O contelido do presente relatério é de (nica responsabilidade do(s) autor(es).
The contents of this report are the sole responsibility of the author(s).

Additively Weighted Voronoi Diagram
on the Oriented Projective Plane

Guilherme A. Pinto and Pedro J. de Rezende

{guialbu,rezende}@dcc.unicamp.br

Relatério Técnico IC-00-03

Fevereiro de 2000

Additively Weighted Voronoi Diagram
on the Oriented Projective Plane

Guilherme A. Pinto and Pedro J. de Rezende

{guialbu,rezende}@dcc.unicamp.br

Abstract

We consider Voronoi diagrams defined on the oriented projective plane TZ. In this
geometry, the closest and furthest site diagrams are antipodal. We give a simple on-line
incremental algorithm for constructing the additively weighted diagram. This diagram,
which may be disconnected in Euclidean plane, is always connected in T? and has
exactly 3n — 6 edges and 2n — 4 vertices, where n is the number of sites.

Keywords: Voronoi diagrams; oriented projective plane; incremental algorithm

1 Introduction

One of the problems in designing and implementing algorithms for Voronoi diagrams is
the manipulation and representation of the edges extending to infinity. Although this may
not be a difficult problem, solutions are artificial. For explicitly construction of Voronoi
diagrams we list three common solutions: bounding the diagram with a window or a polygon
[56]; introducing “virtual edges” connecting adjacent infinite edges [15, 13] and introducing
a “virtual vertex” connecting all infinite edges [12, 6]. The first solution rules out infinite
edges. The other two unify the topological representation of finite and infinite edges but
introduce meaningless data.

We consider Voronoi diagrams constructed on the oriented projective plane T2 [14] which
is comprised of two copies of E? plus one line at infinity. With the definition of Fuclidean
concepts like distance and perpendicularity, the T? is called the two-sided Fuclidean plane,
where we can treat all edges of the diagram uniformly. Furthermore, when the sites are
contained in one side of the plane, the part of the closest site diagram contained in the other
side of the plane happens to be the furthest site diagram (as we know it in E?) and vice-
versa. In Section 2 we introduce the basic concepts of T? and show how Voronoi diagrams
appear on it.

In Section 3 we present an on-line incremental algorithm for the additively weighted
diagram. Previous algorithms for the closest site diagram can be found in [8, 13, 4, 15, 2, 12]
and for the furthest site diagram in [12, 11]. This diagram has an additional benefit from
T2 it is always connected and every face is simply connected, whereas in E? the closest
site diagram may have O(n) connected components [13, 4] and the furthest site diagram
may have faces with O(n) connected components [11]. Our algorithm is, as any incremental

2 Guilherme A. Pinto and Pedro J. de Rezende

algorithm for planar Voronoi diagrams, not worst case optimal, but it is of practical interest
for being on-line and very simple to implement. Moreover, it shows that we can compute
this construction without defining different procedures for each side of the plane.

2 Oriented Projective Plane and Voronoi Diagrams

In T? a point with homogeneous coordinates [z, y, w] is not identical to [—z, —y, —w]. They
are called antipodal points. The antipode of point p is denoted by —p. The set of points
with w > 0 is called the front side of the plane, and those with w < 0 are the back side.
The set of points with w = 0 (except for the invalid triplet [0,0,0]), which are referred to as
improper points, is the line at infinity. In the figures we will use two geometric models for
T2: the flat model, with the usual mapping [z, y, w] — (2 /w,y/w) to Cartesian coordinates,
and the spherical model with the mapping [z,y, w] — (2,y,w)//2? + y? + w?. These two

models are related by central projection.

