
O
onte�udo do presente relat�orio �e de �uni
a responsabilidade do(s) autor(es).The
ontents of this report are the sole responsibility of the author(s).

High-Speed Software Multipli
ation in F 2mJulio L�opez Ri
ardo DahabRelat�orio T�e
ni
o IC{00-09
Maio de 2000

High-Speed Software Multipli
ation in F 2mJulio L�opez� Ri
ardo DahabyInstitute of ComputingState University of CampinasCampinas, 13081-970 S~ao Paulo, Brazilfjulioher,rdahabg�d

.uni
amp.brMay 22, 2000Abstra
tIn this paper we des
ribe an eÆ
ient algorithm for multipli
ation in F2m , where the�eld elements of F2m are represented in standard polynomial basis. The proposed algo-rithm
an be used in pra
ti
al software implementations of ellipti

urve
ryptography.Our timing results, on several platforms, show that the new method is signi�
antlyfaster than the \shift-and-add" method.Key words. Multipli
ation in F2m , Polynomial Basis, Ellipti
 Curve Cryptography.1 Introdu
tionEÆ
ient algorithms for multipli
ation in F2m are required to implement
ryptosystemssu
h as the DiÆe-Hellman and ellipti

urve
ryptosystems de�ned over F2m . EÆ
ientimplementation of the �eld arithmeti
 in F2m depends greatly on the parti
ular basis usedfor the �nite �eld. Two
ommon
hoi
es of bases for F2m are normal and polynomial.Normal bases seem more suitable for hardware implementations (see [1℄).In this paper we des
ribe a te
hnique for multipli
ation in the �nite �eld F2m , wherethe �eld elements are represented as binary polynomials modulo an irredu
ible binary poly-nomial of degree m. The proposed method is about 2-5 times faster than the standardmultipli
ation, and is parti
ularly useful for software implementation of ellipti

urve
ryp-tosystems over F 2m . It is based on the observation that Lim/Lee's method [6℄ (or
ombmethod [7℄), designed for exponentiation,
an be modi�ed to work in F 2m .The remainder of this paper is organized as follows. In Se
tion 2 we des
ribe the �nite�eld F 2m using a polynomial basis, along with a des
ription of the standard algorithm formultipli
ation in F 2m . A des
ription of a simple version of Lee/Lim's method and twoversions of the proposed method are des
ribed in Se
tion 3. In Se
tion 4, we present timingresults on di�erent
omputational platforms.�Institute of Computing, State University of Campinas, 13081-970 Campinas, SP, Brazil, and Dept. ofComputer S
ien
e, University of Valle, Cali, Colombia.yInstitute of Computing, State University of Campinas, 13081-970 Campinas, SP, Brazil. Resear
hpartially supported by a Pronex-Finep grant 107/97.1

High-Speed Software Multipli
ation in F 2m 22 The �nite �eld F 2m2.1 Polynomial basis representationIn this se
tion we des
ribe the �nite �eld F 2m ,
alled a
hara
teristi
 two �nite �eld or abinary �nite �eld, in terms of a polynomial basis representation. Let f(x) = xm+Pm�1i=0 fixi(where fi 2 f0; 1g, for i = 0; : : : ;m� 1) be an irredu
ible polynomial of degree m over F2;polynomial f(x) is
alled the redu
tion polynomial. A polynomial basis is spe
i�ed by aredu
tion polynomial. In su
h a representation, the bit string (am�1 : : : a1a0) is taken torepresent the polynomial am�1xm�1 + : : :+ a1x1 + a0over F 2. Thus, the �nite �eld F 2m
an be represented by the set of all polynomials of degreeless than m over F2. That is,F 2m = f(am�1 : : : a1a0) j ai 2 f0; 1gg:The �eld arithmeti
 is implemented as polynomial arithmeti
 modulo f(x). In this rep-resentation, addition and multipli
ation of a = (am�1 : : : a1a0) and b = (bm�1 : : : b1b0) areperformed as follows:� Addition: a+ b = (
m�1 : : :
1
0), where
i = (ai + bi) mod 2.� Multipli
ation:
 = a � b = (
m�1 : : :
1
0), where the polynomial
(x) =Pm�1i=0
ixi isthe remainder of the division of polynomial (Pm�1i=0 aixi) � (Pm�1i=0 bixi) by f(x). Thatis,
 = ab mod f:For eÆ
ien
y reasons, the redu
tion polynomial
an be sele
ted as a trinomial xm+xk+1,where 1 � k � m� 1 or a pentanomial xm + xk3 + xk2 + xk1 +1, where 1 < k1 < k2 < k3 <m� 1. ANSI X9.62 [2℄ spe
i�es several rules for
hoosing the redu
tion polynomial.In software implementations, we partition the bit representation of a �eld element a =(am�1 : : : a1a0) into blo
ks of the same size. Let w be the word size of a
omputer (typi
alvalues are w = 8; 16; 32; 64), and s be the number of words required to pa
k a into words.That is, s = dm=we. Then, we
an write a as an sw-bit number
onsisting of s words,where ea
h word is of length w. Thus, we
an writea = (As�1 : : : A1A0);where ea
h Ai is of length w andAi = (aiw+w�1 : : : aiw+1aiw) 2 F2w :In polynomials terms, a(x) = s�1Xi=0 Ai(x)xiw = s�1Xi=0 w�1Xj=0 aiw+jxiw+j: (1)

