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tA homogeneous spheri
al polynomial (HSP) is the restri
tion to the sphere Sn�1of a homogeneous polynomial on the 
artesian 
oordinates x1; x2; : : : ; xn of Rn. Ahomogeneous spheri
al spline is a fun
tion that is an HSP within ea
h element of ageodesi
 triangulation of Sn�1. There has been 
onsiderable interest re
ently in the useof su
h splines for approximation of fun
tions de�ned on the sphere. In this paper weintrodu
e the general (non-homogeneous) spheri
al splines and argue that they are amore natural approximating spa
es for spheri
al fun
tions than the homogeneous ones.It turns out that the spa
e of general spheri
al polynomials of degree d is the dire
t sumof the homogeneous spheri
al polynomials of degrees d and d�1. We then generalize thisde
omposition result to polynomial splines de�ned on a geodesi
 triangulation (spheri
alsimpli
ial de
omposition) T of the sphere Sn�1, of arbitrary degree d and 
ontinuityorder k.For the parti
ular 
ase n = 3, the homogeneous spline spa
es were extensivelystudied by Alfeld, Neamtu, and S
humaker, who showed how to 
onstru
t expli
it lo
albases when d � 3k+2. Combining their 
onstru
tion with our de
omposition theorem,we obtain an expli
it 
onstru
tion for a lo
al basis of the general polynomial splineswhen d � 3k + 3.1 Introdu
tionThe problem of modeling or approximating a real fun
tion de�ned on the sphere S2 arises inmany appli
ations, su
h as geophysi
s, meteorology, 
omputer graphi
s, et
.. Su
h fun
tionsare usually represented as polynomials on the spheri
al 
oordinates �; �, (longitude andlatitude). This approa
h, however, has several drawba
ks: the resulting fun
tions are oftendis
ontinuous at the poles, the geodesi
 lines 
orrespond to 
urves in the (�; �) plane, theresolution of (�; �) grids is not uniform over the sphere, and so on. These problems areparti
ularly annoying for appli
ations that require irregular or adaptive meshes.These diÆ
ulties have re
ently led some resear
hers to 
onsider the modeling of spheri
alfun
tions as pie
ewise polynomial on the spatial 
artesian 
oordinates (x; y; z), restri
tedto the sphere. In parti
ular, Alfeld, Neamtu and S
humaker [1, 2, 3℄ have proposed the1



Non-Homogeneous Splines on the Sphere 2use of the so-
alled homogeneous spheri
al splines as an approximation spa
e for fun
tionsde�ned on S2. Here we de�ne an alternative spa
e for this same purpose the general (non-homogeneous) spheri
al polynomial splines. We show that the general splines of any degreed are the dire
t sum of the homogeneous splines of degrees d and d�1, for any 
ontinuity k.Alfeld, Neamtu, and S
humaker gave an expli
it 
onstru
tion for a basis of the homogeneoussplines, provides d � 3k+2. Combining their 
onstru
tion with our de
omposition theorem,we obtain an expli
it 
onstru
tion for a lo
al basis of the general polynomial splines whend � 3k + 3.This 
on
ept 
an be extended to fun
tions de�ned on the sphere Sn�1 of arbitrarydimension (although expli
it basis 
onstru
tions for su
h spa
es is still an open problem).This result allows us to obtain a 
hara
terization for the bases of the spa
e Pd;3k [T ℄=S2.2 Polynomial Fun
tion on RnLet Pd;n be the spa
e of polynomials on n variables of degree � d, viewed as fun
tionsfrom Rn to R. A fun
tion p belongs to Pd;n if and only if it 
an be written in the formp(x) = X0�i1+i2+:::+in�di1;:::;in�0 
i1i2:::inxi11 xi22 : : : xinnwhere x = (x1; x2; : : : ; xn) 2 Rn, and the 
oeÆ
ients 
i1i2:::in are real 
oeÆ
ients. The setPd;n is obviously a ve
tor spa
e, of dimensiondimPd;n =  d+ nn !We say that a fun
tion f de�ned on Rn is homogeneous of degree d if f(ax) = adf(x),for all a 2 R and all x 2 Rn. Let Hd;n the spa
e of the polynomials on Rn of degree � dwhi
h are homogeneous of degree d. Obviously Hd;n is a subspa
e of Pd;n. A fun
tion hbelongs to Hd;n if and only if it 
an be written in the formh(x) = X0�i1+i2+:::+in�di1;:::;in�0 
i1i2:::inxi11 xi22 : : : xinnIt follows that dimHd;n =  d+ n� 1n� 1 !As a spe
ial 
ase, it is 
onvenient to de�ne Hd;n for all d < 0, as the trivial 0-dimensionalspa
e f0g. It easy to see that, if d 6= d0, the spa
es Hd;n and Hd0;n are linearly independent;that is, Hd;n \Hd0;n = f0g.



