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Additively Weighted Voronoi Diagramon the Oriented Projective PlaneGuilherme A. Pinto and Pedro J. de Rezendefguialbu,rezendeg@dcc.unicamp.brAbstractWe consider Voronoi diagrams de�ned on the oriented projective plane T2. In thisgeometry, the closest and furthest site diagrams are antipodal. We give a simple on-lineincremental algorithm for constructing the additively weighted diagram. This diagram,which may be disconnected in Euclidean plane, is always connected in T2 and hasexactly 3n� 6 edges and 2n� 4 vertices, where n is the number of sites.Keywords: Voronoi diagrams; oriented projective plane; incremental algorithm1 IntroductionOne of the problems in designing and implementing algorithms for Voronoi diagrams isthe manipulation and representation of the edges extending to in�nity. Although this maynot be a di�cult problem, solutions are arti�cial. For explicitly construction of Voronoidiagrams we list three common solutions: bounding the diagram with a window or a polygon[5]; introducing \virtual edges" connecting adjacent in�nite edges [15, 13] and introducinga \virtual vertex" connecting all in�nite edges [12, 6]. The �rst solution rules out in�niteedges. The other two unify the topological representation of �nite and in�nite edges butintroduce meaningless data.We consider Voronoi diagrams constructed on the oriented projective plane T2 [14] whichis comprised of two copies of E2 plus one line at in�nity. With the de�nition of Euclideanconcepts like distance and perpendicularity, the T2 is called the two-sided Euclidean plane,where we can treat all edges of the diagram uniformly. Furthermore, when the sites arecontained in one side of the plane, the part of the closest site diagram contained in the otherside of the plane happens to be the furthest site diagram (as we know it in E2) and vice-versa. In Section 2 we introduce the basic concepts of T2 and show how Voronoi diagramsappear on it.In Section 3 we present an on-line incremental algorithm for the additively weighteddiagram. Previous algorithms for the closest site diagram can be found in [8, 13, 4, 15, 2, 12]and for the furthest site diagram in [12, 11]. This diagram has an additional bene�t fromT2: it is always connected and every face is simply connected, whereas in E2 the closestsite diagram may have O(n) connected components [13, 4] and the furthest site diagrammay have faces with O(n) connected components [11]. Our algorithm is, as any incremental1



2 Guilherme A. Pinto and Pedro J. de Rezendealgorithm for planar Voronoi diagrams, not worst case optimal, but it is of practical interestfor being on-line and very simple to implement. Moreover, it shows that we can computethis construction without de�ning di�erent procedures for each side of the plane.2 Oriented Projective Plane and Voronoi DiagramsIn T2 a point with homogeneous coordinates [x; y; w] is not identical to [�x;�y;�w]. Theyare called antipodal points. The antipode of point p is denoted by :p. The set of pointswith w > 0 is called the front side of the plane, and those with w < 0 are the back side.The set of points with w = 0 (except for the invalid triplet [0; 0; 0]), which are referred to asimproper points, is the line 
 at in�nity. In the �gures we will use two geometric models forT2: the 
at model, with the usual mapping [x; y; w] 7! (x=w; y=w) to Cartesian coordinates,and the spherical model with the mapping [x; y; w] 7! (x; y; w)=px2 + y2 + w2. These twomodels are related by central projection.
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-1Figure 1: Comparing distances in T2The distance between two proper points is de�ned by the expression: dT2(a; b) =p(xawb � xbwa)2 + (yawb � ybwa)2=wawb. This formula yields negative numerical valueswhen used with points in di�erent sides of the plane, and positive values for points in thesame side. However, in order to de�ne the diagrams we need to operate and compare thesevalues consistently. This is possible when we avoid the division and associate each valuex=w to a point [x; w] of the oriented projective line T1, dT2 : T2 � T2 ! T1+, de�ned asdT2(a; b) = [p(xawb � xbwa)2 + (yawb � ybwa)2; wawb]. Note that the numerator is alwayspositive, so that the image of the function corresponds to a half of each side of T1. We callthis set T1+.To compare two points a,b 2 T1 we use the rule: a <T1 b if and only if aw and bwhave opposite signs and aw > 0; or aw and bw have the same sign and axbw < bxaw. Notethat dT2(a; b) = dT2(b; a) = [x; w] and dT2(:b; a) = dT2(b;:a) = [x;�w]. Distances toimproper points can also be compared, as described in [10]. Figure 1 shows an exampleof four segments in the 
at and spherical models. Note that the spherical model allows abetter visualization for the segments, and their relative lengths. This �gure also introducesour drawing conventions: points are open dots and lines are dashed when they are in theback side, for the 
at model, and when they are not visible for the spherical model.



