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for Packing Rectangles and Boxes*

F. K. Miyazawa' Y. Wakabayashi*

Abstract

We present approximation algorithms for the following problems: the two-dimensio-
nal bin packing, the three-dimensional packing problem and the container packing prob-
lem. We consider the special case in which the items to be packed are small and must
be packed on-line. We say an item is small if each of its dimension is at most % of
the respective dimension of the recipient, where m is an integer greater than 1. To
our knowledge, the asymptotic performance bound of these algorithms are the best so
far obtained for this special case (parametric on-line). For the above problems, (in the
respective order) the algorithms we describe have bounds 2.112, 2.112, and 3.112, for
m = 2; and bounds 1.73, 1.73 and 2.285, for m = 3.

Keywords: Packing, on-line packing, parametric packing, approximation algorithms,
three-dimensional packing.

1 Introduction

We present fast approximation algorithms for packing problems where the items to
be packed are small compared to the dimension of the recipient. More precisely, for each
packing problem a parameter (a positive integer), say m, is given meaning that the input
list consists of items whose each of its dimension is at most 1/m of the respective dimension
of the recipient. So if m = 2, the items have size at most half of the size of the recipient.
In case m > 2, we say that the item is small: this is the case we are interested (the case
m = 1 is just the general problem with no restriction on the input list).

An algorithm to pack this kind of items is also said to be a parametric algorithm, due to
the parameter m. We consider here on-line algorithms: given a list L = (e1,e9,...,e,) of
items to be packed, an algorithm A to pack L is said to be on-line if (i) A packs items in the
order given by the list L; (ii) A packs each item e; without knowledge of any item e;, j > ;
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and (iii) A never moves an item already packed. An algorithm that is not on-line is called
off-line. A packing problem for which one is looking for an on-line or off-line algorithm is
called correspondingly an on-line or off-line problem.

The problems we consider have many applications, in special in job scheduling [16, 18,
19]. On-line algorithms are very important in these applications, as most of the time, the
operating system must schedule jobs very fast and it does not know about further jobs
users can start. Therefore, the use of exact algorithms turn out to be infeasible, and fast
approximation algorithms are highly desirable for these applications. Moreover, in most of
the cases, each job do not use the total resource it can use but a small part of it. Similar
applications can be found in packing problems.

We consider (parametric versions of) the following problems:

1. Two-dimensional Bin Packing Problem (2BP): Given a list L of rectangles, and rect-
angles of unit dimensions R = (1,1), called bins, pack the rectangles of L into a
minimum number of bins;

2. Three-dimensional Packing Problem (TPP): Given a list L of boxes, and a box B of
width 1, length 1 and infinite height, B = (1,1, 00), pack the boxes of L into B such
that the height of the packing is minimized;

3. Container Packing Problem (3BP): Given a list L of boxes, and boxes of unit dimen-
sions B = (1,1, 1), called containers, pack the boxes of L into a minimum number of
containers.

These problems are well known to be NP-hard. For a survey on approximation algo-
rithms for packing problems the reader is referred to [3, 4]. The approach used here to tackle
these problems is to develop approximation algorithms: polynomial time fast algorithms
that guarantee a certain quality of the solution found, compared to the optimum packing.
Given an algorithm A for one of the above problems and a list of items L for the respective
problem, we denote by A(L) the height or the number of recipients (depending on which
problem is considered) of the packing generated by the algorithm A applied to the list L.
We denote by OPT(L) the corresponding value of an optimum packing. We say that an
algorithm A has asymptotic performance bound « if there exists a constant 8 such that for
any instance L we have A(L) < a- OPT(L) + S.

We mention here results on the parametric versions of these problems. Off-line algo-
rithms for these problems have been more investigated than on-line algorithms. In the early
seventies, Johnson [11, 12] presented several off-line approximation algorithms for the one-
dimensional case, some with bounds (m + 3)/(m + 2). More recently, Csirik [7] proved that
the First Fit Decreasing (FFD) algorithm has asymptotic performance bound (m+3)/(m+
2) — 1/(m(m + 1)(m +2)), when m is odd, and (m + 3)/(m + 2) — 2/(m(m + 1)(m + 2)),
when m is even, m > 5. In [5] Coffman et al. presented an algorithm with asymptotic per-
formance bound (m+2)/(m+1) for the Strip Packing Problem (SPP). In [15] Li and Cheng
presented an algorithm for the TPP with asymptotic performance bound (m + 1)/(m — 1),
m > 2.
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Not as many results have been obtained for on-line problems. Johnson et al. [11, 13]
proved that for the on-line one-dimensional bin packing problem the asymptotic perfor-
mance bound of the First Fit (FF) and the Best Fit algorithm is (m + 1)/m, m > 2.