@

—la
\

[}
N
\
&
.
ANEN

Figure 1: Comparing distances in T2

The distance between two proper points is defined by the expression: dy2(a,b) =

V{zawy — zpw,)? + (yawp — ypwy)?/wawy. This formula yields negative numerical values
when used with points in different sides of the plane, and positive values for points in the
same side. However, in order to define the diagrams we need to operate and compare these
values consistently. This is possible when we avoid the division and associate each value
z/w to a point [z, w] of the oriented projective line T, dyz : T? x T? — T, defined as
dy2(a,b) = [\/(zawy — 2pw,)? + (Yawp — Ypw,)?, wawy]. Note that the numerator is always
positive, so that the image of the function corresponds to a half of each side of T!. We call
this set "ﬂ'}l_.

To compare two points a,b € T' we use the rule: @« <y b if and only if a,, and b,

have opposite signs and a,, > 0; or a,, and b,, have the same sign and a,b,, < b,a,. Note
that dy2(a,b) = dy2(b,a) = [z,w] and dy2(=b,a) = dy2(b,—a) = [z, —w]. Distances to
improper points can also be compared, as described in [10]. Figure 1 shows an example
of four segments in the flat and spherical models. Note that the spherical model allows a
better visualization for the segments, and their relative lengths. This figure also introduces
our drawing conventions: points are open dots and lines are dashed when they are in the
back side, for the flat model, and when they are not visible for the spherical model.

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 3

We will need a function to add a point in T! and a real value, 4 : 'I]'}l_ xR — T!, defined
as a + v = [ay + vay,a,]. Qualitatively, we get a bigger point if » > 0 and a smaller one
if v < 0. We hasten to say that we will never compute distances in the algorithm. It will
be completely based in the usual determinant predicate to decide the orientation of three
points a,b,c € T?:

Function 1 counterClockWise(a, b, c) returns true if ¢ lies to the left of the oriented
line defined by a and b and false otherwise:

return ((Xa(ypWc-ycWp) + Yal(WpXc-Wcxp) + WalXpyc—Xcyp)) > 0);

2.1 Voronoi Diagrams

We will first discuss the Voronoi diagram of unweighted points, which is a special case of
the weighted diagram. Let S be a finite set of points in T2, called sites. For each p,qg € S
let

H,,={z € T?|dy2(z,p) <11 dy2(2,q)}.

The Voronoi region of a site p is

R, = ﬂ H,y.
€S\ {p}

We follow [13] and define the Voronoi diagram DVor(S) to be the set of points which belongs
to more than one Voronoi region. A Voronoi edge is the intersection of two regions and a
Voronoi vertex is the intersection of more than two regions.

When the sites are contained in the front side of T2, the part of the diagram contained
in the back side of T? is equivalent to the furthest site diagram. This is due to the fact that
dy2(z,p) <y1 dy2(z,q) if and only if dy2(—-z,p) >11 dy2(-z,q):

[1,w1] <g1 [x2,ws] implies
$2(w1)

$2(—w1)

> [r2, —wal.

$1(w2
$1(—w2

[xlv —un

) <
) =
]
Figure 2(a) shows the DVor of & = {p, ¢}. Part (b) shows the diagram after three other
sites were added to §. The bold edges are the boundary of R,.
Let n = |S|, and let € and v be, respectively, the number of edges and vertices of DVor(S).

Assuming that S contains no four cocircular points, we have the following properties, which
reveal the similarities between DVor and the Voronoi diagram on a sphere of E>[1]:

1. for n = 2: the diagram is a line of T?;

2. for n = 3: v = 2 and e = 3. The vertices are antipodes, the edges are not segments of
T2 and the regions are not convex (they contain the antipodal vertices);

3. for n > 3: every edge is a segment of T2 and every region is convex.

4 Guilherme A. Pinto and Pedro J. de Rezende

(a@

\‘\“)‘/‘,//
\\ !
\

Figure 2: Voronoi diagram in T2

As we have n equal to the number of faces of the induced planar subdivision and every
vertex has valence 3, v = 2n — 4 and e = 3n — 6.

