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The Image Foresting TransformationAlexandre X. Fal~ao�, Roberto de A. Lotufoy, Guido AraujozAbstratIn this paper, we introdue an image proessing operator alled Image ForestingTransformation (IFT ). The image foresting transformation maps an input image intoa graph, omputes a shortest-path forest in this graph, and outputs an annotated image,whih is basially an image and its assoiated forest. We desribe the appliation ofIFT to region growing, edge detetion, Eulidean distane transform, geodesi distaneomputation, and watershed transformation. All the operators are eÆiently om-puted using the same IFT algorithm based on the same set of parameters by hangingonly their meaning and values. We also present a new interative image segmentationparadigm based on the region growing operator and disuss other appliations of theIFT for boundary-based objet de�nition and shape-based interpolation.1 IntrodutionThe use of graph in omputer vision and image proessing has been investigated for manyyears now. Its motivation stems from a solid theory with many eÆient algorithms. As aonsequene, various graph-based approahes have been proposed for image analysis [16℄,image oding [15℄, image registration [9℄, data lustering [25℄, border detetion [23℄, objetreognition [21℄, image retrieval [17℄, distane transform omputation [20℄, et. In mostappliations, either an image is thought as a graph or a graph is de�ned to desribe therelationship among image objets. In this paper, we propose a graph-based frameworksuitable for both approahes.We laim that a few graph-based formulations an be used to design many image pro-essing operators. For example, most of the aforementioned appliations an be eÆientlyhandled using an unique optimum graph-searh operator under di�erent formulations. Toprove that, we introdue the Image Foresting Transformation (IFT ). The image forestingtransformation maps an input image into a graph, omputes a shortest-path forest in thisgraph, and outputs an annotated image, whih is basially an image and its assoiated for-est. Figure 1 shows a generi sheme of an image proessing operator based on the IFT .�Institute of Computing, University of Campinas, Campinas - SP, Researh supported in part by CNPq,grant #300698/98-4, and by FAPESP, grant #97/13306-6yFaulty of Eletrial Engineering and Computing, University of Campinas, Campinas - SP, Researhsupported in part by FAPESP, grant #97/13306-6zInstitute of Computing, University of Campinas, Campinas - SP, Researh supported in part by CNPq,grant #300156/97-9 1



2 A.X. Fal~ao, R.A. Lotufo, G. AraujoThe entral idea is that most part of the problem is eÆiently solved as a shortest-pathforest problem, so the image proessing operation itself beomes a simple task applied tothe annotated image. This proess works as follows.Generially, we an think of an image as a weighted and oriented graph, where the pixelsare the nodes of the graph and eah ordered pair of adjaent pixels de�nes an ar. Di�erentimage proessing operators may require di�erent graph models. That is, di�erent weightassignments and di�erent adjaeny relations. Alternatively, one an read image objets inplae of pixels, but we will adopt a pixelwise desription of the IFT in this paper. Theweight assigned to eah ar in the graph is a non-negative value omputed based on loalimage properties. To ompute a shortest-path forest in this graph, a set of roots (i.e. pixels)is seleted together with a path-funtion, that de�nes a non-negative value between a rootand a pixel at the end of a shortest-path from the root. From eah root, simultaneously,we want to grow a shortest-path tree by assigning eah pixel to the tree where its path-funtion value is minimum. To distinguish among trees, a label is assigned to eah root andpropagated to the rest of the nodes in its tree. Alternatively, rooted trees that belong tothe same lass an be grouped with the same label. At the end, eah tree is a onnetedomponent within the image and the shortest-path forest is an optimum image partition.Finally, we reate an annotated image by adding three new information for eah pixel: alabel that identi�es its onneted omponent within the image, its parent in the forest thatleads the pixel to its orrespondent root, and a path-funtion value that represents someglobal measurement for the underlying problem. At least one of these information shouldbe relevant to omplete the image proessing operation.This formulation has many advantages:1. The IFT is a powerful tool to exploit loal and global image properties and to designimage proessing operators;2. It depends on the same shortest-path forest algorithm based on the same set of pa-rameters. All we have to do is to hange value and meaning of these parameters;3. It an be omputed in real time in most situations. This makes it viable to designuser-assisted image proessing operators;4. One an build lasses of a given operator by reating di�erent annotated images;5. IFT -based operators an be asaded to build new operators;We desribe the IFT for region growing, edge detetion, and distane transform inSetion 2. The region growing operator allows simultaneous multiple objet de�nition. Italone onstitutes a new paradigm for interative image segmentation. Di�erent implemen-tations of the edge detetion operator have already been used in the past for interativesegmentation [8, 6, 7℄. In fat, we are extending the main ideas reported in [8℄ to a generalgraph-based image proessing operator. The distane transform operator allows fast andexat omputation of the Eulidean distane transform.Clearly, image segmentation is one of the main appliations of the image foresting trans-formation. We ould present many others IFT -based objet de�nition operators in a single