High-Speed Software Multipli
ation in F 2m 32.2 Re
ent methods for multipli
ation in F 2mIn re
ent years, several algorithms for software multipli
ation in F 2m have been reported;however, we are interested in te
hniques that
an be used when m is prime.1 In S
hroeppelet al. [10℄ various programming tri
ks are dis
ussed for implementing the \shift-and-add"method, a basi
 algorithm for multipli
ation in F2m . A slight variant of this method isdes
ribed by De Win et al. [11℄. In Ko�
 [5℄, a word-level Montgomery multipli
ationalgorithm in F2m is proposed. This method is signi�
antly faster than the standard methodwhenever the multipli
ation of two words of size w, ea
h one representing a polynomial inF 2w
an be performed in few
y
les. Sin
e this operation is not available in most generalpurpose pro
essors, the alternative is to use table lookup. This approa
h requires, forexample, 128 Kbytes for w = 8 and 16 Gbytes for w = 16, making it less attra
tive forpra
ti
al appli
ations. Another well known method for multipli
ation in F 2m is that ofKaratsuba (see for example [4℄).2.3 The \shift-and-add" methodIn this se
tion we des
ribe the basi
 method for
omputing
(x) = a(x) � b(x) mod f(x)in F 2m . It is analogous to the binary method for exponentiation, with the square andmultipli
ation operations being repla
ed by the SHIFT (multipli
ation of a �eld element byx) and �eld addition operations, respe
tively. Thus, the \shift-and-add" method pro
essesthe bits of polynomial a(x) from left to right, and uses the following equation to perform
 = ab mod f :
(x) = x(� � � x(xam�1b(x) + am�2b(x) mod f(x)) + � � �) + a0b(x) mod f(x):Assume that a(x) = Ps�1i=0 Aixwi, b(x) = Ps�1i=0 Bixwi, and f(x) = Ps�1i=0 Fixwi. Then thesteps of the \shift-and-add" method are given below.Algorithm 1: the \shift-and-add" method.Input: a = (As�1 : : : A0), b = (Bs�1 : : : B0), and f = (Fs�1 : : : F0):Output:
 = (Cs�1 : : : C0) = a � b mod f:1. Set k m� 1�w(s� 1);
 02. for i from s� 1 downto 0 dofor j from k downto 0 doSet
 SHIFT(
)if aiw+j = 1 then

� bif
m = 1 then

� fSet k w � 13. return (
).This algorithm requires m � 1 shift operations and m �eld additions on average, but thenumber of �eld additions
an be redu
ed by sele
ting the redu
tion polynomial f(x) as a1Many standards that in
lude ellipti

urves de�ned over F2m re
ommend for se
urity reasons, the useof binary �nite �elds with the property that m be prime.

