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The Image Foresting TransformationAlexandre X. Fal
~ao�, Roberto de A. Lotufoy, Guido AraujozAbstra
tIn this paper, we introdu
e an image pro
essing operator 
alled Image ForestingTransformation (IFT ). The image foresting transformation maps an input image intoa graph, 
omputes a shortest-path forest in this graph, and outputs an annotated image,whi
h is basi
ally an image and its asso
iated forest. We des
ribe the appli
ation ofIFT to region growing, edge dete
tion, Eu
lidean distan
e transform, geodesi
 distan
e
omputation, and watershed transformation. All the operators are eÆ
iently 
om-puted using the same IFT algorithm based on the same set of parameters by 
hangingonly their meaning and values. We also present a new intera
tive image segmentationparadigm based on the region growing operator and dis
uss other appli
ations of theIFT for boundary-based obje
t de�nition and shape-based interpolation.1 Introdu
tionThe use of graph in 
omputer vision and image pro
essing has been investigated for manyyears now. Its motivation stems from a solid theory with many eÆ
ient algorithms. As a
onsequen
e, various graph-based approa
hes have been proposed for image analysis [16℄,image 
oding [15℄, image registration [9℄, data 
lustering [25℄, border dete
tion [23℄, obje
tre
ognition [21℄, image retrieval [17℄, distan
e transform 
omputation [20℄, et
. In mostappli
ations, either an image is thought as a graph or a graph is de�ned to des
ribe therelationship among image obje
ts. In this paper, we propose a graph-based frameworksuitable for both approa
hes.We 
laim that a few graph-based formulations 
an be used to design many image pro-
essing operators. For example, most of the aforementioned appli
ations 
an be eÆ
ientlyhandled using an unique optimum graph-sear
h operator under di�erent formulations. Toprove that, we introdu
e the Image Foresting Transformation (IFT ). The image forestingtransformation maps an input image into a graph, 
omputes a shortest-path forest in thisgraph, and outputs an annotated image, whi
h is basi
ally an image and its asso
iated for-est. Figure 1 shows a generi
 s
heme of an image pro
essing operator based on the IFT .�Institute of Computing, University of Campinas, Campinas - SP, Resear
h supported in part by CNPq,grant #300698/98-4, and by FAPESP, grant #97/13306-6yFa
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2 A.X. Fal
~ao, R.A. Lotufo, G. AraujoThe 
entral idea is that most part of the problem is eÆ
iently solved as a shortest-pathforest problem, so the image pro
essing operation itself be
omes a simple task applied tothe annotated image. This pro
ess works as follows.Generi
ally, we 
an think of an image as a weighted and oriented graph, where the pixelsare the nodes of the graph and ea
h ordered pair of adja
ent pixels de�nes an ar
. Di�erentimage pro
essing operators may require di�erent graph models. That is, di�erent weightassignments and di�erent adja
en
y relations. Alternatively, one 
an read image obje
ts inpla
e of pixels, but we will adopt a pixelwise des
ription of the IFT in this paper. Theweight assigned to ea
h ar
 in the graph is a non-negative value 
omputed based on lo
alimage properties. To 
ompute a shortest-path forest in this graph, a set of roots (i.e. pixels)is sele
ted together with a path-fun
tion, that de�nes a non-negative value between a rootand a pixel at the end of a shortest-path from the root. From ea
h root, simultaneously,we want to grow a shortest-path tree by assigning ea
h pixel to the tree where its path-fun
tion value is minimum. To distinguish among trees, a label is assigned to ea
h root andpropagated to the rest of the nodes in its tree. Alternatively, rooted trees that belong tothe same 
lass 
an be grouped with the same label. At the end, ea
h tree is a 
onne
ted
omponent within the image and the shortest-path forest is an optimum image partition.Finally, we 
reate an annotated image by adding three new information for ea
h pixel: alabel that identi�es its 
onne
ted 
omponent within the image, its parent in the forest thatleads the pixel to its 
orrespondent root, and a path-fun
tion value that represents someglobal measurement for the underlying problem. At least one of these information shouldbe relevant to 
omplete the image pro
essing operation.This formulation has many advantages:1. The IFT is a powerful tool to exploit lo
al and global image properties and to designimage pro
essing operators;2. It depends on the same shortest-path forest algorithm based on the same set of pa-rameters. All we have to do is to 
hange value and meaning of these parameters;3. It 
an be 
omputed in real time in most situations. This makes it viable to designuser-assisted image pro
essing operators;4. One 
an build 
lasses of a given operator by 
reating di�erent annotated images;5. IFT -based operators 
an be 
as
aded to build new operators;We des
ribe the IFT for region growing, edge dete
tion, and distan
e transform inSe
tion 2. The region growing operator allows simultaneous multiple obje
t de�nition. Italone 
onstitutes a new paradigm for intera
tive image segmentation. Di�erent implemen-tations of the edge dete
tion operator have already been used in the past for intera
tivesegmentation [8, 6, 7℄. In fa
t, we are extending the main ideas reported in [8℄ to a generalgraph-based image pro
essing operator. The distan
e transform operator allows fast andexa
t 
omputation of the Eu
lidean distan
e transform.Clearly, image segmentation is one of the main appli
ations of the image foresting trans-formation. We 
ould present many others IFT -based obje
t de�nition operators in a single