In [9], Galambos presents lower bounds for the on-line bin packing problem. For m = 2
and m = 3 he shows that the Harmonic algorithm Hj,; have bounds 1.423 and 1.302,
respectively, for sufficiently large values of M.

For the two-dimensional bin packing problem, and the three-dimensional packing problem
we present algorithms with asymptotic performance bound close to ((m + 2)/(m + 1))? +
2/(m(m + 1)). For the container packing problem we describe an algorithm with asymptotic
performance bound close to (m?* + 5m? + 10m? + 7m + 2)/(m?(m + 1)?). These results ex-
tend the results of Coppersmith and Raghavan [6] for the on-line parametric two-dimensional
bin packing and the container packing problem.

For the general case, the best bounds known for (off-line) algorithms for these problems
are the following. For SPP, an algorithm of Baker et. al. [1] with bound 1.25; for the 2BP,
an algorithm of Chung et. al [2] with bound 2.125; for TPP, an algorithm of Miyazawa and
Wakabayashi [18] with bound 2.67; and for 3BP, algorithms with bound 4.84 of Csirik and
van Vliet [8] and of Li and Cheng [14].

In the next section we present some definitions and notation, and in the subsequent
sections we present the algorithms.

2 Definitions and Notation

We consider the Euclidean space R? with the zyz coordinate system to represent the pack-
ings. An item (or recipient) e has its dimensions defined by z(e), y(e) and z(e), where
each of these dimensions is the measure in the corresponding axis of the xyz coordinate
system. For the two-dimensional bin packing problem, one of these coordinate axis is not
considered, and for the one-dimensional bin packing problem only one of these coordinates
is considered.

The area of a rectangle r is denoted by S(r), and the volume of a box b is denoted by
V(b). If P is a packing then we denote by H(P) the height of P, and by #(P) the number
of bins used by P. If Py, P, ..., P, are packings of disjoint lists L1, Lo, ..., L,, respectively,
we denote the concatenation of these packings by P1||Po]| ... ||P.

When considering the three-dimensional packing problem we assume that there is no
box with height greater than a constant Z.

Given a function f : C — R and a subset C' C C, we denote by f(C’) the sum
EeEC” f(e)

The notation below is convenient to represent subsets of an input list.

X[p,q] :={e: p<uzle) <q}, VIp,q) :={e: p<yle) <q}, Zlp,ql:=={e: p<z(e) <q},

C[p17q1 ; p27q2] = X[plaql]ny[I)Q;q?];
C[Pl;(h y P2,42 p37q3] = X[plaql]ny[p2;q2]mz[p3aq3]7
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1
L ] Cri={e: 2(e) 2u(©)}, CLi={e: a(e) <yle)).

We call the value s in inequalities of the form #(P) < 1 .S(L) 4+ C, an area guarantee
of the packing P and the value v in inequalities of the form #(P) < L. V(L) + C a volume
guarantee of the packing P. Note that there is no loss of generality, to consider (as we did
in the definition of the problems) that the limited dimensions of the recipients are 1.

2.1 One-dimensional Bin Packing Problem

In the description of an algorithm we may use some known on-line algorithms. Two of these
algorithms are the NF (Next Fit) and the FF (First Fit) algorithms, both for the on-line
bin packing problem. Their asymptotic performance bounds are 2 and 1.7, respectively
[10, 11].

Moreover, when using an on-line algorithm as a subroutine, for simplicity, we may
describe the new algorithm as being off-line, assuming implicitly that a transformation into
an on-line algorithm can be done. The next example for the one-dimensional bin packing
problem ilustrates one such transformation.