Non-Homogeneous Splines on the Sphere 33 Spheri
al polynomialsIf a fun
tion f is de�ned on Rn, and X � Rn, we denote by f=X the restri
tion of f tothe set X. By extension, we de�ne the restri
tion of a fun
tion spa
e F to the set X asF=X = f f=X : f 2 F g If f=X = g=X, we will also write f � g (mod X); or just f � g,when X is impli
it in the 
ontext. It is obvious that `�' is an equivalen
e relation.We are interested in the spa
e Pd;n=Sn�1, 
onsisting of the polynomial fun
tions on Rnof degree d, restri
ted to the sphere Sn�1 = f x 2 Rn : jxj = 1 g. Observe that polynomialswhi
h are distin
t in Rn 
an be identi
al when restri
ted to the sphere Sn�1. Therefore,the dimension of Pd;n=Sn�1 is generally smaller than that of Pd;n. The following lemmasare fundamental for the 
ara
terization of Pd;n=Sn�1:Lemma 1 For any d and any n � 1, Hd;n=Sn�1 � Hd+2;n=Sn�1.Proof: If (x1; x2; : : : ; xn) is a point on Sn�1, then x21+x22+� � �+x2n = 1 by de�nition.Therefore, if h is any poynomial from Hd;n, then the polynomialh0(x1; x2; : : : ; xn) = h(x1; x2; : : : ; xn)(x21 + x22 + � � �+ x2n)is a homogeneous polynomial of degree d + 2 wi
h 
oin
ides wi
h h on Sn�1.utLemma 2 For any d and any n � 1, if q 2 Hd�1;n � Hd;n and q � 0 (mod Sn�1) thenq = 0.Proof:Let q be a polynomial in Hd�1;n � Hd;n with q=Sn�1 = 0. Sin
e Sn�1 is analgebri
 variety [6℄, the minimal equation of Sn�1 must be a fa
tor of q that is,q = r � (x21 + x22 + : : : + x2n � 1)where r is some polynomial on Rn of degree d � 2. Sin
e the polynomial x21 +x22 + : : : + x2n � 1 has terms whose degrees di�er by 2, and, on the other hand,q has only terms of degree d and d� 1, we 
an 
on
lude that r = 0, i.e. q = 0.utCorollary 3 For any d and any n � 1, Hd�1;n=Sn�1 \Hd;n=Sn�1 = f0gCorollary 4 For any d and any n � 1, if p; q 2 Hd�1;n �Hd;n and p � q (mod Sn�1),then p = q.