Image Foresting Transform 3paper, and point out that there are repeated eviden
es in the literature as to how obje
tinformation improves image �ltering [10℄, interpolation [18℄, registration [14℄, et
. However,the aim of this paper is to show that IFT is more than an image segmentation operator. It
an be used to 
ompute other types of image 
ontent, su
h as distan
e transforms, geodesi
distan
es and other image/obje
t features.We present a shortest-path forest algorithm to 
ompute the IFT in Se
tion 3. Sin
e ourde�nition of path-fun
tion di�ers from the traditional sum of ar
 weights on the path, wepresent some theoreti
al results that prove the optimality of IFT in Se
tion 4. We dis
uss inSe
tion 5 the use of IFT for intera
tive image segmentation under both approa
hes, region-based and boundary-based, shape-based interpolation [18℄, watershed transformation [2℄,and geodesi
 distan
e 
omputation [12℄. Finally, we state our 
on
lusions and dis
uss ouron going resear
h on IFT in Se
tion 6.2 The Image Foresting TransformationIn this se
tion we de�ne terms and 
on
epts that are used in the rest of the work.De�nition 1 An n-dimensional m-band digital image I is a pair (I; ~f) 
onsisting of a �niten-dimensional array I of pixels and a dire
tor fun
tion ~f(p), that assigns to ea
h pixel p inI an m-dimensional s
ale-ve
tor.We 
all I an nDmB image, or simply an image. The s
ale-ve
tor ~f in I represents any�nite number of image properties. For example, in a 
olored image, ~f(p) 
an be de�ned asa 6-tuple where the entries are the values of red, green, blue, and their respe
tive gradientmagnitudes at pixel p.De�nition 2 Let the 
oordinates at the 
enter of a pixel be an n-tuple of integers in Zn.We de�ne an adja
en
y relation � in Zn by 
onsidering all pairs of pixels (p; q) 2 I � Isatisfying d(p; q) � R, where d is the Eu
lidean distan
e between p and q, and R is theadja
en
y radius. In other words, an adja
en
y relation � a

ounts for the � 
losest pixelsto p in Zn.Figure 2 illustrates three types of adja
en
y relations for a 2-dimensional image. InFigures 2a and 2b, the adja
en
y relation a

ounts for the four (R = 1) and eight (R = p2)
losest neighbors of a pixel, respe
tively. The adja
en
y relation showed in Figure 2
 is less
ommon. It takes into a

ount the twenty 
losest neighbors (R = p5) of a pixel. Theadja
en
y relation is then a way of de�ning lo
al 
onne
tivity between pairs of pixels. Insome appli
ations, however, we may want to make all pixels in the image adja
ent to ea
hother.De�nition 3 An annotated image is an image together with an asso
iated shortest-pathforest.De�nition 4 The Image Foresting Transformation (IFT ) is a sequen
e of two 
onse
utivemappings I! G! Ia, where G is a graph de�ned in I and Ia is an annotated image of I.



4 A.X. Fal
~ao, R.A. Lotufo, G. AraujoGeneri
ally, we think of I = (I; ~f ) as a weighted and oriented graph G, where the pixelsin I are the nodes of the graph and ea
h ordered pair (p; q) of �-adja
ent pixels in G de�nesan ar
. Figure 3a shows a 2-dimensional example of G for � = 4.De�nition 5 We de�ne w(p; q) a weight fun
tion that assigns a non-negative weight toea
h ar
 (p; q) in G, 
orresponding to the penalty to go from p to q.Given a family R = fR1; R2; : : : ; RKg of K root sets (i.e. pixel sets) in G, we assignthe same label i to all roots in Ri 2 R, i = 1; 2; : : : ;K. From ea
h pixel r 2 Ri, we want togrow a tree rooted at r by propagating label i to all its nodes, su
h that ea
h node in G isassigned to only one tree. This pro
ess is based on the 
on
ept of path-fun
tion pf de�nedas follows.De�nition 6 Let < p1; p2; : : : ; pl > be the path from a root p1 to a pixel pl in G. Afun
tion pf(p1; pl) is a path-fun
tion if its domain is the set of ordered nodes on the path andpf(p1; pl) = F(w(p1; p2); : : : ;w(pl�1; pl)), for some non-negative non-de
reasing fun
tionF . If pf is de�ned as: l�1Xi=1w(pi; pi+1); (1)the pro
ess des
ribed above outputs a shortest-path forest as proposed by Dial [5℄. However,the restri
tion of de�ning pf as a non-negative non-de
reasing fun
tion is suÆ
ient to outputa shortest-path forest in G and we will prove that in Se
tion 4. For the time being, weshould just keep in mind that there are appli
ations whi
h require other types of non-negative non-de
reasing path-fun
tions.The path-fun
tion pf(r; p) represents a penalty to go from a root r to a node p in G.Our aim is to assign p to the tree rooted at r, where pf(r; p) is minimum. At the end, allnodes in the forest whose trees are rooted at the nodes in Ri are labeled i. We will have Kshortest-path forests inG, or simply a shortest-path forest. Figure 3b shows a 2-dimensionalexample of a shortest-path forest in the graph shown in Figure 3a for pf as in Equation 1and R = ffag; ff; ggg. The label of ea
h root in R is propagated to ea
h node in G. Thelabel and the path-fun
tion value for ea
h node are shown in Figure 3b.Let Kr be the total number of roots ri 2 R. Note that, ea
h shortest-path tree Ti,rooted at ri, i = 1; 2; : : : ;Kr is a 
onne
ted 
omponent in I and the IFT 
omputes anoptimum partition of I with Kr 
onne
ted 
omponents where:KrXi=1 X8p2Tipf(ri; p) (2)is minimum. In Figure 3b, for example, this pro
ess results two 
onne
ted 
omponentswith label 2 and another 
omponent with label 1 forming an image partition with minimumpenalty 21 a

ording to Equation 2.