Let us turn to the additively weighted diagram. Now, each site p has an associated
weight w(p). We assume, without loss of generality, that all weights are positive and regard
the site as a closed disk with radius equal to its weight. For each p,g € § we define

Hpy = {2 € T?|dya(2,p) — w(p) <11 dy2(2,q) — w(q)},

and call DVorW the diagram generated by H. Some of the previous papers on this diagram
use dist(z,p)+w(p)instead. The definitions are equivalent in the sense that we can multiply
the weights of the sites by —1 to obtain the diagram generated by the other definition.
This is interesting to note because the part of the diagram contained in the back side,
actually, is equivalent to the furthest site diagram generated by the other definition, as

dy2(z,p) —w(p) <11 dy2(2, ¢) —w(q) if and only if dy2 (=2, p) +w(p) >11 dy2(-7,)+ w(q):

[z, 1] + (=v1) <g1 [wg, wo] + (—v2)

[
[21 — viwy, w] <qu o[22 — vawg, wo] implies
(w1 —viwi)(wz) < (22 — vawa)(wy)
(z1 —vwr)(—wz) > (22 — vawz)(—wy)
[21 —viwy, —wi1] 271 [22 — vowg, —ws)
[z, —wi] 4+ (v1) >0 [22, —wa] + (v2).

The intersection of two Voronoi regions is known to be one branch of an algebraic
hyperbola opened towards the smallest disk and the regions are star-shaped with respect to
the sites. This diagram is more complex than the DVor in the sense that it may have finite
regions with only two edges and two regions may share more than one edge [13]. Figure 3(a)
shows the DVorW of & = {p,¢}. Part (b) shows the diagram after three other sites were
added to S. Note that this example would be disconnected in E2.

Sharir [13] showed that, when the diagram is disconnect, every connected component
is unbounded: If there could be a bounded connected component K, the portion E of a
sufficiently small neighborhood of K, not contained in K, would belong to some site m.
Clearly, there would be a point 2 in £ such that the segment Tm crosses K, contradicting
the fact that the region of m is star-shaped.

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 5

Figure 3: Additively weighted Voronoi diagram in T2

This argument is enough to show that DVorW is always connected, because there can be
no unbounded component in the compact topology of T2. However, we need to distinguish
two situations. When the antipode of the site m is not contained in K, the above argument
applies without modifications. But when —m belongs to K, the segments Zm, € F, do
not cross K. Nevertheless, they cover all the T2\ K, such that there would be a segment
Tm crossing some other component of the diagram, again contradicting the fact that the
region of m is star-shaped.

In the next section we will present an incremental algorithm to construct this diagram.
The algorithm is based on two primitive procedures: the calculation of the two circuncenters
of three given sites; and the counterclockwise circular order predicate of three points b, ¢
and d with respect to a fourth point a. The latter procedure can be implemented with three
calls to the function counterClockWise as follows:

Function 2 counterClockWiseOrder(b, c, d, a) returns true if the counterclockwise
circular order of the points b,c and d around a is bcd and false otherwise:

bool abc = counterClockWise(a, b, c);
bool abd = counterClockWise(a, b, d4d);
bool acd = counterClockWise(a, c, d4d);

return ((abc && ('abd || acd)) || (labd && acd));

3 An Incremental Algorithm for the Additively Weighted
Diagram

We assume, for simplicity, that no two disks of § intersect and that there is no four cocircular
sites in §. The algorithm, in fact, works for intersecting disks and for negative weights as
well, but it needs some modifications if we allow one disk to be entirely contained in another
disk. In the conclusions we will discuss these modifications.

Given these conditions, we describe now the other primitive procedure of the algorithm:
the calculation of the two circuncenters a and b of three given sites p, g and r. A circuncenter
is a point equidistant to the three sites according to the definition of H. In E? three disks
may have 0,1 or 2 circuncenters (see [12] and Fig. 4(a)). In T? there are always two such
points as Fig. 4(b) shows, for the three possible configurations.

6 Guilherme A. Pinto and Pedro J. de Rezende

@ (b)

Figure 4: The circuncenters of three sites in E? and T2

Function 3 circunCenters(p, q, r, a, b) calculates the two circuncenters of the sites
p,q and r storing them in points a and b.