Non-Homogeneous Splines on the Sphere 4We 
an now give a 
hara
terization of the general spheri
al polynomials:Theorem 5 For any d and any n � 1, Pd;n=Sn�1 = (Hd�1;n�Hd;n)=Sn�1 = Hd�1;n=Sn�1�Hd;n=Sn�1.Proof:Sin
e Pd;n = H0;n �H1;n � : : :�Hd;nwe have Pd;n=Sn�1 = H0;n=Sn�1 +H1;n)=Sn�1 + : : :+Hd;n=Sn�1by lemma 1, H0;n=Sn�1 � H2;n)=Sn�1 : : : and H1;n=Sn�1 � H3;n)=Sn�1 : : :Therefore Pd;n=Sn�1 = Hd�1;n=Sn�1 �Hd;n)=Sn�1By 
orollary 3, the theorem follows. utAs a 
onsequen
e of theorem 5,dim((Hd�1;n �Hd;n)=Sn�1) = dim(Hd�1;n �Hd;n) = (d+ 1)24 Derivatives of spheri
al polynomials4.1 Spheri
al gradientIf f is a fun
tion from Sn�1 to R, we denote by rÆ f its gradient with respe
t to dire
tionstangent to Sn�1. For this paper, we 
an de�nerÆ f as a ve
tor of Rn, tangent to Sn�1, su
hthat the derivative of f at a point u 2 Sn�1, in the dire
tion of a unit ve
tor v tangent atu, is v � (rÆ f(u)).If f = F=Sn�1 for some di�erentiable fun
tion F from Rn to R, then rÆ f turns out tobe merely the proje
tion of rF (the ordinary gradient of F ) onto the sphere. That is, forany point u 2 Sn�1, (rÆ f)(u) = ((rF )(u)� u((rF )(u) � u)) =Sn�1 (1)Let's denote by [v℄� the �th 
omponent of a ve
tor v 2 Rn.Theorem 6 For any d, any n � 1, and any � 2 f1; : : : ; ng, if f belongs to Hd;n=Sn�1,then [rÆ f ℄� 2 Hd+1;n=Sn�1Proof:If f belongs to Hd;n=Sn�1, for d � 1, then f = F=Sn�1 for some F 2 Hd;n. It iseasy to 
he
k that [rF ℄� = �F=�x� is inHd�1;n. Therefore, the right-hand sideof formula (1) lies in Hd�1;n=Sn�1 +Hd+1;n=Sn�1. By lemma 1, Hd�1;n=Sn�1is a
tually a subspa
e of Hd+1;n=Sn�1. utCorollary 7 For any d, any n � 1, and any � 2 f1; : : : ; ng, if f belongs to Pd;n, then[rÆ f ℄� 2 Pd+1;n=Sn�1,



Non-Homogeneous Splines on the Sphere 54.2 Spheri
al harmoni
sFor the spe
ial 
ase n = 3, there is a strong relationship between the spheri
al polynomialsPd;3=S2 and the well-known spheri
al harmoni
s [4℄.We denote by Yd the spa
e of the real spheri
al fun
tions from S2 to R generated bythe real and imaginary parts of the spheri
al harmoni
s Y mk of degree 0 � k � d. We alsodenote by Wd the subspa
e of Yd generated by the spheri
al harmoni
s of degree d, d� 2,: : :, d� 2bd2
. Fausshauer and S
humaker [5℄ prove the following results:Theorem 8 The spa
e Wd 
oin
ides with the spa
e Hd;3=S2.Theorem 9 The spa
e Yd 
oin
ides with the spa
e Pd;3=S2.In appendix A we provide another dire
t proof of theorems 8 and 9.5 Spheri
al splines5.1 Triangulations of the sphere Sn�1A simpli
ial 
one of Rn is a 
onvex subset of Rn, with non-empty interior, delimited by nhyperplanes that go through the origin. The interse
tion of a simpli
ial 
one of Rn withthe unit sphere Sn�1 will be 
alled a spheri
al simplex.Let T be a de
omposition of Rn into simpli
ial 
ones T1; T2; : : : ; Tm, with pairwisedisjoint interiors. The 