Image Foresting Transform 5At the end, an nD(m + 3)B annotated image Ia = (Ia; ~fa) is 
reated, where I = Iaand ~fa is an extension of the dire
tor fun
tion ~f that in
ludes three new information forea
h pixel: a label that indi
ates its 
onne
ted 
omponent within the image, the parent ofthe pixel in the forest that leads the pixel to its 
orresponding root, and a path-fun
tionvalue that represents some global measurement for the underlying problem (see Figure 3b).These three new image properties des
ribe the resulting forest and then the IFT 
an bewritten as: Ia = IFT (I; �;w;R;pf ): (3)At this point one 
an 
on
lude that, to transform an image into a graph, we just need tothink of pixels as nodes and use an adja
en
y relation to de�ne the ar
s. However, di�erentadja
en
y relations will lead us to di�erent graphs that represent the same image. Thus,what graph representation should we use for a given problem? The parameters of the IFTare always the same, but their meaning and value 
hange for di�erent problems. Then, howshould we 
hoose them? Finally, how 
an we use this formulation to solve image pro
essingproblems?Sin
e the answers to the questions above depend on the underlying image pro
essingoperation, we will address them in the next se
tions by using three examples: region growing,edge dete
tion, and Eu
lidean distan
e transform. In ea
h example, we will be interested inone of the three new information 
reated by the IFT . For region growing, we are interestedin the labels assigned to ea
h pixel. For edge dete
tion, we are interested in paths betweenpixels, whi
h are obtained based on the information about the parent of ea
h pixel in theshortest-path forest. For distan
e transform, we are interested in the path-fun
tion valueassigned to ea
h pixel. We expe
t the reader will be able to extend the IFT 
on
epts toother examples afterwards.2.1 Region growingImages keep lo
al properties between adja
ent pixels that 
an be measured by 
omputerswith no problem. Unfortunately, the image 
ontent from the view point of the users is global.Users understand an image as a 
olle
tion of regions where the similarity among pixels withinthe same region is high, a

ording to some set of image properties (e.g. brightness, 
olor,texture), and low between di�erent regions. They also understand that groups of regionsform obje
ts in the image. Su
h global properties are mu
h more diÆ
ult to be measuredby 
omputers without human help. This is probably the main motivation for intera
tiveimage segmentation.In this se
tion, we show how to exploit lo
al and global similarities between pairs ofpixels to �nd high similarity regions in the image. In se
tion 5, we show how to use thisresult to build region-based obje
t de�nition operators.2.1.1 From image to graphThe goal of this se
tion is to de�ne arguments � and w from Equation 3, su
h that thegraph 
onstru
ted by the IFT operator 
an be used to solve the region growing problem.



6 A.X. Fal
~ao, R.A. Lotufo, G. AraujoFor region growing, we think of an image I = (I; ~f) as a weighted and non-oriented graphG, where the pixels in I are the nodes of the graph and ea
h pair (p; q) of �-adja
ent pixelsde�nes a non-oriented ar
 in G. We 
hoose w(p; q) as a non-negative fun
tion of ~f(p) and~f(q), whi
h is proportional to the degree of dissimilarity between p and q. Three examplesof w(p; q) are: j~f(p)� ~f(q)j; (4)k1exp(�(g(p; q) � k2)2=k3); (5)mXx=1 jfx(p)� fx(q)j=m; (6)where g(p; q) = max8x jfx(t) + 2fx(p) + fx(v)� fx(u)� 2fx(q)� fx(w)j=4 is 
omputed basedon a lo
al neighborhood of (p; q) (see Figure 4), fx is the x-th 
omponent of the m-dimensional s
ale-ve
tor ~f , and k1, k2, and k3 are positive numbers.Note that, one 
an think in various other fun
tions, they will output di�erent weightedgraphs, and 
onsequently, they provide di�erent IFT results. We have not investigatedyet the variety of 
ombinations involving di�erent image properties and weight fun
tionsfor region growing. However, the weight fun
tion des
ribed in Equation 5 usually leadsto better results than linear fun
tions. It is less sensitive to noise and emphasizes betterregion boundaries with values of g 
lose to k2 (i.e. assigns higher weights to ar
s (p; q)whose g(p; q) is 
lose to k2).The adja
en
y relation � seems to have less in
uen
e on the result of region growingoperations, but it is very important to guarantee 
orre
t results in other situations. Anexample is the 
orre
t 
omputation of the Eu
lidean distan
e transform, as we will see inSe
tion 3.2.1.2 From graph to annotated imageIn the previous se
tion we determined arguments � and w that are used by IFT to redu
eregion growing to an equivalent shortest-path forest problem. In this se
tion we de�nethe other two arguments in Equation 3, i.e. R and pf , whi
h are then used to solve theequivalent shortest-path forest problem.Figure 5a shows a gray-s
ale display of a 2D3B image whose ~f is 
omposed by the main
omponents, red, green, and blue. Suppose we want to dete
t the big dark pepper on thetop of this �gure. Then we should have at least a root inside it (with label 1, for example)and another root outside (with label 2). The roots sele
ted inside it are represented by whitelines in Figure 5a, while bla
k lines represent the roots sele
ted outside. Roots sele
tion
an be manual or automati
, depending on our knowledge about the problem. In this 
ase,we are using manual sele
tion.For region growing, we de�ne the path-fun
tion pf asmax8i2f1;2;:::;l�1gfw(pi; pi+1)g; (7)sin
e the result of IFT , when using this de�nition for pf , mat
hes the user expe
tation



Image Foresting Transform 7mu
h better than if Equation 1 is used. Nevertheless, there may be other fun
tions betterthan this.Figures 5b and 
 show the weight fun
tion at the horizontal and verti
al ar
s, using� = 4, and w as in Equation 5. Here, brightness is inversely proportional to the weightassigned to ea
h ar
. Figure 5d shows the result of extra
ting the big dark pepper byregion growing using pf as in Equation 7. In this 
ase, we are assuming the values of g (inEquation 5) along the pepper's boundary are 
lose to k2 = 100.Alternatively, we 
ould have set lower weights to ar
s whose pixels have average 
olor
lose to red, and higher weights elsewhere. Sin
e the big dark pepper in Figure 5a is red inthe original image.In region growing, we say that a pixel is assigned to its most similar root in R, takinginto a

ount all possible paths from all roots in R. That is, when we de
ide that a pixelp belongs to the same tree rooted at r, our de
ision is taking into a

