; : : : ; 8 let Lji be a partition of Ljas de�ned in step 1 of algorithm O2Dm; and set Li := [jLji . Let Pji be the set of levelsgenerated in the pa
king of the boxes in Lji ; Pi = P0i kP1i k : : :, and #(Pj1) be the number oflevels in pa
king Pj1 . Denote by P2�8 the pa
king P2k : : : kP8. Sin
e we 
annot pa
k morethan m2 boxes of [jPj1 side by side in a same level and at most one j-level of Pj1 
an haveless than m2 boxes, we haveOPT(L) � OPT(L1)� Xj pj+1Z(#(Pj1)� 1)= p � �H(P1)� Z1� p� : (7)
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king 11Considering volume inequalities, we haveV (L1) = Xj V (Lj1)� Xj pj+1 � Z � S(Lj1)� Xj pj+1 � Z � �#(Pj1)� 1� � � mm+ 1�2 (from inequality (2))� � mm+ 1�2 � p0�Xj pj � Z �#(Pj1)� ZXj pj1A� � mm+ 1�2 � p�H(P1)� Z1� p� : (8)Analogously, for the sublists L2; : : : ; L8, using inequalities (3) and (4) we haveV (L2 [ : : : [ L8) � � mm+ 2� � p�H(P2k : : : kP6)� (m+ 1)2 + 61� p Z� : (9)Setting h1 := H(P1) � Z1�p and h2 := H(P2�8) � (m+1)2+61�p Z, the following inequality
an be derived from (8) and (9):V (L) � � mm+ 1�2 � p � h1 +� mm+ 2� � p � h2: (10)Sin
e OPT(L) � V (L), we have from (7) and (10),OPT(L) � max(p � h1;� mm+ 1�2 � p � h1 +� mm+ 2� � p � h2) :Pro
eeding analogously as in the previous se
tion, we haveH(P) � �p;m �OPT(L) + �m;p � Z; (11)where limp!1 �p;m = �m+2m+1�2 + 2m(m+1) and �p;m = (m+1)2+71�p .
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king ProblemIn 1989 Coppersmith and Raghavan [6℄ presented the �rst approximation algorithm for the
ontainer pa
king problem. They presented an algorithm with asymptoti
 performan
ebound 6:25. The algorithms with the best asymptoti
 performan
e bound known forthis problem, 4:84, is due to Li and Cheng [14℄ and Csirik and van Vliet [8℄. In thisse
tion we present a parametri
 on-line algorithm with asymptoti
 performan
e bound(m4 + 5m3 + 10m2 + 7m+ 2)=(m2(m+ 1)2).First, we des
ribe an algorithm used as subroutine for the 3BP, 
alled H3D (Hybrid 3-Dbin pa
king). This algorithm uses the same strategy used by algorithm HFF (Hybrid FirstFit) presented by Chung, Garey and Johnson [2℄. It uses an algorithm for TPP to generatelevels, and then uses an algorithm for 1BP to pa
k the levels into 
ontainers.Algorithm H3D// Input Subroutines: A level oriented algorithm Atpp for TPP and algorithm Auni for1BP.// Input: A list of boxes L.// Output: A pa
king of L into 
ontainers B = (1; 1; 1).1 P  Atpp(L) .2 Let N be the set of levels in P.3 Apply algorithm Auni to pa
k the levels of N into 
ontainers B. Ea
h level N 2 N , withheight zN , is seen as a one-dimensional item of height zN , and ea
h 
ontainer B isseen as a one-dimensional bin of height 1. Let Ph3d be the pa
king generated withthis pro
edure.4 Return Ph3d .End algorithm.Note that if the algorithms Auni and Atpp are on-line, then the algorithm H3D 
an alsobe transformed into an on-line algorithm.The next algorithm uses the algorithm H3D, with subroutines O2Dm and FF. The inputlist L is partitioned into �ve sublists, L1; : : : ; L5, and the algorithm maintains �ve types of
ontainers, one for ea
h sublist. The bins of the �nal pa
king are partitioned into �ve types,one for ea
h sublist, i.e., the boxes of sublist Li are pa
ked into bins of type i, i = 1; : : : ; 5.Denote by b a box de�ned as the box b with height rounded in the following way: the heightof the boxes for list Li, i = 1; : : : ; 4 are rounded up to a value hi := 1=(m + i � 1); for theboxes in sublist L5, we de�ne a value qm, 0 < qm < 1, and round up the height of a boxb 2 L5 to the nearest value in the set Sq. On
e a box b have its height rounded, it is pa
kedin a level of height b with algorithm O2Dm, 
onsidering all levels of this height. If a newlevel of heigth b is generated, this level is pa
ked into bins of the same type, using algorithmFF. In order not to loose a 
onstant fa
tor be
ause of the roundings, as 
onsidered for theparameter p in algorithm O2Dm, qm is taken as a fun
tion of m.