Additively Weighted Voronoi Diagram on the Oriented Projective Plane 3We will need a function to add a point in T1 and a real value, + : T1+�R! T1, de�nedas a + v = [ax + vaw; aw]. Qualitatively, we get a bigger point if v > 0 and a smaller oneif v < 0. We hasten to say that we will never compute distances in the algorithm. It willbe completely based in the usual determinant predicate to decide the orientation of threepoints a; b; c 2 T2:Function 1 counterClockWise(a, b, c) returns true if c lies to the left of the orientedline de�ned by a and b and false otherwise:return ( (xa(ybwc-ycwb) + ya(wbxc-wcxb) + wa(xbyc-xcyb)) > 0 );2.1 Voronoi DiagramsWe will �rst discuss the Voronoi diagram of unweighted points, which is a special case ofthe weighted diagram. Let S be a �nite set of points in T2, called sites. For each p,q 2 Slet Hpq = fx 2 T2jdT2(x; p) �T1 dT2(x; q)g:The Voronoi region of a site p is Rp = \q2SnfpgHpq:We follow [13] and de�ne the Voronoi diagram DVor(S) to be the set of points which belongsto more than one Voronoi region. A Voronoi edge is the intersection of two regions and aVoronoi vertex is the intersection of more than two regions.When the sites are contained in the front side of T2, the part of the diagram containedin the back side of T2 is equivalent to the furthest site diagram. This is due to the fact thatdT2(x; p) �T1 dT2(x; q) if and only if dT2(:x; p) �T1 dT2(:x; q):[x1; w1] �T1 [x2; w2] impliesx1(w2) � x2(w1)x1(�w2) � x2(�w1)[x1;�w1] �T1 [x2;�w2]:Figure 2(a) shows the DVor of S = fp; qg. Part (b) shows the diagram after three othersites were added to S. The bold edges are the boundary of Rp.Let n = jSj, and let e and v be, respectively, the number of edges and vertices of DVor(S).Assuming that S contains no four cocircular points, we have the following properties, whichreveal the similarities between DVor and the Voronoi diagram on a sphere of E3[1]:1. for n = 2: the diagram is a line of T2;2. for n = 3: v = 2 and e = 3. The vertices are antipodes, the edges are not segments ofT2 and the regions are not convex (they contain the antipodal vertices);3. for n > 3: every edge is a segment of T2 and every region is convex.
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Figure 2: Voronoi diagram in T2As we have n equal to the number of faces of the induced planar subdivision and everyvertex has valence 3, v = 2n� 4 and e = 3n� 6.Let us turn to the additively weighted diagram. Now, each site p has an associatedweight w(p). We assume, without loss of generality, that all weights are positive and regardthe site as a closed disk with radius equal to its weight. For each p,q 2 S we de�neHpq = fx 2 T2jdT2(x; p)� w(p) �T1 dT2(x; q)� w(q)g;and call DVorW the diagram generated by H . Some of the previous papers on this diagramuse dist(x; p)+w(p) instead. The de�nitions are equivalent in the sense that we can multiplythe weights of the sites by �1 to obtain the diagram generated by the other de�nition.This is interesting to note because the part of the diagram contained in the back side,actually, is equivalent to the furthest site diagram generated by the other de�nition, asdT2(x; p)�w(p) �T1 dT2(x; q)�w(q) if and only if dT2(:x; p)+w(p) �T1 dT2(:x; q)+w(q):[x1; w1] + (�v1) �T1 [x2; w2] + (�v2)[x1 � v1w1; w1] �T1 [x2 � v2w2; w2] implies(x1 � v1w1)(w2) � (x2 � v2w2)(w1)(x1 � v1w1)(�w2) � (x2 � v2w2)(�w1)[x1 � v1w1;�w1] �T1 [x2 � v2w2;�w2][x1;�w1] + (v1) �T1 [x2;�w2] + (v2):The intersection of two Voronoi regions is known to be one branch of an algebraichyperbola opened towards the smallest disk and the regions are star-shaped with respect tothe sites. This diagram is more complex than the DVor in the sense that it may have �niteregions with only two edges and two regions may share more than one edge [13]. Figure 3(a)shows the DVorW of S = fp; qg. Part (b) shows the diagram after three other sites wereadded to S. Note that this example would be disconnected in E2.Sharir [13] showed that, when the diagram is disconnect, every connected componentis unbounded: If there could be a bounded connected component K, the portion E of asu�ciently small neighborhood of K, not contained in K, would belong to some site m.Clearly, there would be a point x in E such that the segment xm crosses K, contradictingthe fact that the region of m is star-shaped.