ount not only thelo
al dissimilarity between �-adja
ent pixels, but also the dissimilarity between ea
h pair of�-adja
ent pixels in the shortest-path from r to p. Therefore, the path-fun
tion value is aglobal dissimilarity measure in the image.2.2 Edge dete
tionGiven a pair of pixels (p; q) on the boundary of an obje
t in I, we 
an de�ne an edge as a\
onne
ted" and \oriented" 
urve from p to q made up of �-adja
ent pixels on the boundaryof the obje
t.2.2.1 From image to graphAs before, in this se
tion we spe
ify the IFT arguments � and w, that are required to buildthe graph formulation for the edge dete
tion problem. For edge dete
tion, we think of animage I = (I; ~f) as a weighted and oriented graph G, where the pixels in I are the nodesof the graph and ea
h pair (p; q) of �-adja
ent pixels de�nes an oriented ar
, from p to q,in G. We 
hoose w(p; q) as a non-negative fun
tion of ~f(p) and ~f(q), whi
h represents the
ost of 
onsidering (p; q) as an edge element.As an example, the weight fun
tion w(p; q) 
an be de�ned ask1(1� exp(�(g(p; q) � k2)2=k3)); (8)where g(p; q) = max8x (fx(t) + fx(u)� fx(v)� fx(w))=2 is 
omputed using the neighbor-hood of (p; q) shown in Figure 6, fx is the x-th 
omponent of them-dimensional s
ale-ve
tor~f , k1 and k3 are positive numbers, and k2 is a real number. If we wish to dete
t edge el-ements su
h that the gradient ve
tor ~g(p; q) points to the right side of (p; q), as shown inFigure 6, we should 
hoose k2 a negative number. That is, we assign lower weights to edgeelements whose values of g are 
lose to k2. This will favor to dete
t edges with 
lo
kwiseorientation around the obje
t of interest [8℄.Analogous to region growing, there are many ways of de�ning weight fun
tions thatlead to di�erent IFT results. The work reported in [8℄ provides several examples of imageproperties, weight fun
tions, and training to dete
t 2-dimensional 
losed, 
onne
ted and
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~ao, R.A. Lotufo, G. Araujooriented boundaries in medi
al images. These te
hniques, together with the general frame-work enabled by the IFT operator, 
ould be a start point to further investigate weightfun
tions amenable to region growing and edge dete
tion.2.2.2 From graph to annotated imageTo dete
t an edge between two spe
i�ed pixels p and q on the boundary of an obje
t, wesele
t p as a root, the path-fun
tion pf as in Equation 1, and 
ompute a forest in G of onetree rooted at p. Note that in this 
ase R = ffpgg. At the end, the path from p to q willbe the shortest-path and its path-fun
tion value will represent the minimum 
ost value of
onsidering this path an edge. Although both path-fun
tions, suggested in Equations 1 and7, result an optimum edge between p and q, Equation 1 gives the best pra
ti
al solution foredge dete
tion.Figure 7a shows a 2D1B image of a wrist obtained by magneti
 resonan
e (MR). Sin
eit is a gray-level image, we 
an de�ne f1 as brightness in Equation 8. Figures 7b and 
show the average between the weight values assigned to up- and right-oriented ar
s, andto down- and left-oriented ar
s, respe
tively, for � = 4 and w as in Equation 8. Here,brightness is dire
tly proportional to weight. Figure 7d shows a 
lo
kwise oriented edge
omputed, using pf(r; p) as in Equation 1, where r is a root and p a pixel sele
ted on theboundary of the wrist. Among all possible paths within the image, there are two promisingedges between the two points r and p sele
ted on the wrist's boundary. The IFT -basededge dete
tion takes the longer one, be
ause it is a 
lo
kwise oriented edge. Orientationis a powerful information that should be 
onsidered during the design of boundary-basedobje
t de�nition operators.Coming ba
k to Figure 5a, we 
ould also use Equation 8 to dete
t 
lo
kwise orientededges on the boundary of the long bright pepper on the left side of this �gure. But thesame is not valid for the big dark pepper on the top of Figure 5a, be
ause the dire
tion of ~g
hanges along its boundary. Unless, we assign lower weights to edge elements whose 
oloron the right side is 
lose to red, and higher weights elsewhere. In 
on
lusion, we betterde�ne G as a weighted and non-oriented graph for edge dete
tion, if it is impossible tomodel the boundary orientation information.2.3 Distan
e transformDistan
e transform is a powerful transformation that assigns to obje
t pixels in a binaryimage their distan
e to the ba
kground pixels. Figure 8a shows the Eu
lidean distan
etransform on a binary image, where the values assigned to ea
h pixel are the squareddistan
e values. Distan
e transform has several appli
ations, su
h as skeletons, dilation,erosion, 
lassi�
ation, interpolation, et
. However, despite the Eu
lidean distan
e be themost natural metri
 for those appli
ations, the diÆ
ulty to implement eÆ
ient algorithmshas 
ondu
ted resear
hes to other metri
s, su
h as Chanfer, 
hessboard, and 
ity-blo
k.The IFT 
an be used to 
ompute the distan
e transform with di�erent metri
s. Wehave 
hosen the Eu
lidean distan
e transform in this se
tion.



Image Foresting Transform 92.3.1 From image to graphFor distan
e transform, we think of a binary image as a weighted and non-oriented graphG, where the pixels are the nodes of the graph and ea
h pair (p; q) of �-adja
ent pixelsde�nes a non-oriented ar
 inG. As we will see in Se
tion 3, the 
orre
tness of our Eu
lideandistan
e operator requires a spe
ial 
are in 
hoosing �. For the time being, let's just assume� equal to 8 in the 2-dimensional 
ase. The weight fun
tion w(p; q) is de�ned as:jd(r; p) � d(r; q)j; (9)where r is a ba
kground pixel and d is the squared Eu
lidean distan
e value. Sin
e the weightfun
tion depends on a ba
kground pixel, the weight assigned to (p; q) may be di�erent fordi�erent ba
kground pixels. Figure 8b illustrates this situation for two ba
kground pixelsr1 and r2. In this 
ase, w(p; q) = 3 based on r1 and w(p; q) = 1 based on r2. Then whi
hone should we use? The answer to this question is underway.2.3.2 From graph to annotated imageWe de�ne the roots in R as the �rst layer of ba
kground pixels (see Figure 8a), su
h thatK is the number of pixels in this layer and ea
h Ri, i = 1; 2; : : : ;K, has one of thesepixels. Note that, only one of these roots will be the ba
kground pixel taken into a

