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Abstract

A homogeneous spherical polynomial (HSP) is the restriction to the sphere S™~1
of a homogeneous polynomial on the cartesian coordinates zi,zs,...,z, of R". A
homogeneous spherical spline is a function that is an HSP within each element of a
geodesic triangulation of S*~'. There has been considerable interest recently in the use
of such splines for approximation of functions defined on the sphere. In this paper we
introduce the general (non-homogeneous) spherical splines and argue that they are a
more natural approximating spaces for spherical functions than the homogeneous ones.
It turns out that the space of general spherical polynomials of degree d is the direct sum
of the homogeneous spherical polynomials of degrees d and d—1. We then generalize this
decomposition result to polynomial splines defined on a geodesic triangulation (spherical
simplicial decomposition) T' of the sphere S™~!, of arbitrary degree d and continuity
order k.

For the particular case n = 3, the homogeneous spline spaces were extensively
studied by Alfeld, Neamtu, and Schumaker, who showed how to construct explicit local
bases when d > 3k + 2. Combining their construction with our decomposition theorem,
we obtain an explicit construction for a local basis of the general polynomial splines
when d > 3k + 3.

1 Introduction

The problem of modeling or approximating a real function defined on the sphere S? arises in
many applications, such as geophysics, meteorology, computer graphics, etc.. Such functions
are usually represented as polynomials on the spherical coordinates ¢, 6, (longitude and
latitude). This approach, however, has several drawbacks: the resulting functions are often
discontinuous at the poles, the geodesic lines correspond to curves in the (¢, ) plane, the
resolution of (¢, ) grids is not uniform over the sphere, and so on. These problems are
particularly annoying for applications that require irregular or adaptive meshes.

These difficulties have recently led some researchers to consider the modeling of spherical
functions as piecewise polynomial on the spatial cartesian coordinates (z,y, z), restricted
to the sphere. In particular, Alfeld, Neamtu and Schumaker [1, 2, 3] have proposed the
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use of the so-called homogeneous spherical splines as an approximation space for functions
defined on S2. Here we define an alternative space for this same purpose the general (non-
homogeneous) spherical polynomial splines. We show that the general splines of any degree
d are the direct sum of the homogeneous splines of degrees d and d — 1, for any continuity k.
Alfeld, Neamtu, and Schumaker gave an explicit construction for a basis of the homogeneous
splines, provides d > 3k+2. Combining their construction with our decomposition theorem,
we obtain an explicit construction for a local basis of the general polynomial splines when
d>3k+3.

This concept can be extended to functions defined on the sphere S"~! of arbitrary
dimension (although explicit basis constructions for such spaces is still an open problem).
This result allows us to obtain a characterization for the bases of the space Pg’g[T] /S2.

2 Polynomial Function on R”

Let P%" be the space of polynomials on n variables of degree < d, viewed as functions
from R” to R. A function p belongs to P%" if and only if it can be written in the form

_ i1 12 7
p(gj) - E : Civin.inT1 T - Ty’
0<ij+ig+...+in<d
i1 seeyin >0
where z = (z1,29,...,2,) € R", and the coefficients ¢;,;,. i, are real coefficients. The set

Pen is obviously a vector space, of dimension

dim P4 = ( dtn )

n

We say that a function f defined on R" is homogeneous of degree d if f(ax) = a’f(x),
for all € R and all z € R". Let H%" the space of the polynomials on R" of degree < d
which are homogeneous of degree d. Obviously H%" is a subspace of P%". A function h
belongs to H%" if and only if it can be written in the form

h(z) = Z Civig..in T TR .. n
0<iq +ig+..Fin<d
P15eeerin >0
It follows that
. d -1
dlde,n — ( +n )
n—1

As a special case, it is convenient to define H%™ for all d < 0, as the trivial 0-dimensional
space {0}. It easy to see that, if d # d’, the spaces H%" and H™ are linearly independent;
that is, HE" N HE ™ = {0}.
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3 Spherical polynomials

If a function f is defined on R", and X C R", we denote by f/X the restriction of f to
the set X. By extension, we define the restriction of a function space F to the set X as
FIX={f/X:feF}Uf/X=g/X, wewill also write f =¢ (mod X); or just f =g,
when X is implicit in the context. It is obvious that ‘=’ is an equivalence relation.