The One-dimensional Bin Packing Problem (1BP) can be formulated as follows: given
a list of items L = (ey,...,ey), each with length z(e;), and bins B with length 1, find a
packing of the items of L into bins B that uses the smallest possible number of bins B.

Let us first describe the algorithm NF (Next Fit). Given a list of items L = (ey, ..., e,),
the algorithm considers each item in the order given by L and verifies whether it can be
packed into the current bin B; (the first one being B;). While this is possible, the next
items are packed into B;. When an item cannot be packed into B;, this item is packed into
a new bin B;y; that becomes the current bin. The algorithm halts when all items have
been packed, returning the packing (By,..., By, ), where By, is the last generated bin.

Now consider the algorithm MNF (Modified Next Fit), also for 1BP, that uses algorithm
NF as a subroutine. The input of this algorithm is a list with items whose dimensions are
not greater than %

Algorithm MNF
/] For the One-dimensional Bin Packing Problem (1BP).
// Input: An input list L C X[0, L].
// Output: A packing of L into bins B.

1 (Partition L into sublists) Let L; <~ LN7T;, i=1,2,3,

where 7i = A 1], 7o = A1 L] and 75 = 200, ).
2 P <+ NF(L1)||NF(L2)||NF(L3).
3 Return P.

End Algorithm.

Algorithm MNF is off-line, but can be easily transformed into an on-line algorithm, as
follows (consider the sets 7; as above).
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Algorithm MNF’
/] For the One-dimensional Bin Packing Problem (1BP).
// Input: An input list L C X0, %], L=(e,...,ep).
// Output: A packing of L into bins B.

1 P+ 0,i=1,2,3. (BEach P; will be a packing of the items in L N 7;.)
2 for k< 1tondo

2.1 Let 7 be an integer such that e, € T; , 7 € {1,2,3}.

2.2 Pack e into a bin in P; using algorithm NF. That is, if possible pack the item ey
into the current bin in P;; if necessary, take a new bin and makes it the current
bin in P;.

3 Return Py ||P2||Ps.
End algorithm.

As mentioned previously, we shall present the forthcoming algorithms as off-line algo-
rithms. The idea of how to transform them into corresponding on-line algorithins is usually
straighforward. However, the direct description of on-line algorithms may hide the ideas
behind them, and makes the analysis more complicated. So, we leave to the reader the
design of the on-line versions, but refer to them in the statement of the theorems.

Recall that algorithm NF always tries to pack an item in the last bin (current bin),
and once it is not the current bin anymore, the algorithm never visits it again. Algorithm
FF can be seen as an improvement of algorithm NF, as it tries to pack an item in the
previously generated bins. It can be described as follows. Let {Bi,Bs,..., By} be the
packing generated by the algorithm FF, where e;_; is the last item that has been packed.
To pack the next item e;, the algorithm finds the smallest index j, such that e; can be
packed into the bin Bj. If there is no such bin, the item e; is packed into a new bin Bj;.
This process is repeated until all the items of L have been packed.

3 Two Dimensional Bin Packing Problem

In this section we present an on-line parametric algorithm to pack rectangles into two-
dimensional bins of unit capacity. The on-line algorithm with the best known asymptotic
performance bound for this problem is due to Li and Cheng [14] and Csirik and van Vliet
[8] with bound that can be made as close to 2.86 as desired. First, we describe the family

of algorithms FF,(72), with parameter 0 < p < 1, presented by Li and Cheng which we use as
subroutine for our algorithm. This algorithm use a rounding set S, = {1,p,p?,...,p%,...}.
In these algorithms, the height y(r) of each rectangle r is rounded up to the nearest value
in S, say P e Sp, and it is then called an i-rectangle. Considering their width z(r), such
rectangles are packed (as one-dimensional items) into levels of height p’, called i-levels. In
the following, we describe this algorithm.
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Algorithm FF,()Z)
/] For the Two-dimensional Bin Packing Problem (2BP).
// Input: A list of rectangles L = (ry,...,my).
// Output: A packing of L into bins R = (1, 1).

1 For j «+ 1 ton do

1.1 Let 7 be an integer such that r; is an i-rectangle.

1.2 Consider the rectangle r; as an item of width x(r;) and the i-levels generated
until this step as one-dimensional bins of length 1. Use algorithm FF to pack r;
into the ¢-levels.