ountto 
ompute w(p; q) in Equation 9. By 
onsidering the possible displa
ement ve
tors from pto q, for � = 8, the weight fun
tion w(p; q) is represented as one of three ve
tors of positivein
rements (dx(p; q); dy(p; q)): (0; 1), (1; 0), or (1; 1) (see Figure 9a). Thus the path-fun
tionpf is de�ned as: (l�1Xi=1 dx(pi; pi+1))2 + (l�1Xi=1 dy(pi; pi+1))2: (10)Therefore, all we have to do is to a

umulate the displa
ements dx and dy in the pathfrom a root p1 to a node pl in order to evaluate at any time the path-fun
tion value atpl using Equation 10. Figure 9b shows two paths from a root p1 to a node p4 with thea

umulated displa
ements to ea
h node. Note that, the path < p1; p2; p3; p4 > wherepf(p1; p4) = 10 is the one with the 
orre
t Eu
lidean distan
e. This is not the uniquepath, but the 
orre
t Eu
lidean distan
e is always obtained by �nding a path where pf isminimum, and this is what the IFT does.3 AlgorithmIFT algorithmInput: An nDmB image I; an adja
en
y relation � in Zn; a non-negative weight fun
tionw between �-adja
ent pixels; a family R of labeled root sets; a non-negative non-de
reasingpath-fun
tion pf .Output: An nD(m+ 3)B annotated image Ia.
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~ao, R.A. Lotufo, G. AraujoAuxiliary Data Stru
tures: An nD array lb with the 
urrent label k of ea
h pixel; an nDarray pf with the 
urrent path-fun
tion value of ea
h pixel; an nD array d indi
ating forea
h pixel, its 
urrent parent in the forest; a priority queue Q of pixels; a list L of pixelswhi
h have already been pro
essed.begin1. set pf(p) to 1, lb(p) to 0, and d(p) to nil for all pixels p 2 I;2. set pf(r) to 0 and lb(r) to its 
orresponding label for all labeled roots r 2 R, andput r in Q;3. while Q is not empty doa. remove a pixel p from Q su
h that pf(p) = minp02Qfpf(p0)g, and put p in L;b. for ea
h pixel q, su
h that (p; q) are �-adja
ent pixels and q 62 L do(i) 
ompute tmp based on pf(p) and w(p; q), representing the path-fun
tionvalue to rea
h q passing through p;(ii) if tmp < pf(q) thena. set pf(q) to tmp, lb(q) to lb(p), d(q) to p;b. if q 62 Q then insert q in Q else update position of q in Q;endif;endfor;endwhile;endAt the end, the three new bands in the annotated image Ia 
ontains the values of thenD arrays lb, pf , and d, that represent the resulting forest.There are some important observations about the implementation of the IFT algorithm.Clearly, the bottlene
k of the IFT algorithm is in maintaining the priority queue Q.Usually, we implement Q as a binary heap whi
h should be suÆ
ient to guarantee theeÆ
ien
y of the IFT in most appli
ations. However, one 
an also take advantage of other
lever solutions that exist in the literature of network 
ows [1℄. For example, in situationswe have 
ontrol over the maximum weight assigned to an ar
 in G, Q 
an be maintained inlinear time if we de�ne it as in the Dial's implementation of the Dijkstra's algorithm. We
an adopt this implementation of Q for all operators des
ribed in this paper (see [7℄).Sin
e the minimum path-fun
tion value at a pixel is not unique, it is desirable to im-plement the priority queue Q with a �rst in �rst out restri
tion for pixels with the samepath-fun
tion value. For region growing, for example, if we have roots within a region of
onstant path-fun
tion value, a pixel will be assigned to the 
losest root in Zn.An observation must be made as regarding to the 
orre
tness of the Eu
lidean distan
etransform using the IFT algorithm. For Eu
lidean distan
e transform, the su

ess of theIFT 
an only be guaranteed if all roots in R have a

ess to all pixels in I. Suppose, for



Image Foresting Transform 11example, � = 4, a pixel p and its 4-adja
ent pixels pi, i = 1; 2; 3; 4, and three roots rj ,j = 1; 2; 3, as shown in Figure 10. The roots rj , j = 1; 2; 3 are equidistant to pi, i = 1; 2.That is, pf(rj ; pi) = 41, i = 1; 2, j = 1; 2; 3, by Equation 10. Then, suppose p1 is rea
hedby r3 and p2 is rea
hed by r2 before r1 rea
hes them. A

