O contetdo do presente relatério é de Unica responsabilidade do(s) autor(es).
The contents of this report are the sole responsibility of the author(s).

The Image Foresting Transformation
A.X. Falcao, R.A. Lotufo, G. Araujo
Relatério Técnico IC-00-12

Julho de 2000

The Image Foresting Transformation

Alexandre X. Falcao? Roberto de A. Lotufo! Guido Araujo?

Abstract

In this paper, we introduce an image processing operator called Image Foresting
Transformation (IFT). The image foresting transformation maps an input image into
a graph, computes a shortest-path forest in this graph, and outputs an annotated image,
which is basically an image and its associated forest. We describe the application of
IFT to region growing, edge detection, Euclidean distance transform, geodesic distance
computation, and watershed transformation. All the operators are efficiently com-
puted using the same I F'T" algorithm based on the same set of parameters by changing
only their meaning and values. We also present a new interactive image segmentation
paradigm based on the region growing operator and discuss other applications of the
IFT for boundary-based object definition and shape-based interpolation.

1 Introduction

The use of graph in computer vision and image processing has been investigated for many
years now. Its motivation stems from a solid theory with many efficient algorithms. As a
consequence, various graph-based approaches have been proposed for image analysis [16],
image coding [15], image registration [9], data clustering [25], border detection [23], object
recognition [21], image retrieval [17], distance transform computation [20], etc. In most
applications, either an image is thought as a graph or a graph is defined to describe the
relationship among image objects. In this paper, we propose a graph-based framework
suitable for both approaches.

We claim that a few graph-based formulations can be used to design many image pro-
cessing operators. For example, most of the aforementioned applications can be efficiently
handled using an unique optimum graph-search operator under different formulations. To
prove that, we introduce the Image Foresting Transformation (IFT). The image foresting
transformation maps an input image into a graph, computes a shortest-path forest in this
graph, and outputs an annotated image, which is basically an image and its associated for-
est. Figure 1 shows a generic scheme of an image processing operator based on the IFT.

*Institute of Computing, University of Campinas, Campinas - SP, Research supported in part by CNPq,
grant #300698/98-4, and by FAPESP, grant #97/13306-6

fFaculty of Electrical Engineering and Computing, University of Campinas, Campinas - SP, Research
supported in part by FAPESP, grant #97/13306-6

HInstitute of Computing, University of Campinas, Campinas - SP, Research supported in part by CNPq,
grant #300156/97-9

2 A.X. Falcao, R.A. Lotufo, G. Araujo

The central idea is that most part of the problem is efficiently solved as a shortest-path
forest problem, so the image processing operation itself becomes a simple task applied to
the annotated image. This process works as follows.

Generically, we can think of an image as a weighted and oriented graph, where the pixels
are the nodes of the graph and each ordered pair of adjacent pixels defines an arc. Different
image processing operators may require different graph models. That is, different weight
assignments and different adjacency relations. Alternatively, one can read image objects in
place of pixels, but we will adopt a pixelwise description of the IFT in this paper. The
weight assigned to each arc in the graph is a non-negative value computed based on local
image properties. To compute a shortest-path forest in this graph, a set of roots (i.e. pixels)
is selected together with a path-function, that defines a non-negative value between a root
and a pixel at the end of a shortest-path from the root. From each root, simultaneously,
we want to grow a shortest-path tree by assigning each pixel to the tree where its path-
function value is minimum. To distinguish among trees, a label is assigned to each root and
propagated to the rest of the nodes in its tree. Alternatively, rooted trees that belong to
the same class can be grouped with the same label. At the end, each tree is a connected
component within the image and the shortest-path forest is an optimum image partition.
Finally, we create an annotated image by adding three new information for each pixel: a
label that identifies its connected component within the image, its parent in the forest that
leads the pixel to its correspondent root, and a path-function value that represents some
global measurement for the underlying problem. At least one of these information should
be relevant to complete the image processing operation.

This formulation has many advantages:

1. The I'FT is a powerful tool to exploit local and global image properties and to design
image processing operators;

2. It depends on the same shortest-path forest algorithm based on the same set of pa-
rameters. All we have to do is to change value and meaning of these parameters;

3. It can be computed in real time in most situations. This makes it viable to design
user-assisted image processing operators;

4. One can build classes of a given operator by creating different annotated images;
5. IFT-based operators can be cascaded to build new operators;

We describe the TFT for region growing, edge detection, and distance transform in
Section 2. The region growing operator allows simultaneous multiple object definition. It
alone constitutes a new paradigm for interactive image segmentation. Different implemen-
tations of the edge detection operator have already been used in the past for interactive
segmentation [8, 6, 7]. In fact, we are extending the main ideas reported in [8] to a general
graph-based image processing operator. The distance transform operator allows fast and
exact computation of the Euclidean distance transform.

Clearly, image segmentation is one of the main applications of the image foresting trans-
formation. We could present many others [F'T-based object definition operators in a single

Image Foresting Transform 3

paper, and point out that there are repeated evidences in the literature as to how object
information improves image filtering [10], interpolation [18], registration [14], etc. However,
the aim of this paper is to show that I F'T is more than an image segmentation operator. It
can be used to compute other types of image content, such as distance transforms, geodesic
distances and other image/object features.

We present a shortest-path forest algorithm to compute the I FT" in Section 3. Since our
definition of path-function differs from the traditional sum of arc weights on the path, we
present some theoretical results that prove the optimality of I F'T" in Section 4. We discuss in
Section 5 the use of I F'T for interactive image segmentation under both approaches, region-
based and boundary-based, shape-based interpolation [18], watershed transformation [2],
and geodesic distance computation [12]. Finally, we state our conclusions and discuss our
on going research on I FT in Section 6.

2 The Image Foresting Transformation

In this section we define terms and concepts that are used in the rest of the work.

—

Definition 1 An n-dimensional m-band digital image I is a pair (I, f) consisting of a finite
n-dimensional array I of pizels and a director function f(p), that assigns to each pizel p in
I an m-dimensional scale-vector.