We are interested in the space P4"/S"~!  consisting of the polynomial functions on R™
of degree d, restricted to the sphere S ! = { z € R™ : |z| = 1 }. Observe that polynomials
which are distinct in R™ can be identical when restricted to the sphere S?~'. Therefore,
the dimension of P%"/S"~1 is generally smaller than that of P4". The following lemmas
are fundamental for the caracterization of P%" /871

Lemma 1 For any d and any n > 1, H®" /8P~ C Hd+2n/gn—1,

Proof:

If (1,72, ..., Ty) is a point on S"~! then 22 +z3+---+22 = 1 by definition.
Therefore, if h is any poynomial from %", then the polynomial

W (z1,zo, ... 2,) = h(ml,xg,...,xn)(x% +x% +---+xi)

is a homogeneous polynomial of degree d + 2 wich coincides wich A on S"~!,
O

Lemma 2 For any d and anyn > 1, if ¢ € HV" @ HY™ and ¢ = 0 (mod S"71) then
q=0.
Proof:

Let ¢ be a polynomial in H%~ 1" @ H%" with ¢/S"~! = 0. Since S*! is an
algebric variety [6], the minimal equation of S”! must be a factor of ¢ that is,

q=r-(23+z5+ ... +a2 1)

where r is some polynomial on R" of degree d — 2. Since the polynomial 27 +

23+ ...+ 22 — 1 has terms whose degrees differ by 2, and, on the other hand,

q has only terms of degree d and d — 1, we can conclude that r =0, i.e. ¢ =0.
a

Corollary 3 For any d and any n > 1, 3'-[d*1’”/S”*1 ﬁ’;’-[d’”/S”*1 = {0}

Corollary 4 For any d and any n > 1, if p,qg € H" " @ H™ and p = ¢ (mod S"71),
then p = q.
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We can now give a characterization of the general spherical polynomials:
Theorem 5 For anyd and anyn > 1, Phn/Sn—1 = (Hd-lngpydn)/gn—1 = yd-1n /gn-1g
Hd,n/snfl .
Proof:

Since

P =H" WY .. o H"
we have
Pd,n/snfl — HO,n/Snfl + Hl,n)/snfl + ..+ Hd,n/snfl

by lemma 1, HO/S"1 C H2R)/S" 1. and HInjSHL C A /ShL
Therefore
Pd,n/sn—l — Hd—l,n/sn—l ® Hd,n)/sn_l

By corollary 3, the theorem follows. ad

As a consequence of theorem 5,

dim((Hd_l’n D Hd,n)/sn—l) — dim(Hd—l,n D Hd,n) — (d + 1)2

4 Derivatives of spherical polynomials

4.1 Spherical gradient

If f is a function from S”~! to R, we denote by V f its gradient with respect to directions
tangent to S?~!. For this paper, we can define ¥ f as a vector of R™, tangent to S?~!, such
that the derivative of f at a point u € 8"~ !, in the direction of a unit vector v tangent at
u, is v - (¥ f(u)).

If f = F/S™! for some differentiable function F from R" to R, then ¥ f turns out to
be merely the projection of ¥V F' (the ordinary gradient of F') onto the sphere. That is, for
any point u € 8”1,

(V) (u) = (VF)(u) = u((V F)(u) -u)) /8" (1)
Let’s denote by [v], the ath component of a vector v € R".
Theorem 6 For any d, any n > 1, and any o € {1,...,n}, if f belongs to H®"/S 1,
then [V f], € HTLn/Sn—1
Proof:

If f belongs to H%" /8™~ for d > 1, then f = F/S"~! for some F' € H®". Tt is
easy to check that [V Fl, = OF /0, is in H4~ 1", Therefore, the right-hand side
of formula (1) lies in H4~1n/Sn—! 4 Hd+1n/Sn=1 By lemma 1, HI~1n/Sn—1
is actually a subspace of He+1m /S, O

Corollary 7 For any d, any n > 1, and any « € {1,...,n}, if f belongs to P*", then
[v f]a c fpd+1,n/sn71’
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4.2 Spherical harmonics

For the special case n = 3, there is a strong relationship between the spherical polynomials
P43 /S2? and the well-known spherical harmonics [4].

We denote by Y% the space of the real spherical functions from S? to R generated by
the real and imaginary parts of the spherical harmonics Y;* of degree 0 < k < d. We also
denote by W? the subspace of Y% generated by the spherical harmonics of degree d, d — 2,
..., d — 2| 2]. Fausshauer and Schumaker [5] prove the following results:

Theorem 8 The space W? coincides with the space H%3/82.
Theorem 9 The space Y coincides with the space Pd’3/82.

In appendix A we provide another direct proof of theorems 8 and 9.

5 Spherical splines

5.1 Triangulations of the sphere S" !

A simplicial cone of R™ is a convex subset of R™, with non-empty interior, delimited by n
hyperplanes that go through the origin. The intersection of a simplicial cone of R"” with
the unit sphere S”~! will be called a spherical simplez.