ording to line 3.b.(ii) of ouralgorithm, the path-fun
tion values in p1 and p2 are not updated by the time r1 rea
hesthem. Therefore, p will be rea
hed by either r2 or r3 with path-fun
tion value equal to 52.However, r1 is its 
losest root with path-fun
tion value equal to 50. This does not happenfor � = 8, but it is possible to �nd out other 
ases where the exa
t Eu
lidean distan
etransform does not work for � = 8 [4℄. In our method, we just have to set the value of� = 8, as suggested by [4℄, as a fun
tion of the maximum Eu
lidean distan
e in the imageand the IFT will output the exa
t Eu
lidean distan
e transform.Note that, the IFT algorithm 
omputes Eu
lidean distan
e values for pixels inside andoutside the obje
t, simultaneously. This is an advantage in some appli
ations as we will seein Se
tion 5. Alternatively, the Eu
lidean distan
e 
omputation 
an be restri
ted into theobje
t by inserting ba
kground pixels in the list L beforehand.4 The optimality of the IFTFor the edge dete
tion operator, we have de�ned R with a single set R1 with a single root rand pf as in Equation 1. In this 
ase, the IFT algorithm be
omes the well known Dijkstra'salgorithm [3℄ and the output forest 
ontains a single shortest-path tree. By de�ning multipleroots in R and the same path-fun
tion as in Equation 1, the IFT algorithm be
omes theDial's algorithm [5℄, whi
h results a shortest-path forest. In this paper, we have extended theunderlying 
on
epts of the Dial's algorithm to 
laim that a shortest-path forest is guaranteedfor any non-negative non-de
reasing path-fun
tion pf . This is proved as follows.Lemma 1 Any non-negative non-de
reasing path-fun
tion pf in the IFT algorithm 
an betransformed into a Dijkstra's shortest-path fun
tion as de�ned in Equation 1.Proof 1 Let p 6= r be a pixel, r a root, and path-fun
tion pf(r; p) the shortest-path estimatefor path r ; p. In the IFT algorithm, the only pla
e the shortest-path estimate is updatedis on line 3.b.(ii). This operation aims at relaxing 
onstraint pf(r; pi+1) � pf(r; pi) +w0(pi; pi+1), for some w0(pi; pi+1), by assigning a smaller value tmp to pf(r; pi+1). Giventhat this 
onstraint is an invariant for the whole exe
ution of the algorithm, we have at anytime after the start of exe
ution pf(r; pi+1) = pf(r; pi) + w0(pi; pi+1), for some node pi+1adja
ent to pi. If pf(r; pi) is a non-negative non-de
reasing path-fun
tion, then pf(r; pi+1)�pf(r; pi) � 0 is an invariant and thus w0(pi; pi+1) � 0 for all ar
s in G.Theorem 1 If pf is de�ned as a non-negative non-de
reasing path fun
tion, then the IFTalgorithm generates a shortest-path forest where ea
h tree has a root in R.Proof 2 First, we 
an 
reate an arti�
ial node a in G with one ar
 to ea
h root r 2 Rand assign weight w(a; r) = 0. We 
onsider a as the only root in the IFT algorithm.By Lemma 1, any non-negative non-de
reasing path-fun
tion 
an be transformed into a
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tion in the IFT algorithm. Then, the IFT algorithm run froma results the a shortest-path tree as in Dijkstra's algorithm. If we remove a from this tree,the result is a shortest-path forest where ea
h tree has a root in R.Note that, by Theorem 1, the region growing and the Eu
lidean distan
e transformoperators 
ompute an optimum partition of I (i.e. a shortest-path forest in G) a

ordingto Equation 2, where the path-fun
tion pf is given by Equations 7 and 10, respe
tively.5 ResultsIn this se
tion, we dis
uss the use of the IFT for intera
tive image segmentation, shape-based interpolation, watershed transformation, and geodesi
 distan
e 
omputation.5.1 Intera
tive image segmentationThere are many segmentation tasks that require extensive user's help. In video 
omposition,for example, a skilled user is often required to manually extra
t obje
ts from an arbitraryba
kground of a video sequen
e and in
lude them in another sequen
e. This is an ina