olle
tion T indu
es a spheri
al simpli
ial subdivision de
ompositionof Sn�1 into spheri
al simplexes Ti\Sn�1, whi
h we denote by T=Sn�1. For brevity, we willalso use the terms trihedral de
omposition for T , and spheri
al triangulation for T=Sn�1, forany dimension n.5.2 Spheri
al splines spa
esGiven a trihedral de
omposition T of Rn, we de�ne the following spa
es of fun
tions fromRn to R: Pd;n[T ℄ = f p : (8i) p=Ti 2 Pd;n=Ti gHd;n[T ℄ = f h : (8i) h=Ti 2 Hd;n=Ti gThe restri
tion of these fun
tions to the sphere Sn�1 gives the spheri
al splines Pd;n[T ℄=Sn�1and Hd;n[T ℄=Sn�1, respe
tively general and homogeneous.5.3 Chara
terization of spheri
al splinesTheorem 5 
an be easily extended to spheri
al splines. First, we need a few lemmas:Lemma 10 For all n � 1, Pd;n[T ℄=Sn�1 = Hd�1;n[T ℄=Sn�1 +Hd;n[T ℄=Sn�1This result follows dire
tly from the de�nition and from theorem 5. Moreover, we have



Non-Homogeneous Splines on the Sphere 6Lemma 11 Let P 2 Pd;n for n � 2, and W a non-empty subset of Sn�1 with dimensionn� 1. If P vanishes in W , then P vanishes in all Sn�1.Proof:If n � 2 then Sn�1 is a irredu
ible variety of Rn, and the thesis follows from a
lassi
 result of algebri
 geometry [6℄. utLemma 12 If p 2 Hd�1;n[T ℄ +Hd;n[T ℄ with n � 2, and p � 0 (mod Sn�1) then p = 0.Proof:Let p 2 Hd�1;n[T ℄ +Hd;n[T ℄ su
h that n � 2 and p � 0 (mod Sn�1). For alli 2 f1 : : : kg, let pi 2 Hd�1;n +Hd;n su
h that p=Ti = pi=Ti. Then, we havepi=(Sn�1 \ Ti) = 0Sin
e Ti \ Sn�1 is a subset of Sn�1 with dimension n� 1, by lemma 11 we 
an
on
lude that pi is zero over the whole sphere Sn�1. By theorem 5 pi is zeroover the whole domain Rn. Sin
e this equality is true for all Ti, we 
on
ludethat the 
omposite fun
tion p is identi
ally zero, too. utThis lemma has the following 
onsequen
es:Corollary 13 If p; q 2 Hd�1;n[T ℄ +Hd;n[T ℄ and n � 2, then p � q (mod Sn�1)if and only if p = q.Corollary 14 For any n � 2, Hd�1;n[T ℄=Sn�1 \Hd;n[T ℄=Sn�1 = f0g=Sn�1Corollary 15 For any n � 2, Pd;n[T ℄=Sn�1 = Hd�1;n[T ℄=Sn�1 �Hd;n[T ℄=Sn�1It should be noted that lemma 12 does not hold for n = 1; the proof fails, in this 
ase,be
ause S0 = f�1; 1g is not irredu
ible. Indeed, the fun
tionp(x) = ( 1� x if x � 01 + x if x � 0whi
h belongs to H0;1 +H1;1, is zero on S0 but not on R1.



Non-Homogeneous Splines on the Sphere 75.4 Continuity ConstraintsFinally, we extend Corollary 15 to spheri
al splines whi
h are subje
t to 
ontinuity 
on-straints.We say that a fun
tion from Sn�1 to R is 
ontinuous to order zero if it is 
ontinuous inthe ordinary sense; and is 
ontinuous to order k, for k > 0, if it is 
ontinuous, di�erentiable,and ea
h 
omponent of its spheri
al gradient is 
ontinuous to order k � 1. We denote byCk(Sn�1) the set of all fun
tions from Sn�1 to R that are 