1.3 If a new i-level is generated in step 1.2, say p’ € Sp, then use algorithm FF to
pack this i-level inside the two dimensional bins. Otherwise, pack the level into
a new bin.

2 Return the packing generated in step 1.
End Algorithm.

This algorithm packs the rectangles side by side along the x-axis. We also denote this

algorithm as FF,(,m). The analogous version of algorithm FFZ(,Z) that generates a packing

with strips in the y direction is denoted by FF,(f/Z).

Li and Cheng proved that algorithm FF,(,2) has an asymptotic performance bound that
can be made as close to 2.89 as desired, but for that one has to take p close to 1 and such
that p® = % for some s.

Now, we describe an algorithm to pack small rectangles. The algorithm is described
as an off-line algorithm but it can be easily transformed into an on-line one, therefore, we
assume the presentation of the on-line version. The basic idea is to guarantee a minimum
area utilization in each bin, for rectangles of relatively big size (using only list subdivision).
For smaller rectangles we use algorithm FFI(?).

In this algorithm the list L is subdivided into sublists Ly, ..., Lg, as indicated in Figure

1 and a specialized algorithm is executed for each of these lists.

1
™
L3 Lo L,
1
m+1
Le Ly
1
m+2
Lg Ly Ls
1 1 1
0 m+2 mE1 m

Figure 1: Partition of the list L performed by algorithm O2D,,.
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Algorithm 02D,
/] For the Two-dimensional Bin Packing Problem (2BP).

/] Input: A list of rectangles L = (rq,...

,Tn) C Cpy-

// Output: A packing of L into bins R = (1,1).

1 Subdivide the list L into sublists Ly, ..

[\

w

Iy

ot

(=]

7
8

P FF2(L,),

Ps < FF

Ps « FFP (L),
P+ PrU...UPs.
Return P.

Ly
Ly
Ls
Ly
Ls

1/m

P; « FFYD (L)), i=4,5.

1/m

(22)

1/(m+1)(L6)'

2
Pr — FRYS L (L7).

for

End Algorithm.

depends on m. When m increases, the asymptotic performance bound becomes very close
For simplicity, we denote the value p,, without the
subscript m. Note that fixing p as a constant—instead of a function of m—the factor we

to 1, but the value of 8 increases.

m+1

i=1,2,3.

rTT T T T

, Lg in the following way:

LNe i ks sk i),
me_m1+27m£rl5 mil’%]’
Lnc|o, - ; m%l,%},
LNC | s b
LNC |t m 5 05 |
Lncio, m}l-l; m}i-Z’m}I-l ﬂCé’,
me_mﬁrZ,mﬁrl ; 0,25 | Ny,
LN Cpia.

m(m+2)

Pm = 1) -

The following theorem shows that algorithm O2D,, has an asymptotic performance

2
bound (m+2> + m(ri Tye The drawback of this algorithm is the additive constant 8 that

loose because of the rounding also turns out to be constant.

Theorem 3.1 For any list L of rectangles with dimensions at most %,

02D,,,(L) < @y, - OPT(L) + B,

2
where ay, < (21?) + m(n3+1) and By, = (m +1)? +17.
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Proof. Denote by P2_g the packing P, U ... U Ps. For the list L; the algorithm packs m?
rectangles in each bin, except perhaps in the last. In this case we have an optimum packing
for the list L; with area guarantee (m/(m + 1))%. Therefore, the following inequalities can
be obtained:

OPT(L1) = #(P), (1)
2
#(Py) < <m7+1> S(Ly) + 1. 2)

For the lists Lo,..., L7, the algorithm applies a version of algorithm FFz(,2> for each

sublist obtaining an area guarantee of at least m/(m + 2). That is,

2
#(P;) < (%) S(Li)+1,i=2,...,T. (3)
For the packing Pg, we prove, in what follows, the following inequality:
m + 2
#(Ps) < (T) S(Lg) + (m + 1)2. (4)

m(m+2)

Let L¥ be the set of rectangles in Lg with width in (p**! p¥], k > 0, p = T )? and
ny the number of strips generated. Since each strip, except perhaps the last, is filled with
boxes until the length 1 — —

m+2’
S(Lg) = Y (r)-y(r)
rELg
> phtt ( _m;-i—2> (ng — 1)

Therefore,

k>0

ki1 (mAL _q

> S (25 -
k>0

m—+1 k k

- (e (T

k>0 k>0

Since ) ;) pFny, is the sum of widths of all strips in each bin and the width filled by

strips in each bin is at least (1 — ﬁ), except perhaps in the last, we have:
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st 2 (2E0)p((1- ) e - - 1)

> (mLH) H(Py) — (m+1)2.