urateand impre
ise task that usually takes half of the total time for video produ
tion. In medi
alimaging, one 
an �nd many other examples of how laborious 
an be user assistan
e in imagesegmentation.Image segmentation 
onsists of two tightly 
oupled tasks - re
ognition and delineation.Re
ognition is the pro
ess of identifying roughly the whereabouts of a parti
ular obje
tin the image and delineation is the pro
ess of spe
ifying the pre
ise spatial extent of thisobje
t. While 
omputer algorithms are very e�e
tive in obje
t delineation, the absen
eof relevant global obje
t-related knowledge is the main reason for their failure in obje
tre
ognition. On the other hand, a simple user assistan
e in obje
t re
ognition is oftensuÆ
ient to 
omplement this de�
ien
y and to 
omplete the segmentation pro
ess.In the next se
tions, we show two ways of exploiting the superior abilities of humanoperators (
ompared to 
omputer algorithms) in obje
t re
ognition and the superior abilitiesof 
omputer algorithms (
ompared to human operators) in obje
t delineation to developeÆ
ient intera
tive image segmentation methods.5.1.1 Boundary-based obje
t de�nitionIn the past, we have presented four user-steered image segmentation paradigms forboundary-based obje
t de�nition: live wire, live lane, 3D live wire, and live-wire-on-the-
y [8, 6, 7℄. They represent di�erent ways of using the IFT -based edge dete
tion operator,and so di�erent implementations. Their eÆ
ien
y has been proven in several medi
al appli-
ations [24, 11, 22, 19℄. We have also used the live-wire-on-the-
y segmentation paradigmin digital video pro
essing appli
ations. In this se
tion, this segmentation paradigm isdes
ribed under the IFT framework.In live-wire-on-the-
y [7℄, a 2-dimensional boundary is a 
losed, 
onne
ted, and oriented
ontour made up of oriented pixel edges. In fa
t, the graph G is a little di�erent from what
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ribed here. The pixel verti
es are the nodes of G and ea
h oriented pixel edgede�nes an ar
 in G. Sin
e this is an implementation detail, we des
ribe the method usingthe standard notation of the IFT for edge dete
tion. Therefore, we say that a 2-dimensionalboundary is a 
losed, 
onne
ted, and oriented 
ontour made up of edges, where ea
h edgeis a shortest-path in G made up of oriented ar
s between pairs of �-adja
ent pixels (� = 4or 8, where � = 8 output smoother boundaries).To de�ne a 2-dimensional obje
t, the user �rst sele
ts an initial point on the boundaryof the obje
t. For any subsequent point indi
ated by the 
ursor, an optimum edge fromthe initial point to the 
urrent point is found via IFT and displayed in real time (seeFigure 11a). The user thus has a live wire on hand whi
h is moved by moving the 
ursor. Ifthe 
ursor goes 
lose to the boundary, the live wire snaps onto the boundary (Figure 11b).At this point, if the live wire des
ribes the obje
t edge appropriately, the user deposits the
ursor whi
h now be
omes the new starting point (Figure 11
) and the pro
ess 
ontinuesthis way until a 
lose operation is requested by the user (Figure 11d).Note that, obje
t re
ognition is up to the user who sele
ts points on the obje
t's bound-ary and/or pla
es the 
ursor 
lose to the boundary while obje
t delineation is 
omputed byIFT .5.1.2 Region-based obje
t de�nitionIn this se
tion, we present a new intera
tive image segmentation paradigm for region-basedobje
t de�nition. This method represents one way of using the IFT -based region growingoperator.To de�ne an obje
t, the user draws roots with the same label inside the obje
t (white linein Figure 12a) and roots with a di�erent label in the ba
kground (bla
k line in Figure 12a).The IFT propagates the labels splitting the image into two parts. The �rst part is 
omposedby pixels whi
h are more 
onne
ted to the white roots (obje
t) than to the bla
k ones(ba
kground), and the other way around for the se
ond part. The user veri�es the resultof this optimum image partitioning as shown in Figure 12b. By adding (or deleting) newroots inside (or outside) the obje
t, the user 
an improve the previous results toward the
omplete obje
t extra
tion (Figures 12
-f).Again, obje
t re
ognition is done by the user who draws roots inside and outside theobje
t while obje
t delineation is 
omputed by IFT .Note that, one 
an 
hoose more than two labels to de�ne multiple obje
ts simultaneously.Moreover, the 
omputation time of the IFT algorithm is about the same for di�erentnumber of roots.5.2 Shape-based interpolationThree dimensional data 
reated by tomographi
 medi
al imaging devi
es are usually pre-sented as a sequen
e of 2D1B gray-level images (i.e. sli
es). The distan
e between the sli
esis typi
ally greater than the distan
e between the pixels within the sli
es. An interpola-tion te
hnique is often applied to 
onvert the data into an isotropi
 volume with the sameresolution in all three dimensions. With this aim, Raya and Udupa [18℄ have introdu
ed
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h 
an be applied to segmented binary images. The mainadvantage of this approa
h is in situations where the user has to segment the obje
t inter-a
tively in a sli
e-by-sli
e fashion. Interpolation before segmentation would make the user'stask even more diÆ
ult.In shape-based interpolation, ea
h binary sli
e is 
onverted into a gray-level image,in whi
h the gray value approximates the distan
e of the pixel to the nearest point on theboundary of the obje
t. Positive values are assigned to pixels within the obje
t and negativevalues to pixels outside. The intermediate binary sli
es are estimated by interpolating thedistan
es and thresholding the result at zero.Distan
e transform is often used to 
onvert ea
h binary sli
e into a gray-level image. Thetraditional approa
h is to invert the binary sli
es and 
ombine both distan
e transforms forobje
t and ba
kground. The usual metri
 is Chanfer's distan
e. A better approa
h 
ertainlyis to 
ompute the Eu
lidean distan
e values inside and outside the obje
t at same time. Thisis what the IFT algorithm, as presented in Se
tion 3, does. The values inside 
orrespondto the Eu
lidean distan
e transform for the obje
t and the values outside 
an be shifted to
orrespond the values of the Eu
lidean distan
e for the ba
kground.Note that, shape-based interpolation is one example where two IFT operators, onefor segmentation and the other for distan
e transform, are 
as
aded to build an imagepro
essing operation.5.3 Watershed transformationThe watershed transformation [2℄ is a paradigm in morphologi
al image segmentation. Itis usually 
omputed on gradient images from sele
ted markers. When the markers are theregional minima of the gradient image, an over-segmentation problem appears due to thelarge number of markers. To over
ome this problem, a redu
ed number of markers should besele
ted inside and outside the obje
t. In situations where the markers are not the regionalminima, the homotopy of the gradient image should be 
hanged to impose the sele
tedmarkers as the only regional minima. In [13℄, we showed that the watershed transformationis a parti
ular 
ase of the IFT , and in the IFT framework, there is no need to 
hangethe homotopy of the gradient image for arbitrary markers. In this se
tion, we present thisresult by des
ribing the watershed transformation in the IFT framework.To 
ompute the watershed transform, we think of an image as a weighted and orientedgraph, where the pixels are the nodes of the graph and ea
h pair of �-adja
ent pixels de�nesan oriented ar
. We 
hoose w(p; q) su
h that the weight assigned to ea
h ar
 (p; q) is themorphologi
al gradient g(q) 
omputed at q. That is, all in
oming ar
s to a pixel q havethe same weight value g(q) (see Figure 13). Now, we de�ne the path-fun
tion pf as inEquation 7. In this 
ase, the IFT is equivalent to the the watershed transform with the
hange of homotopy [13℄. If the markers (i.e. labeled roots) are sele
ted at the regionalminima of the gradient image, the ar
 with the greatest weight along the shortest-path (asde�ned by Equation 7) will always be the last ar
. In this 
ase, the position of a pixel willnever be updated in the priority queue of the IFT algorithm (see Se
tion 3), and then, it
an be redu
ed to the watershed algorithm using an ordered queue.
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 distan
eThe geodesi
 distan
e transform has played an important role in the design of morphologi
aloperators [12℄. Examples of appli
ations are the geodesi
 skeleton by in
uen
e zones andinterpolation from 
ontour lines. In this se
tion, we des
ribe the geodesi
 distan
e transformunder the IFT framework.Figure 14 shows two examples in a binary image where we wish to 
ompute the geodesi
distan
e between two pixels A and B. For that, we think of this image as an non-orientedgraph G, where the pixels are the nodes of the graph and ea
h pair (p; q) of 8-adja
entpixels de�nes a non-oriented ar
 in G. We assign w(p; q) = 1 to all ar
s, 
hoose A as theonly root in R = ffAgg, and pf as in Equation 1. By inserting ba
kground pixels in thelist L beforehand (see Se
tion 3), a geodesi
 path from A to B is 
omputed via the IFTalgorithm (see solid line in Figure 14). There are multiple paths, but all of them with thesame geodesi
 distan
e represented by the �nal path-fun
tion value at B.Note that, the geodesi
 path is being de�ned here based on the 
hessboard metri
. Its
omputation based on the IFT is very eÆ
ient. Figure 14 also shows the geodesi
 pathfrom A to B (dashed line) based on the Eu
lidean distan
e. In this 
ase, the appropriateIFT -based formulation has not be found yet.6 Con
lusionsWe have introdu
ed the image foresting transformation as a general approa
h to the de-sign of image pro
essing operators. There are some important 
hara
teristi
s of IFT thatsupport this 
laim: (a) It is general enough to enable eÆ
ient solutions to a broad 
lassof appli
ations; (b) It hides the implementation details of the underlying graph algorithmsinto a single fun
tion, leaving the designer free to 
on
entrate on the fun
tion argumentsthat are spe
i�
 to his(her) problem; (
) All image operators based on IFT 
an bene�tfrom the most eÆ
ient graph-sear
h algorithm available today, and any 
hanges in su
halgorithm do not a�e
t the other parts of the appli
ation that are spe
i�
 to the problem.The 
entral idea of IFT is to translate an image pro
essing problem into a shortest-pathforest problem. We have des
ribed the IFT for region growing, edge dete
tion, Eu
lideandistan
e transform, geodesi
 distan
e 
omputation, and watershed transformation. All theoperators are eÆ
iently 
omputed using the same IFT algorithm based on the same set ofparameters by 
hanging only their meaning and values. We have presented a new intera
tiveimage segmentation paradigm based on the region growing operator and an eÆ
ient solutionto 
ompute the exa
t Eu
lidean distan
e transform.Currently, we are pursuing the development of intera
tive image segmentation algo-rithms based on IFT and investigating the iterative use of IFT for multis
ale image seg-mentation problems. Our goal is to design eÆ
ient indexing te
hniques for 
ontent-basedimage retrieval.
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I’I IFT OperatorFigure 1: A s
heme of a generi
 image operator based on the image foresting transformation(IFT ).