This function amounts to solving a system of three quadratic equations as suggested in [7].
This calculation can also be viewed as the intersection of three right cones in E® as noted
n [12]. The details can also be found in [9].

3.1 Contributor edges

We call clearance disk a closed disk tangent to two or more disks of S. Two closed disks
are tangent if their intersection is a single point. The Voronoi diagram can then be defined
as the set of all centers of clearance disks of S (see [15]). When a clearance disk is tangent
to more than two sites we call its center a Voronoi vertex. Given the diagram DVorW(S)
and a new site k, the idea of the algorithm is to find the vertices of R and then update the
diagram. Clearly, every vertex of Ry must lie on some edge of DVorW(S) as it is the center
of a clearance disk tangent to k and to two sites of S. We denote the edges of DVorW(S)
which contain at least one vertex of Ry by contributor edges. One edge e may contribute,
at most, two vertices as any vertex lying on e must be the center of a clearance disk tangent
to k and to the two sites of § which generate e and any three given disks may have at most
two such points (the circuncenters).

Let ejcp¢ and e,595; be the sites of the left and right regions of the oriented edge e. The
preceding discussion implies that a circuncenter of k, ej.y; and €5 is a vertex of Ry if,
and only if, it lies on e. Let e,,;, and egeq be the vertices at the origin and destination of
e. We know that the supporting hyperbola of e is star-shaped with respect to both ez
and e,;gn¢. This implies that a circuncenter a of k, ejpr and e,;4n¢ (@ always lies on the
hyperbola) is on e if, and only if, the counterclockwise circular order of e,.;4, ¢ and egeq
with respect to €jept is €origteqest (see Fig. 5).

At this point we could come up with a brute force algorithm finding all vertices using the
function counterClockWiseOrder to test every edge of DVorW(S). Then we could circular
sort the vertices around k (Rj is star-shaped) and update the diagram. Fortunately if
we define a more specific concept of oriented contributor edge we can find the vertices
consecutively in the correct order with a very simple traverse procedure if we are given

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 7

Figure 5: Testing an edge with the orientation predicate

an initial oriented contributor edge. This concept and this procedure are presented in
section 3.3.

We note that this characterization through contributor edges cannot be used in E?, as
Rj may have no vertex, that is, its boundary may be not connected to DVorW(S§) at all.

3.2 The base case

The base case n = 3 has three possible configurations shown in Fig. 6. The diagram is
always the same: the two circuncenters are connected by three edges separating the three
sites in three regions. The following functions construct the base case almost mechanically:

Figure 6: Base cases n = 3 for DVorW

Function 4 createEdge(a, b, p, q) creates one edge with origin a, destination b, left
and right regions p and q and returns a pointer to it.

Function 5 baseCase(p, q, r) constructs DVorW(S) for § = {p,q,r} and returns a
pointer to one of the edges of the diagram:

point a, b;
circunCenters(p, q, r, a, b);
if (counterClockWiseOrder(p, q, r, a)) swap(a, b);

8 Guilherme A. Pinto and Pedro J. de Rezende

createEdge(a, b, p, q);
createEdge(a, b, q, 1);
return createEdge(a, b, r, p);

The if test is due to a subtle problem: as the regions have only two edges, we cannot
circular sort the vertices with respect to the sites. Our test to find the vertices of Ry,
already sketched in the previous section, that will be used in the insertion of the other
sites, relies on the orientation of the edges. As we choose one of the circuncenters for the
origin and create edges having left and right regions p and ¢, ¢ and r, r and p, there is a
correct circuncenter for the origin. Consider one of the edges e. If we choose the wrong
circuncenter, the counterclockwise circular order of the e,,;,, a generic point z lying on the
edge and eges; will not be eypigreqeqe. It is interesting to note that, as the edges separate
the sites and the regions are star-shaped with respect to them, the circular order of the
sites with respect to one circuncenter is opposite to the other. The correct origin for the
function createEdge must be the circuncenter that perceives the counterclockwise circular
order prq.

