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Abstract

In this paper we describe an efficient algorithm for multiplication in Fom , where the
field elements of Fym are represented in standard polynomial basis. The proposed algo-
rithm can be used in practical software implementations of elliptic curve cryptography.
Our timing results, on several platforms, show that the new method is significantly
faster than the “shift-and-add” method.
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1 Introduction

Efficient algorithms for multiplication in Fom are required to implement cryptosystems
such as the Diffie-Hellman and elliptic curve cryptosystems defined over Fom. Efficient
implementation of the field arithmetic in Fom depends greatly on the particular basis used
for the finite field. Two common choices of bases for Fom are normal and polynomial.
Normal bases seem more suitable for hardware implementations (see [1]).

In this paper we describe a technique for multiplication in the finite field Fom, where
the field elements are represented as binary polynomials modulo an irreducible binary poly-
nomial of degree m. The proposed method is about 2-5 times faster than the standard
multiplication, and is particularly useful for software implementation of elliptic curve cryp-
tosystems over Fom. It is based on the observation that Lim/Lee’s method [6] (or comb
method [7]), designed for exponentiation, can be modified to work in Fom.

The remainder of this paper is organized as follows. In Section 2 we describe the finite
field Fom using a polynomial basis, along with a description of the standard algorithm for
multiplication in Fom. A description of a simple version of Lee/Lim’s method and two
versions of the proposed method are described in Section 3. In Section 4, we present timing
results on different computational platforms.
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2 The finite field Fon

2.1 Polynomial basis representation

In this section we describe the finite field Fom, called a characteristic two finite field or a

binary finite field, in terms of a polynomial basis representation. Let f(x) = xm+zzr;61 st
(where f; € {0,1}, for i =0,...,m — 1) be an irreducible polynomial of degree m over Fy;

polynomial f(z) is called the reduction polynomial. A polynomial basis is specified by a
reduction polynomial. In such a representation, the bit string (ap,—1...a1ag) is taken to
represent the polynomial

1™ . 4 a1zt + ag

over [Fo. Thus, the finite field Fom can be represented by the set of all polynomials of degree
less than m over Fo. That is,

Fom = {(am-1 ...a1a0) | a; € {0,1}}.

The field arithmetic is implemented as polynomial arithmetic modulo f(z). In this rep-
resentation, addition and multiplication of @ = (ay,—1 ... a10¢) and b = (by,—1 ... b1by) are
performed as follows:

e Addition: a +b = (¢p—1-..c100), where ¢; = (a; + b;) mod 2.

e Multiplication: ¢ = a-b= (¢p—1-..c1¢9), where the polynomial ¢(x) = 2?51 cirt is

the remainder of the division of polynomial (37" a;z?) - (321, biz?) by f(x). That
is, ¢ = ab mod f.

For efficiency reasons, the reduction polynomial can be selected as a trinomial o™ + z* 4 1,
where 1 < k < m — 1 or a pentanomial ™ + 2% + %2 + 2F1 41, where 1 < ky < ky < k3 <
m — 1. ANSI X9.62 [2] specifies several rules for choosing the reduction polynomial.

In software implementations, we partition the bit representation of a field element a =
(@m—1 - --a1ag) into blocks of the same size. Let w be the word size of a computer (typical
values are w = 8,16,32,64), and s be the number of words required to pack a into words.
That is, s = [m/w]. Then, we can write a as an sw-bit number consisting of s words,
where each word is of length w. Thus, we can write

a = (A5,1 . Ale),
where each A; is of length w and
Ai = (Gjwiw—1 -+ - Giw+16iw) € Fow.

In polynomials terms,

s—1 s—1lw—1

a(z) =Y Ai(@)z™ =D apy . (1)

i=0 i=0 j=0
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2.2 Recent methods for multiplication in Fyn

In recent years, several algorithms for software multiplication in Fom have been reported;
however, we are interested in techniques that can be used when m is prime.! In Schroeppel
et al. [10] various programming tricks are discussed for implementing the “shift-and-add”
method, a basic algorithm for multiplication in Fom. A slight variant of this method is
described by De Win et al. [11]. In Kog [5], a word-level Montgomery multiplication
algorithm in Fom is proposed. This method is significantly faster than the standard method
whenever the multiplication of two words of size w, each one representing a polynomial in
Fow can be performed in few cycles. Since this operation is not available in most general
purpose processors, the alternative is to use table lookup. This approach requires, for
example, 128 Kbytes for w = 8 and 16 Gbytes for w = 16, making it less attractive for
practical applications. Another well known method for multiplication in Fom is that of
Karatsuba (see for example [4]).