We call I an nDmB image, or simply an image. The scale-vector f_' in I represents any
finite number of image properties. For example, in a colored image, f (p) can be defined as
a 6-tuple where the entries are the values of red, green, blue, and their respective gradient
magnitudes at pixel p.

Definition 2 Let the coordinates at the center of a pizel be an n-tuple of integers in Z™.
We define an adjacency relation p in Z"™ by considering all pairs of pizels (p,q) € I x I
satisfying d(p,q) < R, where d is the Euclidean distance between p and q, and R is the
adjacency radius. In other words, an adjacency relation p accounts for the p closest pizels
topin Z™.

Figure 2 illustrates three types of adjacency relations for a 2-dimensional image. In
Figures 2a and 2b, the adjacency relation accounts for the four (R = 1) and eight (R = v/2)
closest neighbors of a pixel, respectively. The adjacency relation showed in Figure 2c is less
common. It takes into account the twenty closest neighbors (R = v/5) of a pixel. The
adjacency relation is then a way of defining local connectivity between pairs of pixels. In
some applications, however, we may want to make all pixels in the image adjacent to each
other.

Definition 3 An annotated image is an image together with an associated shortest-path
forest.

Definition 4 The Image Foresting Transformation (IFT) is a sequence of two consecutive
mappings I - G — I, where G is a graph defined in I and I, is an annotated image of 1.

4 A.X. Falcao, R.A. Lotufo, G. Araujo

—

Generically, we think of I = (I, f) as a weighted and oriented graph G, where the pixels
in I are the nodes of the graph and each ordered pair (p, ¢q) of p-adjacent pixels in G defines
an arc. Figure 3a shows a 2-dimensional example of G for p = 4.

Definition 5 We define w(p,q) a weight function that assigns a non-negative weight to
each arc (p,q) in G, corresponding to the penalty to go from p to q.

Given a family R = {R;1, Ra,...,Ri} of K root sets (i.e. pixel sets) in G, we assign
the same label ¢ to all roots in R; € R, ¢ =1,2,...,K. From each pixel r € R;, we want to
grow a tree rooted at r by propagating label i to all its nodes, such that each node in G is
assigned to only one tree. This process is based on the concept of path-function pf defined
as follows.

Definition 6 Let < pi,p2,...,p; > be the path from a root p; to a pizel p; in G. A
function pf(p1,p;) is a path-function if its domain is the set of ordered nodes on the path and
pf(p1,p) = F(w(p1,p2),---,wW(pi_1,p)), for some non-negative non-decreasing function
F.

If pf is defined as:
-1

> w(pipit1), (1)
i=1
the process described above outputs a shortest-path forest as proposed by Dial [5]. However,
the restriction of defining pf as a non-negative non-decreasing function is sufficient to output
a shortest-path forest in G and we will prove that in Section 4. For the time being, we
should just keep in mind that there are applications which require other types of non-
negative non-decreasing path-functions.

The path-function pf(r,p) represents a penalty to go from a root r to a node p in G.
Our aim is to assign p to the tree rooted at r, where pf(r,p) is minimum. At the end, all
nodes in the forest whose trees are rooted at the nodes in R; are labeled . We will have K
shortest-path forests in G, or simply a shortest-path forest. Figure 3b shows a 2-dimensional
example of a shortest-path forest in the graph shown in Figure 3a for pf as in Equation 1
and R = {{a},{f,g}}. The label of each root in R is propagated to each node in G. The
label and the path-function value for each node are shown in Figure 3b.

Let K, be the total number of roots r; € R. Note that, each shortest-path tree T},
rooted at r;, 1 = 1,2,..., K, is a connected component in I and the IFT computes an
optimum partition of I with K, connected components where:

K,
> > pf(ri,p) (2)

i=1 VpeT;

is minimum. In Figure 3b, for example, this process results two connected components
with label 2 and another component with label 1 forming an image partition with minimum
penalty 21 according to Equation 2.

Image Foresting Transform)

At the end, an nD(m + 3)B annotated image In = (I, f,) is created, where I = I,
and f_; is an extension of the director function f that includes three new information for
each pixel: a label that indicates its connected component within the image, the parent of
the pixel in the forest that leads the pixel to its corresponding root, and a path-function
value that represents some global measurement for the underlying problem (see Figure 3b).
These three new image properties describe the resulting forest and then the I FT can be
written as:

Ia = IFT(IapawaRa pf) (3)

At this point one can conclude that, to transform an image into a graph, we just need to
think of pixels as nodes and use an adjacency relation to define the arcs. However, different
adjacency relations will lead us to different graphs that represent the same image. Thus,
what graph representation should we use for a given problem? The parameters of the [FT
are always the same, but their meaning and value change for different problems. Then, how
should we choose them? Finally, how can we use this formulation to solve image processing
problems?

Since the answers to the questions above depend on the underlying image processing
operation, we will address them in the next sections by using three examples: region growing,
edge detection, and Euclidean distance transform. In each example, we will be interested in
one of the three new information created by the I F'T. For region growing, we are interested
in the labels assigned to each pixel. For edge detection, we are interested in paths between
pixels, which are obtained based on the information about the parent of each pixel in the
shortest-path forest. For distance transform, we are interested in the path-function value
assigned to each pixel. We expect the reader will be able to extend the I FT concepts to
other examples afterwards.

2.1 Region growing

Images keep local properties between adjacent pixels that can be measured by computers
with no problem. Unfortunately, the image content from the view point of the users is global.
Users understand an image as a collection of regions where the similarity among pixels within
the same region is high, according to some set of image properties (e.g. brightness, color,
texture), and low between different regions. They also understand that groups of regions
form objects in the image. Such global properties are much more difficult to be measured
by computers without human help. This is probably the main motivation for interactive
image segmentation.

In this section, we show how to exploit local and global similarities between pairs of
pixels to find high similarity regions in the image. In section 5, we show how to use this
result to build region-based object definition operators.