High-Speed Software Multipli
ation in F 2m 4trinomial or a pentanomial. Observe that in this algorithm, the multipli
ation step (the
omputation of d(x) = a(x) � b(x)) and the redu
tion step (the
omputation of
(x) = d(x)mod f(x)) are integrated. Sin
e for the proposed algorithm these steps are separated, wein
lude Algorithm 2 for performing the redu
tion step. Assume that f(x) = xm + g(x),where the degree of polynomial g(x) is less than m�w.Algorithm 2: modular redu
tion.Input: a = (An�1 : : : As�1 : : : A0); and f = (Fs�1 : : : F0):Output:
 = (Cs�1 : : : C0) = a mod f1. for i from n� 1 downto s doSet d iw �mSet t Ai(x)xd � f(x) =Pw�1j=0 aiw+jxd+j � f(x)// t = (Ti : : : Ti�s0 : : : 0), where Ti = Ai //for j from i downto i� s doSet Aj Aj � Tj2. Set t Psw�1�mj=0 am+jxj � f(x)// t = (Ts�1 : : : T0) //3. for j from s� 1 downto 0 doSet Aj Aj � Tj4. return (
 (As�1 : : : A0)):Algorithm 2 works by zeroing out the most signi�
ant word of a(x) in ea
h iteration of step1. A
hosen multiple of the redu
tion polynomial f(x) is added to a(x) whi
h lowers thedegree of a(x) by w. This is possible be
ause the degree of g(x) is less than m�w. Finally,the leading sw �m bits of As�1 are
an
elled in step 3 obtaining a polynomial of degreeless than m. The number of XOR operations will depend on the weight of the redu
tionpolynomial f(x). For example, if f(x) is a pentanomial then Algorithm 2 requires at most8n XOR operations.Remark 1. The use of standard programming tri
ks su
h as separated name variables, andloop-unrolled
ode,
an be used to improve the performan
e of both Algorithms 1 and 2.See [10℄ for some suggested programming optimizations.3 Proposed methodIn this se
tion we des
ribe two versions of the new algorithm for multipli
ation in F2m . The�rst version is a straightforward extension of Lim/Lee's method, whi
h does not requireextra temporary memory. The se
ond version is based on a window te
hnique. Beforewe des
ribe the proposed algorithms, we dis
uss a simple version of Lim/Lee's method forexponentiation, using the terminology of additive groups; this will help us to understandthe extension to F2m .

High-Speed Software Multipli
ation in F 2m 5In order to
ompute the \multipli
ation" a � g (the addition of g to itself a times) wherea is an integer and g is an element of an additive group, the number a is divided into swords of size w. Then a
an be written asa = (As�1 : : : A1A0) = s�1Xi=0 Ai2wi;where ea
h Ai; 0 � i < s, has the binary representation (aiw+w�1 : : : aiw+1aiw)2: Basedon the binary representation (us�1 : : : u1u0)2 of u, 1 � u < 2s, and the group elements2wi � g; 0 � i < s� 1, de�ne the ve
tor P [u℄ of pre
omputations by the following equation:P [u℄ = us�12w(s�1) � g + us�22w(s�2) � g + � � �+ u12w � g + u0 � g:Then the multipli
ation a � g =Ps�1i=0 Ai2wi � g,
an be
omputed asa � g = w�1Xj=0 2j(s�1Xi=0 aiw+j2wi � g) = w�1Xj=0 2jP [Ij ℄; (2)where Ij = (a(s�1)w+j : : : aw+jaj)2: A detailed algorithm for
omputing a � g using theLim/Lee's pre
omputation te
hnique is given in Algorithm 3.Algorithm 3: Lim/Lee's algorithm.Input: a =Ps�1i=0 Ai2wi; Ai = (aiw+w�1 : : : aiw)2; 0 � i < s, and g.Output: r = a � g// Pre
omputation //1. for u from 0 downto 2s � 1 doSet u (us�1 : : : u1u0)2Set P [u℄ Ps�1i=0 ui2wi � g// Main Computation //2. Set r 03. for j from w � 1 downto 0 doSet r r + rSet u (a(s�1)w+j : : : aw+jaj)2Set r r + P [u℄4. return (r).Algorithm 3 performs well in situations where the group element g is known in advan
e,sin
e the
al
ulation of the pre
omputation step
an be made o�-line. A faster version ofthis algorithm, with more pre
omputations, is dis
ussed in [6℄.Next we explain the extension of Algorithm 3 to the �nite �eld F2m . Let a and b be twopolynomials in F 2m . Assume that a
an be represented as a = (As�1 : : : A0). By repla
ing 2by x and 2w � g by xwb(x) in (2), we obtain the following formal expression for the produ
ta(x)b(x):