Image Foresting Transform 3paper, and point out that there are repeated evidenes in the literature as to how objetinformation improves image �ltering [10℄, interpolation [18℄, registration [14℄, et. However,the aim of this paper is to show that IFT is more than an image segmentation operator. Itan be used to ompute other types of image ontent, suh as distane transforms, geodesidistanes and other image/objet features.We present a shortest-path forest algorithm to ompute the IFT in Setion 3. Sine ourde�nition of path-funtion di�ers from the traditional sum of ar weights on the path, wepresent some theoretial results that prove the optimality of IFT in Setion 4. We disuss inSetion 5 the use of IFT for interative image segmentation under both approahes, region-based and boundary-based, shape-based interpolation [18℄, watershed transformation [2℄,and geodesi distane omputation [12℄. Finally, we state our onlusions and disuss ouron going researh on IFT in Setion 6.2 The Image Foresting TransformationIn this setion we de�ne terms and onepts that are used in the rest of the work.De�nition 1 An n-dimensional m-band digital image I is a pair (I; ~f) onsisting of a �niten-dimensional array I of pixels and a diretor funtion ~f(p), that assigns to eah pixel p inI an m-dimensional sale-vetor.We all I an nDmB image, or simply an image. The sale-vetor ~f in I represents any�nite number of image properties. For example, in a olored image, ~f(p) an be de�ned asa 6-tuple where the entries are the values of red, green, blue, and their respetive gradientmagnitudes at pixel p.De�nition 2 Let the oordinates at the enter of a pixel be an n-tuple of integers in Zn.We de�ne an adjaeny relation � in Zn by onsidering all pairs of pixels (p; q) 2 I � Isatisfying d(p; q) � R, where d is the Eulidean distane between p and q, and R is theadjaeny radius. In other words, an adjaeny relation � aounts for the � losest pixelsto p in Zn.Figure 2 illustrates three types of adjaeny relations for a 2-dimensional image. InFigures 2a and 2b, the adjaeny relation aounts for the four (R = 1) and eight (R = p2)losest neighbors of a pixel, respetively. The adjaeny relation showed in Figure 2 is lessommon. It takes into aount the twenty losest neighbors (R = p5) of a pixel. Theadjaeny relation is then a way of de�ning loal onnetivity between pairs of pixels. Insome appliations, however, we may want to make all pixels in the image adjaent to eahother.De�nition 3 An annotated image is an image together with an assoiated shortest-pathforest.De�nition 4 The Image Foresting Transformation (IFT ) is a sequene of two onseutivemappings I! G! Ia, where G is a graph de�ned in I and Ia is an annotated image of I.



4 A.X. Fal~ao, R.A. Lotufo, G. AraujoGenerially, we think of I = (I; ~f ) as a weighted and oriented graph G, where the pixelsin I are the nodes of the graph and eah ordered pair (p; q) of �-adjaent pixels in G de�nesan ar. Figure 3a shows a 2-dimensional example of G for � = 4.De�nition 5 We de�ne w(p; q) a weight funtion that assigns a non-negative weight toeah ar (p; q) in G, orresponding to the penalty to go from p to q.Given a family R = fR1; R2; : : : ; RKg of K root sets (i.e. pixel sets) in G, we assignthe same label i to all roots in Ri 2 R, i = 1; 2; : : : ;K. From eah pixel r 2 Ri, we want togrow a tree rooted at r by propagating label i to all its nodes, suh that eah node in G isassigned to only one tree. This proess is based on the onept of path-funtion pf de�nedas follows.De�nition 6 Let < p1; p2; : : : ; pl > be the path from a root p1 to a pixel pl in G. Afuntion pf(p1; pl) is a path-funtion if its domain is the set of ordered nodes on the path andpf(p1; pl) = F(w(p1; p2); : : : ;w(pl�1; pl)), for some non-negative non-dereasing funtionF . If pf is de�ned as: l�1Xi=1w(pi; pi+1); (1)the proess desribed above outputs a shortest-path forest as proposed by Dial [5℄. However,the restrition of de�ning pf as a non-negative non-dereasing funtion is suÆient to outputa shortest-path forest in G and we will prove that in Setion 4. For the time being, weshould just keep in mind that there are appliations whih require other types of non-negative non-dereasing path-funtions.The path-funtion pf(r; p) represents a penalty to go from a root r to a node p in G.Our aim is to assign p to the tree rooted at r, where pf(r; p) is minimum. At the end, allnodes in the forest whose trees are rooted at the nodes in Ri are labeled i. We will have Kshortest-path forests inG, or simply a shortest-path forest. Figure 3b shows a 2-dimensionalexample of a shortest-path forest in the graph shown in Figure 3a for pf as in Equation 1and R = ffag; ff; ggg. The label of eah root in R is propagated to eah node in G. Thelabel and the path-funtion value for eah node are shown in Figure 3b.Let Kr be the total number of roots ri 2 R. Note that, eah shortest-path tree Ti,rooted at ri, i = 1; 2; : : : ;Kr is a onneted omponent in I and the IFT omputes anoptimum partition of I with Kr onneted omponents where:KrXi=1 X8p2Tipf(ri; p) (2)is minimum. In Figure 3b, for example, this proess results two onneted omponentswith label 2 and another omponent with label 1 forming an image partition with minimumpenalty 21 aording to Equation 2.



Image Foresting Transform 5At the end, an nD(m + 3)B annotated image Ia = (Ia; ~fa) is reated, where I = Iaand ~fa is an extension of the diretor funtion ~f that inludes three new information foreah pixel: a label that indiates its onneted omponent within the image, the parent ofthe pixel in the forest that leads the pixel to its orresponding root, and a path-funtionvalue that represents some global measurement for the underlying problem (see Figure 3b).These three new image properties desribe the resulting forest and then the IFT an bewritten as: Ia = IFT (I; �;w;R;pf ): (3)At this point one an onlude that, to transform an image into a graph, we just need tothink of pixels as nodes and use an adjaeny relation to de�ne the ars. However, di�erentadjaeny relations will lead us to di�erent graphs that represent the same image. Thus,what graph representation should we use for a given problem? The parameters of the IFTare always the same, but their meaning and value hange for di�erent problems. Then, howshould we hoose them? Finally, how an we use this formulation to solve image proessingproblems?Sine the answers to the questions above depend on the underlying image proessingoperation, we will address them in the next setions by using three examples: region growing,edge detetion, and Eulidean distane transform. In eah example, we will be interested inone of the three new information reated by the IFT . For region growing, we are interestedin the labels assigned to eah pixel. For edge detetion, we are interested in paths betweenpixels, whih are obtained based on the information about the parent of eah pixel in theshortest-path forest. For distane transform, we are interested in the path-funtion valueassigned to eah pixel. We expet the reader will be able to extend the IFT onepts toother examples afterwards.2.1 Region growingImages keep loal properties between adjaent pixels that an be measured by omputerswith no problem. Unfortunately, the image ontent from the view point of the users is global.Users understand an image as a olletion of regions where the similarity among pixels withinthe same region is high, aording to some set of image properties (e.g. brightness, olor,texture), and low between di�erent regions. They also understand that groups of regionsform objets in the image. Suh global properties are muh more diÆult to be measuredby omputers without human help. This is probably the main motivation for interativeimage segmentation.In this setion, we show how to exploit loal and global similarities between pairs ofpixels to �nd high similarity regions in the image. In setion 5, we show how to use thisresult to build region-based objet de�nition operators.2.1.1 From image to graphThe goal of this setion is to de�ne arguments � and w from Equation 3, suh that thegraph onstruted by the IFT operator an be used to solve the region growing problem.