2.1.1 From image to graph

The goal of this section is to define arguments p and w from Equation 3, such that the
graph constructed by the I F'T operator can be used to solve the region growing problem.

6 A.X. Falcao, R.A. Lotufo, G. Araujo

—

For region growing, we think of an image I = (I, f) as a weighted and non-oriented graph
G, where the pixels in I are the nodes of the graph and each pair (p, q) of p-adjacent pixels
defines a non-oriented arc in G. We choose w(p, q) as a non-negative function of f(p) and
f (¢), which is proportional to the degree of dissimilarity between p and g. Three examples

of w(p, q) are:

— —

|f(p) = f(@)], (4)
kiexp(—(g(p,q) — k2)*/ks), (5)

S 1Folp) - Falg)l/m. ©)
r=1

where g(p, ¢) = maxy, | fz(t) + 2fz(p) + fz(v) — fz(u) — 2f2(q) — fz(w)|/4 is computed based
on a local neighborhood of (p,q) (see Figure 4), f, is the z-th component of the m-
dimensional scale-vector f: and ki, ks, and k3 are positive numbers.

Note that, one can think in various other functions, they will output different weighted
graphs, and consequently, they provide different I FT results. We have not investigated
yet the variety of combinations involving different image properties and weight functions
for region growing. However, the weight function described in Equation 5 usually leads
to better results than linear functions. It is less sensitive to noise and emphasizes better
region boundaries with values of g close to ko (i.e. assigns higher weights to arcs (p,q)
whose g(p, q) is close to k2).

The adjacency relation p seems to have less influence on the result of region growing
operations, but it is very important to guarantee correct results in other situations. An
example is the correct computation of the Euclidean distance transform, as we will see in
Section 3.

2.1.2 From graph to annotated image

In the previous section we determined arguments p and w that are used by I FT to reduce
region growing to an equivalent shortest-path forest problem. In this section we define
the other two arguments in Equation 3, i.e. R and pf, which are then used to solve the
equivalent shortest-path forest problem.

Figure 5a shows a gray-scale display of a 2D3B image whose f_'is composed by the main
components, red, green, and blue. Suppose we want to detect the big dark pepper on the
top of this figure. Then we should have at least a root inside it (with label 1, for example)
and another root outside (with label 2). The roots selected inside it are represented by white
lines in Figure ba, while black lines represent the roots selected outside. Roots selection
can be manual or automatic, depending on our knowledge about the problem. In this case,
we are using manual selection.

For region growing, we define the path-function pf as

vie{lrg?'.)il_l}{w(piap’i-l—l)}, (7)

since the result of IF'T, when using this definition for pf, matches the user expectation

Image Foresting Transform 7

much better than if Equation 1 is used. Nevertheless, there may be other functions better
than this.

Figures 5b and ¢ show the weight function at the horizontal and vertical arcs, using
p = 4, and w as in Equation 5. Here, brightness is inversely proportional to the weight
assigned to each arc. Figure 5d shows the result of extracting the big dark pepper by
region growing using pf as in Equation 7. In this case, we are assuming the values of ¢ (in
Equation 5) along the pepper’s boundary are close to ko = 100.

Alternatively, we could have set lower weights to arcs whose pixels have average color
close to red, and higher weights elsewhere. Since the big dark pepper in Figure 5a is red in
the original image.

In region growing, we say that a pixel is assigned to its most similar root in R, taking
into account all possible paths from all roots in R. That is, when we decide that a pixel
p belongs to the same tree rooted at r, our decision is taking into account not only the
local dissimilarity between p-adjacent pixels, but also the dissimilarity between each pair of
p-adjacent pixels in the shortest-path from r to p. Therefore, the path-function value is a
global dissimilarity measure in the image.

2.2 Edge detection

Given a pair of pixels (p,q) on the boundary of an object in I, we can define an edge as a
“connected” and “oriented” curve from p to ¢ made up of p-adjacent pixels on the boundary
of the object.

2.2.1 From image to graph

As before, in this section we specify the I FT arguments p and w, that are required to build
the graph formulation for the edge detection problem. For edge detection, we think of an
image I = (I, f) as a weighted and oriented graph G, where the pixels in I are the nodes
of the graph and each pair (p,q) of p-adjacent pixels defines an oriented arc, from p to g,
in G. We choose w(p, q) as a non-negative function of f(p) and f(q), which represents the
cost of considering (p, q) as an edge element.

As an example, the weight function w(p, ¢) can be defined as

ki (1 — exp(~(9(p, q) — k2)*/k3)), (8)

where ¢(p,q) = maxy, (fu(t) + fo(u) — fo(v) — fz(w))/2 is computed using the neighbor-
hood of (p, ¢) shown in Figure 6, f, is the z-th component of the m-dimensional scale-vector
f: k1 and ks are positive numbers, and ks is a real number. If we wish to detect edge el-
ements such that the gradient vector ¢(p,q) points to the right side of (p,¢q), as shown in
Figure 6, we should choose k3 a negative number. That is, we assign lower weights to edge
elements whose values of g are close to k3. This will favor to detect edges with clockwise
orientation around the object of interest [8].

Analogous to region growing, there are many ways of defining weight functions that
lead to different IF'T results. The work reported in [8] provides several examples of image
properties, weight functions, and training to detect 2-dimensional closed, connected and

8 A.X. Falcao, R.A. Lotufo, G. Araujo

oriented boundaries in medical images. These techniques, together with the general frame-
work enabled by the IFT operator, could be a start point to further investigate weight
functions amenable to region growing and edge detection.

2.2.2 From graph to annotated image

To detect an edge between two specified pixels p and ¢ on the boundary of an object, we
select p as a root, the path-function pf as in Equation 1, and compute a forest in G of one
tree rooted at p. Note that in this case R = {{p}}. At the end, the path from p to ¢ will
be the shortest-path and its path-function value will represent the minimum cost value of
considering this path an edge. Although both path-functions, suggested in Equations 1 and
7, result an optimum edge between p and ¢, Equation 1 gives the best practical solution for
edge detection.