High-Speed Software Multipli
ation in F 2m 6a(x)b(x) = w�1Xj=0 xj(s�1Xi=0 aiw+jxwi)b(x):It is easy to verify that indeed the above formula for a(x)b(x) is
orre
t. Then an algorithm,analogue of Algorithm 3,
an be derived for
omputing ab mod f when b is a polynomialknown in advan
e. By observing that the operation xwib(x) is virtually free (it
onsists ofan arrangement of the words representing b), the pre
omputation of the 2s�1 polynomials:P [u℄ =Ps�1i=0 uixwi; 1 < u < 2s; u = (us�1 : : : u0)2,
an be made online. This eliminates theneed of storing 2s � 1 polynomials, and the resulting algorithm is faster than Algorithm 1,even when b is not a �xed polynomial. The details of this method are given in Algorithm 4.Algorithm 4: basi
 proposed method.Input: a = (As�1 : : : A0), b = (Bs�1 : : : B0), and f = (Fs�1 : : : F0):Output:
 = (Cs�1 : : : C0) = ab mod f1. Set Ti 0; i = 0; : : : ; 2s� 12. for j from w � 1 downto 0 dofor i from 0 to s� 1 doif aiw+j 6= 0 thenfor k from 0 to s� 1 doSet Tk+i Tk+i �Bkif j 6= 0 then T xT // shift T//3. Set
 T mod f // Use Algorithm 2 //4. return (
).The idea of window methods [4, pp. 66℄ for exponentiation
an be extended to Algo-rithm 4 to obtain a more eÆ
ient algorithm, provided that extra temporary memory isavailable. For example, if we de�ne the pre
omputed ve
tor P16[u℄ for 0 � u < 16, usingthe equation P16[u℄(x) = (u3x3 + u2x2 + u1x+ u0)b(x);where u = (u3 : : : u0)2; then the produ
t a(x)b(x)
an be
omputed asa(x)b(x) = s�1Xi=0 w�1Xj=0 aiw+jxiw+jb(x)= w�1Xj=0 xj s�1Xi=0 aiw+jxiwb(x)= w=4�1Xj=0 x4j s�1Xi=0(aiw+j+3x3 + � � �+ aiw+j+1x+ aiw+j)xiwb(x)

High-Speed Software Multipli
ation in F 2m 7= w=4�1Xj=0 x4j(s�1Xi=0 xwiP16[ui;j℄(x)); where ui;j = (aiw+j+3 : : : aiw+j)2:Based on the above formula for ab, we derived an algorithm that pro
esses simultaneouslyfour bits of ea
h word of a and trades in ea
h iteration four multipli
ations by x for onemultipli
ation by x4. This method is des
ribed in Algorithm 5.Algorithm 5: fast proposed method.Input: a = (As�1 : : : A0), b = (Bs�1 : : : B0), and f = (Fs�1 : : : F0):Output:
 = (Cs�1 : : : C0) = ab modf:1. for j from 0 to 15 doSet P16[j℄ (j3x3 + � � �+ j0)b(x); j = (j3j2j1j0)22. Set Ti 0; i = 0; : : : ; 2s� 13. for j from w=4 � 1 downto 0 dofor i from 0 to s� 1 doSet ui;j Ai=24j mod 16for k from 0 to s� 1 doSet Tk+i Tk+i � P16[ui;j℄[k℄if j 6= 0 then T x4T4. Set
 T mod f // Use Algorithm 2 //5. return (
).Remark 2. When b is known in advan
e, Algorithm 5
an be modi�ed to work with a largerwindow size. If we pro
ess eight bits at the same time, then we need 256 �eld elements ofpre
omputations. By observing that P7i=0 aixib(x) =P3j=0 ajxjb(x) +P3j=0 a4+jxjx4b(x),we redu
e the pre
omputation to 32 �eld elements at the expense of doing more XOR oper-ations.3.1 Performan
e
omparisonLet us
ompare the performan
e of Algorithms 4 and 5. We
al
ulate the number of XORoperations and SHIFT operations required in ea
h algorithm. We assume that the redu
tionpolynomial is a pentanomial, so the total number of XOR operations required by Algorithm 2is at most 8(2s � 1). Therefore, Algorithm 4 requires 2(w � 1) SHIFT operations andsm=2+8(2s� 1) XOR operations on average. Similarly, Algorithm 5 requires 3+2(w=4� 1)SHIFT2 operations and s(11 +m=4) + 8(2s� 1) XOR operations on average. Thus, the timesaved in Algorithm 5 is at the expense of using 16 �eld elements of temporary memory. InTable 1 we
ompared the number of operations required by Algorithms 1, 4 and 5, for theparti
ular
ase m = 163; w = 32; s = 6, and the pentanomial f(x) = x163+x7+x6+x3+1.2We are assuming that multiplying a polynomial by x4 is
omparable in speed to multiplying a polynomialby x.

High-Speed Software Multipli
ation in F 2m 8Algorithms XOR SHIFTAlgorithm 1 81*6+ 81*2 = 648 162Algorithm 4 81*6 + 42 = 528 62Algorithm 5 52*6 + 42 = 354 17Table 1: Number of operations for Algorithms 1, 4 and 5.4 Timing resultsThis se
tion presents running timings for the proposed algorithms and the \shift-and-add"method on the following platforms: a 233 MHz Pentium MMX, a 400 MHz Pentium II, a450 MHz Sun UltraSpar
 workstation and a 10 MHz Intel 386 pro
essor (RIM intera
tivepager [3℄). The implementation was written entirely in C, and the
ompilers used were g