6 A.X. Fal~ao, R.A. Lotufo, G. AraujoFor region growing, we think of an image I = (I; ~f) as a weighted and non-oriented graphG, where the pixels in I are the nodes of the graph and eah pair (p; q) of �-adjaent pixelsde�nes a non-oriented ar in G. We hoose w(p; q) as a non-negative funtion of ~f(p) and~f(q), whih is proportional to the degree of dissimilarity between p and q. Three examplesof w(p; q) are: j~f(p)� ~f(q)j; (4)k1exp(�(g(p; q) � k2)2=k3); (5)mXx=1 jfx(p)� fx(q)j=m; (6)where g(p; q) = max8x jfx(t) + 2fx(p) + fx(v)� fx(u)� 2fx(q)� fx(w)j=4 is omputed basedon a loal neighborhood of (p; q) (see Figure 4), fx is the x-th omponent of the m-dimensional sale-vetor ~f , and k1, k2, and k3 are positive numbers.Note that, one an think in various other funtions, they will output di�erent weightedgraphs, and onsequently, they provide di�erent IFT results. We have not investigatedyet the variety of ombinations involving di�erent image properties and weight funtionsfor region growing. However, the weight funtion desribed in Equation 5 usually leadsto better results than linear funtions. It is less sensitive to noise and emphasizes betterregion boundaries with values of g lose to k2 (i.e. assigns higher weights to ars (p; q)whose g(p; q) is lose to k2).The adjaeny relation � seems to have less inuene on the result of region growingoperations, but it is very important to guarantee orret results in other situations. Anexample is the orret omputation of the Eulidean distane transform, as we will see inSetion 3.2.1.2 From graph to annotated imageIn the previous setion we determined arguments � and w that are used by IFT to redueregion growing to an equivalent shortest-path forest problem. In this setion we de�nethe other two arguments in Equation 3, i.e. R and pf , whih are then used to solve theequivalent shortest-path forest problem.Figure 5a shows a gray-sale display of a 2D3B image whose ~f is omposed by the mainomponents, red, green, and blue. Suppose we want to detet the big dark pepper on thetop of this �gure. Then we should have at least a root inside it (with label 1, for example)and another root outside (with label 2). The roots seleted inside it are represented by whitelines in Figure 5a, while blak lines represent the roots seleted outside. Roots seletionan be manual or automati, depending on our knowledge about the problem. In this ase,we are using manual seletion.For region growing, we de�ne the path-funtion pf asmax8i2f1;2;:::;l�1gfw(pi; pi+1)g; (7)sine the result of IFT , when using this de�nition for pf , mathes the user expetation



Image Foresting Transform 7muh better than if Equation 1 is used. Nevertheless, there may be other funtions betterthan this.Figures 5b and  show the weight funtion at the horizontal and vertial ars, using� = 4, and w as in Equation 5. Here, brightness is inversely proportional to the weightassigned to eah ar. Figure 5d shows the result of extrating the big dark pepper byregion growing using pf as in Equation 7. In this ase, we are assuming the values of g (inEquation 5) along the pepper's boundary are lose to k2 = 100.Alternatively, we ould have set lower weights to ars whose pixels have average olorlose to red, and higher weights elsewhere. Sine the big dark pepper in Figure 5a is red inthe original image.In region growing, we say that a pixel is assigned to its most similar root in R, takinginto aount all possible paths from all roots in R. That is, when we deide that a pixelp belongs to the same tree rooted at r, our deision is taking into aount not only theloal dissimilarity between �-adjaent pixels, but also the dissimilarity between eah pair of�-adjaent pixels in the shortest-path from r to p. Therefore, the path-funtion value is aglobal dissimilarity measure in the image.2.2 Edge detetionGiven a pair of pixels (p; q) on the boundary of an objet in I, we an de�ne an edge as a\onneted" and \oriented" urve from p to q made up of �-adjaent pixels on the boundaryof the objet.2.2.1 From image to graphAs before, in this setion we speify the IFT arguments � and w, that are required to buildthe graph formulation for the edge detetion problem. For edge detetion, we think of animage I = (I; ~f) as a weighted and oriented graph G, where the pixels in I are the nodesof the graph and eah pair (p; q) of �-adjaent pixels de�nes an oriented ar, from p to q,in G. We hoose w(p; q) as a non-negative funtion of ~f(p) and ~f(q), whih represents theost of onsidering (p; q) as an edge element.As an example, the weight funtion w(p; q) an be de�ned ask1(1� exp(�(g(p; q) � k2)2=k3)); (8)where g(p; q) = max8x (fx(t) + fx(u)� fx(v)� fx(w))=2 is omputed using the neighbor-hood of (p; q) shown in Figure 6, fx is the x-th omponent of them-dimensional sale-vetor~f , k1 and k3 are positive numbers, and k2 is a real number. If we wish to detet edge el-ements suh that the gradient vetor ~g(p; q) points to the right side of (p; q), as shown inFigure 6, we should hoose k2 a negative number. That is, we assign lower weights to edgeelements whose values of g are lose to k2. This will favor to detet edges with lokwiseorientation around the objet of interest [8℄.Analogous to region growing, there are many ways of de�ning weight funtions thatlead to di�erent IFT results. The work reported in [8℄ provides several examples of imageproperties, weight funtions, and training to detet 2-dimensional losed, onneted and