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pFigure 3: Additively weighted Voronoi diagram in T2This argument is enough to show that DVorW is always connected, because there can beno unbounded component in the compact topology of T2. However, we need to distinguishtwo situations. When the antipode of the site m is not contained in K, the above argumentapplies without modi�cations. But when :m belongs to K, the segments xm, x 2 E, donot cross K. Nevertheless, they cover all the T2 nK, such that there would be a segmentxm crossing some other component of the diagram, again contradicting the fact that theregion of m is star-shaped.In the next section we will present an incremental algorithm to construct this diagram.The algorithm is based on two primitive procedures: the calculation of the two circuncentersof three given sites; and the counterclockwise circular order predicate of three points b; cand d with respect to a fourth point a. The latter procedure can be implemented with threecalls to the function counterClockWise as follows:Function 2 counterClockWiseOrder(b, c, d, a) returns true if the counterclockwisecircular order of the points b,c and d around a is bcd and false otherwise:bool abc = counterClockWise(a, b, c);bool abd = counterClockWise(a, b, d);bool acd = counterClockWise(a, c, d);return ((abc && (!abd || acd)) || (!abd && acd));3 An Incremental Algorithm for the Additively WeightedDiagramWe assume, for simplicity, that no two disks of S intersect and that there is no four cocircularsites in S. The algorithm, in fact, works for intersecting disks and for negative weights aswell, but it needs some modi�cations if we allow one disk to be entirely contained in anotherdisk. In the conclusions we will discuss these modi�cations.Given these conditions, we describe now the other primitive procedure of the algorithm:the calculation of the two circuncenters a and b of three given sites p; q and r. A circuncenteris a point equidistant to the three sites according to the de�nition of H . In E2 three disksmay have 0; 1 or 2 circuncenters (see [12] and Fig. 4(a)). In T2 there are always two suchpoints as Fig. 4(b) shows, for the three possible con�gurations.