Figure 7a shows a 2D1B image of a wrist obtained by magnetic resonance (MR). Since
it is a gray-level image, we can define f; as brightness in Equation 8. Figures 7b and c
show the average between the weight values assigned to up- and right-oriented arcs, and
to down- and left-oriented arcs, respectively, for p = 4 and w as in Equation 8. Here,
brightness is directly proportional to weight. Figure 7d shows a clockwise oriented edge
computed, using pf(r,p) as in Equation 1, where r is a root and p a pixel selected on the
boundary of the wrist. Among all possible paths within the image, there are two promising
edges between the two points r and p selected on the wrist’s boundary. The I FT-based
edge detection takes the longer one, because it is a clockwise oriented edge. Orientation
is a powerful information that should be considered during the design of boundary-based
object definition operators.

Coming back to Figure 5a, we could also use Equation 8 to detect clockwise oriented
edges on the boundary of the long bright pepper on the left side of this figure. But the
same is not valid for the big dark pepper on the top of Figure 5a, because the direction of §
changes along its boundary. Unless, we assign lower weights to edge elements whose color
on the right side is close to red, and higher weights elsewhere. In conclusion, we better
define G as a weighted and non-oriented graph for edge detection, if it is impossible to
model the boundary orientation information.

2.3 Distance transform

Distance transform is a powerful transformation that assigns to object pixels in a binary
image their distance to the background pixels. Figure 8a shows the Euclidean distance
transform on a binary image, where the values assigned to each pixel are the squared
distance values. Distance transform has several applications, such as skeletons, dilation,
erosion, classification, interpolation, etc. However, despite the Euclidean distance be the
most natural metric for those applications, the difficulty to implement efficient algorithms
has conducted researches to other metrics, such as Chanfer, chessboard, and city-block.

The IFT can be used to compute the distance transform with different metrics. We
have chosen the Euclidean distance transform in this section.

Image Foresting Transform 9

2.3.1 From image to graph

For distance transform, we think of a binary image as a weighted and non-oriented graph
G, where the pixels are the nodes of the graph and each pair (p,q) of p-adjacent pixels
defines a non-oriented arc in G. As we will see in Section 3, the correctness of our Euclidean
distance operator requires a special care in choosing p. For the time being, let’s just assume
p equal to 8 in the 2-dimensional case. The weight function w(p, q) is defined as:

|d(r,p) = d(r,9)], (9)

where r is a background pixel and d is the squared Euclidean distance value. Since the weight
function depends on a background pixel, the weight assigned to (p,q) may be different for
different background pixels. Figure 8b illustrates this situation for two background pixels
r1 and 9. In this case, w(p,q) = 3 based on r; and w(p,q) = 1 based on ry. Then which
one should we use? The answer to this question is underway.

2.3.2 From graph to annotated image

We define the roots in R as the first layer of background pixels (see Figure 8a), such that
K is the number of pixels in this layer and each R;, i = 1,2,..., K, has one of these
pixels. Note that, only one of these roots will be the background pixel taken into account
to compute w(p, ¢) in Equation 9. By considering the possible displacement vectors from p
to g, for p = 8, the weight function w(p, q) is represented as one of three vectors of positive
increments (dz(p, q), dy(p, q)): (0,1), (1,0), or (1,1) (see Figure 9a). Thus the path-function
pf is defined as:

-1 -1
(> da(pi,piv1))? + (O dy(pi, pit1))* (10)
i-1 i—1

Therefore, all we have to do is to accumulate the displacements dz and dy in the path
from a root p; to a node p; in order to evaluate at any time the path-function value at
p; using Equation 10. Figure 9b shows two paths from a root p; to a node py with the
accumulated displacements to each node. Note that, the path < pi,po,ps,ps > where
pf(p1,p4) = 10 is the one with the correct Euclidean distance. This is not the unique
path, but the correct Euclidean distance is always obtained by finding a path where pf is
minimum, and this is what the I F'T" does.

3 Algorithm

IFT algorithm

Input: An nDmB image I; an adjacency relation p in Z"; a non-negative weight function
w between p-adjacent pixels; a family R of labeled root sets; a non-negative non-decreasing
path-function pf.

Output: An nD(m + 3)B annotated image I,.

10 A.X. Falcao, R.A. Lotufo, G. Araujo

Auxiliary Data Structures: An nD array [b with the current label k of each pixel; an nD
array pf with the current path-function value of each pixel; an nD array d indicating for
each pixel, its current parent in the forest; a priority queue () of pixels; a list L of pixels
which have already been processed.

begin

1. set pf(p) to 0o, Ib(p) to 0, and d(p) to nil for all pixels p € I;

2. set pf(r) to 0 and Ib(r) to its corresponding label for all labeled roots r € R, and
put 7 in Q;

3. while Q is not empty do

a. remove a pixel p from @ such that pf(p) = miny,cq{pf(p')}, and put p in L;
b. for each pixel g, such that (p,q) are p-adjacent pixels and q & L do

(i) compute tmp based on pf(p) and w(p, q), representing the path-function
value to reach ¢ passing through p;

(ii) if tmp < pf(q) then
a. set pf(q) to tmp, Ib(q) to Ib(p), d(q) to p;
b. if ¢ € Q then insert q in @ else update position of g in Q;

endif;

endfor;
endwhile;

end

At the end, the three new bands in the annotated image I, contains the values of the
nD arrays b, pf, and d, that represent the resulting forest.

There are some important observations about the implementation of the I F'T algorithm.

Clearly, the bottleneck of the [FT algorithm is in maintaining the priority queue Q.
Usually, we implement () as a binary heap which should be sufficient to guarantee the
efficiency of the I F'T" in most applications. However, one can also take advantage of other
clever solutions that exist in the literature of network flows [1]. For example, in situations
we have control over the maximum weight assigned to an arc in G, () can be maintained in
linear time if we define it as in the Dial’s implementation of the Dijkstra’s algorithm. We
can adopt this implementation of @) for all operators described in this paper (see [7]).