8 A.X. Fal~ao, R.A. Lotufo, G. Araujooriented boundaries in medial images. These tehniques, together with the general frame-work enabled by the IFT operator, ould be a start point to further investigate weightfuntions amenable to region growing and edge detetion.2.2.2 From graph to annotated imageTo detet an edge between two spei�ed pixels p and q on the boundary of an objet, weselet p as a root, the path-funtion pf as in Equation 1, and ompute a forest in G of onetree rooted at p. Note that in this ase R = ffpgg. At the end, the path from p to q willbe the shortest-path and its path-funtion value will represent the minimum ost value ofonsidering this path an edge. Although both path-funtions, suggested in Equations 1 and7, result an optimum edge between p and q, Equation 1 gives the best pratial solution foredge detetion.Figure 7a shows a 2D1B image of a wrist obtained by magneti resonane (MR). Sineit is a gray-level image, we an de�ne f1 as brightness in Equation 8. Figures 7b and show the average between the weight values assigned to up- and right-oriented ars, andto down- and left-oriented ars, respetively, for � = 4 and w as in Equation 8. Here,brightness is diretly proportional to weight. Figure 7d shows a lokwise oriented edgeomputed, using pf(r; p) as in Equation 1, where r is a root and p a pixel seleted on theboundary of the wrist. Among all possible paths within the image, there are two promisingedges between the two points r and p seleted on the wrist's boundary. The IFT -basededge detetion takes the longer one, beause it is a lokwise oriented edge. Orientationis a powerful information that should be onsidered during the design of boundary-basedobjet de�nition operators.Coming bak to Figure 5a, we ould also use Equation 8 to detet lokwise orientededges on the boundary of the long bright pepper on the left side of this �gure. But thesame is not valid for the big dark pepper on the top of Figure 5a, beause the diretion of ~ghanges along its boundary. Unless, we assign lower weights to edge elements whose oloron the right side is lose to red, and higher weights elsewhere. In onlusion, we betterde�ne G as a weighted and non-oriented graph for edge detetion, if it is impossible tomodel the boundary orientation information.2.3 Distane transformDistane transform is a powerful transformation that assigns to objet pixels in a binaryimage their distane to the bakground pixels. Figure 8a shows the Eulidean distanetransform on a binary image, where the values assigned to eah pixel are the squareddistane values. Distane transform has several appliations, suh as skeletons, dilation,erosion, lassi�ation, interpolation, et. However, despite the Eulidean distane be themost natural metri for those appliations, the diÆulty to implement eÆient algorithmshas onduted researhes to other metris, suh as Chanfer, hessboard, and ity-blok.The IFT an be used to ompute the distane transform with di�erent metris. Wehave hosen the Eulidean distane transform in this setion.



Image Foresting Transform 92.3.1 From image to graphFor distane transform, we think of a binary image as a weighted and non-oriented graphG, where the pixels are the nodes of the graph and eah pair (p; q) of �-adjaent pixelsde�nes a non-oriented ar inG. As we will see in Setion 3, the orretness of our Eulideandistane operator requires a speial are in hoosing �. For the time being, let's just assume� equal to 8 in the 2-dimensional ase. The weight funtion w(p; q) is de�ned as:jd(r; p) � d(r; q)j; (9)where r is a bakground pixel and d is the squared Eulidean distane value. Sine the weightfuntion depends on a bakground pixel, the weight assigned to (p; q) may be di�erent fordi�erent bakground pixels. Figure 8b illustrates this situation for two bakground pixelsr1 and r2. In this ase, w(p; q) = 3 based on r1 and w(p; q) = 1 based on r2. Then whihone should we use? The answer to this question is underway.2.3.2 From graph to annotated imageWe de�ne the roots in R as the �rst layer of bakground pixels (see Figure 8a), suh thatK is the number of pixels in this layer and eah Ri, i = 1; 2; : : : ;K, has one of thesepixels. Note that, only one of these roots will be the bakground pixel taken into aountto ompute w(p; q) in Equation 9. By onsidering the possible displaement vetors from pto q, for � = 8, the weight funtion w(p; q) is represented as one of three vetors of positiveinrements (dx(p; q); dy(p; q)): (0; 1), (1; 0), or (1; 1) (see Figure 9a). Thus the path-funtionpf is de�ned as: (l�1Xi=1 dx(pi; pi+1))2 + (l�1Xi=1 dy(pi; pi+1))2: (10)Therefore, all we have to do is to aumulate the displaements dx and dy in the pathfrom a root p1 to a node pl in order to evaluate at any time the path-funtion value atpl using Equation 10. Figure 9b shows two paths from a root p1 to a node p4 with theaumulated displaements to eah node. Note that, the path < p1; p2; p3; p4 > wherepf(p1; p4) = 10 is the one with the orret Eulidean distane. This is not the uniquepath, but the orret Eulidean distane is always obtained by �nding a path where pf isminimum, and this is what the IFT does.3 AlgorithmIFT algorithmInput: An nDmB image I; an adjaeny relation � in Zn; a non-negative weight funtionw between �-adjaent pixels; a family R of labeled root sets; a non-negative non-dereasingpath-funtion pf .Output: An nD(m+ 3)B annotated image Ia.