From inequalities (3) and (4), we have

S(L\ L) > (%) #(PyU...UPs) — (m+1)% —6. (5)

Note that we have the final packing of L divided into two parts. For one part we have an
asymptotic optimum packing with area guarantee (m/(m + 1))?, and for the other part we
have a packing with area guarantee m/(m + 2).

Let ny := #(P1) — 1 and ng := #(P2 U...UPs) — (m + 1)? — 6. From inequalities (1)
and (9), we have

OPT(L) > max {nl, <ml+1>2n1 + <ml+2> m} . (6)

Since #(P) = #(P1) + #(P2]| ... [|Ps) = n1 + n2 + (m + 1) + 7, we have

#(P) < oy, - OPT(L) + B,

2
where a,, = (n1 + ng)/max{ny, (#) ny + (%) no} and By, = (m +1)? + 7.

Considering the two cases where the denominator attains the maximum value, we obtain

m+2 2 2
Q< (m+1) + m(m+1) - O

4 Three Dimensional Packing Problem

Li and Cheng [15] were the first authors to develop approximation algorithms for this
problem. In [17] they present an on-line algorithm with asymptotic performance bound
that can be made as close to 2.89 as desired, the best one so far. In this section we present
a family of algorithms, denoted by OTP,, ,, for packing boxes with bottom dimensions not
greater than %, whose asymptotic performance bound can be made as close to ((m+2)(m+
1))%2 +2/(m(m + 1)) as desired.

Algorithm OTP,, , uses a rounding strategy in the same way as used by Li and Cheng
in [17]. That is, the height of each box is rounded up to the nearest value pt-Z, fori >0
and 0 < p < 1. The value Z is an upper bound for the height of any box in L. Each box of
height p’ - Z, called i-box, is packed into a level of height p’ - Z, called i-level. The packing
in levels is made by algorithm O2D,, (for 2BP).
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Algorithm OTP,,,
/] For the Three-dimensional Packing Problem (TPP).
// Input: A list of boxes L = (by,...,by), b € Cp,.
// Output: A packing of boxes in L into a box B = (1,1, 00).

1 P+ 0.
2 For 7+ 1tondo

2.1 Let 5 > 0 be an integer such that b; is a j-box.

2.2 Let N be the set of j-levels generated so far.

2.3 Use the algorithm O2D,, to pack b; in levels N, visualizing each level of Nj as a
rectangle (bin) of unit dimensions and b; as a rectangle (z(b;), y(b;)). If necessary,
generate a new j-level into P to pack b;.

3 Return P.
End algorithm.

The packing generated of OTP,, , is constituted by two parts. A partial packing with
asymptotic bound that can be made very close to the optimum and volume guarantee

2
% (#) , of boxes in LNC #ﬂ’ % ; #ﬂ’ %] ; and another packing with volume guarantee

% (%), of the remaining boxes. As p can be taken very close to 1, we can have a

performance bound close to the one obtained for algorithm O2D,,,. The following result can
be proved about algorithm OTP,, ,.

Theorem 4.1 Let L be a list of bozes with bottom dimensions at most % and height at
most Z. Then, for any real number p, 0 < p < 1, the following holds:

OTPy,p(L) < oy - OPT(L) + B pZ,

where limy_,1 iy p = a(OTPy, ) < (21?)2 + m(n3+1) and By p = %.