Since the minimum path-function value at a pixel is not unique, it is desirable to im-
plement the priority queue) with a first in first out restriction for pixels with the same
path-function value. For region growing, for example, if we have roots within a region of
constant path-function value, a pixel will be assigned to the closest root in Z".

An observation must be made as regarding to the correctness of the Euclidean distance
transform using the I FT algorithm. For Euclidean distance transform, the success of the
IFT can ounly be guaranteed if all roots in R have access to all pixels in I. Suppose, for

Image Foresting Transform 11

example, p = 4, a pixel p and its 4-adjacent pixels p;, ¢ = 1,2,3,4, and three roots r;,
J = 1,2,3, as shown in Figure 10. The roots r;, 7 = 1,2,3 are equidistant to p;, i = 1,2.
That is, pf(r;,p;) =41, i = 1,2, j = 1,2,3, by Equation 10. Then, suppose p; is reached
by r3 and po is reached by rg before r; reaches them. According to line 3.b.(ii) of our
algorithm, the path-function values in p; and po are not updated by the time r; reaches
them. Therefore, p will be reached by either ry or r3 with path-function value equal to 52.
However, rq is its closest root with path-function value equal to 50. This does not happen
for p = 8, but it is possible to find out other cases where the exact Euclidean distance
transform does not work for p = 8 [4]. In our method, we just have to set the value of
p = 8, as suggested by [4], as a function of the maximum Euclidean distance in the image
and the IFT will output the exact Euclidean distance transform.

Note that, the I FT algorithm computes Euclidean distance values for pixels inside and
outside the object, simultaneously. This is an advantage in some applications as we will see
in Section 5. Alternatively, the Euclidean distance computation can be restricted into the
object by inserting background pixels in the list L beforehand.

4 The optimality of the IFT

For the edge detection operator, we have defined R with a single set Ry with a single root r
and pf as in Equation 1. In this case, the I F'T" algorithm becomes the well known Dijkstra’s
algorithm [3] and the output forest contains a single shortest-path tree. By defining multiple
roots in R and the same path-function as in Equation 1, the I F'T algorithm becomes the
Dial’s algorithm [5], which results a shortest-path forest. In this paper, we have extended the
underlying concepts of the Dial’s algorithm to claim that a shortest-path forest is guaranteed
for any non-negative non-decreasing path-function pf. This is proved as follows.

Lemma 1 Any non-negative non-decreasing path-function pf in the IFT algorithm can be
transformed into a Dijkstra’s shortest-path function as defined in Equation 1.

Proof 1 Letp # r be a pizel, r a root, and path-function pf(r,p) the shortest-path estimate
for path r ~» p. In the IFT algorithm, the only place the shortest-path estimate is updated
is on line 3.b.(i1). This operation aims at relaxing constraint pf(r,pir1) < pf(r,p;) +
w (pi, pit1), for some w'(p;,pi+1), by assigning a smaller value tmp to pf(r,pi+1). Given
that this constraint is an invariant for the whole execution of the algorithm, we have at any
time after the start of execution pf(r,p;+1) = pf(r,p;) + w'(pi,pi+1), for some node p;i1
adjacent to p;. If pf(r,p;) is a non-negative non-decreasing path-function, then pf(r, pi+1)—
pf(r,p;) > 0 is an invariant and thus w'(p;,pi+1) > 0 for all arcs in G.

Theorem 1 If pf is defined as a non-negative non-decreasing path function, then the IFT
algorithm generates a shortest-path forest where each tree has a root in R.

Proof 2 First, we can create an artificial node a in G with one arc to each root r € R
and assign weight w(a,r) = 0. We consider a as the only root in the IFT algorithm.
By Lemma 1, any non-negative non-decreasing path-function can be transformed into a

12 A.X. Falcao, R.A. Lotufo, G. Araujo

Digkstra’s shortest-path function in the IFT algorithm. Then, the IFT algorithm run from
a results the a shortest-path tree as in Dijkstra’s algorithm. If we remove a from this tree,
the result is a shortest-path forest where each tree has a root in R.

Note that, by Theorem 1, the region growing and the Euclidean distance transform
operators compute an optimum partition of I (i.e. a shortest-path forest in G) according
to Equation 2, where the path-function pf is given by Equations 7 and 10, respectively.

5 Results

In this section, we discuss the use of the I FT for interactive image segmentation, shape-
based interpolation, watershed transformation, and geodesic distance computation.

5.1 Interactive image segmentation

There are many segmentation tasks that require extensive user’s help. In video composition,
for example, a skilled user is often required to manually extract objects from an arbitrary
background of a video sequence and include them in another sequence. This is an inaccurate
and imprecise task that usually takes half of the total time for video production. In medical
imaging, one can find many other examples of how laborious can be user assistance in image
segmentation.

Image segmentation consists of two tightly coupled tasks - recognition and delineation.
Recognition is the process of identifying roughly the whereabouts of a particular object
in the image and delineation is the process of specifying the precise spatial extent of this
object. While computer algorithms are very effective in object delineation, the absence
of relevant global object-related knowledge is the main reason for their failure in object
recognition. On the other hand, a simple user assistance in object recognition is often
sufficient to complement this deficiency and to complete the segmentation process.

In the next sections, we show two ways of exploiting the superior abilities of human
operators (compared to computer algorithms) in object recognition and the superior abilities
of computer algorithms (compared to human operators) in object delineation to develop
efficient interactive image segmentation methods.

5.1.1 Boundary-based object definition

In the past, we have presented four user-steered image segmentation paradigms for
boundary-based object definition: live wire, live lane, 3D live wire, and live-wire-on-the-
fly [8, 6, 7]. They represent different ways of using the I F'T-based edge detection operator,
and so different implementations. Their efficiency has been proven in several medical appli-
cations [24, 11, 22, 19]. We have also used the live-wire-on-the-fly segmentation paradigm
in digital video processing applications. In this section, this segmentation paradigm is
described under the IFT framework.