2.3 The “shift-and-add” method

In this section we describe the basic method for computing ¢(z) = a(z) - b(z) mod f(z)
in Fom. It is analogous to the binary method for exponentiation, with the square and
multiplication operations being replaced by the SHIFT (multiplication of a field element by
z) and field addition operations, respectively. Thus, the “shift-and-add” method processes
the bits of polynomial a(z) from left to right, and uses the following equation to perform
¢ =abmod f:

c(z) = z(- - w(xam—1b(x) + am—_ob(x) mod f(x)) + ---) + agb(z) mod f(x).

Assume that a(z) = 32575 Az, b(z) = 257, Biz®?, and f(z) = Y570 Fz*. Then the
steps of the “shift-and-add” method are given below.

Algorithm 1: the “shift-and-add” method.

INPUT: a = (As—l .. .Ao), b= (Bs—l .. .Bo), and f = (Fs—l .. Fg)
OutpUT: ¢ = (Cs-1...Cp) =a-bmod f.

1. Set k< m—-1-w(s—1), ¢+ 0
2. for i from s—1 downto O do
for 5 from k£ downto 0 do
Set ¢ < SHIFT(c)
if ajy1j =1 then c+c®b
if ¢, =1 then c<c® f
Set k+w-—1
3. return (¢).

This algorithm requires m — 1 shift operations and m field additions on average, but the
number of field additions can be reduced by selecting the reduction polynomial f(z) as a

!Many standards that include elliptic curves defined over Fom recommend for security reasons, the use
of binary finite fields with the property that m be prime.
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trinomial or a pentanomial. Observe that in this algorithm, the multiplication step (the
computation of d(z) = a(x) - b(z)) and the reduction step (the computation of ¢(z) = d(z)
mod f(z)) are integrated. Since for the proposed algorithm these steps are separated, we
include Algorithm 2 for performing the reduction step. Assume that f(z) = 2™ + g(x),
where the degree of polynomial g(z) is less than m — w.

Algorithm 2: modular reduction.

INPUT: a = (Ap—1...As—1... Ap),and f = (Fs_1 ... Fp).
OuTpPUT: ¢ = (Cs_1...CpH) = a mod f
1. for ¢ from n —1 downto s do
Set d < 1w —m
Set ¢ Ai(@)at- f() = YU a0 - ()
// t=(T;...T;—s0...0), where T; =A; //
for j from 7 downto 7 —s do
Set Aj < A; ©T;
2. Set t+« Z;i’o—l_m am+ja’ - f(z)
[/ t=(Ts1...Tp) //
3. for j from s —1 downto 0 do
Set Aj < A; @ T;
4. return (c<+ (As-1...40)).

Algorithm 2 works by zeroing out the most significant word of a(x) in each iteration of step
1. A chosen multiple of the reduction polynomial f(z) is added to a(z) which lowers the
degree of a(z) by w. This is possible because the degree of g(x) is less than m —w. Finally,
the leading sw — m bits of As_; are cancelled in step 3 obtaining a polynomial of degree
less than m. The number of XOR operations will depend on the weight of the reduction
polynomial f(z). For example, if f(z) is a pentanomial then Algorithm 2 requires at most
8n XOR operations.

Remark 1. The use of standard programming tricks such as separated name variables, and
loop-unrolled code, can be used to improve the performance of both Algorithms 1 and 2.
See [10] for some suggested programming optimizations.

3 Proposed method

In this section we describe two versions of the new algorithm for multiplication in Fam. The
first version is a straightforward extension of Lim/Lee’s method, which does not require
extra temporary memory. The second version is based on a window technique. Before
we describe the proposed algorithms, we discuss a simple version of Lim/Lee’s method for
exponentiation, using the terminology of additive groups; this will help us to understand
the extension to Fom.
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In order to compute the “multiplication” « - ¢ (the addition of g to itself a times) where
a is an integer and g is an element of an additive group, the number « is divided into s
words of size w. Then a can be written as

s—1
a=(As1... A1 Ag) =D A2,
=0

where each A4;,0 < i < s, has the binary representation (@jytw-—1 -- - Giw+1Giw)2. Based
on the binary representation (ug_i...ujug)2 of u, 1 < u < 2% and the group elements
2¥. g,0 <i < s—1, define the vector P[u] of precomputations by the following equation:

P[U] = u5712lU(S—1) g + Us,22w(s_2) g 4+ .-+ u12w g + ug - g.