10 A.X. Fal~ao, R.A. Lotufo, G. AraujoAuxiliary Data Strutures: An nD array lb with the urrent label k of eah pixel; an nDarray pf with the urrent path-funtion value of eah pixel; an nD array d indiating foreah pixel, its urrent parent in the forest; a priority queue Q of pixels; a list L of pixelswhih have already been proessed.begin1. set pf(p) to 1, lb(p) to 0, and d(p) to nil for all pixels p 2 I;2. set pf(r) to 0 and lb(r) to its orresponding label for all labeled roots r 2 R, andput r in Q;3. while Q is not empty doa. remove a pixel p from Q suh that pf(p) = minp02Qfpf(p0)g, and put p in L;b. for eah pixel q, suh that (p; q) are �-adjaent pixels and q 62 L do(i) ompute tmp based on pf(p) and w(p; q), representing the path-funtionvalue to reah q passing through p;(ii) if tmp < pf(q) thena. set pf(q) to tmp, lb(q) to lb(p), d(q) to p;b. if q 62 Q then insert q in Q else update position of q in Q;endif;endfor;endwhile;endAt the end, the three new bands in the annotated image Ia ontains the values of thenD arrays lb, pf , and d, that represent the resulting forest.There are some important observations about the implementation of the IFT algorithm.Clearly, the bottlenek of the IFT algorithm is in maintaining the priority queue Q.Usually, we implement Q as a binary heap whih should be suÆient to guarantee theeÆieny of the IFT in most appliations. However, one an also take advantage of otherlever solutions that exist in the literature of network ows [1℄. For example, in situationswe have ontrol over the maximum weight assigned to an ar in G, Q an be maintained inlinear time if we de�ne it as in the Dial's implementation of the Dijkstra's algorithm. Wean adopt this implementation of Q for all operators desribed in this paper (see [7℄).Sine the minimum path-funtion value at a pixel is not unique, it is desirable to im-plement the priority queue Q with a �rst in �rst out restrition for pixels with the samepath-funtion value. For region growing, for example, if we have roots within a region ofonstant path-funtion value, a pixel will be assigned to the losest root in Zn.An observation must be made as regarding to the orretness of the Eulidean distanetransform using the IFT algorithm. For Eulidean distane transform, the suess of theIFT an only be guaranteed if all roots in R have aess to all pixels in I. Suppose, for



Image Foresting Transform 11example, � = 4, a pixel p and its 4-adjaent pixels pi, i = 1; 2; 3; 4, and three roots rj ,j = 1; 2; 3, as shown in Figure 10. The roots rj , j = 1; 2; 3 are equidistant to pi, i = 1; 2.That is, pf(rj ; pi) = 41, i = 1; 2, j = 1; 2; 3, by Equation 10. Then, suppose p1 is reahedby r3 and p2 is reahed by r2 before r1 reahes them. Aording to line 3.b.(ii) of ouralgorithm, the path-funtion values in p1 and p2 are not updated by the time r1 reahesthem. Therefore, p will be reahed by either r2 or r3 with path-funtion value equal to 52.However, r1 is its losest root with path-funtion value equal to 50. This does not happenfor � = 8, but it is possible to �nd out other ases where the exat Eulidean distanetransform does not work for � = 8 [4℄. In our method, we just have to set the value of� = 8, as suggested by [4℄, as a funtion of the maximum Eulidean distane in the imageand the IFT will output the exat Eulidean distane transform.Note that, the IFT algorithm omputes Eulidean distane values for pixels inside andoutside the objet, simultaneously. This is an advantage in some appliations as we will seein Setion 5. Alternatively, the Eulidean distane omputation an be restrited into theobjet by inserting bakground pixels in the list L beforehand.4 The optimality of the IFTFor the edge detetion operator, we have de�ned R with a single set R1 with a single root rand pf as in Equation 1. In this ase, the IFT algorithm beomes the well known Dijkstra'salgorithm [3℄ and the output forest ontains a single shortest-path tree. By de�ning multipleroots in R and the same path-funtion as in Equation 1, the IFT algorithm beomes theDial's algorithm [5℄, whih results a shortest-path forest. In this paper, we have extended theunderlying onepts of the Dial's algorithm to laim that a shortest-path forest is guaranteedfor any non-negative non-dereasing path-funtion pf . This is proved as follows.Lemma 1 Any non-negative non-dereasing path-funtion pf in the IFT algorithm an betransformed into a Dijkstra's shortest-path funtion as de�ned in Equation 1.Proof 1 Let p 6= r be a pixel, r a root, and path-funtion pf(r; p) the shortest-path estimatefor path r ; p. In the IFT algorithm, the only plae the shortest-path estimate is updatedis on line 3.b.(ii). This operation aims at relaxing onstraint pf(r; pi+1) � pf(r; pi) +w0(pi; pi+1), for some w0(pi; pi+1), by assigning a smaller value tmp to pf(r; pi+1). Giventhat this onstraint is an invariant for the whole exeution of the algorithm, we have at anytime after the start of exeution pf(r; pi+1) = pf(r; pi) + w0(pi; pi+1), for some node pi+1adjaent to pi. If pf(r; pi) is a non-negative non-dereasing path-funtion, then pf(r; pi+1)�pf(r; pi) � 0 is an invariant and thus w0(pi; pi+1) � 0 for all ars in G.Theorem 1 If pf is de�ned as a non-negative non-dereasing path funtion, then the IFTalgorithm generates a shortest-path forest where eah tree has a root in R.Proof 2 First, we an reate an arti�ial node a in G with one ar to eah root r 2 Rand assign weight w(a; r) = 0. We onsider a as the only root in the IFT algorithm.By Lemma 1, any non-negative non-dereasing path-funtion an be transformed into a