ontinuous to order k.For a trihedral de
omposition T of Rn we de�ne the fun
tion spa
esPd;nk [T ℄=Sn�1 = f p : p 2 Pd;n[T ℄=Sn�1 ^ p=Sn�1 2 Ck(Sn�1) gHd;nk [T ℄=Sn�1 = f h : h 2 Hd;n[T ℄=Sn�1 ^ h=Sn�1 2 Ck(Sn�1) gOur goal is to show that Pd;nk [T ℄=Sn�1 is the dire
t sum ofHd�1;nk [T ℄=Sn�1 andHd;nk [T ℄=Sn�1.In other words, imposing kth-order 
ontinuity on Pd;n[T ℄=Sn�1 is equivalent to indepen-dently imposing kth-order 
ontinuity on ea
h of the two subspa
es Hd�1;n[T ℄=Sn�1 andHd;n[T ℄=Sn�1. For that we need the following results:To prove the main result of this se
tion, we start with 
ase k = 0, namely a 
hara
terizationof the spa
e Pd;n0 [T ℄=Sn�1:Theorem 16 If n � 3, then Pd;n0 [T ℄=Sn�1 = Hd�1;n0 [T ℄=Sn�1 �Hd;n0 [T ℄=Sn�1.Proof:(�): Trivial.(�): Let p be a fun
tion in Pd;n0 [T ℄=Sn�1. Let Ti and Tj be adja
ent 
onesof T , and let pi and pj be fun
tions of Pd;n=Sn�1 su
h that p=Ti = pi=Ti andp=Tj = pj=Tj . By 
orollary 10, p = h0 + h00with h0 2 Hd�1;n[T ℄=Sn�1 and h00 2 Hd;n[T ℄=Sn�1. Moreover,pi = h0i + h00i pj = h0j + h00jwhere h0i and h0j are in Hd�1;n=Sn�1, and h00i and h00j are Hd;n=Sn�1.Let W be the 
ommon boundary of the spheri
al triangles Ti \ Sn�1 andTj\Sn�1. We 
an assume, without loss of generality, that W is 
ontained in thehyperplane � with equation xn = 0. Let C be the sphere Sn�2 
ontained in �,de�ned by the equation x21 + x22 + : : :+ x2n�1 = 1. Sin
e p 2 C0(Sn�1), we havep=W = pi=W = pj=W , and therefore (pi�pj)=W = 0. Given that W is a subsetof Sn�2 with dimension n� 2, by lemma 11 we 
on
lude that (pi � pj)=C = 0.Note that (pi � pj)=C belongs to Pd;n�1=Sn�2. On the other hand, (pi �pj)=C = (h0i � h0j)=C + (h00i � h00j )=C. Sin
e (h0i � h0j)=C 2 Hd�1;n�1=Sn�2, and(h00i � h00j )=C 2 Hd;n�1=Sn�2, by theorem 5(h0i � h0j)=C = 0 (h00i � h00j )=C = 0



Non-Homogeneous Splines on the Sphere 8Therefore, h0i=C = h0j=C h00i =C = h00j =CSin
e these identities hold for any two adja
ent trihedra of T , we 
on
lude thath0 2 Hd�1;n0 [T ℄=Sn�1 and h00 2 Hd;n0 [T ℄=Sn�1. utLet's now prove the general 
ase:Theorem 17 For n � 3 and any k � 0,Pd;nk [T ℄=Sn�1 = Hd�1;nk [T ℄=Sn�1 �Hd;nk [T ℄=Sn�1Proof:(�): Trivial.(�): We prove this part by indu
tion on k. The 
ase k = 0 is theorem 16, solet's assume k > 0.Let p be a fun
tion in Pd;nk [T ℄=Sn�1. By de�nition, p is 
ontinuous, and rÆ pis 
ontinuous of order k � 1. By 
orollary 7, [rÆ p℄� belongs to Pd+1;n[T ℄=Sn�1,and therefore to Pd+1;nk�1 [T ℄=Sn�1. By indu
tion,[rÆ p℄� 2 Hd;nk�1[T ℄=Sn�1 �Hd+1;nk�1 [T ℄=Sn�1 (2)On the other hand, by 
orollary 10, p = h0+h00 , where h0 2 Hd�1;n[T ℄=Sn�1 andh00 2 Hd;n[T ℄=Sn�1. In the interior of ea
h triangle of T , the spheri
al gradientof p is then rÆ p =rÆ h0 +rÆ h00 By theorem 6,[rÆ h0 ℄� 2 Hd;n[T ℄=Sn�1 (3)[rÆ h00 ℄� 2 Hd+1;n[T ℄=Sn�1 (4)Comparing equation (2) with equations (3) and (4), we 