(c)(a) (b)Figure 2: Three examples of adja
en
y relations for 2-dimensional images. (a) � = 4, (b)� = 8, and (
) � = 20.
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Figure 3: A 2-dimensional example. (a) The graph G for � = 4 and (b) a forest in G
reated from the roots in R = ffag; ff; ggg using pf as in Equation 1.
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Figure 4: A lo
al neighborhood of two 4-adja
ent pixels p and q that we use to 
omputew(p; q) based on Equation 5.
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(a) (b)

(
) (d)Figure 5: Region growing by IFT . (a) Gray-s
ale display of a 2D3B 
olored image. Theroots sele
ted inside the big dark pepper on the top are represented by white lines, whilebla
k lines represent the roots sele
ted outside. (b) and (
) The weight fun
tion at thehorizontal and verti
al ar
s, respe
tively, by using � = 4, and w as in Equation 5. Herebrightness is inversely proportional to the weight assigned to ea
h ar
. (d) The result ofextra
ting the big dark pepper using pf as in Equation 7.
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t u

wv

p q

gFigure 6: A lo
al neighborhood of two 4-adja
ent pixels p and q that we use to 
omputew(p; q) in Equation 8, where ~g(p; q) points to the right side of (p; q).

(a) (b)
(
) (d)Figure 7: (a) A 2D1B MR image of a wrist. (b) and (
) The average between the weightvalues assigned to up- and right-oriented ar
s, and to down- and left-oriented ar
s, respe
-tively, for � = 4 and w as in Equation 8. Here brightness is dire
tly proportional to weight.(d) A 
lo
kwise oriented edge 
omputed using pf(r; p) as in Equation 1 where r is a rootand p a pixel both sele
ted on the boundary of the wrist.
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Figure 8: (a) The Eu
lidean distan
e transform on a binary image, where the values assignedto ea
h pixel are the squared distan
e values. (b) The weight assigned to an ar
 (p; q) maybe di�erent for di�erent ba
kground pixels.
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(b)Figure 9: (a) A ve
torial representation for w(p; q) as one of three in
rement ve
tors(dx(p; q); dy(p; q)): (0; 1), (1; 0), and (1; 1). (b) Two paths from a root p1 to a node p4with the a

umulated displa
ements to ea
h node. Note that, the path < p1; p2; p3; p4 >with pf(p1; p4) = 10 is the one with the 
orre
t Eu
lidean distan
e.
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Figure 10: A situation where the Eu
lidean distan
e transform might fail if � = 4.
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(a) (b)

(
) (d)Figure 11: A digital video frame where a tennis player is the obje
t of interest. (a) Anoptimum edge from an initial point sele
ted on the boundary to the 
urrent position ofthe 
ursor. (b) An obje
t edge is found by pla
ing the 
ursor 
lose to the boundary. (
)The delineation pro
ess after some points sele
ted on the boundary. (d) The result ofsegmentation.
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(a) (b)

(
) (d)

(
) (d)Figure 12: A digital video frame where a tennis player is the obje
t of interest. (a) Whiteline representing roots sele
ted inside the obje
t and bla
k line representing roots sele
tedin the ba
kground. (b) Result of segmentation from roots sele
ted in (a). (
) New roots areadded inside the obje
t. (d) Result of segmentation from roots sele
ted in (
). (d) Finalset of roots sele
ted inside and outside the obje
t. (e) Result of segmentation from rootssele
ted in (d).
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Figure 13: Example for � = 4 of the ar
 weight assignment to build a watershed operatorusing the IFT framework. The weight assigned to ea
h ar
 (p; q) is the morphologi
algradient g(q) 
omputed at q. That is, all in
oming ar
s to a pixel q have the same weightvalue g(q).
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A A

Geodesic by IFT Geodesic by IFT

B

Geodesic EuclideanGeodesic EuclideanFigure 14: Two examples of geodesi
 path from A to B in a binary image.