Let T be a decomposition of R™ into simplicial cones T7,T5,...,T,,, with pairwise
disjoint interiors. The collection 7" induces a spherical simplicial subdivision decomposition
of 8”71 into spherical simplexes T; N S™~!, which we denote by T//S"~!. For brevity, we will
also use the terms trihedral decomposition for T, and spherical triangulation for T/S™ 1, for
any dimension n.

5.2 Spherical splines spaces

Given a trihedral decomposition T' of R", we define the following spaces of functions from
R” to R:

PAT] = {p: (Vi) p/T; € PP /T; }

The restriction of these functions to the sphere S"~! gives the spherical splines P%"[T]/S"!
and H®"[T]/S"~1, respectively general and homogeneous.

5.3 Characterization of spherical splines

Theorem 5 can be easily extended to spherical splines. First, we need a few lemmas:
Lemma 10 For all n > 1, P [T]/S" 1 = Ha-Ln[T]/S"~1 + & [T]/S" 1

This result follows directly from the definition and from theorem 5. Moreover, we have
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Lemma 11 Let P € P4 for n > 2, and W a non-empty subset of S*~" with dimension
n — 1. If P vanishes in W, then P vanishes in all S"7'.

Proof:

If n > 2 then S”! is a irreducible variety of R™, and the thesis follows from a
classic result of algebric geometry [6]. O

Lemma 12 If p € H4V[T] + HE[T] with n > 2, and p=0 (mod S"~') then p = 0.

Proof:

Let p € H ' [T] 4+ HE"[T] such that n > 2 and p =0 (mod S*~!). For all
i€ {1...k}, let p; € H¥"1" 4 HE" such that p/T; = p;/T;. Then, we have

pi/(S"1NT) =0

Since T; N S™~! is a subset of S~ with dimension n — 1, by lemma 11 we can
conclude that p; is zero over the whole sphere S”~!. By theorem 5 p; is zero
over the whole domain R"™. Since this equality is true for all 7;, we conclude
that the composite function p is identically zero, too. ad

This lemma has the following consequences:

Corollary 13 If p,q € H¥'T] + HET] and n > 2, then p=¢q (mod S*7)
if and only if p = q.

Corollary 14 For any n > 2, H4='[T]/SP~! nHE[T]/S*~! = {0}/S"!
Corollary 15 For any n > 2, P4 [T]/S*~! = HI=Ln[T]/SP—! @ HEM[T]/S™!

It should be noted that lemma 12 does not hold for n = 1; the proof fails, in this case,
because S = {—1,1} is not irreducible. Indeed, the function

(z) = 1—2 ifz>0
PEI=Y 142 ifz<0

which belongs to H%! 4+ H!, is zero on S° but not on R!.
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5.4 Continuity Constraints

Finally, we extend Corollary 15 to spherical splines which are subject to continuity con-
straints.

We say that a function from S”~! to R is continuous to order zero if it is continuous in
the ordinary sense; and is continuous to order k, for k > 0, if it is continuous, differentiable,
and each component of its spherical gradient is continuous to order &k — 1. We denote by
C1(S™!) the set of all functions from S”~! to R that are continuous to order k.

For a trihedral decomposition T of R™ we define the function spaces

PENTYS™ = [pipe PUTYS™ A /S € Cys™) )
HE"[T)/S™ = {h:he HMT)/ST A B/STTH € Cu(s™T) }

Our goal is to show that Pg’" [T]/S™ ! is the direct sum of 7-[271’" [T]/S™ ! and Hi’n[T]/S”*I.
In other words, imposing kth-order continuity on P%"[T]/S"~! is equivalent to indepen-
dently imposing kth-order continuity on each of the two subspaces H?~1"[T]/S"~! and
HE"[T]/S™~ 1. For that we need the following results:

To prove the main result of this section, we start with case £ = 0, namely a characterization
of the space Pg’n[T]/S"*I:

Theorem 16 If n > 3, then P [T)/S"! = HE "[T]/S"~' & HI"[T]/S™ .

Proof:
(D): Trivial.
(C): Let p be a function in Pg’"[T]/S"_l. Let T; and T; be adjacent cones

of T, and let p; and p; be functions of P4"/S" ! such that p/T; = p;/T; and
p/T; = p;/T;. By corollary 10,

p=h +h"
with ' € #* L [T]/S* ' and " € H*"[T]/S™ . Moreover,
pizh;+h;f pj=h1j+h;
where h; and h; are in H 1" /871 and h; and h are H4" /8L,

Let W be the common boundary of the spherical triangles T; N S™~! and
N Sn—!. We can assume, without loss of generality, that W is contained in the
hyperplane 7w with equation z, = 0. Let C' be the sphere 8”2 contained in ,
defined by the equation x? + 23+ ...+ z2_, = 1. Since p € Co(S"~!), we have
p/W =p;i/W = p;/W, and therefore (p; —p;)/W = 0. Given that W is a subset
of $"~? with dimension n — 2, by lemma 11 we conclude that (p; — p;)/C = 0.