on
lude that[rÆ h0 ℄� 2 Hd;nk�1[T ℄=Sn�1 (5)[rÆ h00 ℄� 2 Hd+1;nk�1 [T ℄=Sn�1 (6)Sin
e p is 
ontinuous, theorem 16 implies that h0 and h00 are 
ontinuous, too.Equations (5-6) imply that h0 2 Hd�1;nk [T ℄=Sn�1 and h00 2 Hd;nk [T ℄=Sn�1. We
on
lude that Pd;nk [T ℄=Sn�1 � Hd�1;nk [T ℄=Sn�1 +Hd�1;nk [T ℄=Sn�1 (7)On the other hand,(Hd�1;nk [T ℄=Sn�1) \ (Hd�1;nk [T ℄=Sn�1) � (8)(Hd�1;n[T ℄=Sn�1) \ (Hd�1;n[T ℄=Sn�1) = f0g=Sn�1 (9)by 
orollary 3. ut



Non-Homogeneous Splines on the Sphere 9Note that sin
e lemma 12 fails for n = 1, theorem 17 
annot be extended to n = 2. Forinstan
e, the fun
tion p(x; y) = p0(x; y) + p00(x; y), whereP 0(x; y) = 8>>><>>>: y if x > 0, y > 01 if x < 0, y > 0�x if x < 0, y < 00 if x > 0, y < 0 P 00(x; y) = 8>>><>>>: 0 if x > 0, y > 01 if x < 0, y > 00 if x < 0, y < 00 if x > 0, y < 0Observe that p is C0 on S1, but its homogeneous 
omponents p0, p00 aren't.6 Bases for Spheri
al SplinesLet's now turn our attention to the sphere S2. The results of the previous se
tion showthat Pd;3k [T ℄=S2, the spa
e of pie
ewise polynomial fun
tions restri
ted to the sphere withorder-k 
ontinuity, is the dire
t sum of the spa
es Hd;3k [T ℄ and Hd�1;3k [T ℄, restri
ted to S2.Alfeld, Neamtu and S
humaker [2℄ obtained an expli
it basis, with lo
al support, forthe spa
e Hd;3k [T ℄=S2, in terms of Bernstein-B�ezier polynomials for d � 3k + 2. In view oftheorem 17, their 
onstru
tion also gives a basis for Pd;3k [T ℄=S2 when d � 3k + 3, throughthe 
on
atenation of a basis of Hd;3k [T ℄=S2 and a basis of Hd�1;3k [T ℄=S2.For k = 0 or k = 1 (wi
h are the 
ases most likely to be used in prati
e) the dimensionof the spa
es aredimHd;3k [T ℄=S2 = (d2 � 3dk + 2k2)v � 2d2 + 6dk � 3k2 + 3k + 2= (d2 � 3dk + 2k2)t=2 + k2 + 3k + 2;and dimPd;3k [T ℄ = (2d2 � 6dk + 4k2 � 2d+ 3k + 1)v�4d2 + 12dk + 4d� 6k2 + 2= (2d2 � 6dk + 4k2 � 2d+ 3k + 1)t=2 + 2k2 + 6k + 4:where v and t are respe
tively the number of verti
es and triangles of the triangulation.The lowest-degree spa
es Pd;3k [T ℄=S2 that have ANS bases are P3;30 [T ℄=S2 for 
ontinuity
lass C0, and P6;31 [T ℄=S2 for 
ontinuity 
lass C1. Table 1 gives the dimensions of thosespa
es and of their homogeneous 
omponents.Spa
es DimensionsH2;30 [T ℄=S2 4v � 6 2t+ 2H3;30 [T ℄=S2 9v � 16 9t=2 + 2P3;30 [T ℄=S2 13v � 22 13t=2 + 4 Spa
es DimensionsH5;31 [T ℄=S2 12v � 18 6t+ 6H6;31 [T ℄=S2 20v � 34 10t+ 6P6;31 [T ℄=S2 32v � 52 16t+ 12Table 1: The dimensions of some general and homogeneous spline spa
es with C0and C1 
ontinuity.



Non-Homogeneous Splines on the Sphere 10Ea
h element of an ANS basis is asso
iated with a fa
e, an edge, or a vertex of thetriangulation. Figure 1 shows some ANS basis elements for the spa
e H6;31 [T ℄=S2, where Tis the 
entral proje
tion of a regular i
osahedron onto the sphere.