3.3 The traverse procedure

Figure 7(a) introduces the edge functions used in the traverse procedure, which is defined
for oriented edges. The names come from the well-known guad-edge data structure [6]. For
a given oriented edge e: onezt(e) is the next edge in counterclockwise direction with the
same origin; rprev(e) is the previous edge in counterclockwise direction with the same face;
and sym(e) is the opposite oriented edge.

Figure 7: Oriented contributor edges for the traverse procedure

The traverse procedure to be presented needs one first contributor edge. Figure 7(b)
shows the insertion of site k in the DVorW(S), for n = 7. The contributor edges are shown in
bold lines. Note that the edges contributing one vertex have one of their endpoints inside Ry,
an the other outside. The edges contributing two vertices have either both endpoints inside
Ry, (edge ey in the figure), or both outside Ry (this case will be discussed in section 3.3.2).
The first contributor edge must be one oriented such that its origin is inside Ry. If this is not
true, the procedure will fail to find all vertices. We say, then, that edge e; is a contributor,

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 9

but sym(ey) is not. If an edge contributes one vertex, clearly, the clearance disk with center
in the endpoint contained in Ry must intersect & and the one with center in the endpoint
outside Rj; must not. We need not test the intersection of k and these clearance disks to
decide which edge is oriented from inside Rj to outside. Suppose edge e contributes one
vertex v as shown in Fig. 7(c). The boundary of the clearance disk v, with center in v and
tangent to k, ejcp; and e, is divide into two arcs by the tangency points in ey and
€right- Oite k is tangent to v, in one of these arcs (the figure shows two possible locations for
k). It is easy to see that the clearance disks between v. and the clearance disk with center
in the endpoint not contained in Rj; do not intersect k and those between v, and the one
contained in Ry do intersect. We can then use the circular order predicate to decide which
is the correct oriented contributor edge. It is the one such that counterClockWiseOrder(
€left> Ky €right, v) == true.

For the edges contributing two vertices we also use the circular order predicate to
assign one vertex to each oriented edge. An oriented edge contributes the first encoun-
tered vertex when going from its origin to its destination. As shown in Fig. 7(b), for
e1 counterClockWiseOrder(€lorigs Vls V2, €154,) == true, and for sym(e;) counter
ClockWiseOrder(sym(ei)orig, v1, V2, Sym(ei)iest) == false. Then ey contributes vy
and sym(ey) contributes vg.

Our traverse procedure has the same goal as the one in [5]. The vertex contributed
by an edge e is the point where the boundary of Rj crosses e leaving the region of e,y
and entering the region of ej.¢; (in a counterclockwise direction). We need to find the next
vertex (which is the point where the boundary leaves the region of e;.¢;). The procedure
tests the edges of ej.f¢ in clockwise direction from e:

Function 6 edgeNotContributor(e) returns true if edge e do not contributes to Ry and
false otherwise:

point a, b;

circunCenters(ejcft, ©right> kK, a, b);

return (!'(counterClockWiseOrder(e, iy, a, €dest> ©left) ||
counterClockWiseOrder(e, iy, b, €gests €icft)))

Function 7 traverseProcedure

firstEdge = e = findSomeContributorEdge();
do {
processContributorEdge(e);
e = onext(e);
while (e != firstEdge && edgeNotContributor(e))
e = rprev(e);
} while (e ! = firstEdge);

The function findSomeContributorEdge does not affect the worst-case complexity of
the algorithm (O(n?)), as Ry may have O(n) edges. In practice, however, it may be the
major factor in the running time. The simple “walking” method suggested in [5] can be

10 Guilherme A. Pinto and Pedro J. de Rezende

Figure 8: The traverse procedure updating the diagram

used, because the region of the site of & closest to £ must have a contributor edge. More
elaborated schemes exist (see [3] for instance).