Proof. For j > 0 let L7 be the set of j-boxes. For i = 1,...,8 let Lg be a partition of L’
as defined in step 1 of algorithm O2D,,; and set L; := Ung . Let sz be the set of levels
generated in the packing of the boxes in Lg; Pi = PP ..., and #(P’) be the number of
levels in packing Pf. Denote by P2_g the packing Psf| ... ||Ps. Since we cannot pack more
than m? boxes of Uij side by side in a same level and at most one j-level of Pf can have
less than m? boxes, we have

OPT(L) OPT(Ly)

> P Z(#(P]) - 1)

J

b (w10 - 12)). (7)

(AVARY

I-p
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Counsidering volume inequalities, we have

V(L) = ZV(L-D

> Z it 7. 8(L))

2
> Zpﬁ'l ( #(P)) - 1) <ml—l—1> (from inequality (2))

<ml+1>2 pr Z - #(P)) Zzpf

() om0 1%,)

Analogously, for the sublists Lo, ..., Lg, using inequalities (3) and (4) we have

v

(m+1)2+6
p Z>'

VLau.. UL 2 () o (HP. Po) -

(9)

Setting hy = H(Py) — 1£ and hy := H(Py s) — wz the following inequality
can be derived from (8) and (9):

V(L) > (ml_l_l>2-p-h1+<ml+2> p-ho. (10)

Since OPT(L) > V(L), we have from (7) and (10),

2
m m
OPT(L)zmax{ph1,<m—+l> -p-h1+<m—_l_2>-p-h2} .

Proceeding analogously as in the previous section, we have

H(P) < apm-OPT(L) + By - Z, (11)

2
1 1 7
where limy 1 0 = (753 + fpgy and B = 0 0
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5 Container Packing Problem

In 1989 Coppersmith and Raghavan [6] presented the first approximation algorithm for the
container packing problem. They presented an algorithm with asymptotic performance
bound 6.25. The algorithms with the best asymptotic performance bound known for
this problem, 4.84, is due to Li and Cheng [14] and Csirik and van Vliet [8]. In this
section we present a parametric on-line algorithm with asymptotic performance bound
(m* + 5m3 + 10m? + Tm + 2)/(m?(m + 1)?).

First, we describe an algorithm used as subroutine for the 3BP, called H3D (Hybrid 3-D
bin packing). This algorithm uses the same strategy used by algorithm HFF (Hybrid First
Fit) presented by Chung, Garey and Johnson [2]. It uses an algorithm for TPP to generate
levels, and then uses an algorithm for 1BP to pack the levels into containers.

Algorithm H3D

/] Input Subroutines: A level oriented algorithm Appp for TPP and algorithm Ayy; for
1BP.

// Input: A list of boxes L.

// Output: A packing of L into containers B = (1,1,1).

1 P« ATPP(L) .
2 Let N be the set of levels in P.

3 Apply algorithm Ayy; to pack the levels of N into containers B. Each level N € N, with
height zy, is seen as a one-dimensional item of height zy, and each container B is
seen as a one-dimensional bin of height 1. Let Py3p be the packing generated with
this procedure.

4 Return Pysp .
End algorithm.

Note that if the algorithms Ayy; and Arpp are on-line, then the algorithm H3D can also
be transformed into an on-line algorithm.

The next algorithm uses the algorithm H3D, with subroutines O2D,,, and FF. The input
list L is partitioned into five sublists, L1, ..., Ls, and the algorithm maintains five types of
containers, one for each sublist. The bins of the final packing are partitioned into five types,
one for each sublist, i.e., the boxes of sublist L; are packed into bins of type ¢, 1 = 1,...,5.
Denote by b a box defined as the box b with height rounded in the following way: the height
of the boxes for list L;, i = 1,...,4 are rounded up to a value h; := 1/(m + i — 1); for the
boxes in sublist Lz, we define a value g,, 0 < ¢, < 1, and round up the height of a box
b € L5 to the nearest value in the set S;. Once a box b have its height rounded, it is packed
in a level of height b with algorithm O2D,,, considering all levels of this height. If a new
level of heigth b is generated, this level is packed into bins of the same type, using algorithm
FF. In order not to loose a constant factor because of the roundings, as considered for the
parameter p in algorithm O2D,,, ¢, is taken as a function of m.



Parametric On-Line Packing 13

Algorithm O3D,,
/] For the Three-dimensional Bin Packing Problem (3BP).
// Input: A list of boxes L with dimensions at most .
// Output: A packing of L into containers B = (1,1,1).