12 A.X. Fal~ao, R.A. Lotufo, G. AraujoDijkstra's shortest-path funtion in the IFT algorithm. Then, the IFT algorithm run froma results the a shortest-path tree as in Dijkstra's algorithm. If we remove a from this tree,the result is a shortest-path forest where eah tree has a root in R.Note that, by Theorem 1, the region growing and the Eulidean distane transformoperators ompute an optimum partition of I (i.e. a shortest-path forest in G) aordingto Equation 2, where the path-funtion pf is given by Equations 7 and 10, respetively.5 ResultsIn this setion, we disuss the use of the IFT for interative image segmentation, shape-based interpolation, watershed transformation, and geodesi distane omputation.5.1 Interative image segmentationThere are many segmentation tasks that require extensive user's help. In video omposition,for example, a skilled user is often required to manually extrat objets from an arbitrarybakground of a video sequene and inlude them in another sequene. This is an inaurateand impreise task that usually takes half of the total time for video prodution. In medialimaging, one an �nd many other examples of how laborious an be user assistane in imagesegmentation.Image segmentation onsists of two tightly oupled tasks - reognition and delineation.Reognition is the proess of identifying roughly the whereabouts of a partiular objetin the image and delineation is the proess of speifying the preise spatial extent of thisobjet. While omputer algorithms are very e�etive in objet delineation, the abseneof relevant global objet-related knowledge is the main reason for their failure in objetreognition. On the other hand, a simple user assistane in objet reognition is oftensuÆient to omplement this de�ieny and to omplete the segmentation proess.In the next setions, we show two ways of exploiting the superior abilities of humanoperators (ompared to omputer algorithms) in objet reognition and the superior abilitiesof omputer algorithms (ompared to human operators) in objet delineation to developeÆient interative image segmentation methods.5.1.1 Boundary-based objet de�nitionIn the past, we have presented four user-steered image segmentation paradigms forboundary-based objet de�nition: live wire, live lane, 3D live wire, and live-wire-on-the-y [8, 6, 7℄. They represent di�erent ways of using the IFT -based edge detetion operator,and so di�erent implementations. Their eÆieny has been proven in several medial appli-ations [24, 11, 22, 19℄. We have also used the live-wire-on-the-y segmentation paradigmin digital video proessing appliations. In this setion, this segmentation paradigm isdesribed under the IFT framework.In live-wire-on-the-y [7℄, a 2-dimensional boundary is a losed, onneted, and orientedontour made up of oriented pixel edges. In fat, the graph G is a little di�erent from what



Image Foresting Transform 13we have desribed here. The pixel verties are the nodes of G and eah oriented pixel edgede�nes an ar in G. Sine this is an implementation detail, we desribe the method usingthe standard notation of the IFT for edge detetion. Therefore, we say that a 2-dimensionalboundary is a losed, onneted, and oriented ontour made up of edges, where eah edgeis a shortest-path in G made up of oriented ars between pairs of �-adjaent pixels (� = 4or 8, where � = 8 output smoother boundaries).To de�ne a 2-dimensional objet, the user �rst selets an initial point on the boundaryof the objet. For any subsequent point indiated by the ursor, an optimum edge fromthe initial point to the urrent point is found via IFT and displayed in real time (seeFigure 11a). The user thus has a live wire on hand whih is moved by moving the ursor. Ifthe ursor goes lose to the boundary, the live wire snaps onto the boundary (Figure 11b).At this point, if the live wire desribes the objet edge appropriately, the user deposits theursor whih now beomes the new starting point (Figure 11) and the proess ontinuesthis way until a lose operation is requested by the user (Figure 11d).Note that, objet reognition is up to the user who selets points on the objet's bound-ary and/or plaes the ursor lose to the boundary while objet delineation is omputed byIFT .5.1.2 Region-based objet de�nitionIn this setion, we present a new interative image segmentation paradigm for region-basedobjet de�nition. This method represents one way of using the IFT -based region growingoperator.To de�ne an objet, the user draws roots with the same label inside the objet (white linein Figure 12a) and roots with a di�erent label in the bakground (blak line in Figure 12a).The IFT propagates the labels splitting the image into two parts. The �rst part is omposedby pixels whih are more onneted to the white roots (objet) than to the blak ones(bakground), and the other way around for the seond part. The user veri�es the resultof this optimum image partitioning as shown in Figure 12b. By adding (or deleting) newroots inside (or outside) the objet, the user an improve the previous results toward theomplete objet extration (Figures 12-f).Again, objet reognition is done by the user who draws roots inside and outside theobjet while objet delineation is omputed by IFT .Note that, one an hoose more than two labels to de�ne multiple objets simultaneously.Moreover, the omputation time of the IFT algorithm is about the same for di�erentnumber of roots.5.2 Shape-based interpolationThree dimensional data reated by tomographi medial imaging devies are usually pre-sented as a sequene of 2D1B gray-level images (i.e. slies). The distane between the sliesis typially greater than the distane between the pixels within the slies. An interpola-tion tehnique is often applied to onvert the data into an isotropi volume with the sameresolution in all three dimensions. With this aim, Raya and Udupa [18℄ have introdued



14 A.X. Fal~ao, R.A. Lotufo, G. Araujothe shape-based interpolation whih an be applied to segmented binary images. The mainadvantage of this approah is in situations where the user has to segment the objet inter-atively in a slie-by-slie fashion. Interpolation before segmentation would make the user'stask even more diÆult.In shape-based interpolation, eah binary slie is onverted into a gray-level image,in whih the gray value approximates the distane of the pixel to the nearest point on theboundary of the objet. Positive values are assigned to pixels within the objet and negativevalues to pixels outside. The intermediate binary slies are estimated by interpolating thedistanes and thresholding the result at zero.Distane transform is often used to onvert eah binary slie into a gray-level image. Thetraditional approah is to invert the binary slies and ombine both distane transforms forobjet and bakground. The usual metri is Chanfer's distane. A better approah ertainlyis to ompute the Eulidean distane values inside and outside the objet at same time. Thisis what the IFT algorithm, as presented in Setion 3, does. The values inside orrespondto the Eulidean distane transform for the objet and the values outside an be shifted toorrespond the values of the Eulidean distane for the bakground.Note that, shape-based interpolation is one example where two IFT operators, onefor segmentation and the other for distane transform, are asaded to build an imageproessing operation.5.3 Watershed transformationThe watershed transformation [2℄ is a paradigm in morphologial image segmentation. Itis usually omputed on gradient images from seleted markers. When the markers are theregional minima of the gradient image, an over-segmentation problem appears due to thelarge number of markers. To overome this problem, a redued number of markers should beseleted inside and outside the objet. In situations where the markers are not the regionalminima, the homotopy of the gradient image should be hanged to impose the seletedmarkers as the only regional minima. In [13℄, we showed that the watershed transformationis a partiular ase of the IFT , and in the IFT framework, there is no need to hangethe homotopy of the gradient image for arbitrary markers. In this setion, we present thisresult by desribing the watershed transformation in the IFT framework.To ompute the watershed transform, we think of an image as a weighted and orientedgraph, where the pixels are the nodes of the graph and eah pair of �-adjaent pixels de�nesan oriented ar. We hoose w(p; q) suh that the weight assigned to eah ar (p; q) is themorphologial gradient g(q) omputed at q. That is, all inoming ars to a pixel q havethe same weight value g(q) (see Figure 13). Now, we de�ne the path-funtion pf as inEquation 7. In this ase, the IFT is equivalent to the the watershed transform with thehange of homotopy [13℄. If the markers (i.e. labeled roots) are seleted at the regionalminima of the gradient image, the ar with the greatest weight along the shortest-path (asde�ned by Equation 7) will always be the last ar. In this ase, the position of a pixel willnever be updated in the priority queue of the IFT algorithm (see Setion 3), and then, itan be redued to the watershed algorithm using an ordered queue.