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Figure 4: The circuncenters of three sites in E2 and T2Function 3 circunCenters(p, q, r, a, b) calculates the two circuncenters of the sitesp,q and r storing them in points a and b.This function amounts to solving a system of three quadratic equations as suggested in [7].This calculation can also be viewed as the intersection of three right cones in E3 as notedin [12]. The details can also be found in [9].3.1 Contributor edgesWe call clearance disk a closed disk tangent to two or more disks of S. Two closed disksare tangent if their intersection is a single point. The Voronoi diagram can then be de�nedas the set of all centers of clearance disks of S (see [15]). When a clearance disk is tangentto more than two sites we call its center a Voronoi vertex. Given the diagram DVorW(S)and a new site k, the idea of the algorithm is to �nd the vertices of Rk and then update thediagram. Clearly, every vertex of Rk must lie on some edge of DVorW(S) as it is the centerof a clearance disk tangent to k and to two sites of S. We denote the edges of DVorW(S)which contain at least one vertex of Rk by contributor edges. One edge e may contribute,at most, two vertices as any vertex lying on e must be the center of a clearance disk tangentto k and to the two sites of S which generate e and any three given disks may have at mosttwo such points (the circuncenters).Let eleft and eright be the sites of the left and right regions of the oriented edge e. Thepreceding discussion implies that a circuncenter of k, eleft and eright is a vertex of Rk if,and only if, it lies on e. Let eorig and edest be the vertices at the origin and destination ofe. We know that the supporting hyperbola of e is star-shaped with respect to both eleftand eright. This implies that a circuncenter a of k, eleft and eright (a always lies on thehyperbola) is on e if, and only if, the counterclockwise circular order of eorig, a and edestwith respect to eleft is eorigaedest (see Fig. 5).At this point we could come up with a brute force algorithm �nding all vertices using thefunction counterClockWiseOrder to test every edge of DVorW(S). Then we could circularsort the vertices around k (Rk is star-shaped) and update the diagram. Fortunately ifwe de�ne a more speci�c concept of oriented contributor edge we can �nd the verticesconsecutively in the correct order with a very simple traverse procedure if we are given
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destFigure 5: Testing an edge with the orientation predicatean initial oriented contributor edge. This concept and this procedure are presented insection 3.3.We note that this characterization through contributor edges cannot be used in E2, asRk may have no vertex, that is, its boundary may be not connected to DVorW(S) at all.3.2 The base caseThe base case n = 3 has three possible con�gurations shown in Fig. 6. The diagram isalways the same: the two circuncenters are connected by three edges separating the threesites in three regions. The following functions construct the base case almost mechanically:
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bFigure 6: Base cases n = 3 for DVorWFunction 4 createEdge(a, b, p, q) creates one edge with origin a, destination b, leftand right regions p and q and returns a pointer to it.Function 5 baseCase(p, q, r) constructs DVorW(S) for S = fp; q; rg and returns apointer to one of the edges of the diagram:point a, b;circunCenters(p, q, r, a, b);if ( counterClockWiseOrder(p, q, r, a) ) swap(a, b);



8 Guilherme A. Pinto and Pedro J. de RezendecreateEdge(a, b, p, q);createEdge(a, b, q, r);return createEdge(a, b, r, p);The if test is due to a subtle problem: as the regions have only two edges, we cannotcircular sort the vertices with respect to the sites. Our test to �nd the vertices of Rk,already sketched in the previous section, that will be used in the insertion of the othersites, relies on the orientation of the edges. As we choose one of the circuncenters for theorigin and create edges having left and right regions p and q, q and r, r and p, there is acorrect circuncenter for the origin. Consider one of the edges e. If we choose the wrongcircuncenter, the counterclockwise circular order of the eorig , a generic point x lying on theedge and edest will not be eorigxedest. It is interesting to note that, as the edges separatethe sites and the regions are star-shaped with respect to them, the circular order of thesites with respect to one circuncenter is opposite to the other. The correct origin for thefunction createEdge must be the circuncenter that perceives the counterclockwise circularorder prq.3.3 The traverse procedureFigure 7(a) introduces the edge functions used in the traverse procedure, which is de�nedfor oriented edges. The names come from the well-known quad-edge data structure [6]. Fora given oriented edge e: onext(e) is the next edge in counterclockwise direction with thesame origin; rprev(e) is the previous edge in counterclockwise direction with the same face;and sym(e) is the opposite oriented edge.