In live-wire-on-the-fly [7], a 2-dimensional boundary is a closed, connected, and oriented
contour made up of oriented pixel edges. In fact, the graph G is a little different from what

Image Foresting Transform 13

we have described here. The pixel vertices are the nodes of G and each oriented pixel edge
defines an arc in G. Since this is an implementation detail, we describe the method using
the standard notation of the I F'T" for edge detection. Therefore, we say that a 2-dimensional
boundary is a closed, connected, and oriented contour made up of edges, where each edge
is a shortest-path in G made up of oriented arcs between pairs of p-adjacent pixels (p = 4
or 8, where p = 8 output smoother boundaries).

To define a 2-dimensional object, the user first selects an initial point on the boundary
of the object. For any subsequent point indicated by the cursor, an optimum edge from
the initial point to the current point is found via IFT and displayed in real time (see
Figure 11a). The user thus has a live wire on hand which is moved by moving the cursor. If
the cursor goes close to the boundary, the live wire snaps onto the boundary (Figure 11b).
At this point, if the live wire describes the object edge appropriately, the user deposits the
cursor which now becomes the new starting point (Figure 11c) and the process continues
this way until a close operation is requested by the user (Figure 11d).

Note that, object recognition is up to the user who selects points on the object’s bound-
ary and/or places the cursor close to the boundary while object delineation is computed by
IFT.

5.1.2 Region-based object definition

In this section, we present a new interactive image segmentation paradigm for region-based
object definition. This method represents one way of using the I FT-based region growing
operator.

To define an object, the user draws roots with the same label inside the object (white line
in Figure 12a) and roots with a different label in the background (black line in Figure 12a).
The I F'T propagates the labels splitting the image into two parts. The first part is composed
by pixels which are more connected to the white roots (object) than to the black ones
(background), and the other way around for the second part. The user verifies the result
of this optimum image partitioning as shown in Figure 12b. By adding (or deleting) new
roots inside (or outside) the object, the user can improve the previous results toward the
complete object extraction (Figures 12c-f).

Again, object recognition is done by the user who draws roots inside and outside the
object while object delineation is computed by I FT'.

Note that, one can choose more than two labels to define multiple objects simultaneously.
Moreover, the computation time of the IFT algorithm is about the same for different
number of roots.

5.2 Shape-based interpolation

Three dimensional data created by tomographic medical imaging devices are usually pre-
sented as a sequence of 2D 1B gray-level images (i.e. slices). The distance between the slices
is typically greater than the distance between the pixels within the slices. An interpola-
tion technique is often applied to convert the data into an isotropic volume with the same
resolution in all three dimensions. With this aim, Raya and Udupa [18] have introduced

14 A.X. Falcao, R.A. Lotufo, G. Araujo

the shape-based interpolation which can be applied to segmented binary images. The main
advantage of this approach is in situations where the user has to segment the object inter-
actively in a slice-by-slice fashion. Interpolation before segmentation would make the user’s
task even more difficult.

In shape-based interpolation, each binary slice is converted into a gray-level image,
in which the gray value approximates the distance of the pixel to the nearest point on the
boundary of the object. Positive values are assigned to pixels within the object and negative
values to pixels outside. The intermediate binary slices are estimated by interpolating the
distances and thresholding the result at zero.

Distance transform is often used to convert each binary slice into a gray-level image. The
traditional approach is to invert the binary slices and combine both distance transforms for
object and background. The usual metric is Chanfer’s distance. A better approach certainly
is to compute the Euclidean distance values inside and outside the object at same time. This
is what the I F'T algorithm, as presented in Section 3, does. The values inside correspond
to the Euclidean distance transform for the object and the values outside can be shifted to
correspond the values of the Euclidean distance for the background.

Note that, shape-based interpolation is one example where two IFT" operators, one
for segmentation and the other for distance transform, are cascaded to build an image
processing operation.

5.3 Watershed transformation

The watershed transformation [2] is a paradigm in morphological image segmentation. It
is usually computed on gradient images from selected markers. When the markers are the
regional minima of the gradient image, an over-segmentation problem appears due to the
large number of markers. To overcome this problem, a reduced number of markers should be
selected inside and outside the object. In situations where the markers are not the regional
minima, the homotopy of the gradient image should be changed to impose the selected
markers as the only regional minima. In [13], we showed that the watershed transformation
is a particular case of the IFT, and in the IFT framework, there is no need to change
the homotopy of the gradient image for arbitrary markers. In this section, we present this
result by describing the watershed transformation in the I FT' framework.

To compute the watershed transform, we think of an image as a weighted and oriented
graph, where the pixels are the nodes of the graph and each pair of p-adjacent pixels defines
an oriented arc. We choose w(p, ¢) such that the weight assigned to each arc (p,q) is the
morphological gradient g(q) computed at g. That is, all incoming arcs to a pixel g have
the same weight value g(q) (see Figure 13). Now, we define the path-function pf as in
Equation 7. In this case, the I FT is equivalent to the the watershed transform with the
change of homotopy [13]. If the markers (i.e. labeled roots) are selected at the regional
minima of the gradient image, the arc with the greatest weight along the shortest-path (as
defined by Equation 7) will always be the last arc. In this case, the position of a pixel will
never be updated in the priority queue of the IFT algorithm (see Section 3), and then, it
can be reduced to the watershed algorithm using an ordered queue.

Image Foresting Transform 15

5.4 Geodesic distance

The geodesic distance transform has played an important role in the design of morphological
operators [12]. Examples of applications are the geodesic skeleton by influence zones and
interpolation from contour lines. In this section, we describe the geodesic distance transform
under the I FT framework.