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king 13Algorithm O3Dm// For the Three-dimensional Bin Pa
king Problem (3BP).// Input: A list of boxes L with dimensions at most 1m .// Output: A pa
king of L into 
ontainers B = (1; 1; 1).1 Subdivide the list L into sublists L1; : : : ; L5 in the following wayL1  L \ C h 1m+1 ; 1m ; 1m+1 ; 1m ; 1m+1 ; 1mi;L2  L \ Z[ 1m+1 ; 1m ℄ n L1;L3  L \ Z[ 1m+2 ; 1m+1 ℄;L4  L \ Z[ 1m+3 ; 1m+2 ℄;L5  L n (L1 [ : : : [ L4):2 Pi  H3D(OTPm;qi ; Li;FF), with qi = 1=(m+i�1), for i = 1; : : : ; 4 and q5 = (m+1)(m+3)(m+2)2 ;5 P  P1 [ : : : [ P5.6 Return P.End algorithm.Again, we note that this algorithm is not on-line, but its transformation into an on-linealgorithm is simple.Theorem 5.1 Let L be any list of boxes with dimensions at most 1m , m � 2. Then thefollowing holds: O3Dm(L) � �m �OPT(L) +O(m4);where �m � (m4 + 5m3 + 10m2 + 7m+ 2)=(m2(m+ 1)2):Proof. Denote by P2�5 the pa
king P2 [ : : : [ P5. For the list L1 the algorithm pa
ks m3re
tangles in ea
h bin, ex
ept perhaps in the last. In this 
ase we have an optimum pa
kingfor the list L1 with volume guarantee (m=(m+ 1))3. Therefore, the following inequalities
an be obtained: OPT(L1) = #(P1); (12)#(P1) � �m+ 1m �3 V (L1) + 1: (13)Let N2 be the number of levels generated by algorithm OTPm;p in the pa
king of L2.Sin
e algorithm OTP uses algorithm O2Dm to pa
k boxes of L2 into levels of height 1m , wehave V (L2) � � 1m+ 1� � S(L2)� � 1m+ 1��� mm+ 2� �N2 � �m� (from inequality 5)



14 F.K. Miyazawa and Y. Wakabayashi� � 1m+ 1�� mm+ 2� � (m � (#(P2)� 1)� �m)= � m2(m+ 1)(m + 2)�#(P2)� 
0m;where 
0m is a O(m) fun
tion. The same inequality 
an be proved for pa
kings P3 and P4.That is, V (Li) � m2(m+ 1)(m+ 2)#(Pi)� 
0m; i = 3; 4:Now, 
onsider the pa
king P5. Denote by N i5 the number of i-levels generated in thepa
king of Li5, i � 0. These levels are generated by algorithm OTPm;q (with q := q5) whi
huses algorithm O2Dm to pa
k the boxes into levels. Therefore, by Lemma 3.1 we haveV (Li5) � qi+1S(Li5)� qi+1 "� mm+ 1�2N i5 � �m# (from inequalities (3) and (5)).Therefore, V (L5) = Xi�0 V (Li5)� Xi�0 qi+1 "� mm+ 1�2N i5 � �m#= q24� mm+ 1�2Xi�0 qiN i5 � �m=(1 � q)35� q "� mm+ 1�2�1� 1m+ 3� (#(P5)� 1)� �m=(1 � q)# :Substituing q, we have #(P5) � (m+ 1)(m+ 2)m2 V (L5) + 
00m;where 
00m = O(m4).Now we 
an 
onsider the �nal pa
king divided into two parts. In one part we havean optimum pa
king with volume guarantee (m=(m+ 1))3, and the other part we have apa
king with volume guarantee m2=((m+ 1)(m+ 2)).Let n1 := #(P1)�1 and n2 := #(P2[: : :[P5)�(3
0m+
00m). From the above inequalities,we have OPT(L) � max(n1;� mm+ 1�3 n1 + m2(m+ 1)(m+ 2)n2) : (14)
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e #(P) = #(P1) + #(P2 [ : : : [ P5) = n1 + n2 + (
m), we have#(P) � �m �OPT(L) + 
m;where �m � (m4 + 5m3 + 10m2 + 7m+ 2)=(m2(m+ 1)2) and 
m := 3
0m + 
00m + 1.6 Con
lusionThe asymptoti
 performan
e bounds of the algorithms we presented here are summarizedin the following table. We note that for m > 1 these are the best bounds known for on-linealgorithms for the problems 
onsidered here. In the �rst 
olumn we indi
ate the best boundsknown (to our knowledge) for on-line algorithms for the 
orresponding general problems.Problem Best Known m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 72D bin pa
king 2.86 [2℄ 3.25 2.112 1.73 1.54 1.428 1.354 1.3023D Pa
king 2.89 [18℄ 3.25 2.112 1.73 1.54 1.428 1.354 1.302Container pa
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