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kFigure 7: Oriented contributor edges for the traverse procedureThe traverse procedure to be presented needs one �rst contributor edge. Figure 7(b)shows the insertion of site k in the DVorW(S), for n = 7. The contributor edges are shown inbold lines. Note that the edges contributing one vertex have one of their endpoints inside Rkan the other outside. The edges contributing two vertices have either both endpoints insideRk (edge e1 in the �gure), or both outside Rk (this case will be discussed in section 3.3.2).The �rst contributor edge must be one oriented such that its origin is inside Rk. If this is nottrue, the procedure will fail to �nd all vertices. We say, then, that edge e2 is a contributor,



Additively Weighted Voronoi Diagram on the Oriented Projective Plane 9but sym(e2) is not. If an edge contributes one vertex, clearly, the clearance disk with centerin the endpoint contained in Rk must intersect k and the one with center in the endpointoutside Rk must not. We need not test the intersection of k and these clearance disks todecide which edge is oriented from inside Rk to outside. Suppose edge e contributes onevertex v as shown in Fig. 7(c). The boundary of the clearance disk vc with center in v andtangent to k, eleft and eright is divide into two arcs by the tangency points in eleft anderight. Site k is tangent to vc in one of these arcs (the �gure shows two possible locations fork). It is easy to see that the clearance disks between vc and the clearance disk with centerin the endpoint not contained in Rk do not intersect k and those between vc and the onecontained in Rk do intersect. We can then use the circular order predicate to decide whichis the correct oriented contributor edge. It is the one such that counterClockWiseOrder(eleft, k, eright, v ) == true.For the edges contributing two vertices we also use the circular order predicate toassign one vertex to each oriented edge. An oriented edge contributes the �rst encoun-tered vertex when going from its origin to its destination. As shown in Fig. 7(b), fore1 counterClockWiseOrder( e1orig, v1, v2, e1left ) == true, and for sym(e1) counterClockWiseOrder( sym(e1)orig, v1, v2, sym(e1)left ) == false. Then e1 contributes v1and sym(e1) contributes v2.Our traverse procedure has the same goal as the one in [5]. The vertex contributedby an edge e is the point where the boundary of Rk crosses e leaving the region of erightand entering the region of eleft (in a counterclockwise direction). We need to �nd the nextvertex (which is the point where the boundary leaves the region of eleft). The proceduretests the edges of eleft in clockwise direction from e:Function 6 edgeNotContributor(e) returns true if edge e do not contributes to Rk andfalse otherwise:point a, b;circunCenters(eleft, eright, k, a, b);return ( !( counterClockWiseOrder( eorig, a, edest, eleft) ||counterClockWiseOrder( eorig, b, edest, eleft) ) );Function 7 traverseProcedurefirstEdge = e = findSomeContributorEdge();do fprocessContributorEdge( e );e = onext( e );while ( e ! = firstEdge && edgeNotContributor( e ) )e = rprev( e );g while ( e ! = firstEdge );The function findSomeContributorEdge does not a�ect the worst-case complexity ofthe algorithm (O(n2)), as Rk may have O(n) edges. In practice, however, it may be themajor factor in the running time. The simple \walking" method suggested in [5] can be
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(a) (b) (c)

kkFigure 8: The traverse procedure updating the diagramused, because the region of the site of S closest to k must have a contributor edge. Moreelaborated schemes exist (see [3] for instance).Figure 8(a) shows, in bold lines, the edges traversed by the procedure for the example ofFig. 7(b). The function processContributorEdge is called for every oriented contributoredge and updates the diagram. The update is very simple (see Fig. 8(b) and (c)): the originsof the oriented contributor edges are changed to the corresponding vertices; consecutivevertices are joined by a new edge; and, in the end, some edges of DVorW(S) may bedeleted.3.3.1 CorrectnessThe correctness of the procedure is based on the star-shaped property of the regions ofDVorW(S). The function findSomeContributorEdge returns a contributor edge e. Wehave already shown that there must be contributor edges in DVorW(S). The vertex con-tributed by the edge e is the point where the boundary of Rk crosses e leaving the re-gion of eright and entering the region Releft of eleft (in a counterclockwise direction). ThetraverseProcedure will test all edges of Releft in clockwise direction. Denote these edgesby e1; e2; : : : ; ei as in the Fig. 9(a). The boundary of Rk must leave Releft, thus, the pro-cedure will eventually �nd another vertex. Note that the boundary of Rk may enter andleave one region several times, so that, it is not obvious that the procedure always �nds thecorrect vertex where the boundary leaves the region.The argument, however, is indeed very simple. If the boundary leaves Releft through e1then the procedure correctly �nds the vertex as it is the �rst tested edge. But suppose e1contributes two vertices v1 and v2 (see Fig. 9(a)). We saw that v1 is assigned to e1. This iscorrect because the boundary cannot leave the region through v2 as it would have to enterit sometime again through v1 and would not \be able to leave" it.Generally, if the boundary leaves Releft through ek then none of the edges e1; e2; :::; ek�1,which are tested before ek, can be a contributor edge and the procedure will reach ek. Thisis due to the fact that every part of the boundary crossing Releft is a part of the bisector ofk and eleft. If any of e1; e2; :::; ek�1 could be a contributor edge, then Releft would becomedisconnect, which is impossible (see Fig. 9 (b)). This also implies that every traversed edge,