1 Subdivide the list L into sublists Ly, ..., Ls in the following way
L]_ «— LNC 1 1. 1 1. 1 1

m+l m ) mtl m ) mtl m|’

Ly + LNZ[Zg 5]\ L
11

Ly « LNzl =1
11

Ly < LNZ[ 3 mmh

Ly <+ L\(L1U...UL4).

2 P; « H3D(OTP,,,, Li, FF), with ¢; = 1/(m+i—1), fori =1,...,4and g5 = %
5P+« P U...UPs.

6 Return P.

End algorithm.

Again, we note that this algorithm is not on-line, but its transformation into an on-line
algorithm is simple.

Theorem 5.1 Let L be any list of boxes with dimensions at most %, m > 2. Then the
following holds:
03D,,(L) < ayy, - OPT(L) + O(m?),

where oy, < (m* +5m3 + 10m? + Tm + 2)/(m?(m + 1)?).

Proof. Denote by Ps_5 the packing P2 U ... U Ps. For the list L; the algorithm packs m?
rectangles in each bin, except perhaps in the last. In this case we have an optimum packing
for the list L; with volume guarantee (m/(m + 1))*. Therefore, the following inequalities
can be obtained:

OPT(Ly) = #(Py) (12)
3
#r) < (M) vz (13

Let Ny be the number of levels generated by algorithm OTP,, , in the packing of L.
Since algorithm OTP uses algorithm O2D,, to pack boxes of Ly into levels of height %, we
have

V(Ls)

v

(k7)o

<m;—|—1> [(#4_2) - Ny — ,Bm] (from inequality 5)

Vv
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> (1) () o (P - 1) = )

= <(m+§(;+2)> #(P2) — Vi,

where v/, is a O(m) function. The same inequality can be proved for packings Ps and Py.
That is,

m2

(m+1)(m+2)

V(L;) > #(Pi) — YV, 0 =3,4

Now, consider the packing Ps. Denote by N! the number of i-levels generated in the
packing of L}, ¢ > 0. These levels are generated by algorithm OTP,, , (with ¢ := ¢5) which
uses algorithm O2D,,, to pack the boxes into levels. Therefore, by Lemma 3.1 we have

V(LE) > ¢*'S(L)

2
—m ] M . .
(m n 1) NE — Bm] (from inequalities (3) and (5)).

i+1
q

v

Therefore,

V(L) = > V(L)

i>0
2
> S| () M ﬂm]
i>0
I 2
= 4q <ml+1> Zqug — Bm/(1 —q)
i i>0
m \? 1
> a|(55) (1) BP0 - /-0
Substituing ¢, we have
#(ps) < ORI Dy o

where v/ = O(m?).

Now we can consider the final packing divided into two parts. In one part we have
an optimum packing with volume guarantee (m/(m + 1))*, and the other part we have a
packing with volume guarantee m?/((m + 1)(m + 2)).

Let ny := #(P1)—1 and ny := #(P2U...UPs5)—(37,,+7r,)- From the above inequalities,

we have ;
m m2
PT(L) > _ . 14
OPT( )—ma’x{"l’<m+1> "1+(m+1)(m+2)"2} (14)




Parametric On-Line Packing 15

Since #(P) = #(P1) + # (P2 U...UPs) = ny + ny + (ym), we have
#(P) < am - OPT(L) + Y,

where ay, < (m* 4+ 5m3 + 10m? + Tm + 2)/(m?(m + 1)?) and v, == 39, + 70, + L. o

6 Conclusion

The asymptotic performance bounds of the algorithms we presented here are summarized
in the following table. We note that for m > 1 these are the best bounds known for on-line
algorithms for the problems considered here. In the first column we indicate the best bounds
known (to our knowledge) for on-line algorithms for the corresponding general problems.

Problem Best Known m=1 m=2 m=3 m=4 m=5 m=6 m=7
2D bin packing 2.86 [2] 3.25 2.112 1.73 1.54 1.428 1.354 1.302
3D Packing 2.89 18] 3.25 2.112 1.73 1.54 1.428 1.354 1.302

Container packing 4.84 [8, 14]  6.25 3.112 228 1915 1.708 1.576  1.486

Table 1: Asymptotic performance bounds of the on-line algorithms mentioned.
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