Figure 14 shows two examples in a binary image where we wish to compute the geodesic
distance between two pixels A and B. For that, we think of this image as an non-oriented
graph G, where the pixels are the nodes of the graph and each pair (p,q) of 8-adjacent
pixels defines a non-oriented arc in G. We assign w(p,q) = 1 to all arcs, choose A as the
only root in R = {{A}}, and pf as in Equation 1. By inserting background pixels in the
list L beforehand (see Section 3), a geodesic path from A to B is computed via the IFT
algorithm (see solid line in Figure 14). There are multiple paths, but all of them with the
same geodesic distance represented by the final path-function value at B.

Note that, the geodesic path is being defined here based on the chessboard metric. Its
computation based on the IFT is very efficient. Figure 14 also shows the geodesic path
from A to B (dashed line) based on the Euclidean distance. In this case, the appropriate
I FT-based formulation has not be found yet.

6 Conclusions

We have introduced the image foresting transformation as a general approach to the de-
sign of image processing operators. There are some important characteristics of IFT' that
support this claim: (a) It is general enough to enable efficient solutions to a broad class
of applications; (b) It hides the implementation details of the underlying graph algorithms
into a single function, leaving the designer free to concentrate on the function arguments
that are specific to his(her) problem; (c) All image operators based on IFT can benefit
from the most efficient graph-search algorithm available today, and any changes in such
algorithm do not affect the other parts of the application that are specific to the problem.

The central idea of I F'T' is to translate an image processing problem into a shortest-path
forest problem. We have described the I FT for region growing, edge detection, Fuclidean
distance transform, geodesic distance computation, and watershed transformation. All the
operators are efficiently computed using the same I FT algorithm based on the same set of
parameters by changing only their meaning and values. We have presented a new interactive
image segmentation paradigm based on the region growing operator and an efficient solution
to compute the exact Euclidean distance transform.

Currently, we are pursuing the development of interactive image segmentation algo-
rithms based on [FT and investigating the iterative use of I FT for multiscale image seg-
mentation problems. Our goal is to design efficient indexing techniques for content-based
image retrieval.

16

A.X. Falcao, R.A. Lotufo, G. Araujo

References

[1]

2]

3]

[10]

[11]

[12]

[13]

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed
transformation. Mathematical Morphology in Image Processing, pages 433—481, 1993.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, New
York, NY, 1991.

O. Cuisenaire and B. Macq. Fast Euclidean distance transformation by propagation
using multiple neighborhoods. Computer Vision and Image Understanding, 76(2):163—~
172, Nov 1999.

R.B. Dial. Shortest-path forest with topological ordering. Communications of the
ACM, 12(11):632-633, Nov 1969.

A.X. Falcao and J.K. Udupa. Segmentation of 3D objects using live-wire. In Medical
Imaging 1997, volume 3034, pages 228-239, Newport Beach, CA, Feb 1997. SPIE.

A X. Falcao, J.K. Udupa, and F.K. Miyazawa. An ultra-fast user-steered image seg-
mentation paradigm: Live-wire-on-the-fly. In Medical Imaging 1997, volume 3661,
pages 184-191, San Diego, CA, Feb 1999. SPIE.

A X. Falcao, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, and R.A. Lotufo.
User-steered image segmentation paradigms: Live-wire and live-lane. Graphical Models
and Image Processing, 60(4):233-260, Jul 1998.

K. Fukunaga, H. Murata, T. Asano, and M. [zumi. Image registration using an image
graph and its application to map matching. IEE Proceedings-E Computers and Digital
Techniques, 138(2):79-84, Mar 1991.

G. Gerig, O. Kubler, R. Kikinis, and F. Jolesz. Nonlinear anisotropic filtering of MRI
data. IEEE Transactions on Medical Imaging, 11:221-232, 1992.

B.E. Hirsch, J.K. Udupa, and S. Samarasekera. A new method of studying joint
kinematics from 3D reconstructions of MRI data. Journal of the American Podiatric
Medical Association, 86(1):4-15, 1996.

C. Lantujoul and F. Maisonnneuve. Geodesic methods in image analysis. Pattern
Recognition, 17(2):177-187, 1984.

R.A. Lotufo and A.X. Falcdo. The ordered queue and the optimality of the watershed
approaches. In International Symposium on Mathematical Morphology’ 2000, Palo
Alto, CA, Jun 2000. submitted.

Image Foresting Transform 17

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Maintz, P. van den Elsen, and M. Viergever. Comparison of edge-based and ridge-
based registration of CT and MR brain images. Medical Image Analysis, 1:151-161,
1996.

D.K. Mitrakos and A.G. Constantinides. Graph theoretic approach to composite source
model estimation for image coding. IEE Proceedings-F Computers and Digital Tech-
niques, 131(1):71-79, 1984.

0.J. Morris, M.D.J. Lee, and A.G. Constantinides. Graph theory for image analysis -
An approach based on the shortest spanning tree. IEE Proceedings-F Computers and
Digital Techniques, 133(2):146-152, Apr 1986.

K. Park, [.D. Yun, and S.U. Lee. Color image retrieval using hybrid graph representa-
tion. Image and Vision Computing, 17:465-474, 1999.

S. Raya and J.K. Udupa. Shape-based interpolation of multidimensional objects. IEEE
Transactions on Medical Imaging, 9:32-42, 1990.

R.C. Rhoad, J.J. Klimkiewicz, G.R. Williams, S.B. Kesmodel, J.K. Udupa, B. Knee-
land, and J.P. [annotti. A new in vivo technique for 3D shoulder kinematics analysis.
Skeletal Radiology, 27:92-97, 1998.

Y .M. Sharaiha and N. Christofides. A graph theoretical approach to distance transfor-
mations. Pattern Recognition Letters, 15:1035-1041, Oct 1994.

A. Shokoufandeh and S. Dickinson. Applications of bipartite matching to problems
in object recognition. In IEEE Workshop on Graph Algorithms and Computer Vision
at International Conference on Computer Vision (ICCV’99), Corfu, Greece, Sep 1999.
http://www.cs.cornell.edu/ICCV-graph-workshop/.