one per fa
e g-3 per vertex of degree g

six per vertex
three per edgeFigure 1: Typi
al Alfeld-Neamtu-S
humaker basis elements.7 Con
lusionThe general spheri
al spline spa
e Pd;nk [T ℄=Sn�1 whi
h we de�ned here in
lude the homoge-neous splinesHd;nk [T ℄=Sn�1 as a proper subspa
e; indeed, as we have shown, Pd;nk [T ℄=Sn�1 isthe dire
t sum of the 
orresponding of degree d and d�1, for all 
ontinuity order k.Therefore,



Non-Homogeneous Splines on the Sphere 11for the parti
ular 
ase n = 3, and d � 3k + 3 we obtain an expli
it basis for Pd;nk [T ℄=Sn�1by 
on
atenating the bases for Hd�1;nk [T ℄=Sn�1 and Hd;nk [T ℄=Sn�1, as 
onstru
ted by AlfeldNeamtu S
humaker [2℄.In light of theorems 8 and 9, it is obvious that the spa
e Pd;3k [T ℄=S2 
an approximateexa
tly any spheri
al harmoni
 fun
tion of degree d. The same is not true of the spa
eHd;3k [T ℄=S2, whi
h is the subspa
e of Pd;3k [T ℄=S2 generated by the spheri
al harmoni
s whosedegrees have the same parity as d. For this reason, we believe that the spa
e Pd;3k [T ℄=S2 isa better 
hoi
e than Hd;3k [T ℄=S2 for fun
tion approximation on the sphere. For one thing,Pr;3k [T ℄=S2 � Pd;3k [T ℄=S2 when r � d, while Hr;3k [T ℄=S2 � Hd;3k [T ℄=S2 only when d � r iseven. In parti
ular, Pd;3k [T ℄=S2 in
ludes the fun
tions whi
h are 
onstant on S2, for all d;whereas Hd;3k [T ℄=S2 only 
ontains su
h fun
tions when d is even.These remains a host of pra
ti
al problems to solve, su
h as determining the asymptoti
approximation power of these spa
es, and eÆ
ient approximation, interpolation methodsbased on them.Appendix ATheorem 18 The spa
e Wd 
oin
ides with the spa
e Hd;3=S2.Proof:We will �rst show that the real and imaginary parts of any spheri
al harmoni
Y md of degree d is an element of Pd;3=S2. We know that Y md 
an be written asY md = eim�Pmd (�); m = �d; : : : ; d (10)where Pmd (�) is the Legendre fun
tions of the �rst kind of order m and degreed [4℄. A 
lassi
al analyti
al expression for Pmd is Rodrigues's [7℄ formula.Pmd (�) = (1� z2)jmj=22dd! �d+jmj(1� z2)d�zd+jmj (11)where z = sin �. ThereforeY md = C(d;m)eim�(1� z2)jmj=2 �d+jmj(1� z2)d�zd+jmjwhere C(d;m) is a 
onstant that depends on m and d. Let's �rst assume m � 0.Re
alling that ei� = 
os�+ i sin� = x+ iypx2 + y2 = x+ iy(1� z2)1=2we have (ei�)m = (x+ iy)m(1� z2)m=2



Non-Homogeneous Splines on the Sphere 12therefore Y md = C(d;m)(x+ iy)m �d+m(1� z2)d�zd+mWe now observe that (1 � z2)d = R(z) is a polynomial in the variable z, all ofwhose terms have degree between 0 and 2d. It is easy to see that�d+m(1� z2)d�zd+mis a polynomial Q(z), in the variable z, all of whose terms have degree be-tween 0 and d�m in
lusive, with the same parity as d�m. Therefore Q(z) 2Hd�m;3=S2 +Hd�m�2;3=S2 + : : :Sin
e Hd�2;3 � Hd;3, the restri
tion of Q(z) to the sphere S2 is an elementof Hd�m;3=S2. Therefore, sin
eY md = C(d;m)(x+ iy)mQ(z)=S2and Re[(x+ iy)m℄ and Im[(x+ iy)m℄ are homogeneous polynomials in x e y ofdegree m, we 
on
lude that Re(Y md ) and Im(Y md ) are also elements of Hd;3=S2.Sin
e Y �md = (Y md )� [7℄,the result is also true for m < 0. It then followsthat Wd � Hd;3=S2.We will now demonstrate that both spa
es have the same dimension. Noti
ethat for ea
h k, the fun
tions Re[Y mk ℄, m = 0 : : : k and Im[Y mk ℄, m = 1 : : : k arelinearly independent [4℄. Observe also that for m < 0, Re[Y �mk ℄ = Re[Y mk ℄ andIm[Y �mk ℄ = �Im[Y mk ℄. Therefore, the dimension of the spa
e Wd is at least�d+22 �. As shown in this se
tion 2 dimHd;3=S2 is also �d+22 �. utTheorem 19 Yd = Pd;3=S2Proof:Yd = W0 + W1 + W2 + : : : + Wd = H0;3=S2 + H1;3=S2 + : : : + Hd;3=S2 =Hd�1;3=S2 �Hd;3=S2 = Pd;3=S2 ut8 A
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