S

Then the multiplication a - g = Zi:—& A;2"" - g, can be computed as

w—1 s—1 w—1
a-g=Y 20 auw2" - g) =Y 2P[I, (2)
j=0 =0 =0

where I; = (a(s_1)w+j---Gw+jaj)2. A detailed algorithm for computing a - g using the
Lim/Lee’s precomputation technique is given in Algorithm 3.

Algorithm 3: Lim/Lee’s algorithm.

INPUT: a = Zf;& A2V Ai = (Giwtw—1 -+ - Giw)2,0 < i < s, and g.
OuTPUT: r=a-g

// Precomputation //

1. for v from 0 downto 2° —1 do
Set u + (Us—l c uluo)g
Set Plu] « Y5 g u2¥ - g

// Main Computation //

2. Set r+«+ 20

3. for j from w—1 downto 0 do
Set r<r+r
Set u + (a(s_l)w+j c aw+jaj)2
Set r « r+ Plu]

4. return (7).

Algorithm 3 performs well in situations where the group element g is known in advance,
since the calculation of the precomputation step can be made off-line. A faster version of
this algorithm, with more precomputations, is discussed in [6].

Next we explain the extension of Algorithm 3 to the finite field Fom. Let a and b be two
polynomials in Fom. Assume that a can be represented as a = (As_1 ... Ap). By replacing 2

by x and 2% - g by z*b(x) in (2), we obtain the following formal expression for the product
a(z)b(z):
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w—1
a(z)b(z Z :E-’ Qiw+;2")b(x).

7=0 1=0
It is easy to verify that indeed the above formula for a(x)b(x) is correct. Then an algorithm,
analogue of Algorithm 3, can be derived for computing ab mod f when b is a polynomial
known in advance. By observing that the operation z%’b(x) is virtually free (it consists of
an arrangement of the words representing b), the precomputation of the 2° — 1 polynomials:
Plu] = Zf;& u;r?', 1 < u < 2% u = (us_1...up)2, can be made online. This eliminates the
need of storing 2° — 1 polynomials, and the resulting algorithm is faster than Algorithm 1,

even when b is not a fixed polynomial. The details of this method are given in Algorithm 4.

Algorithm 4: basic proposed method.

INPUT: a = (As—l - Ao), b= (Bs—l . Bo), and f = (Fs—l - Fo)
OutpPUT: ¢ = (Cs-1...Cp) = ab mod f

1. Set T;+0; ¢=0,...,2s—1
2. for j from w—1 downto 0 do

for ¢ from 0 to s—1 do

if Qjw+j ;é 0 then
for £ from 0 to s—1 do
Set Tyii < Ty+i ® By

if j#0 then T < 2T // shift T//
3. Set ¢+ T mod f // Use Algorithm 2 //
4. return (c¢).

The idea of window methods [4, pp. 66] for exponentiation can be extended to Algo-
rithm 4 to obtain a more efficient algorithm, provided that extra temporary memory is
available. For example, if we define the precomputed vector Pjglu] for 0 < u < 16, using
the equation

Pis[u](z) = (uzz® + upa® + uyz + ug)b(x),

where u = (u3...ugp)2, then the product a(z)b(z) can be computed as

s—1w—1
a(@)b(x) = YD awse™Ib(z)
=0 7=0
w—1 s—1
= > 7)) iy 3™b(z)
j=0 =0

w/471 s—1

45 3 i
= x™ E (Giwtjr3z” + -+ Giwrj1T + Giwij) 2" ()
7=0 i=0
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w/4-1 s—1
= > Y " Piglui)(x)), where tij = (Giwiji3 - Giwig)2:
i=0 i=0

Based on the above formula for ab, we derived an algorithm that processes simultaneously
four bits of each word of ¢ and trades in each iteration four multiplications by x for one
multiplication by z*. This method is described in Algorithm 5.

Algorithm 5: fast proposed method.

INPUT: a = (A5,1 - Ag), b= (Bsfl - Bg), and f = (FS,1 - Fg)
OuTpPUT: ¢ = (Cs_1...CH) = ab modf.