E. Stindel, J.K. Udupa, B.E. Hirsch, D. Odhner, and C. Couture. 3D MR image
analysis of the morphology of the rear foot: Application to classification of bones.
Computerized Medical Imaging and Graphics, 23:75-83, 1999.

D.R. Thedens, D.J. Skorton, and S.R. Fleagle. Methods of graph searching for border
detection in image sequences with applications to cardiac magnetic ressonance imaging.
IEEE Transactions on Medical Imaging, 14(1):42-55, Mar 1995.

J.K. Udupa, B.E. Hirsch, S. Samarasekera, H. Hillstrom, G. Bauer, and B. Kneeland.
Analysis of in vivo 3D internal kinematics of the joints of the foot. IEEE Transactions
on Biomedical Engineering, 45:1387-1396, 1998.

Z. Wu and R. Leahy. An optimal graph theoretical approach to data clustering - Theory
and its application to image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11):1101-1113, Nov 1993.

18 A.X. Falcao, R.A. Lotufo, G. Araujo

| —=| IFT |—= Operator —=1

Figure 1: A scheme of a generic image operator based on the image foresting transformation
(IFT).

S

€Y (b) (0)

Figure 2: Three examples of adjacency relations for 2-dimensional images. (a) p = 4, (b)
p =38, and (c) p = 20.

2 5 0 3

@® : ® 1 © @ -» D
5 8 5 0 g |0

4 4 3 3 0
O . @ @ 1 @
3 1 9 0 7 11
8 0 3 1

® - ™, @ @ o O

@ (b)

Figure 3: A 2-dimensional example. (a) The graph G for p = 4 and (b) a forest in G
created from the roots in R = {{a},{f,g}} using pf as in Equation 1.

Image Foresting Transform 19

Figure 4: A local neighborhood of two 4-adjacent pixels p and ¢ that we use to compute
w(p, q) based on Equation 5.

20 A.X. Falcao, R.A. Lotufo, G. Araujo

(d)

Figure 5: Region growing by IFT. (a) Gray-scale display of a 2D3B colored image. The
roots selected inside the big dark pepper on the top are represented by white lines, while
black lines represent the roots selected outside. (b) and (c¢) The weight function at the
horizontal and vertical arcs, respectively, by using p = 4, and w as in Equation 5. Here
brightness is inversely proportional to the weight assigned to each arc. (d) The result of
extracting the big dark pepper using pf as in Equation 7.

Image Foresting Transform 21

t u
P__| @
o]
Kl

Figure 6: A local neighborhood of two 4-adjacent pixels p and ¢ that we use to compute
w(p, q) in Equation 8, where g(p, ¢) points to the right side of (p, q).

Figure 7: (a) A 2D1B MR image of a wrist. (b) and (¢) The average between the weight
values assigned to up- and right-oriented arcs, and to down- and left-oriented arcs, respec-
tively, for p = 4 and w as in Equation 8. Here brightness is directly proportional to weight.
(d) A clockwise oriented edge computed using pf(r,p) as in Equation 1 where r is a root
and p a pixel both selected on the boundary of the wrist.

22 A.X. Falcao, R.A. Lotufo, G. Araujo

N r
| o 0 L _J__L_J__L_J__L_J__L_ 2
. 1 10,0,0,0,0,0, |,
L e T T T e I
I Y N TR L 0-2) (1,-2)
1 0f1.2,4,4:100, 1 |y
L e e R e e e e
01 0[11418 41100 1\
L _ - oL _L_a oL P q
'ol1!2!5'10/5/2! 1|0 | X 3
L L e e e e e e R
1 0 1 14 |8| 8|5|4| 1 OI
L e e o e I
I I I I I I I I
011455 21,1 1,
o ota4ns s 2t 110 I/ /@23
011120 4110 00 !
- J - | - J_ L -4 L _-J__L -4
1 0,0,0[2,12 1|0, | |
L e T T I e E
sL.s000050r o b/
I I I I I I I I I I
I I I I I I I I I I
(@ (b)

Figure 8: (a) The Euclidean distance transform on a binary image, where the values assigned
to each pixel are the squared distance values. (b) The weight assigned to an arc (p,q) may
be different for different background pixels.

3 (b)

Figure 9: (a) A vectorial representation for w(p,q) as one of three increment vectors
(dz(p,q),dy(p,q)): (0,1), (1,0), and (1,1). (b) Two paths from a root p; to a node ps
with the accumulated displacements to each node. Note that, the path < p1,po,p3,ps >
with pf(p1,p4) = 10 is the one with the correct Euclidean distance.

Image Foresting Transform

r

P

Figure 10: A situation where the Euclidean distance transform might fail if p = 4.

23

24 A.X. Falcao, R.A. Lotufo, G. Araujo

Figure 11: A digital video frame where a tennis player is the object of interest. (a) An
optimum edge from an initial point selected on the boundary to the current position of
the cursor. (b) An object edge is found by placing the cursor close to the boundary. (c)
The delineation process after some points selected on the boundary. (d) The result of
segmentation.

Image Foresting Transform 25

(c) (d)

Figure 12: A digital video frame where a tennis player is the object of interest. (a) White

line representing roots selected inside the object and black line representing roots selected
in the background. (b) Result of segmentation from roots selected in (a). (c) New roots are
added inside the object. (d) Result of segmentation from roots selected in (c). (d) Final
set of roots selected inside and outside the object. (e) Result of segmentation from roots
selected in (d).

26

A.X. Falcao, R.A. Lotufo, G. Araujo

l 9(0)
9(q) 9(a)
p—*>q=—

T 9(a)

Figure 13: Example for p = 4 of the arc weight assignment to build a watershed operator
using the IFT framework. The weight assigned to each arc (p,q) is the morphological

gradient ¢g(gq) computed at g. That is, all incoming arcs to a pixel g have the same weight
value g(q).

1
A Al

B

Geodesic by IFT

Geodesic by IFT
Geodesic Euclidean - - -+

Geodesic Euclidean - - -+

Figure 14: Two examples of geodesic path from A to B in a binary image.