for the workstation Sun and the Pentium MMX, and Mi
rosoft Visual C++ (version 6.0)for the other ar
hite
tures. All algorithms were implemented with a
omparable level ofprogramming optimizations.Tables 2 and 3 show timings to perform a multipli
ation in F 2163 using Algorithms 1,4 and 5.3 From Table 2, Algorithm 4 performs 45% to 49% faster than Algorithm 1, andthe best speed up was obtained on the UltraSpar
 ma
hine. In Table 3 the performan
esof the fast version of the proposed algorithm (Algorithm 5) and the standard method are
ompared. We observed a signi�
ant improvement: Algorithm 5 is about 3.0 to 5.5 timesfaster than the standard method.Pentium 233 MHz UltraSpar
 450 MHzAlgorithm 1 31.27 10.97Algorithm 4 17.07 5.55Table 2: Timings (in mi
rose
onds) of the \shift-and-add" method and Algorithm 4 formultipli
ation in F 2163 .4.1 Appli
ationsThe most important appli
ation of this work is in software implementations of ellipti

urve
ryptography over F2m . Our timings on di�erent ar
hite
tures have shown that Algorithm 5is signi�
antly faster than the standard method in modern workstations as well as in wirelessdevi
es su
h as the RIM pager (a hand-held devi
e with an Intel pro
essor running at 10MHz [3℄).3Re
ently, NIST has re
ommended ellipti

urves over F2163 for US federal government use [9℄.

High-Speed Software Multipli
ation in F 2m 9RIM Pentium Pentium II UltraSpar
10 MHz 233 MHz 400 MHz 450 MHzAlgorithm 1 4,848 31.27 16.48 10.97Algorithm 5 1,515 10.20 2.97 2.52Table 3: Timings (in mi
rose
onds) of the \shift-and-add" method and Algorithm 5 formultipli
ation in F 2163 .5 Con
lusionsThere are several te
hniques that
an be used for speeding up the
omputation of
 =ab mod f in F 2m . In this paper we have shown a te
hnique based on Lim/Lee's method forexponentiations. It turns out that our software implementation of the optimized version(Algorithm 5), on di�erent platforms, proved to be signi�
antly faster than the \shift-and-add" method, making it useful for software implementations of ellipti

urve
ryptographyin di�erent
omputational environments.6 A
knowledgmentsThe authors wish to thank Guido Ara�ujo, Cl�audio Lu

hesi, Alfred Menezes, Daniel Panarioand Routo Terada for many helpful
omments and suggestions.Referen
es[1℄ G. B. Agnew, R. C. Mullin and S. A. Vanstone, \An implementation of ellipti

urve
ryptosystems over F 2155", IEEE journal on sele
ted areas in
ommuni
ations, 11, pp.804-813, 1993.[2℄ ANSI X9.62, \The ellipti

urve digital signature algorithm (ECDSA)", Ameri
anBankers Asso
iation, 1999.[3℄ Bla
kberry, http://www.bla
kberry.net[4℄ I. Blake, G. Seroussi, and N. Smart, Ellipti
 Curves in Cryptography, CambridgeUniversity Press, 1999.[5℄ C. K. Ko�
 and T. A
ar, \Montgomery multipli
ation in GF (2k)", Designs, Codes andCryptography, 14, pp. 57-69, 1998.[6℄ C. H. Lim and P. J. Lee, \More
exible exponentiation with pre
omputation", InAdvan
es in Cryptography-CRYPTO'94, pp. 95-107, Springer-Verlag, 1994.[7℄ A. Menezes, P. van Oors
hot and S. Vanstone, Handbook of Applied Cryptography,CRC Press, 1997.

High-Speed Software Multipli
ation in F 2m 10[8℄ R. Mullin, I. Onysz
huk, S. Vanstone and R. Wilson, \Optimal normal bases inGF (pn)", Dis
rete Applied Mathemati
s, 22, pp. 149-161, (1988/89).[9℄ National Institute of Standards and Te
hnology, \Digital signature standard", FIPSPubli
ation 186-2, February 2000. Available at http://
sr
.nist.gov/fips[10℄ R. S
hroeppel, H. Orman, S. O'Malley and O. Spats
he
k, \Fast key ex
hange withellipti

urve systems", University of Arizona, C. S., Te
h. report 95-03, 1995.[11℄ E. De Win, A. Bosselaers, S. Vanderberghe, P. De Gersem and J. Vandewalle, \A fastsoftware implementation for arithmeti
 operations inGF (2n)," Advan
es in Cryptology,Pro
. Asia
rypt'96, LNCS 1163, pp. 65-76, Springer-Verlag, 1996.