1. for j from 0 to 15 do
Set Pig[j] < (jaz® + -+ jo)b(z),5 = (jajajrjo)2
2. Set T;+0; ¢:=0,...,2s -1
3. for j from w/4 —1 downto 0 do
for 7 from 0 to s—1 do
Set Uj j %Ai/24j mod 16
for £ from 0 to s—1 do
Set Tyyi « Thyi © Prgluij][k]
if j#0 then T « 2*T
4. Set ¢+ T mod f // Use Algorithm 2 //
5. return (c).

Remark 2. When b is known in advance, Algorithm 5 can be modified to work with a larger
window size. If we process eight bits at the same time, then we need 256 field elements of
precomputations. By observing that ZZ:O a;z'b(z) = Z?:o a;xIb(z) + Z?:o as; 3 zb(x),
we reduce the precomputation to 32 field elements at the expense of doing more XOR oper-
ations.

3.1 Performance comparison

Let us compare the performance of Algorithms 4 and 5. We calculate the number of XOR
operations and SHIFT operations required in each algorithm. We assume that the reduction
polynomial is a pentanomial, so the total number of XOR operations required by Algorithm 2
is at most 8(2s — 1). Therefore, Algorithm 4 requires 2(w — 1) SHIFT operations and
sm/2+ 8(2s — 1) XOR operations on average. Similarly, Algorithm 5 requires 3 + 2(w/4 — 1)
SHIFT? operations and s(11 4 m/4) + 8(2s — 1) XOR operations on average. Thus, the time
saved in Algorithm 5 is at the expense of using 16 field elements of temporary memory. In
Table 1 we compared the number of operations required by Algorithms 1, 4 and 5, for the
particular case m = 163, w = 32, s = 6, and the pentanomial f(z) = '3 + 27+ 26 + 23+ 1.

*We are assuming that multiplying a polynomial by z* is comparable in speed to multiplying a polynomial
by z.
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| Algorithms || XOR | SHIFT |
Algorithm 1 81*6+ 81*2 = 648 | 162
Algorithm 4 81*%6 + 42 = 528 62
Algorithm 5 52%6 + 42 = 354 17

Table 1: Number of operations for Algorithms 1, 4 and 5.

4 Timing results

This section presents running timings for the proposed algorithms and the “shift-and-add”
method on the following platforms: a 233 MHz Pentium MMX, a 400 MHz Pentium II, a
450 MHz Sun UltraSparc workstation and a 10 MHz Intel 386 processor (RIM interactive
pager [3]). The implementation was written entirely in C, and the compilers used were gcc
for the workstation Sun and the Pentium MMX, and Microsoft Visual C++ (version 6.0)
for the other architectures. All algorithms were implemented with a comparable level of
programming optimizations.

Tables 2 and 3 show timings to perform a multiplication in Fgies using Algorithms 1,
4 and 5.> From Table 2, Algorithm 4 performs 45% to 49% faster than Algorithm 1, and
the best speed up was obtained on the UltraSparc machine. In Table 3 the performances
of the fast version of the proposed algorithm (Algorithm 5) and the standard method are
compared. We observed a significant improvement: Algorithm 5 is about 3.0 to 5.5 times
faster than the standard method.

‘ H Pentium 233 MHz ‘ UltraSparc 450 MHz ‘

Algorithm 1 31.27 10.97
Algorithm 4 17.07 5.55

Table 2: Timings (in microseconds) of the “shift-and-add” method and Algorithm 4 for
multiplication in Fyies.

4.1 Applications

The most important application of this work is in software implementations of elliptic curve
cryptography over Fom. Our timings on different architectures have shown that Algorithm 5
is significantly faster than the standard method in modern workstations as well as in wireless

devices such as the RIM pager (a hand-held device with an Intel processor running at 10
MHz [3]).

3Recently, NIST has recommended elliptic curves over Fyi6s for US federal government use [9].
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RIM Pentium | Pentium II | UltraSparc
10 MHz | 233 MHz | 400 MHz 450 MHz
Algorithm 1 4,848 31.27 16.48 10.97
Algorithm 5 1,615 10.20 2.97 2.52

Table 3: Timings (in microseconds) of the “shift-and-add” method and Algorithm 5 for
multiplication in Fyies.

5 Conclusions

There are several techniques that can be used for speeding up the computation of ¢ =
ab mod f in Fym. In this paper we have shown a technique based on Lim/Lee’s method for
exponentiations. It turns out that our software implementation of the optimized version
(Algorithm 5), on different platforms, proved to be significantly faster than the “shift-and-
add” method, making it useful for software implementations of elliptic curve cryptography
in different computational environments.
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