Figure 8(a) shows, in bold lines, the edges traversed by the procedure for the example of
Fig. 7(b). The function processContributorEdge is called for every oriented contributor
edge and updates the diagram. The update is very simple (see Fig. 8(b) and (c¢)): the origins
of the oriented contributor edges are changed to the corresponding vertices; consecutive
vertices are joined by a new edge; and, in the end, some edges of DVorW(S) may be

deleted.

3.3.1 Correctness

The correctness of the procedure is based on the star-shaped property of the regions of
DVorW(S). The function findSomeContributorEdge returns a contributor edge e. We
have already shown that there must be contributor edges in DVorW(S). The vertex con-
tributed by the edge e is the point where the boundary of Ry crosses e leaving the re-
gion of €,;45; and entering the region Releft of ejep (in a counterclockwise direction). The
traverseProcedure will test all edges of R, ,, in clockwise direction. Denote these edges
by e1,€2,...,¢€; as in the Fig. 9(a). The boundary of Rj must leave R, thus, the pro-
cedure will eventually find another vertex. Note that the boundary of Ry may enter and
leave one region several times, so that, it is not obvious that the procedure always finds the
correct vertex where the boundary leaves the region.

The argument, however, is indeed very simple. If the boundary leaves R, through e;
then the procedure correctly finds the vertex as it is the first tested edge. But suppose ey
contributes two vertices v and vy (see Fig. 9(a)). We saw that v; is assigned to e;. This is
correct because the boundary cannot leave the region through vy as it would have to enter
it sometime again through v, and would not “be able to leave” it.

Generally, if the boundary leaves R, through ej then none of the edges eq, €3, ..., €1,
which are tested before ex, can be a contributor edge and the procedure will reach e;. This
is due to the fact that every part of the boundary crossing R, ,, is a part of the bisector of
k and ey If any of ey, eq,...,e,_1 could be a contributor edge, then Releft would become
disconnect, which is impossible (see Fig. 9 (b)). This also implies that every traversed edge,

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 11

except the contributor edges, is entirely contained in Rj.

Figure 9: Demonstration of the correctness of the traverse procedure

When we defined oriented contributor edges, we said that their origins must be contained
in Ri. We invite the reader the follow the traverseProcedure, for the example of Fig. 7(b),
if the first contributor edge was sym(ez) (which has its origin outside Rjy). The vertices
v and wg, in that figure, are just not found. In this case, the arguments above can not
be applied because the traversed edges are not inside Ryx. We could, alternatively, traverse
the regions in counterclockwise direction to find the vertices in clockwise direction. The
requirement would, then, be that the contributor edges always have their destinations inside

By

3.3.2 A special case

When Ry has only two edges (and two vertices), there is only one edge e of DVorW(S)
contributing the two vertices. This is a special case, as the two oriented contributor edges
have their origins outside Ri. However, the traverse procedure correctly finds the two
vertices. Figure 10(a) shows the edges traversed by traverseProcedure in an example.

Figure 10: Special case when updating the diagram

The update differs from the general case: choose one oriented contributor edge and
change its destination to the corresponding vertex; creates a new edge from the origin to
the corresponding vertex of the other oriented contributor edge; and join the vertices by two
edges separating k from ej.s¢ and e,;4n¢. Figure 10(b) shows the resulting diagram. This

12 Guilherme A. Pinto and Pedro J. de Rezende

case is similar to our base case, but here the update is entirely mechanical as the orientation
of the contributor edges are already consistent.

3.4 Comments on the back part of the diagram

The subtlety of this algorithm is the fact that the primitives encapsulate all concepts of
T2. The function circunCenters returns two points of T? which are used by the function
edgeNotContributor in simple orientation tests (which are defined for all points in T?).

The traverse procedure and the update procedures never know whether they are working
with finite or infinite edges, or with front or back edges. The procedure for insertion of the
site k in the convex-hull of § is exactly the same as for k£ not in the convex-hull.

It is clear that any topological data structure able to represent partitions of the sphere
can be used to represent the DVorW. The geometry of the edges of the simple DVor can be
represented by the coordinates of the endpoints, because they are segments of T2. Fortu-
nately, the geometric representation of the edges of DVorW, which are arcs of hyperbolas in
T2, also have a simple and uniform representation. This subject has independent interest
and appears in [10].