Note that (p; — p;)/C belongs to P%"~1/S"=2_ On the other hand, (p; —

p;)/C = (h; — k;)/C + (h; — h})/C. Since (h; — h;)/C € HILn=1/S"=2 and
(h; — h3)/C € HEn=1/S"=2 by theorem 5
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Therefore,
Since these identities hold for any two adjacent trihedra of T', we conclude that
b e HET) /S and b e HE"[T) /S O

Let’s now prove the general case:
Theorem 17 Forn >3 and any k > 0,

PET)/SM T = M T /SM T @ H [T /S

Proof:
(D): Trivial.

(C): We prove this part by induction on k. The case £ = 0 is theorem 16, so
let’s assume &k > 0.

Let p be a function in P,g’n[T]/S"_l. By definition, p is continuous, and V¥ p

is continuous of order k£ — 1. By corollary 7, [¥ pl, belongs to P1n[T]/S" 1,
and therefore to P 1" [T]/S"~'. By induction,

(V' pla € H"\[T)/S"" & #7787 2)

On the other hand, by corollary 10, p = h' +h", where b € H*'"[T]/S"~" and
B € H4"[T]/S"1. In the interior of each triangle of T the spherical gradient
of p is then ¥p = VA + Vh" By theorem 6,

Whla € HO[T]/S"! (3)

[Vh']e € HULT)/Sn ! (4)
Comparing equation (2) with equations (3) and (4), we conclude that

Fhle € HIT/S"! (5)

(h' e € HLy" /s (6)

Since p is continuous, theorem 16 implies that " and A" are continuous, too.
Equations (5—6) imp]y that h' c Hi*L"[T]/Sn—I and h” € Hz’n[T]/Sn_l- We
conclude that

PRMT)/S" ! € H TS T (7
On the other hand,

(R (/s 0 (g T8
(A= [r)/sm ) N (W T) /S = {8 )

N
—~~

o
~

by corollary 3. ad
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Note that since lemma 12 fails for n = 1, theorem 17 cannot be extended to n = 2. For
instance, the function p(z,y) = p'(z,y) + p”(z,y), where

y if x>0,y>0
, . 1 if z<0,y>0 " _

0 if 2>0,y<0

if x>0,y>0
if z<0,y>0
if x<0,y<0
if x>0,y<0

OO = O

Observe that p is Cy on S', but its homogeneous components p', p” aren’t.

6 Bases for Spherical Splines

Let’s now turn our attention to the sphere S2. The results of the previous section show
that P,f’3[T]/ S?, the space of piecewise polynomial functions restricted to the sphere with

order-k continuity, is the direct sum of the spaces Hz’S[T] and Hzfm[T], restricted to S2.
Alfeld, Neamtu and Schumaker [2] obtained an explicit basis, with local support, for

the space ?—[Z’3[T] /S?, in terms of Bernstein-Bézier polynomials for d > 3k + 2. In view of

theorem 17, their construction also gives a basis for PZ’3[T]/ S? when d > 3k + 3, through

the concatenation of a basis of 7-[/,?3[T]/S2 and a basis of ’Hz*m[T]/SQ.
For k =0 or k =1 (wich are the cases most likely to be used in pratice) the dimension
of the spaces are

dim HPT)/S? = (d? — 3dk + 2k%)v — 2d° + 6dk — 3k + 3k + 2
(d? — 3dk + 2k>)t/2 + k2 + 3k + 2,

and

dimPPAT) = (2d% — 6dk + 4k> — 2d + 3k + 1)v
—4d* + 12dk + 4d — 6k* + 2
= (2d* — 6dk + 4Kk* — 2d + 3k + 1)t/2 + 2k* + 6k + 4.

where v and ¢ are respectively the number of vertices and triangles of the triangulation.

The lowest-degree spaces Pg’?’[T] /S? that have ANS bases are P.°[T]/S? for continuity
class Cg, and PP?[T]/S? for continuity class C;. Table 1 gives the dimensions of those
spaces and of their homogeneous components.