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ekFigure 9: Demonstration of the correctness of the traverse procedureWhen we de�ned oriented contributor edges, we said that their origins must be containedin Rk. We invite the reader the follow the traverseProcedure, for the example of Fig. 7(b),if the �rst contributor edge was sym(e2) (which has its origin outside Rk). The verticesv1 and v2, in that �gure, are just not found. In this case, the arguments above can notbe applied because the traversed edges are not inside Rk. We could, alternatively, traversethe regions in counterclockwise direction to �nd the vertices in clockwise direction. Therequirement would, then, be that the contributor edges always have their destinations insideRk.3.3.2 A special caseWhen Rk has only two edges (and two vertices), there is only one edge e of DVorW(S)contributing the two vertices. This is a special case, as the two oriented contributor edgeshave their origins outside Rk. However, the traverse procedure correctly �nds the twovertices. Figure 10(a) shows the edges traversed by traverseProcedure in an example.
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k
eFigure 10: Special case when updating the diagramThe update di�ers from the general case: choose one oriented contributor edge andchange its destination to the corresponding vertex; creates a new edge from the origin tothe corresponding vertex of the other oriented contributor edge; and join the vertices by twoedges separating k from eleft and eright. Figure 10(b) shows the resulting diagram. This



12 Guilherme A. Pinto and Pedro J. de Rezendecase is similar to our base case, but here the update is entirely mechanical as the orientationof the contributor edges are already consistent.3.4 Comments on the back part of the diagramThe subtlety of this algorithm is the fact that the primitives encapsulate all concepts ofT2. The function circunCenters returns two points of T2 which are used by the functionedgeNotContributor in simple orientation tests (which are de�ned for all points in T2).The traverse procedure and the update procedures never know whether they are workingwith �nite or in�nite edges, or with front or back edges. The procedure for insertion of thesite k in the convex-hull of S is exactly the same as for k not in the convex-hull.It is clear that any topological data structure able to represent partitions of the spherecan be used to represent the DVorW. The geometry of the edges of the simple DVor can berepresented by the coordinates of the endpoints, because they are segments of T2. Fortu-nately, the geometric representation of the edges of DVorW, which are arcs of hyperbolas inT2, also have a simple and uniform representation. This subject has independent interestand appears in [10].4 ConclusionWe have successfully implemented this algorithm. The details and some images of thevisualization of the diagram in both the 
at and spherical models of T2 can be found in [9].We note that the cost of the exact computation of the test edgeNotContributor may behigh, as the coordinates of the circuncenters are, in general, irrational numbers.The algorithm assumes that no site is entirely contained in another. If this restrictioncannot be applied, and we still want an on-line algorithm, some modi�cations are needed:1. The function circunCentersmust be prepared to handle three sites that do not havea circuncenter. Then function edgeNotContributor must return true in these cases.2. The function findSomeContributorEdge may �nd no contributor edge. This can bedue to two cases: site k is contained in some site of S; or site k contains n � 1 sitesof S. The implementation must be able to distinguish these cases.3. From the preceding item we see that the insertion k may reduce the diagram to thebase case n = 3 or even to n = 2 and n = 1 which have no vertices. This also needsspecial treatment.This characterization through contributor edges proved very useful for DVorW but can-not be used, for instance, for the Voronoi diagram of line segments, because three linesegments may have no circuncenter even in T2. Nevertheless, it would still be interestingto construct this diagram in T2 for the uniform representation of the edges.One interesting generalization if this construction is the higher order diagram. Forinstance, the order 2 diagram can be de�ned by Hpq;rs = fx 2 T2jdT2(x; p)+ dT2(x; q)�T1dT2(x; r)+dT2(x; s)g. Then, in general, the order k diagram is antipodal to the order (n�k)diagram.
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