4 Conclusion

We have successfully implemented this algorithm. The details and some images of the
visualization of the diagram in both the flat and spherical models of T? can be found in [9].
We note that the cost of the exact computation of the test edgeNotContributor may be
high, as the coordinates of the circuncenters are, in general, irrational numbers.

The algorithm assumes that no site is entirely contained in another. If this restriction
cannot be applied, and we still want an on-line algorithm, some modifications are needed:

1. The function circunCenters must be prepared to handle three sites that do not have
a circuncenter. Then function edgeNotContributor must return true in these cases.

2. The function findSomeContributorEdge may find no contributor edge. This can be
due to two cases: site k is contained in some site of §; or site k contains n — 1 sites
of §. The implementation must be able to distinguish these cases.

3. From the preceding item we see that the insertion k& may reduce the diagram to the
base case n = 3 or even to n = 2 and n = 1 which have no vertices. This also needs
special treatment.

This characterization through contributor edges proved very useful for DVorW but can-
not be used, for instance, for the Voronoi diagram of line segments, because three line
segments may have no circuncenter even in T?. Nevertheless, it would still be interesting
to construct this diagram in T2 for the uniform representation of the edges.

One interesting generalization if this construction is the higher order diagram. For
instance, the order 2 diagram can be defined by H,, s = {z € T?|dy2(z,p) + dy2(2,¢) <1
dy2(2,r)+dy2(2,s)}. Then, in general, the order k diagram is antipodal to the order (n—Fk)
diagram.

Additively Weighted Voronoi Diagram on the Oriented Projective Plane 13

References

[1] J. M. Augenbaum and C. S. Peskin, On the construction of the voronoi mesh on a
sphere, J. Comput. Phys., 59 (1985) 177-192.

[2] F. Aurenhammer, Power diagrams: properties, algorithms and applications, STAM J.
Comput. 16 (1) (1987) 78-96.

[3] J-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud and M. Yvinec, Applications
of Random Sampling to On-line Algorithms in Computational Geometry. Discrete &
Comp. Geometry 8 (1992) 51-71.

[4] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987) 153-174.

[5] P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, Computer
Journal 21 (1997) 168-173.

[6] L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computations of Voronoi diagrams, ACM Transc. on Graphics 4 (2) (1985) 74-123.

[7] M. Held, On the Computational Geometry of Pocket Machining, Lecture Notes on
Computer Science 500 (1991).

[8] D. T. Lee and R. L. Drysdale, Generalization of Voronoi diagrams in the plane, STAM
J. Comput. 10 (1) (1981) 73-86.

[9] G. A. Pinto, Generaliza¢oes do Diagrama de Voronoi construidas através de Conicas no
Plano Projetivo Orientado e suas Visualizacoes, Master’s Thesis, Institute of Computing,

UNICAMP (1998).

[10] G. A. Pinto and P. J. de Rezende, Representation of conics in the oriented projective
plane, Proc. of the X SIBGRAPI, published by IEEE, Campos do Jordao, Brazil (1997)
71-78.

[11] D. Rappaport, A convex hull algorithm for discs and applications, Computational
Geometry: Theory and Applications 1 (1992) 171-187.

[12] H. Rosenberger, Order-k Voronoi diagrams of sites with additive weights in the plane,
Algorithmica 6 (1991) 490-521.

[13] M. Sharir, Intersection and closest-pair problems for a set of planar discs, STAM J.
Comput. 14 (2) (1985) 448-468.

[14] J. Stolfi, Oriented Projective Geometry: A Framework for Geometric Computations,
Ist edition, Academic Press, Inc. (1991).

[15] C. K. Yap, An O(nlogn) Algorithm for the Voronoi Diagram of a Set of Simple Curve
Segments. Discrete & Comp. Geometry 2 (1987) 365-393.