Spaces Dimensions Spaces Dimensions
HAT)S? | aw—6 | 2+2 H1oAT)/8? | 120 — 18 | 6t+6
HI[T]/S? | v —16 | 9t/2+2 H83[T)/S? | 200 — 34 | 10t + 6
PEAIT)/S? | 130 —22 | 13t/2 4+ 4 | | POA[T)/S? | 320 — 52 | 16t + 12

Table 1: The dimensions of some general and homogeneous spline spaces with C
and C; continuity.
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Each element of an ANS basis is associated with a face, an edge, or a vertex of the
triangulation. Figure 1 shows some ANS basis elements for the space H*[T]/S2, where T
is the central projection of a regular icosahedron onto the sphere.

three per edge

Figure 1: Typical Alfeld-Neamtu-Schumaker basis elements.

7 Conclusion

The general spherical spline space P,?’n[T] /S™ ! which we defined here include the homoge-
neous splines ’Hg’n[T] /S™~ 1 as a proper subspace; indeed, as we have shown, 73,? T /S s
the direct sum of the corresponding of degree d and d—1, for all continuity order k.Therefore,
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for the particular case n = 3, and d > 3k + 3 we obtain an explicit basis for PZ’" [T]/8"!
by concatenating the bases for Hzfl’" [T]/S™~! and Hi’" [T]/S™~!, as constructed by Alfeld
Neamtu Schumaker [2].

In light of theorems 8 and 9, it is obvious that the space 73,?’3[T] /S? can approximate
exactly any spherical harmonic function of degree d. The same is not true of the space
Hz’S[T] /S2, which is the subspace of P,?’3[T] /S? generated by the spherical harmonics whose
degrees have the same parity as d. For this reason, we believe that the space Pg’?’[T] /S? is
a better choice than Hz"g[T]/ S? for function approximation on the sphere. For one thing,
PoYT)/S? C PRYT]/S? when r < d, while H}*[T]/S? C H{P?[T]/S? only when d — 7 is
even. In particular, PZ’?’[T]/ S? includes the functions which are constant on S?, for all d;
whereas Hz"g[T]/ S? only contains such functions when d is even.

These remains a host of practical problems to solve, such as determining the asymptotic
approximation power of these spaces, and efficient approximation, interpolation methods
based on them.

Appendix A

Theorem 18 The space W coincides with the space H®3/S2.

Proof:

We will first show that the real and imaginary parts of any spherical harmonic
YY" of degree d is an element of P43 /S2. We know that Y, can be written as

Y = ™ PT(9), m=—d,...,d (10)

where PJ"(0) is the Legendre functions of the first kind of order m and degree
d [4]. A classical analytical expression for P}* is Rodrigues’s [7] formula.

(1— z2)|m|/2 8d+|m|(1 _ z2)d

Fi0) = =5z Dzt (11)

where 2 = sinf. Therefore

/2 8d+|m|(1 _ z2)d

Y = C(d, m)e™? (1 — %)™ T
VA m

where C'(d, m) is a constant that depends on m and d. Let’s first assume m > 0.
Recalling that

. i i
e'? = cos ¢ + isin g = vy _ Ty

VAT (-

we have .
(z +iy)™

(€)™ = m
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therefore i ( 2)d
. o%™M(1 — 2
Ydm = C(d, m)(az + ly)mW

We now observe that (1 — 22)¢ = R(2) is a polynomial in the variable z, all of
whose terms have degree between 0 and 2d. Tt is easy to see that

ad+m(1 _ z2)d
Ozd+m
is a polynomial Q(z), in the variable z, all of whose terms have degree be-

tween 0 and d — m inclusive, with the same parity as d —m. Therefore Q(z) €
erfm,S/SZ 4 demf2,3/82 4.

Since H%23 C H%3, the restriction of Q(z) to the sphere S? is an element
of H4=™3 /82, Therefore, since

Y = C(d,m)(z + i)™ Q(2)/S”
and Re[(z + iy)™] and Im[(z + iy)™] are homogeneous polynomials in z e y of

degree m, we conclude that Re(Y") and Im(Y]") are also elements of H%3/S2.

Since Y, ™ = (Y;7)* [7],the result is also true for m < 0. It then follows
that W9 C H%3/S2.

We will now demonstrate that both spaces have the same dimension. Notice
that for each k, the functions Re[Y}"], m =0...k and Im[Y"], m =1...k are
linearly independent [4]. Observe also that for m < 0, Re[Y,”™] = Re[Y;™] and
Im[Y,”™] = —Im[Y;®]. Therefore, the dimension of the space W? is at least
(*$%). As shown in this section 2 dim #%?/S? is also (*3?). O

Theorem 19 )¢ = P?3 /8?2

Proof:

V= WO LW W? W = 1083/82 L {3 /S L B S? =
del,B/SZ oy Hd’3/82 — Pd’3/82 0
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