Image Foresting Transform 155.4 Geodesi distaneThe geodesi distane transform has played an important role in the design of morphologialoperators [12℄. Examples of appliations are the geodesi skeleton by inuene zones andinterpolation from ontour lines. In this setion, we desribe the geodesi distane transformunder the IFT framework.Figure 14 shows two examples in a binary image where we wish to ompute the geodesidistane between two pixels A and B. For that, we think of this image as an non-orientedgraph G, where the pixels are the nodes of the graph and eah pair (p; q) of 8-adjaentpixels de�nes a non-oriented ar in G. We assign w(p; q) = 1 to all ars, hoose A as theonly root in R = ffAgg, and pf as in Equation 1. By inserting bakground pixels in thelist L beforehand (see Setion 3), a geodesi path from A to B is omputed via the IFTalgorithm (see solid line in Figure 14). There are multiple paths, but all of them with thesame geodesi distane represented by the �nal path-funtion value at B.Note that, the geodesi path is being de�ned here based on the hessboard metri. Itsomputation based on the IFT is very eÆient. Figure 14 also shows the geodesi pathfrom A to B (dashed line) based on the Eulidean distane. In this ase, the appropriateIFT -based formulation has not be found yet.6 ConlusionsWe have introdued the image foresting transformation as a general approah to the de-sign of image proessing operators. There are some important harateristis of IFT thatsupport this laim: (a) It is general enough to enable eÆient solutions to a broad lassof appliations; (b) It hides the implementation details of the underlying graph algorithmsinto a single funtion, leaving the designer free to onentrate on the funtion argumentsthat are spei� to his(her) problem; () All image operators based on IFT an bene�tfrom the most eÆient graph-searh algorithm available today, and any hanges in suhalgorithm do not a�et the other parts of the appliation that are spei� to the problem.The entral idea of IFT is to translate an image proessing problem into a shortest-pathforest problem. We have desribed the IFT for region growing, edge detetion, Eulideandistane transform, geodesi distane omputation, and watershed transformation. All theoperators are eÆiently omputed using the same IFT algorithm based on the same set ofparameters by hanging only their meaning and values. We have presented a new interativeimage segmentation paradigm based on the region growing operator and an eÆient solutionto ompute the exat Eulidean distane transform.Currently, we are pursuing the development of interative image segmentation algo-rithms based on IFT and investigating the iterative use of IFT for multisale image seg-mentation problems. Our goal is to design eÆient indexing tehniques for ontent-basedimage retrieval.



16 A.X. Fal~ao, R.A. Lotufo, G. AraujoReferenes[1℄ R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms andAppliations. Prentie-Hall, Englewood Cli�s, NJ, 1993.[2℄ S. Beuher and F. Meyer. The morphologial approah to segmentation: The watershedtransformation. Mathematial Morphology in Image Proessing, pages 433{481, 1993.[3℄ T. Cormen, C. Leiserson, and R. Rivest. Introdution to Algorithms. MIT Press, NewYork, NY, 1991.[4℄ O. Cuisenaire and B. Maq. Fast Eulidean distane transformation by propagationusing multiple neighborhoods. Computer Vision and Image Understanding, 76(2):163{172, Nov 1999.[5℄ R.B. Dial. Shortest-path forest with topologial ordering. Communiations of theACM, 12(11):632{633, Nov 1969.[6℄ A.X. Fal~ao and J.K. Udupa. Segmentation of 3D objets using live-wire. In MedialImaging 1997, volume 3034, pages 228{239, Newport Beah, CA, Feb 1997. SPIE.[7℄ A.X. Fal~ao, J.K. Udupa, and F.K. Miyazawa. An ultra-fast user-steered image seg-mentation paradigm: Live-wire-on-the-y. In Medial Imaging 1997, volume 3661,pages 184{191, San Diego, CA, Feb 1999. SPIE.[8℄ A.X. Fal~ao, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsh, and R.A. Lotufo.User-steered image segmentation paradigms: Live-wire and live-lane. Graphial Modelsand Image Proessing, 60(4):233{260, Jul 1998.[9℄ K. Fukunaga, H. Murata, T. Asano, and M. Izumi. Image registration using an imagegraph and its appliation to map mathing. IEE Proeedings-E Computers and DigitalTehniques, 138(2):79{84, Mar 1991.[10℄ G. Gerig, O. K�ubler, R. Kikinis, and F. Jolesz. Nonlinear anisotropi �ltering of MRIdata. IEEE Transations on Medial Imaging, 11:221{232, 1992.[11℄ B.E. Hirsh, J.K. Udupa, and S. Samarasekera. A new method of studying jointkinematis from 3D reonstrutions of MRI data. Journal of the Amerian PodiatriMedial Assoiation, 86(1):4{15, 1996.[12℄ C. Lantujoul and F. Maisonnneuve. Geodesi methods in image analysis. PatternReognition, 17(2):177{187, 1984.[13℄ R.A. Lotufo and A.X. Fal~ao. The ordered queue and the optimality of the watershedapproahes. In International Symposium on Mathematial Morphology' 2000, PaloAlto, CA, Jun 2000. submitted.



Image Foresting Transform 17[14℄ J. Maintz, P. van den Elsen, and M. Viergever. Comparison of edge-based and ridge-based registration of CT and MR brain images. Medial Image Analysis, 1:151{161,1996.[15℄ D.K. Mitrakos and A.G. Constantinides. Graph theoreti approah to omposite souremodel estimation for image oding. IEE Proeedings-F Computers and Digital Teh-niques, 131(1):71{79, 1984.[16℄ O.J. Morris, M.D.J. Lee, and A.G. Constantinides. Graph theory for image analysis -An approah based on the shortest spanning tree. IEE Proeedings-F Computers andDigital Tehniques, 133(2):146{152, Apr 1986.[17℄ K. Park, I.D. Yun, and S.U. Lee. Color image retrieval using hybrid graph representa-tion. Image and Vision Computing, 17:465{474, 1999.[18℄ S. Raya and J.K. Udupa. Shape-based interpolation of multidimensional objets. IEEETransations on Medial Imaging, 9:32{42, 1990.[19℄ R.C. Rhoad, J.J. Klimkiewiz, G.R. Williams, S.B. Kesmodel, J.K. Udupa, B. Knee-land, and J.P. Iannotti. A new in vivo tehnique for 3D shoulder kinematis analysis.Skeletal Radiology, 27:92{97, 1998.[20℄ Y.M. Sharaiha and N. Christo�des. A graph theoretial approah to distane transfor-mations. Pattern Reognition Letters, 15:1035{1041, Ot 1994.[21℄ A. Shokoufandeh and S. Dikinson. Appliations of bipartite mathing to problemsin objet reognition. In IEEE Workshop on Graph Algorithms and Computer Visionat International Conferene on Computer Vision (ICCV'99), Corfu, Greee, Sep 1999.http://www.s.ornell.edu/ICCV-graph-workshop/.[22℄ E. Stindel, J.K. Udupa, B.E. Hirsh, D. Odhner, and C. Couture. 3D MR imageanalysis of the morphology of the rear foot: Appliation to lassi�ation of bones.Computerized Medial Imaging and Graphis, 23:75{83, 1999.[23℄ D.R. Thedens, D.J. Skorton, and S.R. Fleagle. Methods of graph searhing for borderdetetion in image sequenes with appliations to ardia magneti ressonane imaging.IEEE Transations on Medial Imaging, 14(1):42{55, Mar 1995.[24℄ J.K. Udupa, B.E. Hirsh, S. Samarasekera, H. Hillstrom, G. Bauer, and B. Kneeland.Analysis of in vivo 3D internal kinematis of the joints of the foot. IEEE Transationson Biomedial Engineering, 45:1387{1396, 1998.[25℄ Z. Wu and R. Leahy. An optimal graph theoretial approah to data lustering - Theoryand its appliation to image segmentation. IEEE Transations on Pattern Analysis andMahine Intelligene, 15(11):1101{1113, Nov 1993.



18 A.X. Fal~ao, R.A. Lotufo, G. Araujo
I’I IFT OperatorFigure 1: A sheme of a generi image operator based on the image foresting transformation(IFT ).

(c)(a) (b)Figure 2: Three examples of adjaeny relations for 2-dimensional images. (a) � = 4, (b)� = 8, and () � = 20.
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Figure 3: A 2-dimensional example. (a) The graph G for � = 4 and (b) a forest in Greated from the roots in R = ffag; ff; ggg using pf as in Equation 1.
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Figure 4: A loal neighborhood of two 4-adjaent pixels p and q that we use to omputew(p; q) based on Equation 5.



20 A.X. Fal~ao, R.A. Lotufo, G. Araujo

(a) (b)

() (d)Figure 5: Region growing by IFT . (a) Gray-sale display of a 2D3B olored image. Theroots seleted inside the big dark pepper on the top are represented by white lines, whileblak lines represent the roots seleted outside. (b) and () The weight funtion at thehorizontal and vertial ars, respetively, by using � = 4, and w as in Equation 5. Herebrightness is inversely proportional to the weight assigned to eah ar. (d) The result ofextrating the big dark pepper using pf as in Equation 7.
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t u

wv

p q

gFigure 6: A loal neighborhood of two 4-adjaent pixels p and q that we use to omputew(p; q) in Equation 8, where ~g(p; q) points to the right side of (p; q).

(a) (b)
() (d)Figure 7: (a) A 2D1B MR image of a wrist. (b) and () The average between the weightvalues assigned to up- and right-oriented ars, and to down- and left-oriented ars, respe-tively, for � = 4 and w as in Equation 8. Here brightness is diretly proportional to weight.(d) A lokwise oriented edge omputed using pf(r; p) as in Equation 1 where r is a rootand p a pixel both seleted on the boundary of the wrist.
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(a) (b)

() (d)Figure 11: A digital video frame where a tennis player is the objet of interest. (a) Anoptimum edge from an initial point seleted on the boundary to the urrent position ofthe ursor. (b) An objet edge is found by plaing the ursor lose to the boundary. ()The delineation proess after some points seleted on the boundary. (d) The result ofsegmentation.
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(a) (b)

() (d)

() (d)Figure 12: A digital video frame where a tennis player is the objet of interest. (a) Whiteline representing roots seleted inside the objet and blak line representing roots seletedin the bakground. (b) Result of segmentation from roots seleted in (a). () New roots areadded inside the objet. (d) Result of segmentation from roots seleted in (). (d) Finalset of roots seleted inside and outside the objet. (e) Result of segmentation from rootsseleted in (d).
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Figure 13: Example for � = 4 of the ar weight assignment to build a watershed operatorusing the IFT framework. The weight assigned to eah ar (p; q) is the morphologialgradient g(q) omputed at q. That is, all inoming ars to a pixel q have the same weightvalue g(q).
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